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ABSTRACT. All algebras are assumed to be basic, connected finite-dimensional algebras
over an algebraically closed field. We give an easier way to calculate a bijection from the
set of isoclasses of tilted algebras of Dynkin type A to the set of configurations on the
translation quiver ZA.

INTRODUCTION

This work is a generalization of Hironobu Suzuki’s Master thesis [7] that dealt with
representation-finite self-injective algebras of type A in a combinatorial way. Throughout
this paper n is a positive integer and k is an algebraically closed field, and all algebras
considered here are assumed to be basic, connected, finite-dimensional associative k-
algebras.

Let A be a Dynkin graph of type A, D, E with the set Ag := {1,...,n} of vertices. We
set C,, to be the set of configurations on the translation quiver ZA (see Definition 1.6),
and T, to be the set of isoclasses of tilted algebras of type A. Then Bretscher, Léiser and
Riedtmann have given a bijection ¢: T,, — C,, in [1]. But the map c is not given in a
direct way, it needs a long computation of a function on ZA. In this paper we will give
an easier way to calculate the map ¢ by giving a map sending each projective A-module
over a tilted algebra A in T,, to an element of the configuration c(A).

We fix an orientation of each Dynkin graph A to have a quiver A as in the following
table.

A A, (n>1) D, (n>4) E, (n=06,7,8)
on on
& O——0——> -+ —>0 | O T O O T O
1 2 n |1 n—2 n—-1]1 n—3 n—2 n-1
ma n 2n —3 11, 17, 29, respectively

This orientation of A gives us a coordinate system on the set (ZA)g := Z x Aq of vertices
of ZA := ZA as presented in [1, fig. 1] and in [3, Fig. 13], and by definition the full
subquiver S of ZA consisting of {(0,7) | i € Ag} is isomorphic to A.

Let A be a tilted algebra of type A. Then by identify A with the (0, 0)-entry of the
repetitive category A, the vertex set of AR-quiver I'4 is embedded into the vertex set
of the stable AR-quiver ,['; (= ZA) of A. Further the configuration C := ¢(A) of ZA
computed in [1] is given by the vertices of ZA corresponding to radicals of projective

The detailed version of this paper will be submitted for publication elsewhere.



indecomposable A-modules. Note that the configuration C has a period ma listed in the
table, thus C = 7™aZF for some subset F of C. By P = {(p(i),i) | i € Ao} we denote the
set of images of the projective vertices of I'4 in ZA and set

NP :={(m,i) € (ZA)o | p(i) < m,i € Ag}.

Since the mesh category k(ZA) is a Frobenius category, it has the Nakayama permutation
v on (ZA)y that is defined by the isomorphism

k(ZA)(x,-) =2 Homg(k(ZA)(-, vz), k)

for all x € (ZA)o. The explicit formula of ¥ is given in [3, pp. 48-50]. (Note that it
should be corrected as v(p,q) = (p+ ¢+ 2,6 —q) if ¢ < 5 when A = Fj as pointed
out in [1, 1.1]). In this paper we will define a map v/: P — NP using the supports of
starting functions dimy k(ZA)(z,-): NP — Z for x € NP (cf. [3, Fig. 15]). Then v/ has
the following property.

Lemma 0.1. Let x € P and P be the projective indecomposable A-module corresponding
to x. Then v'x corresponds to the simple module top P.

In this paper, we make use of modules over the algebra

A o
b= [DA A]

to compute an F above (the configuration (see Definition 3.9) of B gives F.) We will
define a map v := v from the set of isoclasses of simple A-modules to C, which coincides
with the restriction of the Nakayama permutation o if A is hereditary.

Lemma 0.2. Assume that a verter x € ZA corresponds to a simple A-module S and let
Q be the injective hull of S over A. Then v(x) corresponds to rad Q, and hence v(z) € C.

Combining the lemmas above we obtain the following.
Proposition 0.3. If x € P, then v(v'x) € C.
This leads us to the following definition.
Definition 0.4. We define a map c4: P — C by ca(z) := v(v/z) for all x € P.
The image of the map c4 gives us an F above, namely we have the following.
Theorem 0.5. The map c4 is an injection, and we have c(A) = 722 Tm cy.
Corollary 0.6. If A is hereditary, then cqa = vV’ and we have c¢(A) = 7% Tm /.

Section 1 is devoted to preparations. In Section 2 we will give the complete list of inde-
composable projectives and indecomposable injectives over the triangular matrix algebra
B. In Section 3 we state our main results.



