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Abstract. Let I be a non-trivial finite multiplicative group with the unit element e

and A = ⊕x∈IAx an I-graded ring. We construct a Frobenius extension Λ of A and
study when the ring extension A of Ae can be a Frobenius extension. Also, formulating
the ring structure of Λ, we introduce the notion of I-bigraded rings and show that every
I-bigraded ring is isomorphic to the I-bigraded ring Λ constructed above.

Introduction

Let I be a non-trivial finite multiplicative group with the unit element e and A =
⊕x∈IAx an I-graded ring. In this note, assuming Ae is a local ring, we study when a
ring extension A of Ae can be a Frobenius extension, the notion of which we recall below.
Auslander-Gorenstein rings (see Definition 2) appear in various fields of current research
in mathematics. For instance, regular 3-dimensional algebras of type A in the sense of
Artin and Schelter, Weyl algebras over fields of characteristic zero, enveloping algebras
of finite dimensional Lie algebras and Sklyanin algebras are Auslander-Gorenstein rings
(see [2], [5], [6] and [14], respectively). However, little is known about constructions
of Auslander-Gorenstein rings. We have shown in [9, Section 3] that a left and right
noetherian ring is an Auslander-Gorenstein ring if it admits an Auslander-Gorenstein
resolution over another Auslander-Gorenstein ring. A Frobenius extension A of a left and
right noetherian ring R is a typical example such that A admits an Auslander-Gorenstein
resolution over R.

Now we recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku
[11, 12] which we modify as follows (cf. [1, Section 1]). We use the notation A/R to denote
that a ring A contains a ring R as a subring. We say that A/R is a Frobenius extension if
the following conditions are satisfied: (F1) A is finitely generated as a left R-module; (F2)
A is finitely generated projective as a right R-module; (F3) there exists an isomorphism
φ : A

∼

→ HomR(A,R) in Mod-A. Note that φ induces a unique ring homomorphism
θ : R → A such that xφ(1) = φ(1)θ(x) for all x ∈ R. A Frobenius extension A/R is
said to be of first kind if A ∼= HomR(A,R) as R-A-bimodules, and to be of second kind

if there exists an isomorphism φ : A
∼

→ HomR(A,R) in Mod-A such that the associated
ring homomorphism θ : R→ A induces a ring automorphism of R. Note that a Frobenius
extension of first kind is a special case of a Frobenius extension of second kind. Let A/R
be a Frobenius extension. Then A is an Auslander-Gorenstein ring if so is R, and the
converse holds true if A is projective as a left R-module, and if A/R is split, i.e., the
inclusion R → A is a split monomorphism of R-R-bimodules. It should be noted that A
is projective as a left R-module if A/R is of second kind.

The detailed version of this paper will be submitted for publication elsewhere.
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To state our main theorem we have to construct a Frobenius extension Λ/A of first kind.
Namely, we will define an appropriate multiplication on a free right A-module Λ with a
basis {vx}x∈I so that Λ/A is a Frobenius extension of first kind. Denote by {γx}x∈I the
dual basis of {vx}x∈I for the free left A-module HomA(Λ, A) and set γ = Σx∈Iγx. Assume
Ae is local, AxAx−1 ⊆ rad(Ae) for all x 6= e and A is reflexive as a right Ae-module. Our
main theorem states that the following are equivalent: (1) A ∼= HomAe

(A,Ae) as right
A-modules; (2) There exist a unique s ∈ I and some α ∈ HomAe

(A,Ae) such that φsx,x :

vsxΛ
∼

→ HomAe
(Λvx, Ae), λ 7→ (µ 7→ α(γ(λµ))) for all x ∈ I; (3) There exist a unique s ∈ I

and some αs ∈ HomAe
(As, Ae) such that ψx : Asx

∼

→ HomAe
(Ax−1 , Ae), a 7→ (b 7→ αs(ab))

for all x ∈ I (Theorem 18). Assume A/Ae is a Frobenius extension. We show that it is of
second kind (Corollary 20), and that A is an Auslander-Gorenstein ring if and only if so
is Λ (Theorem 21).

