GROUP-GRADED AND GROUP-BIGRADED RINGS

MITSUO HOSHINO, NORITSUGU KAMEYAMA AND HIROTAKA KOGA

ABSTRACT. Let I be a non-trivial finite multiplicative group with the unit element e and $A = \bigoplus_{x \in I} A_x$ an I-graded ring. We construct a Frobenius extension Λ of A and study when the ring extension A of A_e can be a Frobenius extension. Also, formulating the ring structure of Λ , we introduce the notion of I-bigraded rings and show that every I-bigraded ring is isomorphic to the I-bigraded ring Λ constructed above.

Introduction

Let I be a non-trivial finite multiplicative group with the unit element e and $A = \bigoplus_{x \in I} A_x$ an I-graded ring. In this note, assuming A_e is a local ring, we study when a ring extension A of A_e can be a Frobenius extension, the notion of which we recall below. Auslander-Gorenstein rings (see Definition 2) appear in various fields of current research in mathematics. For instance, regular 3-dimensional algebras of type A in the sense of Artin and Schelter, Weyl algebras over fields of characteristic zero, enveloping algebras of finite dimensional Lie algebras and Sklyanin algebras are Auslander-Gorenstein rings (see [2], [5], [6] and [14], respectively). However, little is known about constructions of Auslander-Gorenstein rings. We have shown in [9, Section 3] that a left and right noetherian ring is an Auslander-Gorenstein ring if it admits an Auslander-Gorenstein resolution over another Auslander-Gorenstein ring. A Frobenius extension A of a left and right noetherian ring R is a typical example such that A admits an Auslander-Gorenstein resolution over R.

Now we recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku [11, 12] which we modify as follows (cf. [1, Section 1]). We use the notation A/R to denote that a ring A contains a ring R as a subring. We say that A/R is a Frobenius extension if the following conditions are satisfied: (F1) A is finitely generated as a left R-module; (F2) A is finitely generated projective as a right R-module; (F3) there exists an isomorphism $\phi: A \xrightarrow{\sim} \operatorname{Hom}_R(A,R)$ in Mod-A. Note that ϕ induces a unique ring homomorphism $\theta: R \to A$ such that $x\phi(1) = \phi(1)\theta(x)$ for all $x \in R$. A Frobenius extension A/R is said to be of first kind if $A \cong \operatorname{Hom}_R(A,R)$ as R-A-bimodules, and to be of second kind if there exists an isomorphism $\phi: A \xrightarrow{\sim} \operatorname{Hom}_R(A,R)$ in Mod-A such that the associated ring homomorphism $\theta: R \to A$ induces a ring automorphism of R. Note that a Frobenius extension of first kind is a special case of a Frobenius extension of second kind. Let A/R be a Frobenius extension. Then A is an Auslander-Gorenstein ring if so is R, and the converse holds true if A is projective as a left R-module, and if A/R is split, i.e., the inclusion $R \to A$ is a split monomorphism of R-R-bimodules. It should be noted that A is projective as a left R-module if A/R is of second kind.

The detailed version of this paper will be submitted for publication elsewhere.

To state our main theorem we have to construct a Frobenius extension Λ/A of first kind. Namely, we will define an appropriate multiplication on a free right A-module Λ with a basis $\{v_x\}_{x\in I}$ so that Λ/A is a Frobenius extension of first kind. Denote by $\{\gamma_x\}_{x\in I}$ the dual basis of $\{v_x\}_{x\in I}$ for the free left A-module $\operatorname{Hom}_A(\Lambda,A)$ and set $\gamma=\Sigma_{x\in I}\gamma_x$. Assume A_e is local, $A_xA_{x^{-1}}\subseteq\operatorname{rad}(A_e)$ for all $x\neq e$ and A is reflexive as a right A_e -module. Our main theorem states that the following are equivalent: (1) $A\cong\operatorname{Hom}_{A_e}(A,A_e)$ as right A-modules; (2) There exist a unique $s\in I$ and some $\alpha\in\operatorname{Hom}_{A_e}(A,A_e)$ such that $\phi_{sx,x}:v_{sx}\Lambda\stackrel{\sim}{\to}\operatorname{Hom}_{A_e}(\Lambda v_x,A_e), \lambda\mapsto (\mu\mapsto\alpha(\gamma(\lambda\mu)))$ for all $x\in I$; (3) There exist a unique $s\in I$ and some $\alpha_s\in\operatorname{Hom}_{A_e}(A_s,A_e)$ such that $\psi_x:A_{sx}\stackrel{\sim}{\to}\operatorname{Hom}_{A_e}(A_{x^{-1}},A_e), a\mapsto (b\mapsto\alpha_s(ab))$ for all $x\in I$ (Theorem 18). Assume A/A_e is a Frobenius extension. We show that it is of second kind (Corollary 20), and that A is an Auslander-Gorenstein ring if and only if so is Λ (Theorem 21).

