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ABSTRACT. This paper is based on [14]. In this paper, we consider the finite connected
quiver Q having two subquivers QY and Q® with @ = QMWuUQE® = (le) UQE)Z)., le) U
ng). Suppose that Q® is not a subquiver of Q) where {7, j} = {1,2}. For a monomial
algebra A = kQ/I obtained by the quiver @, when the set AP(n) (n > 0) of overlaps
constructed inductively by linking generators of I satisfies a certain separability condi-
tion, we propose the method so that we easily construct a minimal projective resolution
of A as a right A°~-module and calculate the Hochschild cohomology group of A.
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1. INTRODUCTION

For a finite-dimensional algebra A over a field k, the Hochschild cohomology groups
HH"(A) of A is defined by

HH"(A) := Ext’i.(A, 4) (n > 0),

where A®:=A°? @, A is the enveloping algebra of A. Note that there is a natural one to
one correspondence between the family of A-A-bimodules and that of right A®-modules.
Moreover, the Hochschild cohomology rings HH*(A) of A is the graded algebra defined by

HH"(A) := Ext’.(4, A) = @) Ext/yo(4, A)
i>0
with the Yoneda product.

The low-dimensional Hochschild cohomology groups are described as follows:

e HH’(A) = Z(A) is the center of A.

e HH'(A) is the space of derivations modulo the inner derivations. A derivation is
a k-linear map f : A — A such that f(ab) = af(b) + f(a)b for all a,b € A. A
derivation f : A — A is an inner derivation if there is some z € A such that
f(a) = ax — za for all a € A.

One important property of Hochschild cohomology is its invariance under Morita equiv-
alence, stable equivalence of Morita type and derived equivalence.

The detailed version of this paper has been submitted for publication elsewhere.



Let k be an algebraically closed field and @ a finite connected quiver. Then k() denotes
the path algebra of @Q over k in this paper. Let I be an admissible ideal of kQ. If I is gen-
erated by a finite number of paths in @, then [ is called a monomial ideal and A := kQ/I a
monomial algebra. For a finite-dimensional monomial algebra A = k@Q/I, using a certain
set AP(n) of overlaps constructed inductively by linking generators of I, Bardzell gave a
minimal projective A°-resolution (P, @) of A in [3] (so called Bardzell’s resolution). By
using Bardzell’s resolution, the Hochschild cohomology of monomial algebras are studied
in the following papers [11], [12], [9], etc.

In general, it is not easy to calculate the Hochschild cohomology of a finite-dimensional
algebra. In order to calculate the Hochschild cohomology groups of a quiver algebra, can
we use calculations of the Hochschild cohomology groups of quiver algebras obtained by
subquivers of the original quiver?

In this paper, for a finite-dimensional monomial algebra A, we propose a method so that
we easily calculate the Hochschild cohomology groups of A under some conditions. Let )
be a finite connected quiver and Q@ (i = 1,2) a subquiver of @ such that Q = QMuUQ® =
(Q(()l) U Q(()z), Q" UQY). Let 1 = (X) (vesp. I® = (Y')) be a monomial ideal of kQ"
(resp. kQ®) for X (resp. Y) a set of paths of kQM) (resp. kQ®)) and I = (X,Y) a
monomial ideal of kQ. We assume that [ and I (i = 1,2) are admissible ideals. Then
we define A = kQ/I, Agy = kQW/IM and A = kQ®/I®. Hence A and A are
finite-dimensional monomial algebras for ¢ = 1,2. For the monomial algebra A, under a
separability condition (i.e. le) N Q?) = @), we investigate the minimal projective A°-
module resolution of A given by Bardzell ([3]). Moreover, under an additional condition,
we show that, for n > 2, the Hochschild cohomology group HH"(A) of A is isomorphic to
the direct sum of the Hochschild cohomology groups HH"(A(y)) and HH"(A(y)).

Throughout this paper, for all arrows a of @), we denote the origin of a by o(a) and the
terminus of a by t(a). Also, for simplicity, we denote ®; by ®.

2. THE SET AP(n) OF OVERLAPS AND BARDZELL’'S RESOLUTION

2.1. The set AP(n) of overlaps. In this section, following [3] and [11], we will summa-
rize the definition of the set AP(n) (n > 0) of overlaps.

Definition 1. A path ¢ € kQ overlaps a path p € kQ with overlap pu if there exist u, v
such that pu = vg and 1 < I(u) < I(gq), where I(z) denotes the length of a path = € kQ.