1. PRELIMINARIES

1.1. Algebras and categories. A category C is called a k-category if the morphism sets
C(xz,y) are k-vector spaces, and the compositions C(y, z) x C(z,y) — C(x, z) are k-bilinear
for all z,y,z € Cy (Cy is the class of objects of C, we sometimes write € C for z € Cp).
In the sequel all categories are assumed to be k-categories unless otherwise stated.

To construct repetitive categories and to make use of a covering theory we need to
extend the range of considerations from algebras to categories. First we regard an algebra
as a special type of categories by constructing a category cat A from an algebra A as
follows.

(1) We fix a decomposition 1 = e; + - -+ + e, of the identity element 1 of A as a sum
of orthogonal primitive idempotents.

(2) We set the object class of cat A to be the set {eq,...,e,}.

(3) For each pair (e;,e;) of objects, we set (cat A)(e;, ;) := e;Ae;.

(4) We define the composition of cat A by the multiplication of A.
The obtained category cat A is uniquely determined up to isomorphisms not depending on
the decomposition of 1. The category C' = cat A is a small category having the following
three properties.

(1) Distinct objects are not isomorphic.
(2) For each object x of C' the algebra C(z,z) is local.
(3) For each pair (z,y) of objects of C' the morphism space C(z, y) is finite-dimensional.

A small category with these three properties is called a spectroid® and its objects are
sometimes called points. A spectroid with only a finite number of points is called finite.
The category cat A is a finite spectroid. Conversely we can construct a matrix algebra
from a finite spectroid C' as follows.

alg C = {(Myg)syec | My € C(x,y), Yo,y € C}.

Here we have alg cat A = A, cat alg C' = C. Therefore we can identify the class of algebras
and the class of finite spectroids by using cat and alg.

A spectroid C is called locally bounded if for each point x the set {y € C' | C(x,y) #
0 or C(y,z) # 0} is a finite set. Of course algebras ( = finite spectroids) are locally
bounded. In the range of locally bounded spectroids we can freely construct repetitive
categories or consider coverings.

Remark 1.1. We can construct the “path-category” k@ from a locally finite quiver @) by
the same way as in the definition of the path-algebra. The only different part is in the
following definition of compositions: For paths p,v with? s(u) # t(v), it was defined as
pv = 0 in the path-algebra, but in contrast the composition ur is not defined in the
path-category.

A locally bounded spectroid C'is also presented as the form k@ /I for some locally finite
quiver () and for some ideal I of the path-category k@ such that I is included in the ideal

L3 terminology used in [4]

2Here s(p) and t(v) stand for the source of p and the target of v and compositions are written from
the right to the left.



of k@ generated by the set of paths of length 2. Here the quiver ) is uniquely determined
by C' up to isomorphisms. This @ is called the quiver of C'.

A (right) module over a spectroid C'is a contravariant functor C' — Mod k. From a usual
(right) module over an algebra A we can construct a contravariant functor cat A — Mod k
by the correspondence e; — Me; for each point e; in cat A, and f +— (-f: Me; — Me;)
for each f € ejAe; = (cat A)(e;, e;). Conversely, from a contravariant functor F': cat A —
Modk we can construct an A-module @, F(e;); and these constructions are inverse to
each other. In this way we can identify A-modules and modules over cat A.

The set of projective indecomposable modules over a spectroid C'is given by {C(-, x) }zec
up to isomorphism, and finitely generated projective C-modules are nothing but finite di-
rect sums of these. Using this we can define finitely generated modules or finitely presented
modules over C' by the same way as those over algebras.

The dimension of a C-module M is defined to be the dimension of @, . M (x). When
C is locally bounded, a C-module is finitely presented if and only if it is finitely generated
if and only if it is finite-dimensional.

1.2. Repetitive category.

Definition 1.2. Let A be an algebra with a basic set of local idempotents {ey, ..., e}
(1) The repetitive category Aof Aisa spectroid defined as follows.
Objects: Ay := {2l := (z,i) |z € {e1,...,e,},i € Z}.

