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SINGULARITY CATEGORIES OF STABLE RESOLVING
SUBCATEGORIES

HIROKI MATSUI AND RYO TAKAHASHI

Abstract. In this article1 we study resolving subcategories X of an abelian category
from the structure of their associated triangulated categories. More precisely, we inves-
tigate the singularity categories

Dsg(X ) = Db(modX )/Kb(proj(modX ))

of the stable categories X of X . We consider when the stable categories of two resolving
subcategories have triangle equivalent singularity categories. Applying this to resolving
subcategories of modules over Gorenstein rings, we characterize simple hypersurface
singularities of type (A1) as complete intersections over which the stable categories of
resolving subcategories have trivial singularity categories.

1. introduction

Let R be a noetherian ring. The singularity category of R is by definition the Verdier
quotient

Dsg(R) = Db(modR)/Kb(proj(modR)),

wheremodR denotes the category of finitely generatedR-modules, Db(modR) the bounded
derived category and Kb(proj(modR)) the bounded homotopy category. The singularity
category Dsg(R) is a triangulated category, which has been introduced by Buchweitz [4] by
the name of stable derived category and connected to the Homological Mirror Symmetry
Conjecture by Orlov [10]. A lot of studies on singularity categories have been done in
recent years; see [5, 8, 11, 15] for instance.

In this article, we consider the singularity category of a stable resolving category. Let A
be an abelian category with enough projective objects. Let X be a resolving subcategory
of A, and X its stable category. Then the category modX of finitely presented right
X -modules is an abelian category with enough projective objects [1]. We take the Verdier
quotient of

Dsg(X ) := Db(modX )/Kb(proj(modX )),

and call this the singularity category of X . For two resolving subcategories X, Y we say
that X , Y are singulary equivalent if there is a triangle equivalence Dsg(X ) ∼= Dsg(Y).

The main purpose of this article is to study the following question.

Question 1. Let A be an abelian category with enough projective objects. Let X, Y be
resolving subcategories of A. When are the stable categories X , Y singularly equivalent?

1The detailed version of this article will be submitted for publication elsewhere.
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We give a sufficient condition for two stable resolving subcategories to be singularly
equivalent. We also apply it to resolving subcategories of module categories of commuta-
tive Gorenstein rings, and characterize the simple hypersurface singularities of type (A1)
in terms of singular equivalence classes.

2. Preliminaries

In this section, we introduce the several notions. Throughout this article, let A be an
abelian category with enough projective objects, and denote by projA the full subcategory
of projective objects of A.

Definition 2. An object M of A is said to be Cohen-Macaulay if there is an exact
sequence

· · · d2−→ P1
d1−→ P0

d0−→ P−1
d−1−−→ · · ·

of projectives whose dual by any projective is also exact, such that M is isomorphic to
the image of d0. Denote by CM(A) the subcategory of A consisting of Cohen-Macaulay
objects and by CMn(A) the subcategory of A consisting objects whose n-th syzygies are
Cohen-Macaulay.

In [7], a Cohen-Macaulay object is called a Gorenstein projective object. The category
consisting of Cohen-Macaulay objects is a Frobenius category, hence its stable category
is a triangulated category.

Next, we recall the definition of the category of finitely presented modules over an
additive category.

Definition 3. Let C be an additive category. Denote by Mod C the functor category of
C, that is, the objects are additive contravariant functors from C to the category Ab
of abelian groups, and the morphisms are natural transformations. An object and a
morphism of Mod C are called a (right) C-module and a C-homomorphism, respectively. A
C-module F is said to be finitely presented if there is an exact sequence

HomC(−, X) → HomC(−, Y ) → F → 0

in the abelian category Mod C with X, Y ∈ C. The full subcategory of Mod C consisting
of finitely presented C-modules is denoted by mod C.
Definition 4. An additive category C is called Gorenstein of dimension at most n if
Ωn(mod C) = CM(mod C).
Example 5. Let Λ be a Gorenstein ring of selfinjective dimension at most n, and denote
by projΛ the category of finitely generated Λ-modules. Then projΛ is Gorenstein of
dimension at most n.

