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TILTED ALGEBRAS AND CONFIGURATIONS OF SELF-INJECTIVE

ALGEBRAS OF DYNKIN TYPE

HIDETO ASASHIBA AND KEN NAKASHIMA

Abstract. All algebras are assumed to be basic, connected finite-dimensional algebras
over an algebraically closed field. We give an easier way to calculate a bijection from the
set of isoclasses of tilted algebras of Dynkin type ∆ to the set of configurations on the
translation quiver Z∆.

Introduction

This work is a generalization of Hironobu Suzuki’s Master thesis [7] that dealt with
representation-finite self-injective algebras of type A in a combinatorial way. Throughout
this paper n is a positive integer and k is an algebraically closed field, and all algebras
considered here are assumed to be basic, connected, finite-dimensional associative k-
algebras.

Let ∆ be a Dynkin graph of type A, D, E with the set ∆0 := {1, . . . , n} of vertices. We
set Cn to be the set of configurations on the translation quiver Z∆ (see Definition 1.6),
and Tn to be the set of isoclasses of tilted algebras of type ∆. Then Bretscher, Läser and
Riedtmann have given a bijection c : Tn → Cn in [1]. But the map c is not given in a
direct way, it needs a long computation of a function on Z∆. In this paper we will give
an easier way to calculate the map c by giving a map sending each projective A-module
over a tilted algebra A in Tn to an element of the configuration c(A).

We fix an orientation of each Dynkin graph ∆ to have a quiver �∆ as in the following
table.

∆ An (n ≥ 1) Dn (n ≥ 4) En (n = 6, 7, 8)

�∆ ◦ ◦ · · · ◦�� �� ��
1 2 n

◦

◦ · · · ◦ ◦�� �� ��

��

1 n − 2 n − 1

n ◦

◦ · · · ◦ ◦ ◦�� �� �� ��

��

1 n − 3 n − 2 n − 1

n

m∆ n 2n − 3 11, 17, 29, respectively

This orientation of ∆ gives us a coordinate system on the set (Z∆)0 := Z×∆0 of vertices

of Z∆ := Z�∆ as presented in [1, fig. 1] and in [3, Fig. 13], and by definition the full

subquiver S of Z∆ consisting of {(0, i) | i ∈ ∆0} is isomorphic to �∆.
Let A be a tilted algebra of type ∆. Then by identify A with the (0, 0)-entry of the

repetitive category Â, the vertex set of AR-quiver ΓA is embedded into the vertex set
of the stable AR-quiver sΓÂ (∼= Z∆) of Â. Further the configuration C := c(A) of Z∆
computed in [1] is given by the vertices of Z∆ corresponding to radicals of projective

The detailed version of this paper will be submitted for publication elsewhere.
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indecomposable Â-modules. Note that the configuration C has a period m∆ listed in the
table, thus C = τm∆ZF for some subset F of C. By P = {(p(i), i) | i ∈ ∆0} we denote the
set of images of the projective vertices of ΓA in Z∆ and set

NP := {(m, i) ∈ (Z∆)0 | p(i) ≤ m, i ∈ ∆0}.

Since the mesh category k(Z∆) is a Frobenius category, it has the Nakayama permutation
ν̂ on (Z∆)0 that is defined by the isomorphism

k(Z∆)(x, -) ∼= Homk(k(Z∆)(-, ν̂x), k)

for all x ∈ (Z∆)0. The explicit formula of ν̂ is given in [3, pp. 48–50]. (Note that it
should be corrected as ν̂(p, q) = (p + q + 2, 6 − q) if q ≤ 5 when ∆ = E6 as pointed
out in [1, 1.1]). In this paper we will define a map ν ′ : P → NP using the supports of
starting functions dimk k(Z∆)(x, -) : NP → Z for x ∈ NP (cf. [3, Fig. 15]). Then ν ′ has
the following property.

Lemma 0.1. Let x ∈ P and P be the projective indecomposable A-module corresponding
to x. Then ν ′x corresponds to the simple module top P .

In this paper, we make use of modules over the algebra

B :=

[
A 0

DA A

]

to compute an F above (the configuration (see Definition 3.9) of B gives F .) We will
define a map ν := νB from the set of isoclasses of simple A-modules to C, which coincides
with the restriction of the Nakayama permutation ν̂ if A is hereditary.

Lemma 0.2. Assume that a vertex x ∈ Z∆ corresponds to a simple A-module S and let
Q be the injective hull of S over Â. Then ν(x) corresponds to rad Q, and hence ν(x) ∈ C.