As we saw above, the ring Λ plays an essential role in our argument. Formulating
the ring structure of Λ, we introduce the notion of group-bigraded rings as follows. A
ring Λ together with a group homomorphism η : Iop → Aut(Λ), x 7→ ηx is said to be an
I-bigraded ring, denoted by (Λ, η), if 1 =

∑

x∈I
vx with the vx orthogonal idempotents

and ηy(vx) = vxy for all x, y ∈ I. A homomorphism ϕ : (Λ, η) → (Λ′, η′) is defined as a
ring homomorphism ϕ : Λ → Λ′ such that ϕ(vx) = v′x and ϕηx = η′xϕ for all x ∈ I. We
conclude that every I-bigraded ring is isomorphic to the I-bigraded ring Λ constructed
above (Proposition 24).

This note is organized as follows. In Section 1, we recall basic facts on Auslander-
Gorenstein rings and Frobenius extensions. In Section 2, we construct a Frobenius ex-
tension Λ/A of first kind and study the ring structure of Λ. In Section 3, we prove the
main theorem. In Section 4, we introduce the notion of group-bigraded rings and study
the structure of such rings.

1. Preliminaries

For a ring R we denote by rad(R) the Jacobson radical of R, by R× the set of units in
R, by Z(R) the center of R and by Aut(R) the group of ring automorphisms of R. Usually,
the identity element of a ring is simply denoted by 1. Sometimes, we use the notation 1R
to stress that it is the identity element of the ring R. We denote by Mod-R the category
of right R-modules. Left R-modules are considered as right Rop-modules, where Rop

denotes the opposite ring of R. In particular, we denote by inj dim R (resp., inj dim Rop)
the injective dimension of R as a right (resp., left) R-module and by HomR(−,−) (resp.,
HomRop(−,−)) the set of homomorphisms in Mod-R (resp., Mod-Rop). Sometimes, we
use the notation XR (resp., RX) to stress that the module X considered is a right (resp.,
left) R-module.

We start by recalling the notion of Auslander-Gorenstein rings.

Proposition 1 (Auslander). Let R be a right and left noetherian ring. Then for any

n ≥ 0 the following are equivalent.

(1) In a minimal injective resolution I• of R in Mod-R, flat dim I i ≤ i for all 0 ≤
i ≤ n.

(2) In a minimal injective resolution J• of R in Mod-Rop, flat dim J i ≤ i for all

0 ≤ i ≤ n.
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(3) For any 1 ≤ i ≤ n + 1, any M ∈ mod-R and any submodule X of ExtiR(M,R) ∈
mod-Rop we have ExtjRop(X,R) = 0 for all 0 ≤ j < i.

(4) For any 1 ≤ i ≤ n+1, any X ∈ mod-Rop and any submoduleM of ExtiRop(X,R) ∈
mod-R we have ExtjR(M,R) = 0 for all 0 ≤ j < i.

Proof. See e.g. [7, Theorem 3.7]. �

Definition 2 ([6]). A right and left noetherian ring R is said to satisfy the Auslander
condition if it satisfies the equivalent conditions in Proposition 1 for all n ≥ 0, and to
be an Auslander-Gorenstein ring if it satisfies the Auslander condition and inj dim R =
inj dim Rop <∞.

It should be noted that for a right and left noetherian ring R we have inj dim R =
inj dim Rop whenever inj dim R <∞ and inj dim Rop <∞ (see [15, Lemma A]).

Next, we recall the notion of Frobenius extensions of rings due to Nakayama and
Tsuzuku [11, 12], which we modify as follows (cf. [1, Section 1]).

Definition 3. A ring A is said to be an extension of a ring R if A contains R as a subring,
and the notation A/R is used to denote that A is an extension ring of R. A ring extension
A/R is said to be Frobenius if the following conditions are satisfied:

(F1) A is finitely generated as a left R-module;
(F2) A is finitely generated projective as a right R-module;
(F3) A ∼= HomR(A,R) as right A-modules.

In case R is a right and left noetherian ring, for any Frobenius extension A/R the
isomorphism A

∼

→ HomR(A,R) in Mod-A yields an Auslander-Gorenstein resolution of A
over R in the sense of [9, Definition 3.5].