We introduce the main target in this article.

Definition 6. Let C be an additive category. The singularity category C is defined as
follows:

Dsg(C) = Db(mod C)/Kb(proj(mod C)).
Definition 7. Additive categories C, C ′ are singularly equivalent if there is a triangule

equivalence Dsg(C) ∼= Dsg(C ′), and then denote this by C sg∼ C ′.
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Let us give the definition of a resolving subcategory, which is mainly studied in this
article.

Definition 8. A full subcategory X of an abelian category A is resolving if:

(1) X contains all projective objects of A.
(2) X is closed under direct summands, extensions and syzygies.

Here we recall the definition of a stable category.

Definition 9. Let X be a full subcategory of A containing projA. Then the quotient
category

X := X / projA
is called the stable category of X ; the objects of X are the same as those of X , and the
hom-set HomX (M,N) of M,N ∈ X is defined as follows:

HomX (M,N) := HomA(M,N)/PA(M,N),

where PA(M,N) consists of all morphisms from M to N that factor through objects in
projA.

Finally, we recall a structure result due to Auslander and Reiten on finitely presented
modules over the stable category of a resolving subcategory.

Theorem 10. [1] If X is a resolving subcategory of A, then the category modX of finitely
presented right X -modules is an abelian category with enough projectives.

3. Singularity categories and singularly equivalent

In this section, we give a sufficient condition for two resolving subcategories to be
singularly equivalent. In particular, there is a natural asking when a resolving subcategory
is singularly equivalent to 0. We give an answer to this question.

The following result is the key to study singular equivalence.

Theorem 11. Let X be a resolving subcategory of A such that Ω−1ΩnX ⊂ ΩnX ⊂ CM(A).
Then:

(1) X is Gorenstein of dimension at most 3n.
(2) There is a triangle equivalence Dsg(X ) ∼= CM(modX ).

This theorem gives some characterizations of a singularity category.

Corollary 12. For each n ≥ 0 there is a triangle equivalence

Dsg(CMn(A)) ∼= CM(modCMn(A)).

Corollary 13. Let R be a local complete intersection. Let X be a resolving subcategory
of modR. Then there is a triangle equivalence

Dsg(X ) ∼= CM(modX ).

Let n = 0 in Theorem 11. Then the following result holds, whose assertion is nothing
but [14].

Corollary 14. Let X be a resolving subcateory of A contained in CM(A) and closed under
cosyzygies. Then modX = CM(modX ), and hence modX is a Frobenius category.
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Taking advantage of Theorem 11, we obtain a sufficient condition for singular equiva-
lence.

Theorem 15. Let X ,Y be resolving subcategories of A such that ΩnX ∪ Ω−1Y ⊆ Y ⊆
X ∩ CM(A) for some n ≥ 0. Then there are triangle equivalences

Dsg(X ) ∼= CM(modX ) ∼= CM(modY) ∼= Dsg(Y).

Hence X and Y are singularly equivalent.

Sketch of proof. The restriction F �→ F |Y makes a covariant exact functor

Φ : ModX → ModY
of abelian categories. This induces an equivalent functor

ϕ : CM(modX ) → CM(modY).
of triangulated categories. ■
Corollary 16. Let X be a resolving subcategory of A with ΩnX ⊆ CM(A) ⊆ X for some
n ≥ 0. Then X and CM(A) are singularly equivalent. In particular, CMp(A) and CMq(A)
are singularly equivalent for all p, q ≥ 0.

Remark 17. A singular equivalence between X and Y does not necessarily imply that X ,
Y have an inclusion relation. Indeed, let (R,m) be a Gorenstein local domain of dimension
at least 2. Set

X = {M ∈ modR | m /∈ AssM},
Y = {M ∈ modR | AssM ⊆ {0,m}}.

