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ON THE DECOMPOSITION OF THE HOCHSCHILD COHOMOLOGY
GROUP OF A MONOMIAL ALGEBRA SATISFYING A

SEPARABILITY CONDITION

AYAKO ITABA, TAKAHIKO FURUYA AND KATSUNORI SANADA

Abstract. This paper is based on [14]. In this paper, we consider the finite connected

quiver Q having two subquivers Q(1) and Q(2) with Q = Q(1)∪Q(2) = (Q
(1)
0 ∪Q

(2)
0 , Q

(1)
1 ∪

Q
(2)
1 ). Suppose that Q(i) is not a subquiver of Q(j) where {i, j} = {1, 2}. For a monomial

algebra Λ = kQ/I obtained by the quiver Q, when the set AP (n) (n ≥ 0) of overlaps
constructed inductively by linking generators of I satisfies a certain separability condi-
tion, we propose the method so that we easily construct a minimal projective resolution
of Λ as a right Λe-module and calculate the Hochschild cohomology group of Λ.
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path algebra.
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1. Introduction

For a finite-dimensional algebra A over a field k, the Hochschild cohomology groups
HHn(A) of A is defined by

HHn(A) := ExtnAe(A,A) (n ≥ 0),

where Ae:=Aop ⊗k A is the enveloping algebra of A. Note that there is a natural one to
one correspondence between the family of A-A-bimodules and that of right Ae-modules.
Moreover, the Hochschild cohomology rings HH∗(A) of A is the graded algebra defined by

HH∗(A) := Ext∗Ae(A,A) =
⊕
i≥0

ExtiAe(A,A)

with the Yoneda product.
The low-dimensional Hochschild cohomology groups are described as follows:

• HH0(A) = Z(A) is the center of A.
• HH1(A) is the space of derivations modulo the inner derivations. A derivation is
a k-linear map f : A → A such that f(ab) = af(b) + f(a)b for all a, b ∈ A. A
derivation f : A → A is an inner derivation if there is some x ∈ A such that
f(a) = ax− xa for all a ∈ A.

One important property of Hochschild cohomology is its invariance under Morita equiv-
alence, stable equivalence of Morita type and derived equivalence.

The detailed version of this paper has been submitted for publication elsewhere.
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Let k be an algebraically closed field and Q a finite connected quiver. Then kQ denotes
the path algebra of Q over k in this paper. Let I be an admissible ideal of kQ. If I is gen-
erated by a finite number of paths in Q, then I is called a monomial ideal and Λ := kQ/I a
monomial algebra. For a finite-dimensional monomial algebra Λ = kQ/I, using a certain
set AP (n) of overlaps constructed inductively by linking generators of I, Bardzell gave a
minimal projective Λe-resolution (P•, ϕ•) of Λ in [3] (so called Bardzell’s resolution). By
using Bardzell’s resolution, the Hochschild cohomology of monomial algebras are studied
in the following papers [11], [12], [9], etc.

In general, it is not easy to calculate the Hochschild cohomology of a finite-dimensional
algebra. In order to calculate the Hochschild cohomology groups of a quiver algebra, can
we use calculations of the Hochschild cohomology groups of quiver algebras obtained by
subquivers of the original quiver?

In this paper, for a finite-dimensional monomial algebra Λ, we propose a method so that
we easily calculate the Hochschild cohomology groups of Λ under some conditions. Let Q
be a finite connected quiver andQ(i) (i = 1, 2) a subquiver ofQ such thatQ = Q(1)∪Q(2) =

(Q
(1)
0 ∪Q

(2)
0 , Q

(1)
1 ∪Q

(2)
1 ). Let I(1) = ⟨X⟩ (resp. I(2) = ⟨Y ⟩) be a monomial ideal of kQ(1)

(resp. kQ(2)) for X (resp. Y ) a set of paths of kQ(1) (resp. kQ(2)) and I = ⟨X, Y ⟩ a
monomial ideal of kQ. We assume that I and I(i) (i = 1, 2) are admissible ideals. Then
we define Λ = kQ/I, Λ(1) = kQ(1)/I(1) and Λ(2) = kQ(2)/I(2). Hence Λ and Λ(i) are
finite-dimensional monomial algebras for i = 1, 2. For the monomial algebra Λ, under a

separability condition (i.e. Q
(1)
1 ∩ Q

(2)
1 = ∅), we investigate the minimal projective Λe-

module resolution of Λ given by Bardzell ([3]). Moreover, under an additional condition,
we show that, for n ≥ 2, the Hochschild cohomology group HHn(Λ) of Λ is isomorphic to
the direct sum of the Hochschild cohomology groups HHn(Λ(1)) and HHn(Λ(2)).