Morphisms: Let 2 yUl € A;. Then we set

o (/0= (f0)| f € Alw,)} (G =1)
0 otherwise,

Compositions: The composition A(yll, 28) x Azl ylil) — Azl 2H) is de-
fined as follows.
(i) If j =4,k = j, then we use the composition of A:

Ay, z) x A(z,y) — A(z, 2).
(ii) If j =i,k = j+1, then we use the right A-module structure of DA(-, ?):
DA(z,y) x A(x,y) — DA(z, x).
(iii) If j =i+ 1,k = 4, then we use the left A-module structure of DA(-,?):
Ay, z) x DA(y,x) — DA(z,x).

(iv) Otherwise the composition is zero.
(2) For each i € Z, we denote by A the full subcategory of A whose object class is
(ol |z e {ey,... en}}.
(3) We define the Nakayama automorphism v, of A as follows: for each i € Z,z,y €
A, f € A(z,y) and ¢ € DA(y,x),

va(al) = 2,y (1) = fEP 0y () = i,



Remark 1.3. (1) If a spectroid A is locally bounded, then so is A.

(2) When A is an algebra, the set of all Z x Z-matrices with only a finite number of
nonzero entries whose diagonal entries belong to A, (i + 1,4) entries belong to DA for all
i € Z, and other entries are zero forms an infinite-dimensional algebra without identity
element, which is called the repetitive algebra of A. The repetitive category Ais nothing
but this repetitive algebra regarded as a spectroid in a similar way. This is not an algebra
(= a finite spectroid) any more, but a locally bounded spectroid.

Definition 1.4 (Gabriel [2]). Let C be a locally bounded spectroid with a free* action of
a group G. Then we define the orbit category C/G of C by G as follows.

(1) The objects of C'/G are the G-orbits Gz of objects z of C.
(2) For each pair Gz, Gy of objects of C/G we set

(C/G)(Gz,Gy) = Gfdawe [ Clab) ] wfoe = g(ofa), forall g € G

(a,b)eGrxGy

(3) The composition is defined by

(dhc)c,d : (bfa)a,b = (Z dhb . bfa) .
a,d

beGy

for all (5fa)ap € (C/G)(Gz,GY), (ahe)ea € (C/G)(Gy,Gz). Note that each entry
of the right hand side is a finite sum because C' is locally bounded.

A functor F': C — (' is called a Galois covering with group G if it is isomorphic to
the canonical functor w: C' — C'/G, namely if there exists an isomorphism H: C/G — C'
such that F = Hr.

Remark 1.5. If A is an algebra and a group G acts freely on the category A, then A/ G
turns out to be a self-injective spectroid. In particular, when 121/ G is a finite spectroid,
it becomes a self-injective algebra. In this way we can construct a great number of self-
injective algebras.

Definition 1.6. From a quiver ) we can construct a translation quiver ZQ as follows.
® (ZQ)o == Z % Qu,
* (ZQ)1 :=Zx QU{(i,o') | i € Z,a € Qu},
e We define the sources and the targets of arrows by
(i,0): (i, s(@) = (i,t(a)), (i,0): (i, t() = (i + 1, s(e))
for all (i,) € Z x Q1.
e We take the bijection 7: (ZQ)o — (ZQ)o, (i, ) — (i — 1,z) as the translation.

In addition, we can define a polarization by (i + 1,a) — (i,¢), (i,&’) — (i,a). Note
that by construction the translation quiver Z) does not have any projective or injective
vertices.

3124 ge G,z eCyimplies gz # z



For example,

Remark 1.7. When @ is a Dynkin quiver with the underlying graph A, the isoclass of ZQ
does not depend on orientations of A, therefore we set ZA := ZQ).
2. TRIANGULAR MATRIX ALGEBRAS

Definition 2.1. Let R and S be algebras, M be an S-R-bimodule. We define a category
C =C(R,S, M) as follows.
Objects: Co :={(X,Y, f) | Xg € mod R,Ys € mod S, f € Homu (Y ®¢ M, X)}.
Morphisms: Let (X,Y, f), (X', Y, f') € Co. Then we set
Y @s M- x

C((X,Y, ), (X, Y', 1) := 4 (¢o, ¢1) € Homp(X, X') x Homg(Y,Y") ¢1®1MJ/ O J/zﬁo
Y/ ®SM?X/

Compositions: Let (X,Y, f), (X", Y, /), (X", Y", f") € Cy and let
(6o, ¢1) € CU(X, Y, f), (X", Y7, f9), (¢, 1) € CUX Y, f), (X" Y7, f7)).
Then we set
(¢0: #1) (b0, D1) := (Do, d161) € C((X, Y, f), (X", Y, ).
Then the following is well known.