Combining the lemmas above we obtain the following.

Proposition 0.3. If x ∈ P, then ν(ν ′x) ∈ C.

This leads us to the following definition.

Definition 0.4. We define a map cA : P → C by cA(x) := ν(ν ′x) for all x ∈ P .

The image of the map cA gives us an F above, namely we have the following.

Theorem 0.5. The map cA is an injection, and we have c(A) = τm∆Z Im cA.

Corollary 0.6. If A is hereditary, then cA = ν̂ν ′ and we have c(A) = τm∆Z Im ν̂ν ′.

Section 1 is devoted to preparations. In Section 2 we will give the complete list of inde-
composable projectives and indecomposable injectives over the triangular matrix algebra
B. In Section 3 we state our main results.
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1. Preliminaries

1.1. Algebras and categories. A category C is called a k-category if the morphism sets
C(x, y) are k-vector spaces, and the compositions C(y, z)×C(x, y) → C(x, z) are k-bilinear
for all x, y, z ∈ C0 (C0 is the class of objects of C, we sometimes write x ∈ C for x ∈ C0).
In the sequel all categories are assumed to be k-categories unless otherwise stated.

To construct repetitive categories and to make use of a covering theory we need to
extend the range of considerations from algebras to categories. First we regard an algebra
as a special type of categories by constructing a category cat A from an algebra A as
follows.

(1) We fix a decomposition 1 = e1 + · · · + en of the identity element 1 of A as a sum
of orthogonal primitive idempotents.

(2) We set the object class of cat A to be the set {e1, . . . , en}.
(3) For each pair (ei, ej) of objects, we set (cat A)(ei, ej) := ejAei.
(4) We define the composition of cat A by the multiplication of A.

The obtained category cat A is uniquely determined up to isomorphisms not depending on
the decomposition of 1. The category C = cat A is a small category having the following
three properties.

(1) Distinct objects are not isomorphic.
(2) For each object x of C the algebra C(x, x) is local.
(3) For each pair (x, y) of objects of C the morphism space C(x, y) is finite-dimensional.

A small category with these three properties is called a spectroid1 and its objects are
sometimes called points. A spectroid with only a finite number of points is called finite.
The category cat A is a finite spectroid. Conversely we can construct a matrix algebra
from a finite spectroid C as follows.

alg C := {(myx)x,y∈C | myx ∈ C(x, y), ∀x, y ∈ C}.

Here we have alg cat A ∼= A, cat alg C ∼= C. Therefore we can identify the class of algebras
and the class of finite spectroids by using cat and alg.

A spectroid C is called locally bounded if for each point x the set {y ∈ C | C(x, y) �=
0 or C(y, x) �= 0} is a finite set. Of course algebras ( = finite spectroids) are locally
bounded. In the range of locally bounded spectroids we can freely construct repetitive
categories or consider coverings.

Remark 1.1. We can construct the “path-category” kQ from a locally finite quiver Q by
the same way as in the definition of the path-algebra. The only different part is in the
following definition of compositions: For paths µ, ν with2 s(µ) �= t(ν), it was defined as
µν = 0 in the path-algebra, but in contrast the composition µν is not defined in the
path-category.

A locally bounded spectroid C is also presented as the form kQ/I for some locally finite
quiver Q and for some ideal I of the path-category kQ such that I is included in the ideal

1a terminology used in [4]
2Here s(µ) and t(ν) stand for the source of µ and the target of ν and compositions are written from

the right to the left.
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of kQ generated by the set of paths of length 2. Here the quiver Q is uniquely determined
by C up to isomorphisms. This Q is called the quiver of C.

A (right) module over a spectroid C is a contravariant functor C → Mod k. From a usual
(right) module over an algebra A we can construct a contravariant functor cat A → Mod k
by the correspondence ei �→ Mei for each point ei in cat A, and f �→ (·f : Mej → Mei)
for each f ∈ ejAei = (cat A)(ei, ej). Conversely, from a contravariant functor F : cat A →
Mod k we can construct an A-module

⊕n
i=1 F (ei); and these constructions are inverse to

each other. In this way we can identify A-modules and modules over cat A.
The set of projective indecomposable modules over a spectroid C is given by {C(-, x)}x∈C

up to isomorphism, and finitely generated projective C-modules are nothing but finite di-
rect sums of these. Using this we can define finitely generated modules or finitely presented
modules over C by the same way as those over algebras.

The dimension of a C-module M is defined to be the dimension of
⊕

x∈C M(x). When
C is locally bounded, a C-module is finitely presented if and only if it is finitely generated
if and only if it is finite-dimensional.