The next proposition is well-known and easily verified.

Proposition 4. Let A/R be a ring extension and φ : A
∼

→ HomR(A,R) an isomorphism

in Mod-A. Then the following hold.

(1) There exists a unique ring homomorphism θ : R → A such that xφ(1) = φ(1)θ(x)
for all x ∈ R.

(2) If φ′ : A
∼

→ HomR(A,R) is another isomorphism in Mod-A, then there exists

u ∈ A× such that φ′(1) = φ(1)u and θ′(x) = u−1θ(x)u for all x ∈ R.
(3) φ is an isomorphism of R-A-bimodules if and only if θ(x) = x for all x ∈ R.

Definition 5 (cf. [11, 12]). A Frobenius extension A/R is said to be of first kind if A ∼=
HomR(A,R) as R-A-bimodules, and to be of second kind if there exists an isomorphism

φ : A
∼

→ HomR(A,R) in Mod-A such that the associated ring homomorphism θ : R → A

induces a ring automorphism θ : R
∼

→ R.

Proposition 6. If A/R is a Frobenius extension of second kind, then A is projective as

a left R-module.

Proof. Let φ : A
∼

→ HomR(A,R) be an isomorphism in Mod-A such that the associated
ring homomorphism θ : R → A induces a ring automorphism θ : R

∼

→ R. Then θ induces
an equivalence Uθ : Mod-Rop ∼

→ Mod-Rop such that for any M ∈ Mod-Rop we have
UθM = M as an additive group and the left R-module structure of UθM is given by the
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law of composition R×M →M, (x,m) 7→ θ(x)m. Since φ yields an isomorphism of R-A-

bimodules UθA
∼

→ HomR(A,R), and since HomR(A,R) is projective as a left R-module,
it follows that UθA and hence A are projective as left R-modules. �

Proposition 7. For any Frobenius extensions Λ/A, A/R the following hold.

(1) Λ/R is a Frobenius extension.

(2) Assume Λ/A is of first kind. If A/R is of second (resp., first) kind, then so is

Λ/R.

Proof. (1) Obviously, (F1) and (F2) are satisfied. Also, we have

Λ ∼= HomA(Λ, A)
∼= HomA(Λ,HomR(A,R))
∼= HomR(Λ⊗A A,R)
∼= HomR(Λ, R)

in Mod-Λ.
(2) Let ψ : Λ

∼

→ HomA(Λ, A) be an isomorphism of A-Λ-bimodules and φ : A
∼

→
HomR(A,R) an isomorphism in Mod-A such that the associated ring homomorphism

θ : R → A induces a ring automorphism θ : R
∼

→ R. Setting γ = ψ(1) and α = φ(1), as
in (1), we have an isomorphism in Mod-Λ

ξ : Λ
∼

→ HomR(Λ, R), λ 7→ (µ 7→ α(γ(λµ))).

For any x ∈ R, we have

xξ(1)(µ) = xα(γ(µ))

= α(θ(x)γ(µ))

= α(γ(θ(x)µ))

= ξ(1)(θ(x)µ)

for all µ ∈ Λ and xξ(1) = ξ(1)θ(x). �

Definition 8 ([1]). A ring extension A/R is said to be split if the inclusion R → A is a
split monomorphism of R-R-bimodules.

Proposition 9 (cf. [1]). For any Frobenius extension A/R the following hold.

(1) If R is an Auslander-Gorenstein ring, then so is A with inj dim A ≤ inj dim R.
(2) Assume A is projective as a left R-module and A/R is split. If A is an Auslander-

Gorenstein ring, then so is R with inj dim R = inj dim A.

Proof. (1) See [9, Theorem 3.6].
(2) It follows by [1, Proposition 1.7] that R is a right and left noetherian ring with

inj dim R = inj dim Rop = inj dim A. Let A → E• be a minimal injective resolution in
Mod-A. For any i ≥ 0, HomR(−, E

i) ∼= HomA(− ⊗R A,E
i) as functors on Mod-R and

Ei
R is injective, and Ei⊗R − ∼= Ei⊗AA⊗R − as functors on Mod-Rop and flat dim Ei

R ≤
flat dim Ei

A ≤ i. Now, since RR appears in AR as a direct summand, it follows that R
satisfies the Auslander condition. �
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2. Graded rings

Throughout the rest of this note, I stands for a non-trivial finite multiplicative group
with the unit element e.