Proposition 2.2. Let R and S be algebras, M be an S-R-bimodule. Then

mod {R 0

I, S} ~C(R,S,M).

Recall that an equivalence F' : mod L\}Ef g] — C(R, S, M) is given as follows.

Objects: For each L € (mod T,
F(L) := (Lex, Lea, f1),

where ¢; = Fé? 8},52 = [8 10] and fr @ Lea ® M — Ley is defined by
s

frlega®@m) =1 L(’)L 8] foralll € L and m € M.

Morphisms: For each o € Homy(L, L'),

F(Oé) = (a |L61>a |L52)'



A 0
DAl Ci=C(A A DA).

Then we have mod B ~ C by Proposition 2.2. By this equivalence, we identify mod B
with C.

Let A be a tilted algebra of type A, and set B :=

Let {ey,...,en} be a complete set of orthogonal local idempotents of A. Then as is
easily seen

{6[10]7 R e%”, 6[11], ey eg]} is a complete set of orthogonal local idempotents of B, and
{e[lo]B, ey ei?]B, e[ll]B, e ,eLl]B} is a complete set of isoclasses of projective indecompos-

able B-modules. The following is immediate.

Proposition 2.3. For eacht=1,...,n, we have
F(e"B) = (¢;4,0,0),
F(ez[l]B) (ei(DA), e; A, can).

I

In addition {D(Be[lo]), ce D(Bei?]), D(Be[ll]), e D(Beg])} is a complete set of iso-
classes of injective indecomposable B-modules. The following two statements are obvious.

Lemma 2.4. For eachi=1,...,n, we have

(1) D {(515362. 8} = {D(B}ei) e?A

@0l )= ] o)

Proposition 2.5. For eachi=1,...,n, we have
F(D(Bel")) 2 (e;(DA), e;A, can) 2 el B,
F(D(BelY) = (0,e:(DA),0).

(3

], and

3. CONFIGURATIONS

Definition 3.1. Let A be a standard representation-finite self-injective algebra. Then we
set

Cx :={[rad P] € I'y | P : projective(-injective) A-module},

which is called a configuration of A.

Definition 3.2. Let I' be a stable translation quiver, and C be a subset of I'y. Then we
define a translation quiver I'¢c by

(Fc)o = F() LJ {pz I xr € C},
(Te)r ==T1U{z = p,, pp — 7 'z},

where the translation of I'¢c is the same as that of I'. In particular, p, are projective-
injective® vertices for all 2 € C.

4The word “projective-injective” stands for projective and injective.



Remark 3.3. The quiver of mod A is the full subquiver ,I'y of 'y with
(sT'a)o := {z | = is a stable vertex of T's}

(namely (T"y is obtained from T'y by removing all projective vertices), which is a stable
translation quiver. Then it holds that Cy C (;T's)o, and we have

(sT'a)c, =T (3.1)

Theorem 3.4. Let A be a standard representation-finite self-injective algebra and A the
Dynkin type of A. Then the following hold.

(1) (Waschbiisch [5, 8]) There exist a tilted algebra A of type A and an automorphism
¢ of A without fized vertices such that A = A/(¢).

(2) (Riedtmann [6]) There is an isomorphism f : JI'; — ZA. Denote also by ¢ the
automorphism of ;I ; induced from ¢ canonically, and define an automorphism ¢’
of ZA by the following commutative diagram:

¢l O ‘/(Ib’
s‘F A
S ZA.
Then we have [I'y = I ;/(¢) = ZA/(¢').
By the formula (3.1) to compute T'y, it is enough to solve the following problem.

Problem 1. Let A be a standard representation-finite self-injective algebra, which has
the form A/(¢) for some tilted algebra A of Dynkin type and an automorphism ¢ of A
by Theorem 3.4. Then compute Cp from A.

Remark 3.5. Let f': ;T'yx — ZA/{¢') be an isomorphism, and set C := f'(Cy). Then we
have

Pa = (Ta)ey = (ZA/(d))c-
Thus we can compute I'y by Theorem 3.4(2) if we can obtain the set C.

On the other hand, the following holds by [2, Theorem 3.6].

Theorem 3.6 (Gabriel). Let R be a locally representation-finite and locally bounded k-
category, and G be a group consisting of automorphisms of R that acts freely on R. Then
the AR-quiver I'r of R has an induced G-action, and we have I'r/G = T'g/q.