1.2. Repetitive category.

Definition 1.2. Let A be an algebra with a basic set of local idempotents {e1, . . . , en}.
(1) The repetitive category Â of A is a spectroid defined as follows.

Objects: Â0 := {x[i] := (x, i) | x ∈ {e1, . . . , en}, i ∈ Z}.
Morphisms: Let x[i], y[j] ∈ Â0. Then we set

Â(x[i], y[j]) :=




{f [i] := (f, i) | f ∈ A(x, y)} (j = i)

{ϕ[i] := (ϕ, i) | ϕ ∈ DA(y, x)} (j = i + 1)

0 otherwise．

Compositions: The composition Â(y[j], z[k]) × Â(x[i], y[j]) → Â(x[i], z[k]) is de-
fined as follows.

(i) If j = i, k = j, then we use the composition of A:

A(y, z) × A(x, y) → A(x, z).

(ii) If j = i, k = j+1, then we use the right A-module structure of DA(-, ?):

DA(z, y) × A(x, y) → DA(z, x).

(iii) If j = i + 1, k = j, then we use the left A-module structure of DA(-, ?):

A(y, z) × DA(y, x) → DA(z, x).

(iv) Otherwise the composition is zero.

(2) For each i ∈ Z, we denote by A[i] the full subcategory of Â whose object class is
{x[i] | x ∈ {e1, . . . , en}}.

(3) We define the Nakayama automorphism νA of Â as follows: for each i ∈ Z, x, y ∈
A, f ∈ A(x, y) and φ ∈ DA(y, x)，

νA(x[i]) := x[i+1], νA(f [i]) := f [i+1], νA(ϕ[i]) := ϕ[i+1].
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Remark 1.3. (1) If a spectroid A is locally bounded, then so is Â.
(2) When A is an algebra, the set of all Z × Z-matrices with only a finite number of

nonzero entries whose diagonal entries belong to A, (i + 1, i) entries belong to DA for all
i ∈ Z, and other entries are zero forms an infinite-dimensional algebra without identity
element, which is called the repetitive algebra of A. The repetitive category Â is nothing
but this repetitive algebra regarded as a spectroid in a similar way. This is not an algebra
(= a finite spectroid) any more, but a locally bounded spectroid.

Definition 1.4 (Gabriel [2]). Let C be a locally bounded spectroid with a free3 action of
a group G. Then we define the orbit category C/G of C by G as follows.

(1) The objects of C/G are the G-orbits Gx of objects x of C.
(2) For each pair Gx,Gy of objects of C/G we set

(C/G)(Gx,Gy) :=


(bfa)a,b ∈

∏
(a,b)∈Gx×Gy

C(a, b)
��� gbfga = g(bfa), for all g ∈ G


 .

(3) The composition is defined by

(dhc)c,d · (bfa)a,b :=

(∑
b∈Gy

dhb · bfa

)

a,d

.

for all (bfa)a,b ∈ (C/G)(Gx,Gy), (dhc)c,d ∈ (C/G)(Gy,Gz). Note that each entry
of the right hand side is a finite sum because C is locally bounded.

A functor F : C → C ′ is called a Galois covering with group G if it is isomorphic to
the canonical functor π : C → C/G, namely if there exists an isomorphism H : C/G → C ′

such that F = Hπ.

Remark 1.5. If A is an algebra and a group G acts freely on the category Â, then Â/G

turns out to be a self-injective spectroid. In particular, when Â/G is a finite spectroid,
it becomes a self-injective algebra. In this way we can construct a great number of self-
injective algebras.

Definition 1.6. From a quiver Q we can construct a translation quiver ZQ as follows.

• (ZQ)0 := Z × Q0,
• (ZQ)1 := Z × Q1 ∪ {(i, α′) | i ∈ Z, α ∈ Q1},
• We define the sources and the targets of arrows by

(i, α) : (i, s(α)) → (i, t(α)), (i, α′) : (i, t(α)) → (i + 1, s(α))

for all (i, α) ∈ Z × Q1.
• We take the bijection τ : (ZQ)0 → (ZQ)0, (i, x) �→ (i − 1, x) as the translation.

In addition, we can define a polarization by (i + 1, α) �→ (i, α′), (i, α′) �→ (i, α). Note
that by construction the translation quiver ZQ does not have any projective or injective
vertices.