Throughout this and the next sections, we fix a ring A together with a family {δx}x∈I
in EndZ(A) satisfying the following conditions:

(D1) δxδy = 0 unless x = y and
∑

x∈I δx = idA;
(D2) δx(a)δy(b) = δxy(δx(a)b) for all a, b ∈ A and x, y ∈ I.

Namely, setting Ax = Im δx for x ∈ I, A = ⊕x∈IAx is an I-graded ring. In particular,
A/Ae is a split ring extension.

To prove our main theorem (Theorem 18), we need an extension ring Λ of A such that
Λ/A is a Frobenius extension of first kind. Let Λ be a free right A-module with a basis
{vx}x∈I and define a multiplication on Λ subject to the following axioms:

(M1) vxvy = 0 unless x = y and vxvx = vx for all x ∈ I;
(M2) avx =

∑

y∈I vyδyx−1(a) for all a ∈ A and x ∈ I.

We denote by {γx}x∈I the dual basis of {vx}x∈I for the free left A-module HomA(Λ, A),
i.e., λ =

∑

x∈I vxγx(λ) for all λ ∈ Λ. It is not difficult to see that

λµ =
∑

x,y∈I

vxδxy−1(γx(λ))γy(µ)

for all λ, µ ∈ Λ. Also, setting γ =
∑

x∈I γx, we define a mapping

φ : Λ → HomA(Λ, A), λ 7→ γλ.

Proposition 10. The following hold.

(1) Λ is an associative ring with 1 =
∑

x∈I vx and contains A as a subring via the

injective ring homomorphism A→ Λ, a 7→
∑

x∈I vxa.
(2) φ is an isomorphism of A-Λ-bimodules, i.e., Λ/A is a Frobenius extension of first

kind.

Proof. (1) Let λ ∈ Λ. Obviously,
∑

x∈I
vx · λ = λ. Also, by (D1) we have

λ ·
∑

y∈I

vy =
∑

x,y∈I

vxδxy−1(γx(λ))

=
∑

x∈I

vxγx(λ)

= λ.

Next, for any λ, µ, ν ∈ Λ by (D2) we have

(λµ)ν =
∑

x,y,z∈I

vxδxz−1(δxy−1(γx(λ))γy(µ))γz(ν)

=
∑

x,y,z∈I

vxδxy−1(γx(λ))δyz−1(γy(µ))γz(ν)

= λ(µν).

The remaining assertions are obvious.

－55－



(2) Let λ ∈ Ker φ. For any y ∈ I we have 0 = γ(λvy) =
∑

x∈I δxy−1(γx(λ)) and
δxy−1(γx(λ)) = 0 for all x ∈ I. Thus for any x ∈ I we have δxy−1(γx(λ)) = 0 for all y ∈ I
and by (D1) γx(λ) = 0, so that λ = 0. Next, for any f =

∑

x∈I axγx ∈ HomA(Λ, A),
setting λ =

∑

x,z∈I vxδxz−1(az), by (D1) we have

(γλ)(vy) = γ(λvy)

=
∑

x∈I

δxy−1(γx(λ))

=
∑

x,z∈I

δxy−1(δxz−1(az))

= ay

= f(vy)

for all y ∈ I and f = γλ. Finally, for any a ∈ A by (D1) we have

(γa)(λ) = γ(aλ)

=
∑

x,y∈I

δyx−1(a)γx(λ)

= aγ(λ)

for all λ ∈ Λ and γa = aγ. �

Remark 11. Denote by |I| the order of I. If |I| · 1A ∈ A×, then Λ/A is a split ring
extension.

Lemma 12. The following hold.

(1) vxλvy = vxδxy−1(γx(λ)) for all λ ∈ Λ and x, y ∈ I.
(2) vxΛvy = vxAxy−1 for all x, y ∈ I.
(3) vxa · vyb = vxab for all x, y, z ∈ I and a ∈ Axy−1 , b ∈ Ayz−1.

