ON THE HOCHSCHILD COHOMOLOGY RING MODULO
NILPOTENCE OF THE QUIVER ALGEBRA DEFINED BY ¢ CYCLES
AND A QUANTUM-LIKE RELATION
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ABSTRACT. This paper is based on my talk given at the Symposium on Ring Theory and
Representation Theory held at Osaka City University, Japan, 13-15 September 2014.
In this paper, we consider the quiver algebra A over a field K defined by ¢ cycles
and a quantum-like relation. We describe the minimal projective bimodule resolution
of A, and determine the ring structure of the Hochschild cohomology ring of A modulo
nilpotence. And we give some examples of the support variety of A-modules.

1. INTRODUCTION

Let K be a field and A an indecomposable finite dimensional algebra over K. We denote
by A€ the enveloping algebra A ®x AP of A, so that left A°-modules correspond to A-
bimodules. The n-th Hochschild cohomology group is given by HH"(A) = Ext’.(A4, A)
and the Hochschild cohomology ring is given by HH*(A) = &,>cHH" (4, A) with Yoneda
product. Let A/ denote the ideal of HH*(A) which is generated by all homogeneous
nilpotent elements. In this paper, we consider the Hochschild cohomology ring modulo
nilpotence HH*(A) /N

The Hochschild cohomology ring modulo nilpotence HH*(A) /N was used in [5] to define
a support variety for any finitely generated module over a finite dimensional algebra A.
In [5], Snashall and Solberg defined the support variety V(M) of an A-module M by

V(M) = {m € MaxSpecHH*(A) /N| Ann Ext’, (M, A/rad A) C m'}.

where m/ is the inverse image of m in HH*(A).
Let ¢ be an integer with ¢ > 2 and ¢; ; € K nonzero elements for 1 <i < j <c. We
consider the quiver algebra KQ/I defined by ¢ cycles and a quantum-like relation where

The detailed version of this paper will be submitted for publication elsewhere.
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Q is the following quiver:
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where 1 < 7 < cand s; > 2, and where I is the ideal of K() generated by
Xforl1<i<e,
Xin — qi,ijXi forl1 <i< 1<c
where X, := (Zzzl a;r,)* and n; are integers with n; > 2 for 1 <i <e¢.

In the case ¢ = 2, we determined the Hochschild cohomology ring of A modulo nilpo-
tence in [2] and [3]. In the case s; = 1 for 1 < i < ¢, the Hochschild cohomology ring of
A modulo nilpotence was described by Oppermann in [4]. In this paper, we describe the
minimal projective bimodule resolution of A, and determine explicitly the ring structure

of the Hochschild cohomology ring modulo nilpotence HH*(A)/N by giving the K-basis
and the multiplication.

2. PRECEDENT RESULTS

In this section, we introduce the precedent results about the quiver algebra A. In
the case of s; = 1 for 1 < i < ¢, A is called a quantum complete intersection. In this
case, the projective bimodule resolution of A and the Hochschild cohomology ring modulo
nilpotence of A was given by Oppermann in [4] as follows.

Theorem 1. [4] In the case of s; =1 for 1 <i < ¢, the projective bimodule resolution of
A is total complez Tot(P; @ Py ® -+ - @ P.) where P; is the projective bimodule resolution
of Ai = Klou]/(aj"):

n;—1—k

ni—l'r]‘C 2" .
P, : Ac P5OL ge Tho GENT Ty 18gmniml 4
Theorem 2. [4] HH*(A)/N is isomorphic to the following finitely generated K -algebra.

P gpenel? e Ky g TIEL, &% = 1 for all i with p; even,

j=1%,;
IT- 1qz(5]_1)n]/2+1 —1 and n; = 2 for all i with p; odd).

where ¢;; =1 and ¢; j = q;il forl<j<i<e.

In the case of ¢ = 2, we determined the Hochschild cohomology ring modulo nilpotence
HH*(A)/N in [2] and [3] as follows.
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Theorem 3. Let r be an integer with r > 0. In the case of ¢ = 2, if q12 s a primitive
r-th root of unity, then HH*(A)/N is isomorphic to the polynomial ring of two variables:

K[z?",y*] if n1,ny # 0modr,

HE* (A) /A = K[z?,4*"] ifny =0modr,n; # 0modr,
K[z?",y*  ifny Z 0modr,ny = 0modr,
K[z?,y*  ifni,ne =0modr,

where £ =301 e, Y= Yooy €2y in HH"(A).

Theorem 4. In the case of ¢ =2, if q12 is not a root of unity, then HH*(A)/N = K.