31 �= g ∈ G, x ∈ C0 implies gx �= x
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For example,

Q =

1

2

3

α
��������

β ���
��

��
� gives ZQ =

· · · (−1, 1) (0, 1) (1, 1) · · ·

· · · (−1, 2) (0, 2) (1, 2) · · ·

· · · (−1, 3) (0, 3) (1, 3) · · ·

(−1,α)
��������

(−1,β) ��������

(0,α)
��������

(0,β) ����
��

��

(1,α)
��������

(1,β) ����
��

��

(−1,α′)
��

����

(−1,β′)��

����

(0,α′)

��

����

(0,β′)��

����

������ ����� ����� ��

�� ������ ����� �����

������ ����� ����� ��

.

Remark 1.7. When Q is a Dynkin quiver with the underlying graph ∆, the isoclass of ZQ
does not depend on orientations of ∆, therefore we set Z∆ := ZQ.

2. Triangular Matrix Algebras

Definition 2.1. Let R and S be algebras, M be an S-R-bimodule. We define a category
C = C(R, S, M) as follows.

Objects: C0 := {(X, Y, f) | XR ∈ mod R, YS ∈ mod S, f ∈ HomA(Y ⊗S M, X)}.
Morphisms: Let (X, Y, f), (X ′, Y ′, f ′) ∈ C0. Then we set

C((X, Y, f), (X ′, Y ′, f ′)) :=




(φ0, φ1) ∈ HomR(X,X ′) × HomS(Y, Y ′)

����������

Y ⊗S M

�

X

Y ′ ⊗S M X ′

φ1⊗1M

��

f ′
��

f ��

φ0

��




.

Compositions: Let (X,Y, f), (X ′, Y ′, f ′), (X ′′, Y ′′, f ′′) ∈ C0 and let

(φ0, φ1) ∈ C((X, Y, f), (X ′, Y ′, f ′)), (φ′
0, φ

′
1) ∈ C((X ′, Y ′, f ′), (X ′′, Y ′′, f ′′)).

Then we set

(φ′
0, φ

′
1)(φ0, φ1) := (φ′

0φ0, φ
′
1φ1) ∈ C((X, Y, f), (X ′′, Y ′′, f ′′)).

Then the following is well known.

Proposition 2.2. Let R and S be algebras, M be an S-R-bimodule. Then

mod

[
R 0
M S

]
� C(R, S,M).

Recall that an equivalence F : mod

[
R 0
M S

]
→ C(R, S,M) is given as follows.

Objects: For each L ∈ (mod T )0,

F (L) := (Lε1, Lε2, fL),

where ε1 :=

[
1R 0
0 0

]
, ε2 :=

[
0 0
0 1S

]
and fL : Lε2 ⊗S M → Lε1 is defined by

fL(lε2 ⊗ m) := l

[
0 0
m 0

]
for all l ∈ L and m ∈ M .

Morphisms: For each α ∈ HomT (L,L′),

F (α) := (α |Lε1 , α |Lε2).
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Let A be a tilted algebra of type ∆, and set B :=

[
A 0

DA A

]
, C := C(A,A, DA).

Then we have mod B � C by Proposition 2.2. By this equivalence, we identify mod B
with C.

Let {e1, . . . , en} be a complete set of orthogonal local idempotents of A. Then as is
easily seen

{e[0]
1 , . . . , e

[0]
n , e

[1]
1 , . . . , e

[1]
n } is a complete set of orthogonal local idempotents of B, and

{e[0]
1 B, . . . , e

[0]
n B, e

[1]
1 B, . . . , e

[1]
n B} is a complete set of isoclasses of projective indecompos-

able B-modules. The following is immediate.

Proposition 2.3. For each i = 1, . . . , n, we have

F (e
[0]
i B) ∼= (eiA, 0, 0),

F (e
[1]
i B) ∼= (ei(DA), eiA, can).

In addition {D(Be
[0]
1 ), . . . , D(Be

[0]
n ), D(Be

[1]
1 ), . . . , D(Be

[1]
n )} is a complete set of iso-

classes of injective indecomposable B-modules. The following two statements are obvious.

Lemma 2.4. For each i = 1, . . . , n, we have

(1) D

[
Aei 0

(DA)ei 0

]
∼=

[
0 0

D(Aei) eiA

]
, and

(2) D

[
0 0
0 Aei

]
∼=

[
0 0
0 D(Aei)

]
.

Proposition 2.5. For each i = 1, . . . , n, we have

F (D(Be
[0]
i )) ∼= (ei(DA), eiA, can) ∼= e

[1]
i B,

F (D(Be
[1]
i )) ∼= (0, ei(DA), 0).