Throughout this paper, for all arrows a of Q, we denote the origin of a by o(a) and the
terminus of a by t(a). Also, for simplicity, we denote ⊗k by ⊗.

2. The set AP (n) of overlaps and Bardzell’s resolution

2.1. The set AP (n) of overlaps. In this section, following [3] and [11], we will summa-
rize the definition of the set AP (n) (n ≥ 0) of overlaps.

Definition 1. A path q ∈ kQ overlaps a path p ∈ kQ with overlap pu if there exist u, v
such that pu = vq and 1 ≤ l(u) ≤ l(q), where l(x) denotes the length of a path x ∈ kQ.
Note that we allow l(x) = 0 here.

A path q properly overlaps a path p with overlap pu if q overlaps p and l(v) ≥ 1.

Let Λ = kQ/I be a finite-dimensional monomial algebra where I = ⟨ρ⟩ has a minimal
set of generators ρ of paths of length at least 2.

Definition 2. For n = 0, 1, 2, we set

• AP (0) := Q0 =(the set of all vertices of Q);
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• AP (1) := Q1 =(the set of all arrows of Q);
• AP (2) := ρ.

For n ≥ 3, we define the set AP (n) of all overlaps Rn formed in the following way: We
say that R2 ∈ AP (2) maximally overlaps Rn−1 ∈ AP (n− 1) with overlap Rn = Rn−1u if

(1) Rn−1 = Rn−2p for some path p and Rn−2 ∈ AP (n− 2);
(2) R2 overlap p with overlap pu;
(3) there is no element of AP (2) which overlaps p with overlap being a proper prefix of

pu.

The construction of the paths in AP (n) may be illustrated with the following picture
of Rn:

In short, overlaps are constructed by linking generators of an admissible monomial ideal
I. A sequence of those generators of I is called the associated sequence of paths ([10]).

2.2. Bardzell’s resolution. For a monomial algebra Λ = kQ/I, by using the set AP (n),
Bardzell determined a minimal projective Λe-resolution (P•, ϕ•) of Λ in [3].

Definition 3. Let (P•, ϕ•) be the minimal projective Λe- resolution of Λ in [3]. Then, for
n ≥ 0, we set

Pn =
⨿

Rn∈AP (n)

Λo(Rn)⊗ t(Rn)Λ.

From [3], if R2n+1 ∈ AP (2n + 1), then there uniquely exist R2n
j , R2n

k ∈ AP (2n) and

some paths aj, bk such that R2n+1 = R2n
j aj = bkR

2n
k .

For even degree elements R2n ∈ AP (2n), there exist r ≥ 1, R2n−1
l ∈ AP (2n − 1) and

paths pl, ql for l = 1, 2, . . . , r such that R2n = p1R
2n−1
1 q1 = · · · = prR

2n−1
r qr.

Remark 4. Note that o(R2n
j ) ⊗ aj ∈ Λo(R2n

j ) ⊗ t(R2n
j )Λ and bk ⊗ t(R2n

k ) ∈ Λo(R2n
k )⊗

t(R2n
k )Λ. Also, note that pl ⊗ ql ∈ Λo(R2n−1

l )⊗ t(R2n−1
l )Λ.
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Definition 5. The map ϕ2n+1 : P2n+1 −→ P2n is given as follows. If R2n+1 = R2n
j aj

= bkR
2n
k ∈ AP (2n+ 1), then

o(R2n+1)⊗ t(R2n+1) �−→ o(R2n
j )⊗ aj − bk ⊗ t(R2n

k ).

The map ϕ2n : P2n −→ P2n−1 is given as follows. If R2n = p1R
2n−1
1 q1 = · · · = prR

2n−1
r qr,

then

o(R2n)⊗ t(R2n) �−→
r∑

l=1

pl ⊗ ql.

