BASICALIZATION OF KLR ALGEBRAS

MASAHIDE KONISHI

ABSTRACT. We describe an algorithm to basicalize KLR algebras arising from quivers.

1. Preliminaries

Let k be field and A be a finite dimensional or "good" infinite dimensional connected algebra over k. Throughout this paper, an algebra is associative and with an unit element 1_A . Then A is decomposed into indecomposable projective left A-modules P_i as left Amodule, where P_i is Ae_i for a complete set of primitive orthogonal idempotents :

(i)
$$\sum_{i=1}^{i=1} e_i = 1_A$$
,
(ii) if $e_i = f + g$ where $fg = gf = 0$, $f^2 = f$, $g^2 = g$ then $f = 0$ or $g = 0$,
(iii) $(e_i)^2 = e_i$,
(iv) $e_i e_j = 0$ for $i \neq j$.

We call A basic if $P_i \not\cong P_j$ for $i \neq j$. Even if A is not basic, we can basicalize A like that. Choose some primitive idempotents e_{j_k} to satisfy the following property: for every e_i there exists exactly one r such that $P_i \cong P_{j_r}$. Set e the sum of those idempotents then $A^b := eAe$ is basic algebra. Note that A and A^b are Morita equivalent therefore module categories of those two are equivalent.

Let A be a basic algebra, then we can obtain a connected quiver Q and an admissible ideal I of a path algebra kQ such that $A \cong kQ/I$. Our final destination is to describe an algorithm to obtain such Q and I for KLR algebras.

Let Γ be a finite connected quiver without loops and multiple arrows. Let $\Gamma_0 = \{1, 2, \ldots, n\}$. Let ν be *n*-tuple $(\nu_1, \nu_2, \ldots, \nu_n)$ of non-negative integers. In general, KLR algebras $R_{\Gamma}(\nu)$ is defined depend on ν however in this paper we fix $\nu_i = 1$ for every *i*. Let $I_n = \{\sigma(1, 2, \cdots, n) | \sigma \in S_n\}, s_k = (k, k+1) \in S_n$. For $\mathbf{i} \in I_n$, describe \mathbf{i} as (i_1, i_2, \ldots, i_n) .

Definition 1. A *KLR* algebra R_{Γ} is defined from these generators and relations.

The detailed version of this paper will be submitted for publication elsewhere.

$$\begin{split} \psi_{k}y_{l} &= y_{l}\psi_{k} \ (l \neq k, k+1), \\ \psi_{k}y_{k+1} &= y_{k}\psi_{k}, \ y_{k+1}\psi_{k} &= \psi_{k}y_{k}, \\ \psi_{k}\psi_{l} &= \psi_{l}\psi_{k} \ (|k-l| > 1), \\ \psi_{k}\psi_{k+1}\psi_{k} &= \psi_{k+1}\psi_{k}\psi_{k+1}, \\ \psi_{k}^{2}\mathbf{e}(\mathbf{i}) &= \begin{cases} \mathbf{e}(\mathbf{i}) & (i_{k} \nleftrightarrow i_{k+1}) \\ (y_{k+1} - y_{k})\mathbf{e}(\mathbf{i}) & (i_{k} \to i_{k+1}) \\ (y_{k+1} - y_{k})(y_{k} - y_{k+1})\mathbf{e}(\mathbf{i}) & (i_{k} \leftrightarrow i_{k+1}) \end{cases}. \end{split}$$

Note that the first (resp. second) equation shows $\mathbf{e}(\mathbf{i})$ s are orthogonal (resp. complete). Moreover, R_{Γ} is \mathbb{Z} -graded algebra by $deg(\mathbf{e}(\mathbf{i})) = 0$, $deg(y_k) = 2$, $deg(\psi_k) = 0$ if $i_k \nleftrightarrow i_{k+1}$, 1 if $i_k \to i_{k+1}$ or $i_k \leftarrow i_{k+1}$, 2 if $i_k \leftrightarrow i_{k+1}$.

2. The starting point

As the first step, we define a class of quiver called gemstone quiver.

Definition 2. A gemstone quiver G_n is defined as follows.

- vertices: $\mathbf{i} \in I^n$.
- arrows: $-y_k^{\mathbf{i}} : \mathbf{i} \to \mathbf{i}$ for each $\mathbf{i} \in I_n$ and $1 \le k \le n$, $-\psi_l^{\mathbf{i}} : \mathbf{i} \to s_l \mathbf{i}$ for each $\mathbf{i} \in I_n$ and $1 \le l < n$.

Then we obtain following lemma.

Lemma 3. There exists an epimorphism $kG_n \longrightarrow R_{\Gamma}$ by $\mathbf{i} \mapsto \mathbf{e}(\mathbf{i})$, $y_k^{\mathbf{i}} \mapsto \mathbf{e}(\mathbf{i})y_k\mathbf{e}(\mathbf{i})$, $\psi_l^{\mathbf{i}} \mapsto \mathbf{e}(\mathbf{i})\psi_l\mathbf{e}(s_l\mathbf{i})$. Moreover, $kG_n/I_{\Gamma} \cong R_{\Gamma}$ where I_{Γ} is an ideal obtained by rewriting relations of R_{Γ} by the above correspondence.

Note that I_{Γ} is not admissible ideal since there are those relations : $\psi_k^2 \mathbf{e}(\mathbf{i}) = \mathbf{e}(\mathbf{i})$ if $i_k \nleftrightarrow i_{k+1}$, $(y_{k+1} - y_k)\mathbf{e}(\mathbf{i})$ if $i_k \to i_{k+1}$, $(y_k - y_{k+1})\mathbf{e}(\mathbf{i})$ if $i_k \leftarrow i_{k+1}$. Therefore we need some processes except for some cases. The following corollary is straightforward from the next section.