As we saw above, the ring Λ plays an essential role in our argument. Formulating the ring structure of Λ , we introduce the notion of group-bigraded rings as follows. A ring Λ together with a group homomorphism $\eta: I^{\mathrm{op}} \to \mathrm{Aut}(\Lambda), x \mapsto \eta_x$ is said to be an I-bigraded ring, denoted by (Λ, η) , if $1 = \sum_{x \in I} v_x$ with the v_x orthogonal idempotents and $\eta_y(v_x) = v_{xy}$ for all $x, y \in I$. A homomorphism $\varphi: (\Lambda, \eta) \to (\Lambda', \eta')$ is defined as a ring homomorphism $\varphi: \Lambda \to \Lambda'$ such that $\varphi(v_x) = v_x'$ and $\varphi \eta_x = \eta_x' \varphi$ for all $x \in I$. We conclude that every I-bigraded ring is isomorphic to the I-bigraded ring Λ constructed above (Proposition 24).

This note is organized as follows. In Section 1, we recall basic facts on Auslander-Gorenstein rings and Frobenius extensions. In Section 2, we construct a Frobenius extension Λ/A of first kind and study the ring structure of Λ . In Section 3, we prove the main theorem. In Section 4, we introduce the notion of group-bigraded rings and study the structure of such rings.

1. Preliminaries

For a ring R we denote by $\operatorname{rad}(R)$ the Jacobson radical of R, by R^{\times} the set of units in R, by $\operatorname{Z}(R)$ the center of R and by $\operatorname{Aut}(R)$ the group of ring automorphisms of R. Usually, the identity element of a ring is simply denoted by 1. Sometimes, we use the notation 1_R to stress that it is the identity element of the ring R. We denote by $\operatorname{Mod-}R$ the category of right R-modules. Left R-modules are considered as right R^{op} -modules, where R^{op} denotes the opposite ring of R. In particular, we denote by inj dim R (resp., inj dim R^{op}) the injective dimension of R as a right (resp., left) R-module and by $\operatorname{Hom}_R(-,-)$ (resp., $\operatorname{Hom}_{R^{\operatorname{op}}}(-,-)$) the set of homomorphisms in $\operatorname{Mod-}R$ (resp., $\operatorname{Mod-}R^{\operatorname{op}}$). Sometimes, we use the notation X_R (resp., RX) to stress that the module X considered is a right (resp., left) R-module.

We start by recalling the notion of Auslander-Gorenstein rings.

Proposition 1 (Auslander). Let R be a right and left noetherian ring. Then for any $n \geq 0$ the following are equivalent.

- (1) In a minimal injective resolution I^{\bullet} of R in Mod-R, flat dim $I^{i} \leq i$ for all $0 \leq i \leq n$.
- (2) In a minimal injective resolution J^{\bullet} of R in Mod- R^{op} , flat dim $J^{i} \leq i$ for all $0 \leq i \leq n$.

- (3) For any $1 \le i \le n+1$, any $M \in \text{mod-}R$ and any submodule X of $\text{Ext}_R^i(M,R) \in \text{mod-}R^{\text{op}}$ we have $\text{Ext}_{R^{\text{op}}}^j(X,R) = 0$ for all $0 \le j < i$.
- (4) For any $1 \le i \le n+1$, any $X \in \text{mod-}R^{\text{op}}$ and any submodule M of $\text{Ext}_{R^{\text{op}}}^i(X,R) \in \text{mod-}R$ we have $\text{Ext}_R^j(M,R) = 0$ for all $0 \le j < i$.