These are resolving subcategories of modR containing CM(R). Hence X sg∼ CM(R)
sg∼ Y .

However, X and Y have no inclusion relation.

In the proof of our last theorem, the following two lemmas are necessary.

Lemma 18. Let R be a Gorenstein complete local ring. Let X be a resolving subcategory
of modR contained in CM(R) and closed under cosyzygies. Assume that there exists a
nonsplit exact sequence

σ : 0 → X
f−→ Y

g−→ Z → 0

of R-modules with X, Y, Z ∈ X such that X,Z are indecomposable. If X is singularly
equivalent to 0, then Y is free, and X is isomorphic to ΩZ.

Lemma 19. Let R and S be Gorenstein complete local rings. Let Φ : CM(R) → CM(S)
be a triangle equivalence. If f is an irreducible homomorphism of nonfree indecomposable
MCM R-modules and g is a homomorphism of S-modules such that Φ(f) = g, then g is
an irreducible homomorphism of nonfree indecomposable MCM S-modules.

Let R be a local ring. Recall that M is said to have complexity c, denoted by cxR M = c,
if c is the least nonnegative integer n such that there exists a real number r satisfying the
inequality βR

i (M) ≤ rin−1 for all i ≫ 0. It is known that if R is a complete intersection,
then the codimension of R is the maximum of the complexities of R-modules. For details
on the complexity of a module, we refer the reader to [2, §4.2].
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Let R be a d-dimensional Gorenstein local ring with algebraically closed residue field
k of characteristic zero. Then R contains a field isomorphic to k, and it is known that R
has finite CM-representation type if and only if R is a simple (hypersurface) singularity
[13, §8], namely, R is isomorphic to a hypersurface

k[[x0, . . . , xd]]/(f),

where f is one of the following.

(An) x2
0 + xn+1

1 + x2
2 + · · ·+ x2

d,

(Dn) x2
0x1 + xn−1

1 + x2
2 + · · ·+ x2

d,

(E6) x3
0 + x4

1 + x2
2 + · · ·+ x2

d,

(E7) x3
0 + x0x

3
1 + x2

2 + · · ·+ x2
d,

(E8) x3
0 + x5

1 + x2
2 + · · ·+ x2

d.

For each T ∈ {An,Dn,E6,E7,E8}, a simple hypersurface singularity of type (T) is shortly
called a (T)-singularity.

We give a characterization of the (A1)-singularities in terms of singular equivalence.

Theorem 20. Let R be a d-dimensional nonregular complete local ring with algebraically
closed residue field k of characteristic 0. Then the following conditions are equivalent;

(1) R is a Gorenstein ring, and CM(R) is singularly equivalent to 0.
(2) R is a complete intersection, and X is singularly equivalent to 0 for every resolving

subcategory X of modR.
(3) R is a complete intersection, and X is singularly equivalent to 0 for some resolving

subcategory X of modR that containing a module of maximal complexity.
(4) R is an (A1)-singularity.

Sketch of proof. (1) ⇒ (4): Using Lemma 18, we can show that R has finite CM rep-
resentation type. By [13, Corollary 8.16] R is a simple singularity. The classification of
the Auslander-Reiten quivers of the MCM modules over simple singularities [13, Chapters
8–12] together with Lemma 19 implies that the only simple singularities R where CM(R)
possesses such an Auslander-Reiten quiver are (A1)-singularities. ■

Let R be a simple hypersurface singularity. Theorem 20 especially says that CM(R) is
not singularly equivalent to 0 unless R is an (A1)-singularity. One can actually confirm
this for a 1-dimensional (A2)- singularity by direct calculation.

Example 21. Let k be an algebraically closed field of characteristic 0. Let R be an
(A2)-singularity of dimension 1 over k. Then there is a triangle equivalence

Dsg(CM(R)) ∼= Dsg(k[t]/(t
2)).

In particular, CM(R) is not singularly equivalent to 0.
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