Proof. Immediate by the definition. �

Setting Λx,y = vxΛvy for x, y ∈ I, we have Λ = ⊕x,y∈IΛx,y with Λx,yΛz,w = 0 unless
y = z and Λx,yΛy,z ⊆ Λx,z for all x, y, z ∈ I. Also, setting λx,y = δxy−1(γx(λ)) ∈ Axy−1 for
λ ∈ Λ and x, y ∈ I, we have a group homomorphism

η : Iop → Aut(Λ), x 7→ ηx

such that ηx(λ)y,z = λyx−1,zx−1 for all λ ∈ Λ and x, y, z ∈ I. We denote by ΛI the subring
of Λ consisting of all λ such that ηx(λ) = λ for all x ∈ I.

Proposition 13. The following hold.

(1) ηy(vx) = vxy for all x, y ∈ I.
(2) ΛI = A.
(3) (λµ)x,z =

∑

y∈I λx,yµy,z for all λ, µ ∈ Λ and x, z ∈ I.

Proof. (1) Since ηy(vx)z,w = δzw−1(γzy−1(vx)) for all z, w ∈ I, we have

ηy(vx)z,w =

{

1 if z = w and x = zy−1,

0 otherwise.

－56－



(2) For any a ∈ A, since ηx(a)y,z = ayx−1,zx−1 = δ(yx−1)(zx−1)−1(a) = δyz−1(a) = ay,z for
all x, y, z ∈ I, we have a ∈ ΛI . Conversely, for any λ ∈ ΛI we have δy−1(γx(λ)) = λx,yx =
ηx−1(λ)e,y = λe,y = δy−1(γe(λ)) for all x, y ∈ I, so that γx(λ) = γe(λ) for all x ∈ I.

(3) For any λ, µ ∈ Λ and x, z ∈ I by (D2) we have

(λµ)x,z =
∑

y∈I

δxz−1(δxy−1(γx(λ))γy(µ))

=
∑

y∈I

δxy−1(γx(λ))δyz−1(γy(µ))

=
∑

y∈I

λx,yµy,z.

�

Remark 14. We have ηy(vxax)vyby = vxyaxby for all ax ∈ Ax and by ∈ Ay.

Proposition 15. The following hold.

(1) EndΛ(vxΛ) ∼= Ae as rings for all x ∈ I.
(2) vxΛ ≇ vyΛ in Mod-Λ for all x, y ∈ I with Axy−1Ayx−1 ⊆ rad(Ae).

Proof. (1) We have EndΛ(vxΛ) ∼= vxΛvx ∼= Ae as rings.
(2) For any f : vxΛ → vyΛ and g : vyΛ → vxΛ in Mod-Λ, since f(vx) = vya with

a ∈ Ayx−1 and g(vy) = vxb with b ∈ Axy−1, we have g(f(vx)) = vxba with ba ∈ rad(Ae). �

The proposition above asserts that if Ae is local and AxAx−1 ⊆ rad(Ae) for all x 6= e
then Λ is semiperfect and basic. We refer to [3] for semiperfect rings.

3. Auslander-Gorenstein rings

In this section, we will ask when A/Ae is a Frobenius extension.

Lemma 16. For any x ∈ I the following hold.

(1) avx = vxa for all a ∈ Ae and Λvx is a Λ-Ae-bimodule.

(2) Λvx =
∑

y∈I vyAyx−1.

(3) A
∼

→ Λvx, a 7→
∑

y∈I vyδyx−1(a) as A-Ae-bimodules.

(4) If Λvx is reflexive as a right Ae-module, then EndΛ(HomAe
(Λvx, Ae)) ∼= Ae as

rings.

