7-RIGID-FINITE ALGEBRAS WITH RADICAL SQUARE ZERO
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ABSTRACT. In this note, we study 7-rigid-finite algebras with radical square zero.

Throughout this note, by an algebra we mean a basic connected finite dimensional alge-
bra over an algebraically closed field K. By a module we mean a finite dimensional right
module. Let A be an algebra. For a A-module M with a minimal projective presentation
P12 P05 M — 0, we define a A-module 7M by an exact sequence

0—7M —vP ' 2 VPO,

where v := Homg (Homy (—, A), K) is the Nakayama functor.
The following module plays an important role in this note.

Definition 1. A A-module M is 7-rigid if Homy(M,7M) = 0. We denote by 7-rigidA
the set of isomorphism classes of indecomposable 7-rigid A-modules.

In 1980’s, Auslander-Smalo [4] have already studied 7-rigid modules from the viewpoint
of torsion theory. Recently, from the perspective of tilting mutation theory, the authors
in [2] introduced the notion of (support) 7-tilting modules as a special class of 7-rigid
modules. They correspond bijectively with many important objects in representation
theory, i.e., functorially finite torsion classes, two-term silting complexes and cluster-
tilting objects in a special cases. By the following proposition, finiteness of these objects
is induced by that of 7-rigidA.

Proposition 2. [5] Let A be an algebra. The following are equivalent:

(1) The set T-rigidA is finite.
(2) There are finitely many isomorphism classes of basic support T-tilting A-modules.

Definition 3. An algebra A is called 7-rigid-finite if it satisfies the equivalent conditions
in Proposition 2.

Our aim of this note is to study 7-rigid-finite algebras with radical square zero. In the
rest of this note, let A be an algebra with radical square zero and @ = (Qo, Q1) the quiver
of A, where @)y is the vertex set and (); is the arrow set. Namely, A = Ay is the path
algebra of a quiver () modulo the ideal generated by all paths of length 2. In representation
theory of algebras with radical square zero, the notion of the separated quiver play a
central role. For a quiver Q = (Q, @1), we define a new quiver Q° = (Q§, Q7), called the
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separated quiver of @), as follows:
Q= (it i€ Qo) @ i={i"=j | (i—j)eQu)

Note that the separated quiver )° is bipartite and not connected even if ) is connected.
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The following proposition is well-known result.

Proposition 4. [3, X.2.4] Let A be an algebra with radical square zero and KQ* the path
algebra of the separated quiver of the quiver of A. Then two algebras A and KQ° are
stably equivalent, that is, there is an equivalent between the associated module categories
modulo projectives.

We have the following famous theorem characterizing representation-finiteness.

Theorem 5. [6] Let A be an algebra with radical square zero and Q) the quiver of A. The
following are equivalent:

(1) A is representation-finite.

(2) The separated quiver Q° is a disjoint union of Dynkin quivers.

The following theorem is an analog of Theorem 5 for 7-rigid-finiteness. A full subquiver
Q' of Q)° is called a single subquiver if, for any i € @, the vertex set () contains at most
one of it or i™.

Theorem 6. [1] Let A be an algebra with radical square zero and Q) the quiver of A. The
following are equivalent:

(1) A is T-rigid-finite.

(2) Each single subquiver of Q* is a disjoint union of Dynkin quivers.

We give some comment for loops of a quiver.

Remark 7. Let @ = (Qo, Q1) be a quiver with a loop ¢, and Q' = (@, Q}) the quiver
with Qp = Qo and Q) = Q1 \ {¢}. Then there is a natural bijection between the set of
single subquiver of @° and those of @". Hence Ag is 7-rigid-finite if and only if Ay is
T-rigid-finite.
Q:17) @1t —=1-
We give a main result of this note. Let G = (V| E) be a connected graph, where V is

the vertex set and E is the edge set. We define a quiver Q¢ = ((Qg)o, (Qa)1), called the
double quiver of G, as follows:

(Qc)o =V, (Qg)r={i—j, i+ j|(i—j) €FE}.
For non-negative integers 1, (s, ..., {,, we define a graph G := (¢1,...,4,) as follows. G

is an n-cycle such that each vertex v; in the n-cycle is attached to a Dynkin graph A;,
and the degree of v; is at most three.

Theorem 8. Let G be a connected graph wz't2h no loop. Then the following are equivalent:



(1) A, is T-rigid-finite.
(2) G is one of the following graphs:
(a) Dynkin graphs of type A, D, and E,

(b) odd-cycles,
(c) (1,0,0,0,0),
(d) (£,0,0) (1<),
(e) (¢,1,0) (1 <¢<4),
(f) (2,2,0),
(g) (1,1,1).
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We can extend our theorem to the case of quivers/graphs with loops.

Remark 9. Assume that the quiver ) of A has a loop. By Remark 7, if there exists a
graph G in Theorem 8 (2) such that Q¢ is isomorphic to @ up to all loops, then Ag is
also 7-rigid-finite.

