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TAKING TILTING MODULES FROM THE POSET OF SUPPORT
TILTING MODULES

RYOICHI KASE

Abstract. C. Ingalls and H. Thomas defined support tilting modules for path algebras.
From τ -tilting theory introduced by T. Adachi, O. Iyama and I. Reiten, a partial order on
the set of basic tilting modules defined by D. Happel and L. Unger is extended as a partial
order on the set of support tilting modules. In this report, we study a combinatorial
relationship between the poset of basic tilting modules and basic support tilting modules.
We will show that the subposet of tilting modules is uniquely determined by the poset
structure of the set of support tilting modules.

1. Introduction

Tilting theory first appeared in an article by S. Brenner and M.C.R. Butler [2]. In
that article the notion of a tilting module for finite dimensional algebras was introduced.
Let T be a tilting module for a finite dimensional algebra Λ and let B = EndA(T ).
Then D. Happel showed that the two bounded derived categories Db(A) and Db(B)
are equivalent as triangulated category [3]. Therefore, classifying tilting modules is an
important problem.

Tilting mutation introduced by C. Riedtmann and A. Schofield [7] is an approach to this
problem. It is an operation which gives a new tilting module from given one by replacing
an indecomposable direct summand. They also introduced a tilting quiver whose vertices
are (isomorphism classes of) basic tilting modules and arrows correspond to mutations.
D. Happel and L. Unger showed that there is a partial order on the set of (isomorphism
classes of) basic tilting modules suct that its Hasse quiver coincides to tilting quiver [4, 5].
However, tilting mutation is often impossible. Support τ -tilting modules introduced by
T. Adachi,O. Iyama and I. Reiten [1] are generalization of tilting modules. They showed
that a mutation (resp. a partial order) on the set of (isomorphism classes of) basic tilting
modules is extended as an operation (resp. a partial order) on the set of (isomorphism
classes of) support τ -tilting modules and improved behavior of tilting mutation.

In path algebras case, it is known that a support τ -tilting module is a support tilting
module introduced by C. Ingalls and H. Thomas [6]. Then the main result of this report
is the following.

Theorem 1. Let Λ be a finite dimensional path algebra. Then the set of basic tilting
modules of Λ is determined by poset structure of the set of basic support tilting modules.

The detailed version of this paper has been submitted for publication elsewhere.
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2. Path algebras

Let k be an algebraically closed field and let Q be a finite quiver (=oriented graph).
We denote by Q0 (resp. Q1) the set of vertices (resp. edges) of Q. For an edge α : a → b,
we set s(α) := a, t(α) := b.

Definition 2. A sequence w = (α1|α2| · · · |αl) of Q1 is a path on Q if t(αi) = s(αi+1)
holds for any i. Then we call l the length of w and put s(w) := s(α1) t(w) := αl. We
regard a vertex a ∈ Q0 as a path of length 0 with s(ea) = a = t(ea) and denote it by ea.

Then a path algebra Λ = kQ is defined as follows:

(1) Λ =
⊕

w:path k · w.
(2) For two paths w = (α1|α2| · · · |αl), w

′ = (β1|β2| · · · |βl′), we define

w · w′ =

{
(α1|α2| · · · |αl | β1|β2| · · · |βl′) if t(w) = s(w′)

0 if t(w) ̸= s(w′).

From now on, we assume that Λ = kQ and Q has no oriented cycles (⇔ dimΛ < ∞).

3. Tilting modules and support tilting modules

In this section, we recall definitions of poset of tilting modules and poset of support
tilting modules. For a module M ∈ mod Λ with indecomposable decomposition

M ≃ ⊕m
i=1M

ri
i (i ̸= j ⇒ Mi ̸≃ Mj),

we put |M | := m. M is said to be basic if ri = 1 (∀i).

Definition 3. T ∈ mod Λ is a tilting module if T satisfies following properties.

(1) Ext1Λ(T, T ) = 0.
(2) |T | = #Q0.

We denote by tilt Λ the set of (isomorphism classes of) basic tilting modules.

Proposition 4. [4, 5] The following relation induces a partial order on tilt Λ.

T ≥ T
′ ⇔ Ext1Λ(T, T

′
) = 0.

For a module M ∈ mod Λ, we put supp(M) := {a ∈ Q0 | dim Mea > 0} and denote by
Q(M) the full subquiver of Q with Q(M)0 = supp(M).

Remark 5. We can regard M as kQ(M)-module.

Definition 6. T ∈ mod Λ is a support tilting module if T satisfies following properties.

(1) Ext1Λ(T, T ) = 0.
(2) |T | = #supp(T).

We denote by stiltΛ the set of (isomorphism classes of) support tilting module.

We note that T is support tilting if and only if Λ(T ) is tilting as kQ(T )-module.