Note that we allow I(z) = 0 here.
¢

¥4
A path ¢ properly overlaps a path p with overlap pu if ¢ overlaps p and I(v) > 1.

Let A = kQ/I be a finite-dimensional monomial algebra where I = (p) has a minimal
set of generators p of paths of length at least 2.

Definition 2. For n =0, 1,2, we set
e AP(0) := Qo =(the set of all vertices of Q);



e AP(1) := Q1 =(the set of all arrows of Q);

e AP(2) :=p.
For n > 3, we define the set AP(n) of all overlaps R" formed in the following way: We
say that R? € AP(2) maximally overlaps R"~' € AP(n — 1) with overlap R" = R" ' if
(1) R*~! = R"2p for some path p and R"~2 € AP(n — 2);
(2) R? overlap p with overlap pu;
(3) there is no element of AP(2) which overlaps p with overlap being a proper prefix of

pu.

The construction of the paths in AP(n) may be illustrated with the following picture
of R™:

nr 2
In short, overlaps are constructed by linking generators of an admissible monomial ideal
I. A sequence of those generators of I is called the associated sequence of paths ([10]).

2.2. Bardzell’s resolution. For a monomial algebra A = kQ/I, by using the set AP(n),
Bardzell determined a minimal projective A°-resolution (P, ¢.) of A in [3].

Definition 3. Let (F.,, ¢s) be the minimal projective A®- resolution of A in [3]. Then, for
n > 0, we set
P,= J[ AMo(R") ®t(R"A.
R"e€AP(n)
From [3], if R***" € AP(2n + 1), then there uniquely exist R;", RY" € AP(2n) and
some paths a;, by such that R***' = R¥"a; = by R}

R2n+l
R;%" o
be Ry
For even degree elements R?® € AP(2n), there exist r > 1, R?"~' € AP(2n — 1) and
paths p;, ¢ for [ = 1,2,...,r such that R* = pyRZ" 'q, = --- = p,R?" "¢,
R'/n
P nr! [
Pr Rt ar

Remark 4. Note that o(R}") ® a; € Ao(R3") ® t(R¥")A and b, @ t(R") € Ao(R}")®
t(RZ")A. Also, note that p; ® ¢ € Ao(R™ ™) @ t(R"1)A.



Definition 5. The map ¢ony1 : Panyr —> Pay is given as follows. If R**™ = R"q;
= bR € AP(2n + 1), then

o( R @ t(R*™ ) —s O(R?n) ® a; — by @ t(R™).

The map ¢y, : P, — Py,_1 is given as follows. If R*" = p,R}" 'q; = --- = p,R*" ¢,
then

O(RZn) ® t(Rzn) — Zpl (%9 qr.
=1
The following result is the main theorem in [3].
Bardzell’s Theorem ([3, Theorem 4.1]) Let @ be a finite quiver, and suppose that
A = kQ/I is a monomial algebra with an admissible ideal I. Then the sequence

e NN ANy - NN N

is a minimal projective resolution of A as a right A®-module, where 7 is the multiplication
map.

3. THE DECOMPOSITION OF HOCHSCHILD COHOMOLOGY GROUPS

We recall our setting.
«Q=QMuQ,
e /) = (X) be a monomial ideal generated by X a set of paths of QM)
o [ = (Y) a monomial ideal generated by Y a set of paths of EQ®@,
e [ = (X,Y) a monomial ideal of k@,
o A=kQ/I, Ayy = kQW/IW, Ay = kQ® /I?): finite-dimensional algebras,
e AP(2):=XUY, APW(2) := X, AP?(2) =Y.
Then, as in the definition of AP(n) of overlaps, we define APM (n), AP (n). Moreover,
we define projective A°-modules as follows:

PO = [ Ao(R")®tR"A,
RreAP()(n)

PP = [ Ao(R")®tR")A,
RreAP®)(n)

P,= J[ Ao(R")®tR"A.
RM€AP(n)

To prove our main result, we need the following lemma. As mentioned in Introduction,
we consider the separability condition APM(1)N AP®(1) = @.

Lemma 6. Let i € {1,2}. If we assume APM (1) N APP(1) = @, then we have the
following:
(a) For alln > 1, AP(n) = APW(n) U AP®(n).

(b) For alln > 1, APM)(n)N AP®(n) = 2.



(c) Let n > 1 and p" € AP(n). Then R™ is a path of kQY if and only if R* €
AP (n).