Definition 3.7. Let A be a tilted algebra of Dynkin type. Then we set
C; = {[rad P] € T | P : projective(-injective) A-module},
which is called the configuration of A.

Corollary 3.8. Let A be a tilted algebra of Dynkin type, and ¢ be an automorphism offl
without fized vertices. Then we have

Ci/(¢) = Ca.

Therefore to solve Problem 1, it is enough to consider the following.



Problem 2. In the same setting as in Problem 1, compute C; from A.

Throughout the rest of their section

(1) let A be a tilted algebra of Dynkin type A, and set
A 0
5= )
By (1), I'4 has a section § whose underlying graph is isomorphic to A.

Definition 3.9. We call the following set the configuration of B:
Cp :={[rad P] € ' | P : projective-injective B-module}.
3.1. Relationship among fl, B and A. We set as follows:

Iy = (el [ieZ\{0,1},5 € {1,...,n}),
L= (el [iezZ\{0},j€{L,....n}),
L=l iez\{1},j€{L,....n}).

Then A/Iy; = B, A/l = A%~ A) and A/I; = AY(= A). We also have

0 0
o A0 5 Alll
B/{DA 0]_A % Alll.

We have the following surjective algebra homomorphisms

Al0]
(

A‘»B—))A[O] xAl]

>

Al

which induce the following embeddings of categories

/Od A[O]

mod A \U—>mod B

I

mod Al



We regard mod A C mod B by the embedding mod A = mod AlY) = mod B. The em-
beddings above give us the following embeddings of vertex sets of AR-quivers:

)A@)o = (Ta)o

(Ta)o ~—('p)o

\
(I'am)o-

We define an ideal k(ZA)T of the mesh category k(ZA) as follows:
K(ZA)T == ((ZA)y + Izn).

Then the values of ma := min{m € N | (k(ZA)")" = 0,Vi > m} are known as follows:

n (A = An)
2n—3 (A=D,)
ma =4 11 (A = Eg) .
17 (A=En)
29 (A= Ey)

We see the following by [1].

Proposition 3.10. Let: =0, 1.
(1) The full subquiver Sg] of T'p with the vertex set 0;(Sy) forms a section of sT'p.
(2) The full subquiver SE] of I' 4 with the vertex set 00;(Sy) forms a section of ;I 4.
Remark 3.11. A quiver @) without oriented cycles will be regarded as a poset by the order
defined as follows:

For each z,y € Qy, x < y :<there is a path in @ from z to y.
Definition 3.12. (1) We set Hp to be the full subquiver of I'g defined by the set
(Hp)o :=={x € (Tp)o | a = = < b for some a € (S9)o,b € (Sh))o}

of vertices.
(2) We set HE’I] to be the full subquiver of I'; defined by the set

(HE{’H)O ={x e (T4)o|a=<2=bfor some a e (SE)])O,b € (SE])O}

of vertices.

Proposition 3.13. (1) The map o : (T'g)g — (L' 4)o is uniquely extended to a quiver
isomorphism Hg — 'Hg’l]‘

(2) We have SE] = T_"LASE]. We set Sgn] = T‘”"”ASE] for alln € Z.



(3) Set H[X’"H] = 7T (H[g’l]) for alln € Z. Then for each i = 0,1

neL
[n+1]y [nn+1]y [n+1,n+2]\

Roughly speaking, I' ; is obtained by connecting infinite copies of Hp on both sides.

Example 3.14. Let A be the path algebra of the following quiver.

- A 0 Al 0 .
Therefore A is a tilted algebra of type As. Moreover B = {DA A} = {(DA)[O] Am} is

an algebra given by following quiver with relations.



Then I'p is given as follows (elements of Cg are encircled).

In the above, Hp is given by the full subquiver consisting of vertices between the left
section and the right section. A is given by the following quiver with relations.




Then T4 is follows (each element of C; is encircled by a broken or solid line, in particular
solid circles present elements of Cp). In this case we have ma = 3.

2[1]
(| 10113001 |;
2(0]

1[113[01) -

The following is immediate from Proposition 3.13.
Corollary 3.15. We have C; = 7720 (Cp).
By this corollary, Problem 2 is reduced to the following.

Problem 3. Let A be a tilted algebra of Dynkin type A, and B as above. Then give the
configuration Cp from A.

The purpose of this section is to solve Problem 3.