In the rest of this section, we give a proof of Theorem 8 by removing extended Dynkin
graphs from connected single subquivers of the separated quiver. First we remove ex-
tended Dynkin graphs of type A from the separated quiver. A graph is called an n-cycle
if it is a cycle with exactly n vertices. In particular, it is called an odd-cycle if n is odd,
and an even-cycle if n even. We write by @ the underlying graph of a quiver Q.

Lemma 10. A graph G contains an even-cycle as a subgraph if and only if there exists a
single subquiver Q' of QF such that Q) is an extended Dynkin graph of type A.

Proof. Since Qf, is bipartite, all cycles as a subgraph in ()¢, are even-cycles. Hence ¢
contains an even-cycle as a subgraph. Conversely, assume that G contains an even-cycle
as a subgraph. By taking a minimal even-cycle G’ in G as a subgraph, ¢, includes G’ as

a full subgraph. Hence the assertion follows. OJ
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By Lemma 10, we may assume that G contains no even-cycle as a subgraph. Since G
is also bipartite, we have the following connection between G and Q¢.. A spanning tree of



G is a subgraph of GG that includes all of the vertices of G and is a tree. A subtree of G
is a connected full subgraph of a spanning tree of G.

Proposition 11. Let G be a graph with no even-cycle as a subgraph. Let G’ be a graph.
Then G' is a subtree of G if and only if there exists a connected single subquiver Q" of Q%
such that Q' = G'. In particular, there is a naturally one-to-two correspondence between
the set of subtrees of G and the set of connected single subquivers of Q¢..

Proof. If G’ is a subtree of G, then there exists a connected subquiver @)’ of Qf, with
@' = G'. By Lemma 10, Q' is clearly a full subquiver, and hence it is a single subquiver.
Conversely, assume that @’ is a single subquiver @’ of Q¢, with @’ = G’. By Lemma 10,
Q' is a tree. Since Q' is a full subquiver, @’ is a subtree of G by the definition of separated
quivers. 0

By Proposition 11, to remove non-Dynkin quivers from single subquivers of the sepa-
rated quiver, we have only to concentrate on observing subtrees of graphs. For a tree, we
have the following result.

Corollary 12. Let G be a tree. Then the following are equivalent:
(1) Ag,, is T-rigid-finite.
(2) G is a Dynkin graph.

Proof. Assume that G is a tree. GG is Dynkin if and only if all subtrees of G are Dynkin.
Thus the assertion follows from Theorem 6 and Proposition 11. 0

By Corollary 12, we may assume that G contains exactly one odd-cycle and no even-
cycles. Namely, GG is an odd-cycle such that each vertex v in the odd-cycle is attached to

a tree T,,.
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We remove extended Dynkin graphs of type D from the separated quiver Q.

Lemma 13. Fix a positive integer k and n := 2k + 1. Let G be an n-cycle such that each
verter v in the n-cycle is altached to a tree T,,. Then G contains an extended Dynkin
graph of type D as a subgraph if and only if it satisfies one of the following conditions:

(a) There is a vertez v in the n-cycle such that the degree is at least four.

(b) There is a vertex v in the n-cycle such that the degree is exactly three and T, is
not Dynkin graph of type A.

(c) k > 1 and there are at least two vertices in the n-cycle such that the degrees are
at least three.

Proof. Clearly, if G satisfies one of the conditions (a), (b), and (c), then it contains an
extended Dynkin graph of type D. Conversely, assume that G contains an extended
Dynkin graph of type D. Then D, has exactly one vertex whose degree is exactly four
and D; has exactly two vertices whose degree is exactly three for any integer ¢ > 4. We

can check that G satisfies one of (a), (b), anii (c). O



Fix a positive integer k and n := 2k + 1. By Lemma 13, we may assume that G is one
of the following graphs:

(a) (£1,0...,0)if k> 2.
(b) <€1,€2,€3> with f1 Z ég Z 63 if k=1.

Finally, we remove extended Dynkin graphs of type E from the separated quiver Q¢

Lemma 14. Fiz a positive integer k and n := 2k + 1. Assume that G = ({1, la, - , ().

(1) Assume that k > 2. The following graphs (a), (b) and (c) are the minimal
graphs containing extended Dynkin graphs Eg, E7, and Eg respectively in the forms

(04,0,...,0).
(a) (2,0,...,0) (k>2)
(b) (1,0,...,0) (k > 3)
(c) (1,0,...,0) (k> 4)
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(2) Assume that k = 1. The following graphs (d), (e) and (f) are the minimal
graphs containing extended Dynkin graphs Eg, Er, and Eg respectively in the forms

<£17£27£3>-

(d) (2,1,1).

(e) (3,2,0), (2,2,1).

(f) (5,1,0, (4,2,0), (4,1,1).
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Proof. We can check from the pictures above. O

Now we are ready to prove Theorem 8.

Proof of Theorem 8. If G is a tree, then the assertion follows from Corollary 12. We
assume that G is not a tree. By the argument above, we have the minimal set of graphs
including extended Dynkin graphs of type A, D, or E. Thus Ag,, is T-rigid-finite if and
only if GG is one of nontrivial full subgraphs w1th the n-cycle of graphs in Lemma 14. The
assertion follows from that G is the desired graph. U
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