By Bardzell’s Theorem and Lemma 6, we have the following proposition.

Proposition 7. ([14, Proposition 3.2]) If the condition le) N Q(Z) & holds, then, in
the following minimal projective resolution of A:

S P P, S s 2P PO Py T A — 0,

foranyn > 1, P, is isomorphic to P(l)@P(Q) as right A®-modules and ¢, 11 = QS(l)l@ngﬁi)_l,
where ¢7(f)+1 : P,(l’ll — Py (i = 1,2) is the restriction of ¢ny1-

Remark 8. For i = 1,2, b, € Awo(R"), a; € t(RF") A, p € A(i)o(RQ-"H) and ¢ €
HRZ YAy actually hold. So, for n > 1, ¢ sends [[pnsieapo Ynrn) Apo(R™H@
tR") A t0 [T greapt (ny Awo(R™) @t(R")Agy (not just to [ zne ap Ao(R”)@t(R”)A)
Therefore, (I]gneapw(n) A(,)O(RT) ® t(R")Apy; ¢n+1)n21 is exactly a part of degree n > 1

for the minimal projective resolution of Ay (i = 1,2).

The following theorem is our main result.

Theorem 9. ([14, Theorem 3.3]) If the condition le) N Q?) = & holds and, for each
i=1,2, o( R")At(R™) = o( R")Ayt(R"™) holds for any n > 1 and any R™ € APY(n), then
we have the direct sum decomposition of Hochschild cohomology groups

HH"(A) =2 HH"(Aq)) @ HH"(A(2))
for any n > 2.

Remark 10. For n = 0, 1, the above equation fails in general (see Example 14 for the case
n=1).

If Qg,l) N Q(()Q) = {vg} and vgAvg = kv, then we have le) Q(g) @. Also, by Lemma
6 and Theorem 9, we have the following corollary.

Corollary 11. ([14, Corollary 3.4]) In the case Q(()l) N QgZ) = {w} and voAvy = kv, we
have the direct sum decomposition of the Hochschild cohomology groups

HH"(A) = HH" (A1) & HH"(A(2))
for any n > 2.

Remark 12. Hence, for a finite dimensional monomial algebra obtained by linking some
quivers bound by monomial relations successively, we can also decompose the Hochschild
cohomology groups as in Corollary 11.



4. EXAMPLES

In this section, we give two examples of monomial algebras satisfying the condition
APH(1) N APA(1) = 2.

Example 13. Let @) be a quiver
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for any integers m, m’ > 2 with m < n and m’ < n’. We set the algebra A = kQ/I. Let

QW be the subquiver of Q bound by IV = (ayay - - - Gy, 2a3 - Apg1, - -, A1 -+ g1
and Q® be the subquiver of @ bound by I® = (byby-- by, bobg byt ..., bub

e b i), where QY N QMY = {vo} and Q1Y N QP = @, We set Ay = kQW /1)
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for ¢ = 1,2. Then the condition of Corollary 11 is satisfied. Applying Corollary 11,
we obtain the direct sum decomposition of the Hochschild cohomology groups HH"(A) =
HH"(Aq))®HH"(A(g)) for any n > 2. Also, since A (i = 1,2) is a self-injective Nakayama
algebra, we know the dimension of HH"(A;) from [5, Propositions 4.4, 5.3] for i = 1,2,
and so we have the dimension of HH"(A) by the decomposition above.

Example 14. Let () be a quiver
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bound by I = (aag, asa3, azaq, asay, bibse, babs, byby, byb1). We set the algebra A = kQ/I.
Let Q) be the subquiver of @ bound by IV = (aas, asas, asay,asa;) and Q) be the
subquiver of Q bound by ) = (b1bg, bobs, bsby, byby), where Qél) N Q(()l) = {vg,v1} and
Qe =

We set A(l) = kQ ) /10 for i = 1,2. Then APW(1) N AP®) (1) = & holds and for each
i =1,2, o( R")At(R") = o( R")A;t(R") holds for any n > 1 and any R" € APY(n). Ap-
plying Theorem 9, we obtain the direct sum decomposition of the Hochschild cohomology
groups HH"(A) = HH"(A(y)) @ HH"(A(9)) for any n > 2.
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On the other hand, by direct computations, we have dimy HHl(A) = 3 and dimy
HH'(A¢;)) =1 (i = 1,2). Hence the above decomposition does not hold for n = 1.
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