3. PROJECTIVE BIMODULE RESOLUTION OF A

In this section, we describe the minimal projective bimodule resolution of the quiver
algebra A = KQ/I defined by ¢ cycles and a quantum-like relation.
Let ¢ and n be integers with ¢ > 2 and n > 1. We set

L, ={(lL,l,...,l.) e (NU{0})°| Zlk = n} for any integer n > 1.
k=1

We define projective left A°-modules, equivalently A-bimodules:

Py=AcdA® H H AE?Z-’]W)A and,
i=1 k=2

HA&”— VA if [ = n for some 1 <1 <,
n _ (1,k:)
Q(ll,...,lc) - k=1

Ag’gh ZC)A ifl;<nforalll <i<cg,

.....

for (ly,...,l.) € L,, where 5? Ly =€e1®e and

l1,0le

n (k) @ C(iky) if n is even,
ety =
(iki) €(iki+1) @ €(ik;) if n is odd.
Then, we have the minimal projective A-bimodule resolution of A as the total complex
of the following complexes.
Lemma 5. Let n be an integer withn > 1 and Ef}, = ZISZBI Jzéea’kl_”xfﬁl*l for1 <i<c
and 0 < k; < s; — 1. For (Iy,...,l.) € Ly,, we set the integers p; by

o {ni(li —1)/24+1 ifl; is odd,

1<i:i<e.
nli/2 if l; is even, forlsise

Then, we have the following complexes.
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(1) For (ly,...,l.) € L, Such that I; = n, we define the left A°-homomorphisms

681 ----- le)i :Q? ..... )_>Q Hl)by
Ez_k )T — 1515?;,;) if n is odd,

op CLEr Ly or1 <k; <s,.
(L1yeasle)yi (,k4) ZX Ezlklaanl—l -1 an is even, f = hj > 94

Then, since 861 1) © ot =0, we have the complex P; :

1) C O i1, ) i
2 o .
(0,...,2,...,0) i (0yesms0)si
Q(o e T Qo)

s L0

d 0,...,1,...
P, gt
(2) Let m = min{i|l; > 0} for (Iy,...,0.) € Ly. Form <j<cand(ly,...,l.) € L,

such thatl; <n—1 for1 <i<candl; #0, we define the left A°-homomorphisms

n—1

861,._‘7%)7]4 : Q?ll’.-.,lc) = QUyy—1,0) O follows:

777777

" . n
Wiy 1a,.1e)g * J-)H

Zk i1 e H Hj+hy e 1 H Hho n—1
(=)= ojhs (11, ) X5 hy X5 .1, 1,...,lc))
h1=1 ha=1
if I; is odd,
nj—1 c—j j—1
Zk 1k H Mty (G —1=F;) Hhokj -k; en—1 nj—1-Fk;
’ E: 45 j+hy Uy X', 1,...,10)Xj
kj=0 hy=1 ho=1
if l; is even(# 0).

For (ly,...,l.) € L, such thatl, =n—1andl; =1 for m < j < c, we define the
left A¢-homomorphisms 881,._‘7%)7]. by

E"le qf;";X E” if n is even,
X — X; 5(m 1 if n is odd,

€(m 1) qm]

For (ly,...,l.) € Ly, such that l,, =1 and [; =n —1 form < j < ¢, we define the

left A°-homomorphisms 9, ) . by
n n El X, — qm]X EJ"O1 if n is even,
€
(te)g = 2 (lte) "Jll)X Xmg(J y W is odd,

Then, since 0, . ;© 33?1 ey = 05 for (l1,...,1l.) € L, such that l; = 0,

we have the compler Qq, .1y

n+1 n+n’

Theorem 6. The following total complex P is the minimal projective resolution of the left
A¢-module A.

P:0+ A< Py<t PP
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where w is the multiplication map and

c

b= H Q?llw-,lc) and d, = Z Z 681 ----- le).j>

(lyle)ELn J=1 (l1,..,lc)€Ln

forn > 1, where 881 ) are the A¢-homomorphisms given in Lemma 5.

Now we consider the complex P ®4 A/rad A. We can prove that P is exact, by the
following Lemma.

Lemma 7. [1] IfP®4 A/rad A is exact sequence then P is also exact sequence.

We can prove that P@ 4 A/rad A is exact, that is dimy, Im d,,® 4id 4 jraq 4 +dimyg Im d,, 11 ® 4
ida/raq a4 = dimy, P, ® 4 A/rad A by the following Lemma.

Lemma 8. Let (Iy,...,1.) € L, such thatl; <n—1 for1 <i<e¢, andm =min{i|l; >0}
for (lLh,... 1) € Ly.

.....

(3) For1<i<m—1, the left A-module AXiJn(e?ll,..,lc)) is generated by
dp ®a1dajaaal€y, g4, 4;-1,.0,)) Jorm+1<j < c such that l; # 0.

