GORENSTEINNESS ON THE PUNCTURED SPECTRUM
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ABSTRACT. In this article, we shall characterize torsionfreeness of modules with respect
to a semidualizing module in terms of the Serre’s condition (S,,). As an application we
give a characterization of Cohen-Macaulay rings R such that R, is Gorenstein for all
prime ideals p with height less than n.

1. INTRODUCTION

Auslander and Bridger introduce a notion of n-torsion free as generalization of reflexive
[1]. Evans and Griffith give a characterization of n-torsionfree modules [3].

The notion of n-torsionfree with respect to a semidualizing module has been intro-
duced by Takahashi [6]. In this article, we study an n-torsionfreeness of modules with
respect to a semidualizing module in terms of the Serre’s condition (S,). Recently, Dibaei
and Sadeghi [2] give a similar property independently.

Proposition 1. Let n be a non-negative integer. Assume that R satisfies the conditions
(GS_)) and (S,). Then the following statements are equivalent for an R-module M :
(1) M is n-C-torsionfree,
(2) There exists a eract sequence 0 — M — PL — -+ — P& such that each Pg is
a direct summand of direct sum of finite copies of C' and that C-dual sequence
Pt .. = PLT — MY — 0 is ezact. Here, (—)T = Hom(—,C).
(3) M is n-C-syzygy,
(4) M satisfies the condition (Sy,).

The following throrem is a main theorem of this article.
Theorem 2. Let R be a Cohen-Macaulay local ring with a dualizing module w. For
non-negative integer n, the following conditions are equivalent:

(1) Cy is dualizing Ry-module for all prime ideal p of hight at most n,
(2) (Sps1)(R) = Q¢ (modR),
(3) w e QLM (modR).

This theorem recovers a result of Leuschke and Wiegand [5] which gives a characteri-
zation of Cohen-Macaulay rings R such that R, is Gorenstein for all prime ideals p with
height less than n.

The detailed version of this paper will be submitted for publication elsewhere.
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2. PRELIMINARIES

Throughout the rest of this article, let R be a commutative noetherian ring. All modules
are assumed to be finitely generated. In this section, we give some notions and properties.

An R-module C is called semidualizing if the homothety map R — Hompg(C,C) is an
isomorphism and if Ext’(C,C) = 0 for all i > 0. A rank 1 free module R and a dualizing
module w over Cohen-Macaulay local rings are typical examples of semidualizing modules.
From now on, we fix a semidualizing module C' and put (—)" = Homg(—, C).

Let --- — P, 2 Py — M — 0 be a projective resolution of an R-module M. We define

a C-transpose module TrcM of M the cokernel of PJ if> PlT. We remark that TroM is
uniquely determined up to direct summands of finite direct sums of copy of C. Note that
if C' is isomorphic to R then C-transpose coincides with ordinary (Auslander) transpose.
An R-module M is called n-C-torsionfree if Extiy(TreM,C) =0 for all 1 <4 < n.

We denote by Ay, the natural map M — Mt n-C-torsionfreeness has following prop-
erties similar to ordinary n-torsionfreeness [1]. One can show this by diagram chasing

(c.t. [6]).

Proposition 3. Let M be an R-module.
(1) M is 1-C-torsionfree if and only if Ay is a monomorphism,
(2) M is 2-C-torsionfree if and only if Ay is an isomorphism,
(3) Let n > 3. M us n-C-torsionfree if and only if Ay is an isomorphism and if
Exty(MT,C) =0 forall1 <i<n-—2.

An R-module M is called n-C-syzygy if there exists an exact sequence 0 — M — P} —
P% — .-+ — PZ such that each PZ is a direct summand of finite direct sums of copy of
C. We set Q% (modR) the class of n-C-syzygy modules.

We say that an R-module M satisfies the Serre’s condition (S,) if depthp M, >
min{n,dim R,} for each prime ideal p of R. We denote by (5,)(R) the class of mod-
ules which satisfies (5,,)-condition.

We say that R satisfies the condition (GS) if injective dimension of C,, (as an R,-module)
is finite for all prime ideal p of height at most n. In this case, R, is Cohen-Macaulay local
ring with canonical module C, for all prime ideal p of height at most n. Note that R
satisfies (GF) if and only if R, is Gorenstein local ring for all prime ideal p of height at
most n.

3. PROOFS
In this section, we give a proof of the Proposition 1 and the Theorem 2.

Proof of Proposition 1.

(1) = (2). We prove by induction on n. We assume n = 1. Let f: R" — M be a left
add R-approximation of M. Then f is epimorphism. Since M is 1-C-torsionfree, Ay, is
monomorphism and so is fTA\y : M — M — (R")T = C". One can check (fTA\y)7 = f.

Assume n > 2. Since M is 1-C-torsionfree, there exists a short exact sequence 0 —
M — PL — N — 0 such that the daggar dual sequence 0 — NT — (PL)T — MT — 0 is
exact. Then we have a following commutative diagram:



0 —— M —— P N 0

)\I\/Il )‘Pél )\NJ,
0 — Mt —— pAf Nt Exth(M',C) — 0.

Since Extly(NT, ) = Extif'(MT,C) for each i > 0, N is (n — 1)-C-torsionfree. By
induction assumption, there exists a exact sequence 0 — N — P2 — --- — P2 such that
the daggar dual sequence (P2) — .- — (P2)! — NT — 0 is exact. Conbining exact
sequences, we get an exact sequence 0 — M — P — P2 — --- — PgZ such that the
daggar dual sequence (P2)T — -+ — (PL)T — MT — 0 is exact.

The implication (2) = (3) is obvious by the definition.

Since depthy C, = depthy R, for all prime ideal p, C' satisfies (S,). Thus one can
check the implication (3) = (4) by using depth lemma.