Definition 3.16. (1) We define an ideal PZ of mod B as follows and set mod B :=
(mod B)/PZ. For each X,Y € (mod B),

PL(X,Y):={f € Homp(X,Y) |f factors through a projective-injective B-module }
Let (:?) mod B — mod B be the canonical functor and set
Homp (X, V) := (mod B)(X,Y)
for all X,Y € mod B. Thus X = X for all X € (mod B), and f = f + PZ(X,Y) for all
f € Homp(X,Y).
(2) We denote by modpz B the full subcategory of mod B consisting of B-modules

without projective-injective direct summands.
(3) Let X and Y € modpz B. Then it is well known that PZ(X,Y) C radp(X,Y). We

set radz(X,Y) = radg(X,Y)/PI(X,Y).
Definition 3.17. For AR-quiver I's of B, we define the full translation subquiver I's as
follows. 5

(T'p)o :={X € (I'p)o | X is not projective-injective. }

Moreover we set R
supp(sx) == {Y € (I'p)o | sx(Y) # 0},



where the map sx : (TB)o — Zsy is defined by sx(Y) := dim Homg(X,Y) (Y € (I'p)o)
for all X € (I'g)o.

Definition 3.18. Let P be a projective indecomposable A-module, and rad P = @,_, R
with R; indecomposable for all i. Then we define a full subquiver Rp of I'g by

(Rp)o := supp(sp) \ (U Supp(sRi)> :

i=1

Definition 3.19. We regard the subquiver Rp as a poset by Remark 3.11. For a projec-
tive indecomposable A-module P, we set

V'(P) :=minRp.
Example 3.20. In the following figure, the vertices inside broken lines form supp(sp)
and those inside doted lines form (|J;_, supp(sg,)). Therefore the subquiver Rp consists

of the vertices inside solid lines, and v/(P) is the minimum element of Rp. Projective
vertices are presented by white circles o.

\/\/\/\/

We have the following the proof of which is omitted.
Proposition 3.21. Let P be a projective indecomposable A-module. then v'(P) = top P.

We will give an alternative definition of the map v/ below, which is easier to compute
than the first one.

Definition 3.22. Let P € mod B be projective.
(1) Let Pp be the full subcategory of mod B consisting of projective modules @ such
that P is not a direct summand of Q.



(2) We define an ideal Zp of mod B and the factor category mod” B := mod B/Zp of
mod B by setting

Ip(X,Y) :={f € Homp(X,Y) |f factors through an object in Pp},

and set

Homp(X,Y) := Homp(X,Y)/Zp(X,Y)
for all X|Y € mod B. Let Q mod B — mod” B be the canonical functor. Thus X = X
for all X € (mod B)y and f = f +Zp(X,Y) for all f € Homp(X,Y).

supp(sp) :={X € (I'p)o | sp(X) # 0} € (I'p)o
where the map sp : (U)o — Zso is defined by sp(X) := dim Homb(P, X) (X € (I'p)o)
for all P € (T'p)o.
The easier way to compute ¢/ is given by the following three statements, which we state
without proofs.

Lemma 3.23. Let QQ and X be in mod B. If Q) is projective and there is an epimorphism
Q — X, then the projective cover of X is a direct summand of Q.

Lemma 3.24. If f : X — top P is nonzero in mod B, then f # 0.
Proposition 3.25. Let P be a projective indecomposable A-module. Then we have
max supp(sp) = top P.
Thus V'(P) = max supp(sp).
Next we define a map sending a simple A-module to an element of the configurations.

Lemma 3.26. Let S be a simple A-module, and Q) the injective hull of S in mod B. Then
the left (mod B )-module Homp(S,-) has a simple socle, and

soc ﬁgr/nB(S, —) = ﬁgr/ng(rad Q, 7)/riavd(rad Q,—).

It follows by the lemma above that the poset supp(ss) has the maximum element for
each simple A-module S. We then set v5(S) to be the maximum element. The following
is immediate.

Proposition 3.27. Let S be a simple A-module, and Q the injective hull of S in mod B.
Then we have vp(S) = rad Q.

We finally obtain the following by Propositions 3.25 and 3.27.

Theorem 3.28. Let P be a complete set of representatives of isoclass of indecomposable
projective A-modules. Then we have

Cg =vp(V'(P)).
Hence as is stated before, C, is obtained as follows.
Theorem 3.29.
Ca = C4/(9) = (1720 (C))/(¢) = (T""2avpV/(P))/(9)-
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