4. THE HOCHSCHILD COHOMOLOGY RING MODULO NILPOTENCE

In this section, we give a K-basis of the Hochschild cohomology ring modulo nilpotence.
Applying the functor Hom e (—, A) to the A®-projective resolution P given in Theorem 6,
we have the following complex:

pn .
P 0 P Py PRI P
where
P = H HomAe(Q’&lMlc), A) and d} = Z Z HomAe(HZ1 7777 1o),i A),
(I1,ele)ELR, i=1 (I, 1.)€Ln

for n > 1. Then we have the following isomorphisms:

P; = Hom e (Py, A) ~ e; Aed @ H H eMiAe?i’ki),
i=1 k;=2

si
H €(i.ki) A€l ) if n is even and l; = n,
ki=1

H (Q7 A)~{ L
omy4 (Q(ll ..... le)? ) H €(i,ki+1)A€7(li,k1;) if nis odd and [; = n,

ki=1
elAeELh ) ifl; <nforl<i<cg,
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for (I1,...,1.) € L,. Since we give the Hochschild cohomology ring modulo nilpotence, we
only consider the elements, which are trivial passes in A, in HH"(A) = Kerd;,,,/Imd;,.

Now, we give the image of €yl in P! by 88j1*l,+1 for (L, ..., L+1,.... 1) € Ly
and 1 <j <ec.
HomAe((f?(ll L1, 76)7],A) :
6?1’ k) P x»e(zk oy x'e?ﬁ;) for 1 <k; <s; ifniseven,l; =n and ¢ =j,
ety (L= af) XG0 i if [; =n and i < j,
€1y — (=1)™(q5i — )Xje?frf_” Ll ifl;=nandi>j,
67317”_716) = j
(,1)22:#11;;( H qui’;lll H q;Zz] Xﬂe?li.l.., Lt1de) if [; is even,
hl 1 h2 1
= (n;—1—k;) _1
il Hj+hy (T Hh n; o . .
—1) X le Z H g H g ’X i (lj’l L,y Af L is odd,
k;=0 hy=1 ho=1
ifl;<nforl<i<ecg,

For homogeneous elements n € HH™(A) and # € HH"(A), we have the Yoneda product

nf = no,, € HH™*"(A) where o, is a lifting of § in the following commutative diagram
of A-bimodules.

dm+n dn+2 dn+l

> Im4n PTL-H Pn
| NN
Om o1 (4]
P, dm _ d2 P, d1 Py ™ A 0.

Proposition 9. Let (I1,...,l) € Ln, (I, ..., i) € Ly. Then we have the lifting of ey,
as follows.

n+n’ ki n n;—2—k;
O €(lj+l’1,...,lc+l’c) — Z Q H X; ]5(1’ ..... 1) H X0
0<k;j<n;—2 1<j<c 1<j<c
1<j<e¢ such that such that
such that lj,l;. are odd lj,l;. are odd

l_j,l} are odd
forn' >0 where Q € K depending on (I, +11,...,l. +1.) € Lyotn and integers k;.

By Proposition 9, if n is odd or [; is odd for some 1 < j < c, €,le) is nilpotence.
By the complex P* and Yoneda product given by Proposition 9 we have the K-basis
of the Hochschild cohomology ring of A modulo nilpotence as follows.

Theorem 10. Let ¢;; = q;il for1 < j <i<c. The following elements form a K -basis
of HH*(A)/N.
(1) Dki—i €lonyy € HH"(A)/N for the even integer n and the integer i with 1 <i < ¢
which satisfy the following conditions:

=1 fori<j<ec
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2) ef, € HH"(A)/N for the even integer n and (l1,...,l.) € L, which satisfy the
(l1,...,lc)
following conditions:

l; is even for 1 < i<,

C
Hq;f’;blh/z =1 forl<j<csuchthatl; #0,
h=1

Remark 11. In the case of n; > 2 for 1 <14 < ¢, the K-basis elements of HH*(A) /AN given
in Theorem 10 coincide with those of given in Theorem 2.

5. EXAMPLES OF THE SUPPORT VARIETY

In this section, we give the examples of the support variety of an A-module. In [5],
Snashall and Solberg defined the support variety V(M) of a A-module M by

V(M) = {m € MaxSpecHH"*(A) /N| Ann Ext’, (M, A/rad A) C m'}.

where m/ is the inverse image of m in HH*(A) and Ann Ext’ (M, A/rad A) is annihilator
of Ext’ (M, A/rad A).

Let K be an algebraically closed filed and » € N. We consider the case ¢ = 2, s1 =
sy = 1,q12 is a primitive r-th root of unity and ny,ns # 0modr ([2]). Then we have

HH*(A)/N = K[X,Y].
where X = 370" e ny), Y = D 5o €2k, D HH?*(A).
Example 12. Let M; = Az{"e;. We have Ext*(M;, A/rad A) and the annihilator of
Ext’ (M, A/rad A) as follows:
Ext (M, A/rad A) = ano Ke?m)7
Ann Ext’ (M, A/rad A) = (V).
And we have the support variety of M; as follows:

V(M) ={(a1,ay) € K*|ay = 0} as an affine algebraic set.

Example 13. Let M, = AX'" X5 and My = AX{'"e; + AX5*e;. We have the
annihilator of Ext’ (M;, A/rad A) for i = 2,3 as follows:
Ann Ext} (M;, A/rad A) = 0.
And we have the support variety of M; for 2 < ¢ < 3 as follows:
V(M;) = K? as an affine plane.
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