Proof. (1) and (2) Immediate by the definition.
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(3) By (2) we have a bijection fx : A
∼

→ Λvx, a 7→
∑

y∈I vyδyx−1(a). Since every δyx−1 is
a homomorphism in Mod-Ae, so is fx. Finally, for any a, b ∈ A we have

a · (
∑

y∈I

vyδyx−1(b)) =
∑

y,z∈I

vzδzy−1(a)δyx−1(b)

=
∑

z∈I

vz(
∑

y∈I

δzy−1(a)δyx−1(b))

=
∑

z∈I

vzδzx−1(
∑

y∈I

δzy−1(a)b)

=
∑

z∈I

vzδzx−1(ab)

and fx is a homomorphism in Mod-Aop.
(4) Since the canonical homomorphism

Λvx → HomA
op

e
(HomAe

(Λvx, Ae), Ae), λ 7→ (f 7→ f(λ))

is an isomorphism, EndΛ(HomAe
(Λvx, Ae)) ∼= EndΛop(Λvx)

op ∼= vxΛvx ∼= Ae as rings. �

It follows by Lemma 16(1) that δeγe : Λ → Ae is a homomorphism of Ae-Ae-bimodules
and Λ/Ae is a split ring extension.

Lemma 17. For any x, y ∈ I and a, b ∈ A we have

vxa · (
∑

z∈I

vzδzy−1(b)) = vx(
∑

z∈I

δxz−1(a)δzy−1(b))

Proof. Immediate by the definition. �

Theorem 18. Assume Ae is local, AxAx−1 ⊆ rad(Ae) for all x 6= e and A is reflexive as

a right Ae-module. Then the following are equivalent.

(1) A ∼= HomAe
(A,Ae) as right A-modules.

(2) There exist a unique s ∈ I and some α ∈ HomAe
(A,Ae) such that

φsx,x : vsxΛ
∼

→ HomAe
(Λvx, Ae), λ 7→ (µ 7→ α(γ(λµ)))

for all x ∈ I.
(3) There exist a unique s ∈ I and some αs ∈ HomAe

(As, Ae) such that

ψx : Asx
∼

→ HomAe
(Ax−1 , Ae), a 7→ (b 7→ αs(ab))

for all x ∈ I.

Proof. (1) ⇒ (2). Let A
∼

→ HomAe
(A,Ae), 1 7→ α in Mod-A. Then, since by Proposition

10(2) Λ
∼

→ HomA(Λ, A), λ 7→ γλ in Mod-Λ, by adjointness we have an isomorphism in
Mod-Λ

Λ
∼

→ HomAe
(Λ, Ae), λ 7→ (µ 7→ α(γ(λµ))).

By Proposition 15(1) Λ = ⊕x∈IvxΛ with the EndΛ(vxΛ) local. Also, by (1) and (4) of
Lemma 16

HomAe
(Λ, Ae) ∼= ⊕x∈IHomAe

(Λvx, Ae)
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with the EndΛ(HomAe
(Λvx, Ae)) local. Now, according to Proposition 15(2), it follows by

the Krull-Schmidt theorem that there exists a unique s ∈ I such that

φs,e : vsΛ
∼

→ HomAe
(Λve, Ae), λ 7→ (µ 7→ α(γ(λµ))).

Thus, setting αs = α|As
, by Lemmas 16(2) and 17 we have

ψ : A
∼

→ HomAe
(A,Ae), a 7→ (b 7→ αs(δs(ab))).

It then follows again by Lemmas 16(2) and 17 that

φsx,x : vsxΛ
∼

→ HomAe
(Λvx, Ae), λ 7→ (µ 7→ α(γ(λµ)))

for all x ∈ I.
(2) ⇒ (3). Since A = ⊕x∈IAsx = ⊕x∈IAx−1, and since AsxAx−1 ⊆ As for all x ∈ I, ψ

induces ψx : Asx
∼

→ HomAe
(Ax−1 , Ae), a 7→ (b 7→ αs(ab)) for all x ∈ I.

(3) ⇒ (1). Setting ψx : Asx
∼

→ HomAe
(Ax−1 , Ae), a 7→ (b 7→ αs(ab)) for each x ∈ I, the

ψx yields ψ : A
∼

→ HomAe
(A,Ae), a 7→ (b 7→ αs(δs(ab))). �

Remark 19. In the theorem above, αs is an isomorphism and Ae
∼

→ EndAe
(As) canonically.