3. Configurations

Definition 3.1. Let Λ be a standard representation-finite self-injective algebra. Then we
set

CΛ := {[rad P ] ∈ ΓΛ | P : projective(-injective) Λ-module},
which is called a configuration of Λ.

Definition 3.2. Let Γ be a stable translation quiver, and C be a subset of Γ0. Then we
define a translation quiver ΓC by

(ΓC)0 := Γ0 � {px | x ∈ C},
(ΓC)1 := Γ1 � {x → px, px → τ−1x},

where the translation of ΓC is the same as that of Γ. In particular, px are projective-
injective4 vertices for all x ∈ C.

4The word “projective-injective” stands for projective and injective.
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Remark 3.3. The quiver of mod Λ is the full subquiver sΓΛ of ΓΛ with

(sΓΛ)0 := {x | x is a stable vertex of ΓΛ}
(namely sΓΛ is obtained from ΓΛ by removing all projective vertices), which is a stable
translation quiver. Then it holds that CΛ ⊆ (sΓΛ)0, and we have

(sΓΛ)CΛ
∼= ΓΛ. (3.1)

Theorem 3.4. Let Λ be a standard representation-finite self-injective algebra and ∆ the
Dynkin type of Λ. Then the following hold.

(1) (Waschbüsch [5, 8]) There exist a tilted algebra A of type ∆ and an automorphism

φ of Â without fixed vertices such that Λ ∼= Â/�φ�.
(2) (Riedtmann [6]) There is an isomorphism f : sΓÂ → Z∆. Denote also by φ the

automorphism of sΓÂ induced from φ canonically, and define an automorphism φ′

of Z∆ by the following commutative diagram:

sΓÂ

�

f ��

φ
��

Z∆

φ′

��
sΓÂ f

�� Z∆.

Then we have sΓΛ
∼= sΓÂ/�φ� ∼= Z∆/�φ′�.

By the formula (3.1) to compute ΓΛ, it is enough to solve the following problem.

Problem 1. Let Λ be a standard representation-finite self-injective algebra, which has
the form Â/�φ� for some tilted algebra A of Dynkin type and an automorphism φ of Â
by Theorem 3.4. Then compute CΛ from A.

Remark 3.5. Let f ′ : sΓΛ → Z∆/�φ′� be an isomorphism, and set C := f ′(CΛ). Then we
have

ΓΛ
∼= (sΓΛ)CΛ

∼= (Z∆/�φ′�)C.
Thus we can compute ΓΛ by Theorem 3.4(2) if we can obtain the set C.

On the other hand, the following holds by [2, Theorem 3.6].

Theorem 3.6 (Gabriel). Let R be a locally representation-finite and locally bounded k-
category, and G be a group consisting of automorphisms of R that acts freely on R. Then
the AR-quiver ΓR of R has an induced G-action, and we have ΓR/G ∼= ΓR/G.

Definition 3.7. Let A be a tilted algebra of Dynkin type. Then we set

CÂ := {[rad P ] ∈ ΓÂ | P : projective(-injective) Â-module},

which is called the configuration of Â.

Corollary 3.8. Let A be a tilted algebra of Dynkin type, and φ be an automorphism of Â
without fixed vertices. Then we have

CÂ/�φ� ∼= CΛ.

Therefore to solve Problem 1, it is enough to consider the following.
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Problem 2. In the same setting as in Problem 1, compute CÂ from A.

Throughout the rest of their section

(1) let A be a tilted algebra of Dynkin type ∆, and set

(2) B :=

[
A 0

DA A

]
.

By (1), ΓA has a section S whose underlying graph is isomorphic to ∆.

Definition 3.9. We call the following set the configuration of B:

CB := {[rad P ] ∈ ΓB | P : projective-injective B-module}.

3.1. Relationship among Â, B and A. We set as follows:

I0,1 = �e[i]
j | i ∈ Z \ {0, 1}, j ∈ {1, . . . , n}�,

I0 = �e[i]
j | i ∈ Z \ {0}, j ∈ {1, . . . , n}�,

I1 = �e[i]
j | i ∈ Z \ {1}, j ∈ {1, . . . , n}�.

Then Â/I0,1
∼= B, Â/I0

∼= A[0](∼= A) and Â/I1
∼= A[1](∼= A). We also have

B
/[

0 0
DA 0

]
∼= A[0] × A[1].

