BASICALIZATION OF KLR ALGEBRAS

MASAHIDE KONISHI

ABSTRACT. We describe an algorithm to basicalize KLR algebras arising from quivers.

1. PRELIMINARIES

Let k be field and A be a finite dimensional or ”good” infinite dimensional connected
algebra over k. Throughout this paper, an algebra is associative and with an unit element
14. Then A is decomposed into indecomposable projective left A-modules P; as left A-
module, where P; is Ae; for a complete set of primitive orthogonal idempotents :

n

(i) Zei = 1g4,

i=1
ii) if e; = f + g where fg=gf =0, f>=f, g> =g then f =0 or g =0,
i

(
(11)(1) = €,
(iv) e;e; =0 for i # j.

We call A basic if P, 2 P; for i # j. Even if A is not basic, we can basicalize A like
that. Choose some primitive idempotents e;, to satisfy the following property: for every
e; there exists exactly one r such that P, = P; . Set e the sum of those idempotents then
A := eAe is basic algebra. Note that A and A are Morita equivalent therefore module
categories of those two are equivalent.

Let A be a basic algebra, then we can obtain a connected quiver () and an admissible
ideal T of a path algebra kQ such that A = kQ/I. Our final destination is to describe an
algorithm to obtain such @) and I for KLR algebras.

Let T' be a finite connected quiver without loops and multiple arrows. Let Iy =
{1,2,...,n}. Let v be n-tuple (v1,vs,...,v,) of non-negative integers. In general, KLR
algebras Rr(v) is defined depend on v however in this paper we fix v; = 1 for every i. Let
I, ={0(1,2,--- ,n)loc € S}, s, = (k,k+1) € S,,. Fori € I, describe i as (i1, 42, .. .,1,).
Definition 1. A K LR algebra Rr is defined from these generators and relations.

e generators:

{e@lie Lt U{y, - un} U{tn, - dna}.

e relations:
e(i)e(j) = dije(i), Y _e(i) =1,
icl,
yee(i) = e(D)y, Yre(i) = e(sii)iy,
YrYr = YiYk,

The detailed version of this paper will be submitted for publication elsewhere.
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Uiy = yibe (L # Kk + 1),
VkUk+1 = Yelks Yer1¥e = Vi,
Yt =y (k=1 > 1),
Ve¥ri1¥e = Vi1 VeVt
e(i)

2a(3) — (Yr+1 — yr)e(i)

viell) = (9 — posr)eli)
(Y1 — Yr) Wk — Yrs1)e(i)

ik 9 k1)
ik — lky1)
Qg Gpy1)
ik > lky1)

R e e L

Note that the first (resp. second) equation shows e(i)s are orthogonal (resp. complete).
Moreover, Ry is Z-graded algebra by deg(e(i)) = 0, deg(yx) = 2, deg(wy) = 01if i, > g4,
1if 1 — ik—}—l or 1y < ik+1, 2 if 1 > ik+1.

2. THE STARTING POINT
As the first step, we define a class of quiver called gemstone quiver.

Definition 2. A gemstone quiver G,, is defined as follows.
e vertices: 1€ ™.
® AITOWS:
—ylii—siforeachie I, and 1 <k <n,
—wli:i—>sliforeachi61"and1§l<n.

Then we obtain following lemma.

Lemma 3. There exists an epimorphism kG, — Rr by i — e(i), yi — e(i)yre(i),
i e(i)ye(si). Moreover, kG, /Ir = Rr where Iy is an ideal obtained by rewriting
relations of Rr by the above correspondence.

Note that It is not admissible ideal since there are those relations : ¢?e(i) = e(i) if

ik 4 ka1, (e — yr)e() if iy — ika1, (yp — yre1)e(d) if ix < ixr1. Therefore we need
some processes except for some cases. The following corollary is straightforward from the
next section.

Corollary 4. LetT" be a quiver with 2-cycle for each two vertices. Then G,, and It present
Rr.
3. PROCESSES

We should start from removing this type of relations: ¢?e(i) = e(i) if if, ¢ ix11. In fact,
that relations are useful to determine an isomorphic class of indecomposable projective
modules.

Lemma 5. All e(i) are primitive. Therefore Rre(i) is indecomposable.
Lemma 6. Rre(i) & Rre(sii) if and only if i 4 ir1

Using this lemma repeatedly, we can obtain the following property.
Let GG, be a graph obtained by removing loops and replacing each 2-cycles by edge on
G,. Cut edges between i and s;i if there exists some arrows between 4, and .7 on I,
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denote this cut graph Gr. Then the followings are equivalent:

(a) i and j are on the same connected component on Gr,

(b) Rre(i) = Rre(j).

We get a new quiver by identifying the vertices of G,, for each connected components of
Gr.

To rewrite relations, we should pick up one i from each connected components. Then
vertices i means e(i) and loops y! means e(i)yye(i). However the meaning of two cycles
for two vertices i and j are bit complicated. Since there are two cycles between them,
there exists some paths from i to j in G,, constructed from three parts:

(i) a path in connected component with i, from i to some i/,
(ii) an arrow i’ to j’ where j' picked from a connected component with j,
(iii) a path in connected component with j from j’ to j.

We pick two minimal paths for each two cycles between i and j to be inverse each other.
Then the arrow i to j means e(i)ye(j), where ¢, is a multiplication of ¢s in G,, taken
as above. Note that only part (i) has positive degree in that path.

Then relations for this quiver are obtained from G,, by rewriting with the correspon-
dence above. However there still remains a problem from these type of relations:

Yie(i) = £(ykr1 — yr)e(i) if there exists one arrow between iy, and gy ;.

The problem is on right hand side, it must not be in admissible ideal since it’s just a sum
of two arrows. Therefore we delete arrows by rewriting relations as follows:

yr1e(i) = yre(i) = vje().

After that process all relations are obtained from a linear combination of paths of length
greater than 2. Therefore it’s completed.

From the construction above, we can obtain some combinatorial observations such as :

Corollary 7. The quiver for Rr has at least one loop for each vertex.

4. CYCLOTOMIC CASE
We can use previous method for cyclotomic case.
Definition 8. For A = (A, Ay, -+, \,) € Z%;, a cyclotomic ideal I" is generated by
{yf”e(i)|i € In}.
We call a quotient algebra R = Rp/I* a cyclotomic KLR algebra.

Only what we do is adding relations from that generators. However there is A\ < 1,
we need rewrite something. If there is Ay = 0, we need to trim some vertices by using
following lemma.

Lemma 9. In R}, e(i) = 0 if and only if \;, = 0 or there exists k such that for every
s < k there is no arrow between iy and i, on I'.

We trim i with e(i) = 0 and rewrite relations including i.

The remaining problem is about this type of relations: y;e(i) = 0. This happens if
Ai; = 1. To avoid this relation, delete arrows 3! and rewrite relations including i. Then
it‘s completed.
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