Proof. For any b ∈ Ae, setting f : Ae → Ae, 1 7→ b, we have f = ψe(a) and hence
b = αs(a) for some a ∈ As. Also, Ker αs = Ker ψs = 0. Then, since the composite
Ae → EndAe

(As) → HomAe
(As, Ae) is an isomorphism, the last assertion follows. �

Corollary 20. Assume Ae is local and AxAx−1 ⊆ rad(Ae) for all x 6= e. If A/Ae is a

Frobenius extension, then it is of second kind.

Proof. Set t = α−1
s (1) ∈ As. Then for any u ∈ As there exists f ∈ EndAe

(As) such that
u = f(t) and hence u = at for some a ∈ Ae. Thus Aet = As and there exists θ ∈ Aut(Ae)
such that θ(a)t = ta for all a ∈ Ae. Then (αsθ(a))(t) = αs(θ(a)t) = αs(ta) = αs(t)a =

a = (aαs)(t) and αsθ(a) = aαs for all a ∈ Ae. Now, setting ψ : A
∼

→ HomAe
(A,Ae), a 7→

(b 7→ αs(δs(ab))), we have (aψ(1))(b) = aαs(δs(b)) = (aαs)(δs(b)) = (αsθ(a))(δs(b)) =
αs(θ(a)δs(b)) = αs(δs(θ(a)b)) = (ψ(1)θ(a))(b) for all a, b ∈ A, so that aψ(1) = ψ(1)θ(a)
for all a ∈ A. �

Theorem 21. Assume Ae is local, AxAx−1 ⊆ rad(Ae) for all x 6= e, and A/Ae is a

Frobenius extension. Then A is an Auslander-Gorenstein ring if and only if so is Λ.

Proof. The ”only if” part follows by Propositions 9(1) and 10(2). Assume Λ is an
Auslander-Gorenstein ring. By Proposition 10(2) Λ/A is a Frobenius extension of first
kind, and by Corollary 20 A/Ae is a Frobenius extension of second kind. Thus by Proposi-
tion 7 Λ/Ae is a Frobenius extension of second kind. Also, by Lemma 16(1) Λ/Ae is split.
Hence by Propositions 6 and 9(2) Ae is an Auslander-Gorenstein ring and by Proposition
9(1) so is A. �

4. Bigraded rings

Formulating the ring structure of Λ constructed in Section 2, we make the following.
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Definition 22. A ring Λ together with a group homomorphism

η : Iop → Aut(Λ), x 7→ ηx

is said to be an I-bigraded ring, denoted by (Λ, η), if 1 =
∑

x∈I vx with the vx orthogonal
idempotents and ηy(vx) = vxy for all x, y ∈ I. A homomorphism ϕ : (Λ, η) → (Λ′, η′) is
defined as a ring homomorphism ϕ : Λ → Λ′ such that ϕ(vx) = v′x and ϕηx = η′xϕ for all
x ∈ I.

Throughout this section, we fix an I-bigraded ring (Λ, η). Set Ax = vxΛve for x ∈ I and
A = ⊕x∈IAx. Note that ηy(Ax) = vxyΛvy for all x, y ∈ I. For any ax ∈ Ax and by ∈ Ay

we define the multiplication ax · by in A as the multiplication ηy(ax)by in Λ (cf. Remark
14).

Proposition 23. The following hold.

(1) A is an associative ring with 1 = ve.
(2) A is an I-graded ring.

Proof. (1) For any ax ∈ Ax, by ∈ Ay and cz ∈ Az we have

(ax · by) · cz = ηy(ax)by · cz

= ηz(ηy(ax)by)cz

= ηyz(ax)ηz(by)cz

= ax · (by · cz).

Also, for any ax ∈ Ax we have ve · ax = ηx(ve)ax = vxax = ax and ax · ve = ηe(ax)ve =
axve = ax.

(2) Obviously, AxAy ⊆ Axy for all x, y ∈ I. �

In the following, for each x ∈ I we denote by δx : A → Ax the projection. Then,
setting λx,y = vxλvy for λ ∈ Λ and x, y ∈ I, we have a mapping ϕ : A → Λ such that
ϕ(a)x,y = ηy(δxy−1(a)) for all a ∈ A and x, y ∈ I.

