JACOBIAN ALGEBRAS AND DEFORMATION QUANTIZATIONS

IZURU MORI

ABSTRACT. Let V' be a 3-dimensional vector space over an algebraically closed field &
of characteristic 0. In this paper, we study the following two classes of algebras: (1) the
Jacobian algebra J(w) of a potential 0 # w € V®3 and (2) the algebra SJ’,\ induced by
the deformation quantization of the polynomial algebra S := S(V) = k[z,y, 2] in three
variables whose semi-classical limit has a quadratic unimodular Poisson bracket on S
determined by f € Ss. It is known that every noetherian quadratic Calabi-Yau algebra
of dimension 3 is of the form J(w), however, it is not easy to see for which potential
0 # w € V®, J(w) is a Calabi-Yau algebra of dimension 3. In this paper, we try to
answer this question by relating J(w) to S7.

1. JACOBIAN ALGEBRAS

This is a report on a joint work in progress with S. Paul Smith. Throughout this paper,
let k be an algebraically closed field of characteristic 0, and V' a finite dimensional vector
space over k. We denote by T(V') the tensor algebra and S(V') the symmetric algebra.

We define the action of § € &,,, on V®™ by

O(v1 ® - @ V) 1= Vp1) @+ * @ Vg(m)-
Specializing to the m-cycle ¢ € &,,, we define
PV BV B+ ® VU1 @ V) 1= Uy DV @+ @ Uy @ U1
We define linear maps c, s, a : VO™ — V™ by

o) = = Y o)

s(w) == % Z O(w)

" 0€6,
a(w) == % D (sgn6)f(w).
" 0€6,,
We define the following subspaces of V™
Sym™V :={w e V" | (w) =w for all § € &,,}
AV = {w e V" | f(w) = (sgnb)w for all § € &,,}.

It is easy to see that Sym™ V = Ims and Alt™ V = Ima.
The following is a key lemma in this paper.

The detailed version of this paper will be submitted for publication elsewhere.
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Lemma 1. Suppose that dimV = 3. For every choice of a basis x,y, z for V, Alt*V =
kwg where

1
wo = 2a(zyz) = c(ryz — zyx) = g(xyz + zxy + yzx — 2yx — x2Y — YITZ2).

By Lemma 1, we can define a linear map p : V® — k by the formula a(w) = p(w)wy
when dim V' = 3.

We define three kinds of derivatives: Choose a basis x1,...,z, for V so that S(V) =
klzy,...,x,) and T (V) = k(z1,...,z,). For f € klxq,...,x,], the usual partial derivative
of f with respect to x; is denoted by f,,. For a monomial w = x,z;, -2, %, €
kE(x1,...,2p)m of degree m, we define

Ii_lw = Lig " Loy Lin ?f le - Z_’ and
0 if iy #£ 1,

Op, (w) := ma; 'e(w).

We extend the map 0y, : k(z1,...,2,) — k{x1,...,2,) by linearity. We call 0,, the cyclic
derivative with respect to ;.

Definition 2. The Jacobian algebra of w € k(z1,...,z,) is the algebra of the form
J(w) =k, ..., 20) /(O w, . .., O, w).
We call w the potential of J(w).

It is easy to see that the Jacobian algebra is independent of the choice of a basis
x1,...,x, for V. Note that if w is homogeneous, then J(w) is a graded algebra. In
this paper, we focus on the case that dimV = 3 and 0 # w € V®3. In this case,
J(w) =T(V)/(R) is a quadratic algebra where RC V @ V.

A Calabi-Yau algebra defined below plays an important role in many branches of math-
ematics. For an algebra A, we denote by A°:= A ® A the enveloping algebra of A.

Definition 3. An algebra A is called Calabi-Yau of dimension d (d-CY for short) if

(1) A has a resolution of finite length consisting of finitely generated projective A®-
modules, and
, A ifi=d
(2) ExtYe(A, A°) = 1 Z as A®modules.
0 ifi#d
Bocklandt [3] showed that every graded Calabi-Yau algebra is a Jacobian algebra.
Specializing to the noetherian quadratic case, we have the following result, which is the
main motivation of this paper.