We prove the implication (4) = (1) by induction n. Assume n = 1. Let p be an
associated prime ideal of M. Since M satisfies the condition (S;), we have dim R, = 0.
Furthermore, the assumption that R satisfies (G§') implies that C, is a dualizing module
and that Hompg (M, C), = Hompg, (M,, Cy) # 0. In particular, Homg(M,C) # 0.

Let f1, fa, ..., fm be a generating system of Hom(M, C) and put f ='(f1, fa, ..., fmn) :
M — C®™. Suppose that N = ker f is not zero. Let q be an associated prime ideal of
N. Since q is also an associated prime ideal of M, we have dim R, = 0. Noting that C,
is dualizing module over Ry, we see that f; is a monomorphism. This yields that N; = 0.
This contradicts that q is an associated prime ideal of N. Hence f is a monomorphism.

Since f1tAy; = Agem f is a monomorphism, we obtain that A, is a monomorphism.
This means that M is 1-C-torsionfree by Proposition 3.

Assume n > 2. Since M satisfies the condition (S), M is 1-C-torsionfree. In particular,
there exists a short exact sequence 0 - M — Po — N — 0 such that the daggar dual
sequence 0 — NT — (Po)T — MT — 0 is exact. Then we get a following commutative
diagram:

0 — M P N 0
/\NIJ/ )\Pcl )\NJ/
0 —— Mt P NTt Exth(MT,C) —— 0.

Note that Exth(NT, ) = Exti ' (MT,C) for each i > 0. It is enough to prove that N
satisfies the condition (S,—1). Indeed, if N satisfies the condition (S,-1), N is (n —1)-C-
torsionfree by induction assumption. Then we can show that M is n-C-torsionfree by the
above commutative diagram.

From now on, we shall show that N satisfies the condition (S,-1). Let p be a prime
ideal. If dim R, > n, we have depthp M, > min{n,dim R,} = n. Therefore we obtain
deptth N, > n —1 by depth lemma.

Assume dim R, < n — 1. Since R satisfies the condition (GS_,), R, is Cohen-Macaulay
with canonical module C,. Inequalities depthp M, > min{n,dimR,} = dimR, =

depthp Ry gives that M, is a maximal Cohen-Macaulay Ry-module. Thus so are (M),
R, and (N,)T.



It comes from a commutative diagram:

0O — M, — (Po)y, — N, —— 0

Any lg APo)p | =2 ANy l

0 — (M)l — (Po)p™ —— (V,)hh — 0,

we can see that Ay, is an isomorphism and that N, = (N,)"" is a maximal Cohen-
Macaulay R,- _module. Therefore we have depthp Ny, = dim R, > min{n — 1,dim R, }.
Thus N satisfies the condition (S,_1). O

Now, we can prove the Main theorem.

Proof of Theorem 2.

(1) = (2) It is obvious by Proposition 1.

(2) = (3) A dualizing module w satisfies the Serre’s condition (S,,), so we have w € Q(
mod R).

(3) = (1) There is an exact sequence

0—w—>PL—Pi— - > Ps—M-—0

such that each P} is a direct summand of direct sum of finite copy of C'. For any prime
ideal p of height less than n, (Q’é—lM )p is a maximal Cohen-Macaulay R,-module. Then
the exact sequence 0 — w, — (PL), — (% 'M), — 0 splits. This indicates w, = C,.
Thus we have idg, C, = idg, w, < cc. O

4. EXAMPLE

Jorgensen, Leuschke and Sather-Wagstaff [4] have been determined the structure of
rings which admits non-trivial semidualizing modules.

We give a class of Cohen-Macaulay local rings R which have a non-trivial semidualizing
module C' by using their result. Moreover, C), is a dualizing ,-module for all non-maximal
prime ideal p of R.

Proposition 4. Let k be a field and S = k[[x1, T2, . .., Tm, Y1, y2]] be a formal power series
ring. For fi, fo,..., fr € K[[x1, 22, ..., 20| and £ > 2, we set ideals I = (f1, fa, ..., [+)S
and Iy = (y1,y2)"S. Assume that T = S/1 is a (d+2)-dimensional Cohen-Macaulay ring
which is not Gorenstein and that T satisfies the condition (GL,,). Putting R =T/I, and
C = Ext?.(R,T), then the followings hold:

(1) R is d-dimensional Cohen-Macaulay ring,
(2) C is neither R nor dualizing R-module,
(3) R satisfies the condition (GS).

Proof. (1) is clear. (2) is comes from [4]. We show (3). Let p be a prime ideal of R with
height at most n. Since P = pS is a prime ideal of S with height at most n + 2, we have
that S, = Sp is Gorenstein. Therefore C}, = Ext?gp(Rp, Sp) is a canonical R,-module. O

In the end of this article, we give examples of 1-dimensional Cohen-Macaulay rings R
and semidualizing module C' such that R satisfies the condition (G§') but not the condition
(GE) for all n.



Example 5. Let k be a field and let S = k[, 2o, 23, y1,42)]/ (25 — z123, 1273, 73)
be a 3-dimensional Cohen-Macaulay local ring which is not Gorenstein. We set R =
S/(y?,y192, y3) which is a 1-dimensional Cohen-Macaulay local ring. Note that all the
prime ideals of R are p = (x9, z3,y1,y2) and m = (21, 2, 23,91, y2). It is easy to see that
S, is Gorenstein but R, is not Gorenstein. In particular, R does not satisfy the condi-
tion (GF). Putting C' = Ext3(R, S), one can check that C is a semidualizing R-module
which is neither R nor canonical module. Since S, is Gorenstein, we can see that C, is a
canonical module over R,. This yield that R satisfy the condition (G§).

(1]
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