Proposition 7. [1, 6] The following relation induces a partial order on stilt Λ.

T ≥ T ′ ⇔ Ext1Λ(T, T
′) = 0 & supp(T′) ⊂ supp(T).
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Example 8. Let Q = 1 → 2. Then stiltΛ is given by the following.

P (1)⊕ P (2)

P (1)⊕ I(1)

I(1) 0

P (2)

4. Outline of a proof

By definition of support tilting modules, we have

T ∈ stiltΛ is a tilting module ⇔ T ≥ IΛ = ⊕a∈Q0I(a).

For a non negative integer i, we define a subset Vi of Q0 as follows.

• V0 = ∅.
• Vi = Vi−1 ∪ {a ∈ Q0 | a is a source of Q \ Vi−1}.

We set Ii := ⊕a∈Vi
I(a) (I0 = 0). Then we note that Ii ∈ stiltΛ.

Lemma 9. Let i ≥ 0. Then Ii+1 is a minimum element of
∩

X∈idp(Ii)

{T ∈ stiltΛ | T ≥ X},

where idp(Ii) Ii is the set of injective direct predecessors of Ii.

Lemma 1 shows that it is sufficient to determine idp(Ii) by poset structure of stiltΛ.

4.1. Deleting non injective direct predecessors of Ii. Non injective direct predeces-
sor T satisfies one of the following.

(1) #supp(T) = #supp(Ii) + 1.
(2) #supp(T) = #supp(Ii).

We denote by Ni(p) (p = 1, 2) the set of non injective direct predecessors of Ii which
satisfies (p).

Lemma 10. Let a, b ∈ Q0. Then There is an edge a → b in Q if and only if there are
X ∈ dp(S(a)), Y ∈ dp(S(b)) such that X < Y .

Since S(a) is injective if and only if a ∈ Q0 is a source, we can determine idp(I0) by
poset structure of stilt Λ.

Lemma 11. Let T ∈ Ni(1). Then there are T ′ ∈ dp(Ii), X ∈ dp(T), Y ∈ dp(T′) such
that X > Y .

Lemma 12. Let T ∈ idp(Ii). Then for any T ′ ∈ dp(Ii), X ∈ dp(T), Y ∈ dp(T′), we have
X ̸> Y .
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Lemma 3 and Lemma 4 implies that we can delete Ni(1). For T ∈ dp(Ii) and r ∈ Z≥1,
we set

F(i, T, r) := {((Xk)k∈{0,··· ,r}, (Tk)k∈{0··· ,r−1}, (Yk)k∈{1,··· ,r−1}) | (⋆)}

where the condition (⋆) is as follows: (⋆) :=




• X0 = Ii, T0 = T
• X1 ∈ ds(Ii), Xk+1 ∈ ds(Xk)
• Tk ∈ dp(Xk) \ {Xk−1}
• Yk ∈ dp(Tk)
• Y1 ≥ T, Yk+1 ≥ Tk

Lemma 13. Let T ∈ Ni(2). Then there are r ∈ Z≥1 and ((Xk), (Tk), (Yk)) ∈ F(i, T, r)
such that for any Tr ∈ dp(Xr) \ {Xr−1} and Yr ∈ dp(Tr), we have Yr ̸≥ Tr−1.

Lemma 14. Let T ∈ idp(Ii). Then for any r ∈ Z≥1 and ((Xk), (Tk), (Yk)) ∈ F(i, T, r),
there are Tr ∈ dp(Xr) \ {Xr−1} and Yr ∈ dp(Tr) such that Yr ≥ Tr−1.

Thus we can also delete Ni(2).

Corollary 15. Let Λ and Γ be two path algebras, ρ be a poset isomorphism

ρ : stiltΛ ≃ stiltΓ.

Then the restriction of ρ to tiltΛ induces a poset isomorphism

ρ|tiltΛ : tiltΛ ≃ tiltΓ.

5. Example

We consider the following quiver Q.

1

2

3

Then stilt Λ is given by the following.
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X3

X2

X1

Y1

Y2

Z1

Z2

W1

W2

step 1 By applying Lemma 3 and Lemma 4 to {0, X1, X2, Y1, Z1}, we can see that X1

is not injective. Similarly we have X3 is not injective. Therefore X2 is injective.
step 2 By applying Lemma 5 and Lemma 6 to {X2, Y1, Y2, Z2, W2}, we have Y2 is not

injective. Hence Y1 is injective.
step 3 We consider F(1, Z1, Y1) ∋ ((Y1, X2), (Z1), ∅). Then Y2 is a unique direct predeces-

sor of X2 and {W1,W2} is the set of direct predecessors of Y2. Since Wp ̸≥ Z1 (p =
1, 2), Lemma 5 implies that Z1 is not injective. Therefore we have IΛ = Z2.

In particular, tiltΛ is given by the following.
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