Theorem 4. [3] Every noetherian quadratic Calabi-Yau algebra of dimension 3 is of the
form J(w) where dimV =3 and 0 # w € V3.

By the above theorem, it is interesting to know for which potential 0 # w € V&3, J(w)
is a Calabi-Yau algebra of dimension 3. Some criteria were given by [4], [2], however,
these criteria are difficult to check in practice. The purpose of this paper is to give a more
effective criterion by using geometry.
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2. DEFORMATION QUANTIZATIONS
Let A be a commutative algebra.

Definition 5. A Poisson algebra is an algebra A together with a bilinear map {—, —} :
A x A — A, called the Poisson bracket, satisfying the following axioms:

(1) {a,b} = —{b,a} for all a,b € A.

(2) {a,{b,c}} +{b,{c,a}} + {c,{a,b}} =0 for all a,b,c € A.

(3) {a,bc} = {a,b}c+ b{a,c} for all a,b,c € A.

Definition 6. A formal deformation of A is a k[[t]]-algebra A[[t]] with the multiplication
@ A[[t]] x A[[t]] — A[[t]] of the form ¢ = >, pit" where o : A x A — A'is the
original multiplication of A and each ¢; : A x A — A is a k-bilinear map extended to be
E[[¢]]-bilinear.

Since A is commutative, for all a,b € A, @o(a,b) = wo(b, a), so

o(a,b) — p(b,a) = Z vi(a,b)t' — Z 0i(b, a)t!

Sh €N
= Z(‘pi(av b) - 901(67 a))ti
€N

= (¢1(a,b) — @1(b,a))t + O(t?).
It is easy to see that (A, {—,—},) where {a,b}, := ¢1(a,b) — p1(b,a) for a,b € A is
a Poisson algebra. We call (A4, {—,—},) the semi-classical limit of (A[[t]],»). It is not
easy to see which Poisson algebra can be realized as a semi-classical limit of a formal
deformation. If this is the case, we call it a deformation quantization.

Definition 7. Let (A,{—, —}) be a Poisson algebra. A formal deformation (A[[t]],¢) of
A is called a deformation quantization of (A,{—,—}) if {—, -} ={—, —},.

We now focus on the case A = S(V). Form > 2, S(V),, =V®"/57 . V'@ RV
is the quotient space where R = {fu ® v —v®u € VRV | u,v € V}. We denote the
quotient map by (=) : V™ — S(V),,. Since s(w) = 0 for every w € Vi R® VY,
the linear map s : VO™ — V" induces a linear map (—) : S(V),, — V™, called the
symmetrization map.

Lemma 8. The linear maps (—) : V™ — S(V),, and (h—/) : S(V)m — VO™ induce

isomorphisms (—) : Sym™V — S(V)pm and (=) : S(V)m — Sym™V inverses to each
other.

For the rest of the paper, we assume that dim V' = 3 and we write S = S(V') = k[z, y, 2].
In this case, every Poisson bracket on S is uniquely determined by {y, z}, {z, 2}, {z,y} €
S. A Poisson algebra (S5, {—, —}) is called quadratic if {y, 2}, {z, z}, {z,y} € Ss.

Theorem 9. [5] If (S,{—, —}) is a quadratic Poisson algebra, then
Kl ., )/ (1, = Hy, 2 [2,0] = t{z,23, [y = o))

is a deformation quantization of (S,{—,—}).
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For every f € 9,
{yvz}f = fa, {Zax}f = fyv {xvy}f =[x
defines a Poisson bracket on S. In fact, it is known that {—, —} is a unimodular Poisson
bracket on S if and only if {—, —} = {—, —}; for some f € S. If f € S;, then (S, {—, —}/)
is a quadratic Poisson algebra, so

Kl 2/ ([, 2] = the [00) =ty [, 0] = £ )
is a deformation quantization of (S,{—,—};) by Theorem 9. For f € S5 and A € k, we
define the algebra induced by the above deformation quantization as

S} = k(a,y. 2) /([ 2] = Mas [2,2] = My [2,y] = AL).
The next two results show that Jacobian algebras and deformation quantizations are
strongly ralated.
Theorem 10. For every f € S3 and every A € k, S}‘ =J (wg — )\f)

Theorem 11. For J(w) = T(V)/(R) where 0 # w € V¥ and R CV @V, the following
are equivalent:

1) J(w) = S} for some f € S3, X € k.
2) RN Sym?V = {0}.