We have the following surjective algebra homomorphisms

A[0]

Â

�� ��������������������������������� �� ��

�� ��������������������������������� B �� �� A[0] × A[1]

�� ������������

�� ������������

A[1],

which induce the following embeddings of categories

mod A[0]

mod Â � σ � �mod B
�

� ������������

�

� ������������

mod A[1].
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We regard mod A ⊆ mod B by the embedding mod A = mod A[0] � � �� mod B . The em-
beddings above give us the following embeddings of vertex sets of AR-quivers:

(ΓA[0])0 = (ΓA)0

(ΓÂ)0
� σ � �(ΓB)0

�

σ0

� ������������

�

� ������������

(ΓA[1])0.

We define an ideal k(Z∆)+ of the mesh category k(Z∆) as follows:

k(Z∆)+ := �(Z∆)1 + IZ∆�.

Then the values of m∆ := min{m ∈ N | (k(Z∆)+)i = 0, ∀i ≥ m} are known as follows:

m∆ =




n (∆ = An)

2n − 3 (∆ = Dn)

11 (∆ = E6)

17 (∆ = E7)

29 (∆ = E8)

.

We see the following by [1].

Proposition 3.10. Let i = 0, 1.

(1) The full subquiver S [i]
B of ΓB with the vertex set σi(S0) forms a section of sΓB.

(2) The full subquiver S [i]

Â
of ΓÂ with the vertex set σσi(S0) forms a section of sΓÂ.

Remark 3.11. A quiver Q without oriented cycles will be regarded as a poset by the order
defined as follows:

For each x, y ∈ Q0, x � y :⇔there is a path in Q from x to y.

Definition 3.12. (1) We set HB to be the full subquiver of ΓB defined by the set

(HB)0 := {x ∈ (ΓB)0 | a � x � b for some a ∈ (S [0]
B )0, b ∈ (S [1]

B )0}

of vertices.
(2) We set H[0,1]

Â
to be the full subquiver of ΓÂ defined by the set

(H[0,1]

Â
)0 := {x ∈ (ΓÂ)0 | a � x � b for some a ∈ (S [0]

Â
)0, b ∈ (S [1]

Â
)0}

of vertices.

Proposition 3.13. (1) The map σ : (ΓB)0 → (ΓÂ)0 is uniquely extended to a quiver

isomorphism HB → H[0,1]

Â
.

(2) We have S [1]

Â
= τ−m∆S [0]

Â
. We set S [n]

Â
:= τ−nm∆S [0]

Â
for all n ∈ Z.
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(3) Set H[n,n+1]

Â
:= τ−nm∆(H[0,1]

Â
) for all n ∈ Z. Then for each i = 0, 1

(ΓÂ)i =
∪
n∈Z

(H[n,n+1]

Â
)i

(S [n+1]

Â
)i = (H[n,n+1]

Â
)i ∩ (H[n+1,n+2]

Â
)i

Roughly speaking, ΓÂ is obtained by connecting infinite copies of HB on both sides.

Example 3.14. Let A be the path algebra of the following quiver.

1[0] �� 2[0] �� 3[0]

Then ΓA is given as follows (double arrows present a section).

[

„

2[0]

1[0]

«

]

��
��

��
��

��

[
`

1[0]
´

������
`

2[0]
´

��
��

��
��

��

`

3[0]
´

]

[

„

3[0]

2[0]

«

]

������

Therefore A is a tilted algebra of type A3. Moreover B =

[
A 0

DA A

]
=

[
A[0] 0

(DA)[0] A[1]

]
is

an algebra given by following quiver with relations.

1[0] �� 2[0]

�
����

��
��

��
�� 3[0]

����
��

��
��

1[1] �� 2[1] �� 3[1]
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Then ΓB is given as follows (elements of CB are encircled).

[

0

@

1[1]

2[0]

1[0]

1

A]

���
��

��
�

[

0

@

2[1]

1[1]3[0]

2[0]

1

A]

���
��

��
��

��
��

��
��

��

��������[

„

2[0]

1[0]

«

�������

��
��

��
��

�

��
��

��
�

„

1[1]

2[0]

«

���
��

��
��

`

3[0]
´

���
��

��
��

��

„

2[1]

1[1]

«

]

��
��

��
��

��

��
��

��
��

[
`

1[0]
´

���������
`

2[0]
´

����������

��
��

��
��

�

��
��

��
�

��������
„

1[1]3[0]

2[0]

«

������������������

�����������

���
��

��
��

��

„

2[1]

1[1]3[0]

«

���������

���
��

��
��

`

2[1]
´

��
��

��
��

�

��
��

��
�

`

3[1]
´

]

[

„

3[0]

2[0]

«

���������
`

1[1]
´

����������� ��������
„

2[1]

3[0]

«

����������

���
��

��

„

3[1]

2[1]

«

]

����������

[

0

@

3[1]

2[1]

3[0]

1

A]

��������

In the above, HB is given by the full subquiver consisting of vertices between the left
section and the right section. Â is given by the following quiver with relations.