The following result is the main theorem in [3].
Bardzell’s Theorem ([3, Theorem 4.1]) Let Q be a finite quiver, and suppose that
Λ = kQ/I is a monomial algebra with an admissible ideal I. Then the sequence

· · · → Pn+1
ϕn+1−→ Pn

ϕn−→ · · · ϕ2−→ P1
ϕ1−→ P0

π−→ Λ → 0

is a minimal projective resolution of Λ as a right Λe-module, where π is the multiplication
map.

3. The decomposition of Hochschild cohomology groups

We recall our setting.

• Q = Q(1) ∪Q(2),
• I(1) = ⟨X⟩ be a monomial ideal generated by X a set of paths of kQ(1),
• I(2) = ⟨Y ⟩ a monomial ideal generated by Y a set of paths of kQ(2),
• I = ⟨X, Y ⟩ a monomial ideal of kQ,
• Λ = kQ/I, Λ(1) = kQ(1)/I(1), Λ(2) = kQ(2)/I(2): finite-dimensional algebras,

• AP (2) := X ∪ Y , AP (1)(2) := X, AP (2)(2) := Y .

Then, as in the definition of AP (n) of overlaps, we define AP (1)(n), AP (2)(n). Moreover,
we define projective Λe-modules as follows:

P (1)
n =

⨿
Rn∈AP (1)(n)

Λo(Rn)⊗ t(Rn)Λ,

P (2)
n =

⨿
Rn∈AP (2)(n)

Λo(Rn)⊗ t(Rn)Λ,

Pn =
⨿

Rn∈AP (n)

Λo(Rn)⊗ t(Rn)Λ.

To prove our main result, we need the following lemma. As mentioned in Introduction,
we consider the separability condition AP (1)(1) ∩ AP (2)(1) = ∅.

Lemma 6. Let i ∈ {1, 2}. If we assume AP (1)(1) ∩ AP (2)(1) = ∅, then we have the
following:

(a) For all n ≥ 1, AP (n) = AP (1)(n) ∪ AP (2)(n).

(b) For all n ≥ 1, AP (1)(n) ∩ AP (2)(n) = ∅.
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(c) Let n ≥ 1 and pn ∈ AP (n). Then Rn is a path of kQ(i) if and only if Rn ∈
AP (i)(n).

By Bardzell’s Theorem and Lemma 6, we have the following proposition.

Proposition 7. ([14, Proposition 3.2]) If the condition Q
(1)
1 ∩ Q

(2)
1 = ∅ holds, then, in

the following minimal projective resolution of Λ:

· · · → Pn+1
ϕn+1−→ Pn

ϕn−→ Pn−1 → · · · ϕ3−→ P2
ϕ2−→ P1

ϕ1−→ P0
π−→ Λ −→ 0,

for any n ≥ 1, Pn is isomorphic to P
(1)
n ⊕P

(2)
n as right Λe-modules and ϕn+1 = ϕ

(1)
n+1⊕ϕ

(2)
n+1,

where ϕ
(i)
n+1 : P

(i)
n+1 → P

(i)
n (i = 1, 2) is the restriction of ϕn+1.

Remark 8. For i = 1, 2, bk ∈ Λ(i)o(R
2n
k ), aj ∈ t(R2n

j )Λ(i), pl ∈ Λ(i)o(R
2n+1
j ) and ql ∈

t(R2n+1
l )Λ(i) actually hold. So, for n ≥ 1, ϕ

(i)
n+1 sends

⨿
Rn+1∈AP (i)(n+1) Λ(i)o(R

n+1)⊗
t(Rn+1)Λ(i) to

⨿
Rn∈AP (i)(n) Λ(i)o(R

n)⊗t(Rn)Λ(i) (not just to
⨿

Rn∈AP (n) Λo(R
n)⊗t(Rn)Λ).

Therefore, (
⨿

Rn∈AP (i)(n) Λ(i)o(R
n)⊗ t(Rn)Λ(i);ϕ

(i)
n+1)n≥1 is exactly a part of degree n ≥ 1

for the minimal projective resolution of Λ(i) (i = 1, 2).

The following theorem is our main result.