3) R¢ Sym* V.,

4) c(w) & Sym* V.

5) a(w) # 0.

(6) plw) #0.

If any of the above equivalent condition holds, then J(w) = Sgl/“(w).

The above theorem shows that majority of Jacobian algebras are induced by deforma-
tion quantizations.

3. A CRITERION FOR THE CALABI-YAU PROPERTY

In this section, we will give a criterion for which potential 0 # w € V®3 J(w) is 3-
CY. By the previous section, we divide into two cases (1) a(w) # 0 (majority), and (2)
a(w) = 0 (minority).

fmc fxy fmz
Let H(f) :== |fyz [fyy [y=| be the Hessian of f € S. Since H(f) € S, we can define
fzm fzy fzz
H™Y(f) := H(H(f)) for every i € N. The classification of cubic divisors in P? is well-
known. There are eight singular ones and one family of smooth ones (elliptic curves) up
to isomorphisms. The Hessian gives a rough classification of cubic divisors in P2.

Lemma 12. For 0 # f € Ss, the exactly one of the following occurs:

(1) H(f) = 0. In this case, ProjS/(f) is either triple lines, the union of double line
and a line, or the union of three lines meeting at one point.

(2) H(f) # 0, but H*(f) = 0. In this case, Proj S/(f) is either the union of a conic
and a line meeting at one point, or a cuspidal curve.
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(3) H(f) # 0 for every i € N, In this case, Proj S/(f) is either a triangle, the union
of a conic and a line meeting at two points, a nodal curve or an elliptic curve.

Recall that a(w) # 0 if and only if J(w) = S} for some f € S5 and A € k by Theorem
11, so it is essential to ask which S}\ is 3-CY.
Theorem 13. Let f € Ss.
(1) If H*(f) =0, then S} is 3-CY for every X € k.
(2) If H3(f) # 0 and Proj S/(f) is singular, then SJ’,\ is 8-CY except for exactly two

values of A € k for each f € S3.
(3) If H2(f) # 0 and Proj S/(f) is smooth, then SJ’,\ is 3-CY for every A € k.

The above theorem shows that majority of S}\ is 3-CY. In fact, there are only three
exceptions up to isomorphisms.

Theorem 14. Let f € S35 and A € k. If S]’} is not 3-CY, then it is isomorphic to one of
the following algebras:

o k(z,y,2)/(yz, 2z, 2y).

o k(z,y,2)/(yz + 2% 2z, xy).

o k(z,y,2)/(yz + 2%, zx + y*, zy).

On the other hand, if a(w) = 0, then there are not much choice for w (minority), so we
can show the following theorem by case-by-case analysis.

Theorem 15. Let 0 # w € V®? such that a(w) = 0.
(1) If H*(w) = 0, then J(w) is not 3-CY.
(2) If H*(w) # 0 and Proj S/(w) is singular, then J(w) is 3-CY.
(3) If H*(w) # 0 and ProjS/(w) is smooth, then J(w) is 3-CY if and only if the
j-invariant of Proj S/(w) is not 0.
There are six exceptions up to isomorphisms.

Theorem 16. Let 0 # w € V® such that a(w) = 0. If J(w) is not 3-CY, then it is
isomorphic to one of the following algebras:

o k(r,y,z)/(2?).

o k{z,y,2)/(xy + yo, a?).

o k(r,y,2)/(y*,2%).

o k{x,y, z )/(xz—i—z:z—i—y ry + yx, z?).
o k{x,y, z )/(xz—i—zx Y2, 1;2)

o k(z,y,2)/ (2% 9% 2%).