�
�
�

�
�
�

�
�
�

1[−1] �� 2[−1]

�

���������

�� 3[−1]


���������

1[0] �� 2[0]

�

���������

�� 3[0]


���������

1[1] �� 2[1] �� 3[1]
�
�
�

�
�
�

�
�
�
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Then ΓÂ is follows（each element of CÂ is encircled by a broken or solid line, in particular
solid circles present elements of CB). In this case we have m∆ = 3.

���
��

��
��

��
��

��
��

[

0

B

B

B

@

1[1]

2[0]

1[0]

1

C

C

C

A

]

���
��

��
�

[

0

B

B

B

@

2[1]

1[1]3[0]

2[0]

1

C

C

C

A

]

���
��

��
��

��
��

��
��

[

0

B

B

B

@

1[2]

2[1]

1[1]

1

C

C

C

A

]

���
��

��
�

“

3[−1]
”

���
��

��
��

�
��������0

@

2[0]

1[0]

1

A

�������

��
��

��
��

��
��

��

0

@

1[1]

2[0]

1

A

���
��

��
�

“

3[0]
”

���
��

��
��

�

��
� �

��
�
�

�� �
�

0

@

2[1]

1[1]

1

A

��������

��
��

��
��

�

��
��

��
�

0

@

1[2]

2[1]

1

A

���
��

��
�

“

3[1]
”

0

@

2[0]

1[0]3[−1]

1

A

��������

���
��

��
��

“

2[0]
”

��








��
��

��
��

�

��
��

��
�

��������0

@

1[1]3[0]

2[0]

1

A

�����������������

��









��	
		

		
		

	

0

@

2[1]

1[1]3[0]

1

A

���������

���
��

��
�

“

2[1]
”

���������

��
��

��
��

�

��
��

��
�

��
� �

��

�
�

�� �
�

0

@

1[2]3[1]

2[1]

1

A

�����������������

����������

���
��

��
��

�

“

1[0]
”

����������
��

� �
��

�
�

� � �
�

0

@

2[0]

3[−1]

1

A

���������

���
��

��
�

0

@

3[0]

2[0]

1

A

��������
“

1[1]
”

���������� ��������0

@

2[1]

3[0]

1

A

���������

���
��

��

0

@

3[1]

2[1]

1

A

��������
“

1[2]
”

[

0

B

B

B

@

3[0]

2[0]

3[−1]

1

C

C

C

A

]

��







[

0

B

B

B

@

3[1]

2[1]

3[0]

1

C

C

C

A

]

��������

The following is immediate from Proposition 3.13.

Corollary 3.15. We have CÂ = τZm∆σ(CB).

By this corollary, Problem 2 is reduced to the following.

Problem 3. Let A be a tilted algebra of Dynkin type ∆, and B as above. Then give the
configuration CB from A.

The purpose of this section is to solve Problem 3.

Definition 3.16. (1) We define an ideal PI of mod B as follows and set m̃od B :=
(mod B)/PI. For each X,Y ∈ (mod B)0

PI(X, Y ) := {f ∈ HomB(X,Y ) |f factors through a projective-injective B-module}

Let ˜(?) : mod B → m̃od B be the canonical functor and set

H̃omB(X̃, Ỹ ) := (m̃od B)(X̃, Ỹ )

for all X, Y ∈ mod B. Thus X̃ = X for all X ∈ (mod B)0 and f̃ = f + PI(X, Y ) for all
f ∈ HomB(X, Y ).

(2) We denote by modPI B the full subcategory of mod B consisting of B-modules
without projective-injective direct summands.

(3) Let X and Y ∈ modPI B. Then it is well known that PI(X, Y ) ⊆ radB(X,Y ). We

set r̃adB(X, Y ) := radB(X, Y )/PI(X, Y ).

Definition 3.17. For AR-quiver ΓB of B, we define the full translation subquiver Γ̃B as
follows.

(Γ̃B)0 := {X ∈ (ΓB)0 | X is not projective-injective. }
Moreover we set

supp(sX) := {Y ∈ (Γ̃B)0 | sX(Y ) �= 0},
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where the map sX : (Γ̃B)0 → Z≥0 is defined by sX(Y ) := dim H̃omB(X̃, Ỹ ) (Y ∈ (Γ̃B)0)

for all X ∈ (Γ̃B)0.