Theorem 9. ([14, Theorem 3.3]) If the condition Q
(1)
1 ∩ Q

(2)
1 = ∅ holds and, for each

i = 1, 2, o(Rn)Λt(Rn) = o(Rn)Λ(i)t(R
n) holds for any n ≥ 1 and any Rn ∈ AP (i)(n), then

we have the direct sum decomposition of Hochschild cohomology groups

HHn(Λ) ∼= HHn(Λ(1))⊕ HHn(Λ(2))

for any n ≥ 2.

Remark 10. For n = 0, 1, the above equation fails in general (see Example 14 for the case
n = 1).

If Q
(1)
0 ∩Q

(2)
0 = {v0} and v0Λv0 = kv0, then we have Q

(1)
1 ∩Q

(2)
1 = ∅. Also, by Lemma

6 and Theorem 9, we have the following corollary.

Corollary 11. ([14, Corollary 3.4]) In the case Q
(1)
0 ∩ Q

(2)
0 = {v0} and v0Λv0 = kv0, we

have the direct sum decomposition of the Hochschild cohomology groups

HHn(Λ) ∼= HHn(Λ(1))⊕ HHn(Λ(2))

for any n ≥ 2.

Remark 12. Hence, for a finite dimensional monomial algebra obtained by linking some
quivers bound by monomial relations successively, we can also decompose the Hochschild
cohomology groups as in Corollary 11.
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4. Examples

In this section, we give two examples of monomial algebras satisfying the condition
AP (1)(1) ∩ AP (2)(1) = ∅.

Example 13. Let Q be a quiver

bound by

I =⟨a1a2 · · · am, a2a3 · · · am+1, . . . , ana1 · · · a−n+m+1,

b1b2 · · · bm′ , b2b3 · · · bm′+1, . . . , bn′b1 · · · b−n′+m′+1⟩

for any integers m, m′ ≥ 2 with m ≤ n and m′ ≤ n′. We set the algebra Λ = kQ/I. Let
Q(1) be the subquiver ofQ bound by I(1) = ⟨a1a2 · · · am, a2a3 · · · am+1, . . . , ana1 · · · a−n+m+1⟩
and Q(2) be the subquiver of Q bound by I(2) = ⟨b1b2 · · · bm′ , b2b3 · · · bm′+1, . . . , bn′b1
· · · b−n′+m′+1⟩, where Q

(1)
0 ∩ Q

(1)
0 = {v0} and Q

(1)
1 ∩ Q

(2)
1 = ∅. We set Λ(i) = kQ(i)/I(i)

Q(1) : Q(2) :

for i = 1, 2. Then the condition of Corollary 11 is satisfied. Applying Corollary 11,
we obtain the direct sum decomposition of the Hochschild cohomology groups HHn(Λ) ∼=
HHn(Λ(1))⊕HHn(Λ(2)) for any n ≥ 2. Also, since Λ(i) (i = 1, 2) is a self-injective Nakayama
algebra, we know the dimension of HHn(Λ(i)) from [5, Propositions 4.4, 5.3] for i = 1, 2,
and so we have the dimension of HHn(Λ) by the decomposition above.

Example 14. Let Q be a quiver
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bound by I = ⟨a1a2, a2a3, a3a4, a4a1, b1b2, b2b3, b3b4, b4b1⟩. We set the algebra Λ = kQ/I.
Let Q(1) be the subquiver of Q bound by I(1) = ⟨a1a2, a2a3, a3a4, a4a1⟩ and Q(2) be the

subquiver of Q bound by I(2) = ⟨b1b2, b2b3, b3b4, b4b1⟩, where Q
(1)
0 ∩ Q

(1)
0 = {v0, v1} and

Q
(1)
1 ∩Q

(2)
1 = ∅.

We set Λ(i) = kQ(i)/I(i) for i = 1, 2. Then AP (1)(1) ∩ AP (2)(1) = ∅ holds and for each

i = 1, 2, o(Rn)Λt(Rn) = o(Rn)Λ(i)t(R
n) holds for any n ≥ 1 and any Rn ∈ AP (i)(n). Ap-

plying Theorem 9, we obtain the direct sum decomposition of the Hochschild cohomology
groups HHn(Λ) ∼= HHn(Λ(1))⊕ HHn(Λ(2)) for any n ≥ 2.

Q(1) : Q(2) :

On the other hand, by direct computations, we have dimk HH
1(Λ) = 3 and dimk

HH1(Λ(i)) = 1 (i = 1, 2). Hence the above decomposition does not hold for n = 1.
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