These nine exceptional algebras in Theorem 14 and Theorem 16 are in one-to-one
correspondence with eight singular cubics together with the elliptic curve of j-invariant
0. By [1], every noetherian quadratic Calabi-Yau algebra of dimension 3 is a domain. On
the other hand, none of the nine exceptional algebras above is a domain, so we have a
rather surprising result:

Theorem 17. Let 0 # w € V3. Then J(w) is 3-CY if and only if it is a domain.
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The point scheme is an essential ingredient to study noetherian quadratic Calabi-Yau
algebras of dimension 3 in noncommutative algebraic geometry.

Theorem 18. Let f € S5 and A € k. If SJ); is 3-CY, then the point scheme of S}‘ is given
by Proj S/(24\f + N H(f)).

It follows that, for a generic choice of f € S35 and A € k, the point scheme of S?
parameterizes 0-dimensional symplectic leaves for the unimodular Poisson structure on
P? = Proj S induced by f.

A few more calculations for minority show the following theorem:

Theorem 19. Let 0 # w € V3. If J(w) is 53-CY, then the point scheme of J(w) is given
by Proj A/(24u(w)?@ + H(w)).

4. EXAMPLES

We claim that the criterion given in this paper is effective. In fact, given w € V®3, it is
routine to calculate a(w). Moreover, given f € S, it is routine to calculate H?(f), and it
is easy to check if Proj S/(f) is singular or smooth because Proj S/(f) is singular if and
only if the system of polynomial equations f, = f, = f. = 0 has a non-trivial solution.
Alternately, by sketching the curve, we can fit Proj.S/(f) into one of the cubic divisors
in the classification. Then we can see if it is singular or smooth and we can determine if
H?*(f) =0 or not by Lemma 12.

Example 20. If f = 2%z + zy?, then it is easy to see that ProjS/(f) is the union of a
conic and a line meeting at one point, so H?(f) = 0 by Lemma 12, hence S? is 3-CY for
every A € k by Theorem 13.

Example 21. If f = zyz + (1/3)2® € S3, then it is easy to see that ProjS/(f) is the
union of a conic and a line meeting at two points, so H?(f) # 0 by Lemma 12. Since
Proj S/(f) is singular, S}‘ is 3-CY except for exactly two values of A € k by Theorem
13. These exceptional values can also be determined by a geometric condition as follows.
Since

2z z vy
H(f)=|z 0 x|=2(zyz— 2%,
y x 0

if 5} is 3-CY, then the point scheme of S} is ProjS/(g) where
g =24\f + N H(f) =20 (12 + N ayz + (4 — A2’}
by Theorem 18. It is easy to see that

the union of a conic and a line meeting at two points  if A2 # 0, —12, 4,

P2 iftA=0
Proj S = )
roj 5/(9) a triple line if A2 =—12,
a triangle if \2 = 4.
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We can show that S}\ is 3-CY if and only if ProjS/(g) is not a triangle. In fact, the
defining relations of S} are

2y — A\a?

~ z2+z 2—A 24 A
[y,Z]—Afwyz—zy—A<yzy+x2> vz —

~ 2—A 24+ A
[z,m]—)\fyzz:c—:tz—)\(zx_'_IZ): zr — i xz

2 2 2

~ Ty +yx 2—A 24
[I,y]—/\fzzmy—yr—/\< 5 >= 5 YT = Y,

so if A = 42, then S} is not a domain, hence it is not 3-CY.

Example 22. If w = 2% + ¢* + 23 + (3a/2)(zyz + 2yz) € V¥ where a € k, then it is
easy to see that a(w) = 0, so we apply Theorem 15 to this example. Since f := @& =
22+ 2 + 23 + 3axyz € S, it is well-known that

Proj S/(f) :{

so H%(f) # 0 in either case by Lemma 12. If a® = —1, then ProjS/(f) is singular, so
J(w) is 3-CY by Theorem 15. On the other hand, if a® # —1, then Proj S/(f) is smooth
(an elliptic curve) and the j-invariant of Proj S/(f) is given by the formula

a?(8 — a?)

(1+a3)3’
so J(w) is 3-CY if and only if a® # 0,8 by Theorem 15.

a triangle if a® = —1,
an elliptic curve  if o® # —1,
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