Definition 3.18. Let P be a projective indecomposable A-module, and rad P =
⊕r

i=1 Ri

with Ri indecomposable for all i. Then we define a full subquiver RP of Γ̃B by

(RP )0 := supp(sP ) \

(
r∪

i=1

supp(sRi
)

)
.

Definition 3.19. We regard the subquiver RP as a poset by Remark 3.11. For a projec-
tive indecomposable A-module P , we set

ν ′(P ) := minRP .

Example 3.20. In the following figure, the vertices inside broken lines form supp(sP )
and those inside doted lines form (

∪r
i=1 supp(sRi

)). Therefore the subquiver RP consists
of the vertices inside solid lines, and ν ′(P ) is the minimum element of RP . Projective
vertices are presented by white circles ◦.

◦
���

��
��

·
���

��
��

·
���

��
��

·
���

��
��

·

◦

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��

◦
R1

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

◦P

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��

◦
R2

�������

���
��

��
·

�������

���
��

��
· ν′(P )

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

◦

�������
·

������� ·

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��

◦

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

◦

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��
·

�������

���
��

��

◦

�������
·

������� ·

�������
·

�������
·

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

������������������

��
��

��
��

��
��

��
��

��
��

��
��

�

��
��

��
��

��
��

��
��

��

�������������������������

We have the following the proof of which is omitted.

Proposition 3.21. Let P be a projective indecomposable A-module. then ν ′(P ) ∼= top P .

We will give an alternative definition of the map ν ′ below, which is easier to compute
than the first one.

Definition 3.22. Let P ∈ mod B be projective.
(1) Let PP be the full subcategory of mod B consisting of projective modules Q such

that P is not a direct summand of Q.
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(2) We define an ideal IP of mod B and the factor category modP B := mod B/IP of
mod B by setting

IP (X, Y ) := {f ∈ HomB(X, Y ) |f factors through an object in PP } ,

and set
HomP

B(X, Y ) := HomB(X,Y )/IP (X,Y )

for all X,Y ∈ mod B. Let (?) : mod B → modP B be the canonical functor. Thus X = X

for all X ∈ (mod B)0 and f = f + IP (X,Y ) for all f ∈ HomB(X,Y ).

supp(s′P ) := {X ∈ (Γ̃B)0 | s′P (X) �= 0} ⊆ (Γ̃B)0

where the map s′P : (Γ̃B)0 → Z≥0 is defined by sP (X) := dim HomP
B(P,X) (X ∈ (Γ̃B)0)

for all P ∈ (Γ̃B)0.
The easier way to compute ν ′ is given by the following three statements, which we state

without proofs.

Lemma 3.23. Let Q and X be in mod B. If Q is projective and there is an epimorphism
Q → X, then the projective cover of X is a direct summand of Q.

Lemma 3.24. If f : X → top P is nonzero in mod B, then f �= 0.

Proposition 3.25. Let P be a projective indecomposable A-module. Then we have

max supp(s′P ) ∼= top P.

Thus ν ′(P ) = max supp(s′P ).

Next we define a map sending a simple A-module to an element of the configurations.

Lemma 3.26. Let S be a simple A-module, and Q the injective hull of S in mod B. Then

the left (m̃od B)-module H̃omB(S, -) has a simple socle, and

soc H̃omB(S,−) ∼= H̃omB(rad Q,−)/r̃ad(rad Q,−).

It follows by the lemma above that the poset supp(sS) has the maximum element for
each simple A-module S. We then set νB(S) to be the maximum element. The following
is immediate.

Proposition 3.27. Let S be a simple A-module, and Q the injective hull of S in mod B.
Then we have νB(S) ∼= rad Q.

We finally obtain the following by Propositions 3.25 and 3.27.

Theorem 3.28. Let P be a complete set of representatives of isoclass of indecomposable
projective A-modules. Then we have

CB = νB(ν ′(P)).

Hence as is stated before, CΛ is obtained as follows.

Theorem 3.29.

CΛ = CÂ/�φ� = (τZm∆σ(CB))/�φ� = (τZm∆σνBν ′(P))/�φ�.
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[6] Riedtmann, C.: Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv.
55 (1980), no. 2, 199–224.

[7] Suzuki, H.: On configurations of self-injective algebras, Master Thesis at Graduate School of Science,
Shizuoka University, 2013.
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