Proposition 24. The following hold.

(1) ϕ : A→ Λ is an injective ring homomorphism with Im ϕ = ΛI .

(2) vxΛvy = vxϕ(Axy−1) for all x, y ∈ I.
(3) {vx}x∈I is a basis for the right A-module Λ.
(4) ϕ(a)vx =

∑

y∈I vyϕ(δyx−1(a)) for all a ∈ A and x ∈ I.

(5) vxϕ(a)vyϕ(b) = vxϕ(ab) for all x, y, z ∈ I and a ∈ Axy−1, b ∈ Ayz−1.

Proof. (1) Obviously, ϕ is a monomorphism of additive groups. Also, we have

ϕ(ve)x,y =

{

vx if x = y,

0 otherwise

and ϕ(1A) = 1Λ. Let ax ∈ Ax, by ∈ Ay and z, w ∈ I. Since ϕ(ax ·by)z,w = ϕ(ηy(ax)by)z,w =
ηw(δzw−1(ηy(ax)by)), ϕ(ax·by)z,w = 0 unless xy = zw−1. If xy = zw−1, then ηw(δzw−1(ηy(ax)by)) =
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ηyw(ax)ηw(by). On the other hand,

(ϕ(ax)ϕ(by))z,w =
∑

u∈I

ϕ(ax)z,uϕ(by)u,w

=
∑

u∈I

ηu(δzu−1(ax))ηw(δuw−1(by)).

Thus (ϕ(ax)ϕ(by))z,w = 0 unless zu−1 = x and uw−1 = y, i.e., zw−1 = xy. If zw−1 = xy,
then

∑

u∈I ηu(δzu−1(ax))ηw(δuw−1(by)) = ηyw(ax)ηw(by). As a consequence, ϕ(ax · by)z,w =
(ϕ(ax)ϕ(by))z,w. The first assertion follows.

Next, for any a ∈ A and x, y, z ∈ I we have

ηx(ϕ(a))y,z = vyηx(ϕ(a))vz

= ηx(vyx−1ϕ(a)vzx−1)

= ηx(ϕ(a)yx−1,zx−1)

= ηx(ηzx−1(δyz−1(a)))

= ηz(δyz−1(a))

= ϕ(a)y,z,

so that Im ϕ ⊆ ΛI . Conversely, let λ ∈ ΛI . Then λx,y = ηy(λxy−1,e) = λxy−1,e for all
x, y ∈ I. Thus, setting a =

∑

x∈I λx,e, we have ϕ(a)x,y = ηy(δxy−1(a)) = ηy(λxy−1,e) =
λxy−1,e = λx,y for all x, y ∈ I and ϕ(a) = λ.

(2) Let x, y ∈ I and a ∈ Axy−1. For any z 6= y we have δxz−1(a) = 0 and hence
vxϕ(a)vz = ϕ(a)x,z = ηz(δxz−1(a)) = 0. Thus vxϕ(a) = ϕ(a)x,y = ηy(a). It follows that
vxΛvy = ηy(vxy−1Λve) = ηy(Axy−1) = vxϕ(Axy−1).

(3) This follows by (2).
(4) Note that ηx(δyx−1(a)) = vyηx(δyx−1(a)) for all y ∈ I. Thus ϕ(a)vx =

∑

y∈I vyϕ(a)vx =
∑

y∈I ηx(δyx−1(a)) =
∑

y∈I vyηx(δyx−1(a)). Also,

vyϕ(δyx−1(a)) =
∑

z∈I

vyϕ(δyx−1(a))vz

=
∑

z∈I

vyηz(δyz−1(δyx−1(a)))

= vyηx(δyx−1(a))

for all y ∈ I.
(5) This follows by (2) and (4). �

Let us call the I-bigraded ring constructed in Section 2 standard. Then the proposi-
tion above asserts that every I-bigraded ring is isomorphic to a standard one. Namely,
according to Lemma 12, ϕ : A → Λ can be extended to an isomorphism of I-bigraded
rings.
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