Corollary 4. Let Γ be a quiver with 2-cycle for each two vertices. Then G_n and I_{Γ} present R_{Γ} .

3. Processes

We should start from removing this type of relations: $\psi_k^2 \mathbf{e}(\mathbf{i}) = \mathbf{e}(\mathbf{i})$ if $i_k \not\leftrightarrow i_{k+1}$. In fact, that relations are useful to determine an isomorphic class of indecomposable projective modules.

Lemma 5. All $\mathbf{e}(\mathbf{i})$ are primitive. Therefore $R_{\Gamma}\mathbf{e}(\mathbf{i})$ is indecomposable.

Lemma 6. $R_{\Gamma} \mathbf{e}(\mathbf{i}) \cong R_{\Gamma} \mathbf{e}(s_k \mathbf{i})$ if and only if $i_k \nleftrightarrow i_{k+1}$

Using this lemma repeatedly, we can obtain the following property.

Let G_n be a graph obtained by removing loops and replacing each 2-cycles by edge on G_n . Cut edges between **i** and s_k **i** if there exists some arrows between i_k and i_{k+1} on Γ ,

denote this cut graph G_{Γ} . Then the followings are equivalent:

(a) **i** and **j** are on the same connected component on G_{Γ} ,

(b) $R_{\Gamma} \mathbf{e}(\mathbf{i}) \cong R_{\Gamma} \mathbf{e}(\mathbf{j}).$

We get a new quiver by identifying the vertices of G_n for each connected components of G_{Γ} .

To rewrite relations, we should pick up one **i** from each connected components. Then vertices **i** means $\mathbf{e}(\mathbf{i})$ and loops $y_k^{\mathbf{i}}$ means $\mathbf{e}(\mathbf{i})y_k\mathbf{e}(\mathbf{i})$. However the meaning of two cycles for two vertices **i** and **j** are bit complicated. Since there are two cycles between them, there exists some paths from **i** to **j** in G_n constructed from three parts:

(i) a path in connected component with i, from i to some i',

(ii) an arrow \mathbf{i}' to \mathbf{j}' where \mathbf{j}' picked from a connected component with \mathbf{j} ,

(iii) a path in connected component with \mathbf{j} from \mathbf{j}' to \mathbf{j} .

We pick two minimal paths for each two cycles between **i** and **j** to be inverse each other. Then the arrow **i** to **j** means $\mathbf{e}(\mathbf{i})\psi_{\omega}\mathbf{e}(\mathbf{j})$, where ψ_{ω} is a multiplication of ψ s in G_n taken as above. Note that only part (ii) has positive degree in that path.

Then relations for this quiver are obtained from G_n by rewriting with the correspondence above. However there still remains a problem from these type of relations:

 $\psi_k^2 \mathbf{e}(\mathbf{i}) = \pm (y_{k+1} - y_k) \mathbf{e}(\mathbf{i})$ if there exists one arrow between i_k and i_{k+1} .

The problem is on right hand side, it must not be in admissible ideal since it's just a sum of two arrows. Therefore we delete arrows by rewriting relations as follows:

$$y_{k+1}\mathbf{e}(\mathbf{i}) = y_k\mathbf{e}(\mathbf{i}) \pm \psi_k^2\mathbf{e}(\mathbf{i})$$

After that process all relations are obtained from a linear combination of paths of length greater than 2. Therefore it's completed.

From the construction above, we can obtain some combinatorial observations such as :

Corollary 7. The quiver for R_{Γ} has at least one loop for each vertex.

4. Cyclotomic case

We can use previous method for cyclotomic case.

Definition 8. For $\Lambda = (\lambda_1, \lambda_2, \cdots, \lambda_n) \in \mathbb{Z}_{\geq 0}^n$, a cyclotomic ideal I^{Λ} is generated by $\left\{ y_1^{\lambda_{i_1}} \mathbf{e}(\mathbf{i}) | \mathbf{i} \in I_n \right\}$.

We call a quotient algebra $R_{\Gamma}^{\Lambda} = R_{\Gamma}/I^{\Lambda}$ a cyclotomic KLR algebra.

Only what we do is adding relations from that generators. However there is $\lambda_k \leq 1$, we need rewrite something. If there is $\lambda_k = 0$, we need to trim some vertices by using following lemma.

Lemma 9. In R_{Γ}^{Λ} , $\mathbf{e}(\mathbf{i}) = 0$ if and only if $\lambda_{i_1} = 0$ or there exists k such that for every s < k there is no arrow between i_s and i_k on Γ .

We trim \mathbf{i} with $\mathbf{e}(\mathbf{i}) = 0$ and rewrite relations including \mathbf{i} .

The remaining problem is about this type of relations: $y_1 \mathbf{e}(\mathbf{i}) = 0$. This happens if $\lambda_{i_1} = 1$. To avoid this relation, delete arrows $y_1^{\mathbf{i}}$ and rewrite relations including \mathbf{i} . Then it's completed.

References

- [1] I. Assem, D. Simson, A. Skowronski, *Elements of the Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory*, Cambridge University Press (2006).
- [2] M. Khovanov, A. D. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13(2009), 309-347.
- [3] _____, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc. 363(2011), 2685-2700.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY FROCHO, CHIKUSAKU, NAGOYA 464-8602 JAPAN *E-mail address*: m10021t@math.nagoya-u.ac.jp