Proof. See e.g. [7, Theorem 3.7].

Definition 2 ([6]). A right and left noetherian ring R is said to satisfy the Auslander condition if it satisfies the equivalent conditions in Proposition 1 for all $n \geq 0$, and to be an Auslander-Gorenstein ring if it satisfies the Auslander condition and inj dim $R = \inf dim R^{op} < \infty$.

It should be noted that for a right and left noetherian ring R we have inj dim R = inj dim R^{op} whenever inj dim $R < \infty$ and inj dim $R^{\text{op}} < \infty$ (see [15, Lemma A]).

Next, we recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku [11, 12], which we modify as follows (cf. [1, Section 1]).

Definition 3. A ring A is said to be an extension of a ring R if A contains R as a subring, and the notation A/R is used to denote that A is an extension ring of R. A ring extension A/R is said to be Frobenius if the following conditions are satisfied:

- (F1) A is finitely generated as a left R-module;
- (F2) A is finitely generated projective as a right R-module;
- (F3) $A \cong \operatorname{Hom}_R(A, R)$ as right A-modules.

In case R is a right and left noetherian ring, for any Frobenius extension A/R the isomorphism $A \stackrel{\sim}{\to} \operatorname{Hom}_R(A,R)$ in Mod-A yields an Auslander-Gorenstein resolution of A over R in the sense of [9, Definition 3.5].

The next proposition is well-known and easily verified.

Proposition 4. Let A/R be a ring extension and $\phi: A \xrightarrow{\sim} \operatorname{Hom}_R(A,R)$ an isomorphism in Mod-A. Then the following hold.

- (1) There exists a unique ring homomorphism $\theta: R \to A$ such that $x\phi(1) = \phi(1)\theta(x)$ for all $x \in R$.
- (2) If $\phi': A \xrightarrow{\sim} \operatorname{Hom}_R(A, R)$ is another isomorphism in Mod-A, then there exists $u \in A^{\times}$ such that $\phi'(1) = \phi(1)u$ and $\theta'(x) = u^{-1}\theta(x)u$ for all $x \in R$.
- (3) ϕ is an isomorphism of R-A-bimodules if and only if $\theta(x) = x$ for all $x \in R$.

Definition 5 (cf. [11, 12]). A Frobenius extension A/R is said to be of first kind if $A \cong \operatorname{Hom}_R(A,R)$ as R-A-bimodules, and to be of second kind if there exists an isomorphism $\phi: A \xrightarrow{\sim} \operatorname{Hom}_R(A,R)$ in Mod-A such that the associated ring homomorphism $\theta: R \to A$ induces a ring automorphism $\theta: R \xrightarrow{\sim} R$.

Proposition 6. If A/R is a Frobenius extension of second kind, then A is projective as a left R-module.

Proof. Let $\phi: A \xrightarrow{\sim} \operatorname{Hom}_R(A, R)$ be an isomorphism in Mod-A such that the associated ring homomorphism $\theta: R \to A$ induces a ring automorphism $\theta: R \xrightarrow{\sim} R$. Then θ induces an equivalence $U_{\theta}: \operatorname{Mod-}R^{\operatorname{op}} \xrightarrow{\sim} \operatorname{Mod-}R^{\operatorname{op}}$ such that for any $M \in \operatorname{Mod-}R^{\operatorname{op}}$ we have $U_{\theta}M = M$ as an additive group and the left R-module structure of $U_{\theta}M$ is given by the

law of composition $R \times M \to M$, $(x, m) \mapsto \theta(x)m$. Since ϕ yields an isomorphism of R-A-bimodules $U_{\theta}A \xrightarrow{\sim} \operatorname{Hom}_{R}(A, R)$, and since $\operatorname{Hom}_{R}(A, R)$ is projective as a left R-module, it follows that $U_{\theta}A$ and hence A are projective as left R-modules. \square

Proposition 7. For any Frobenius extensions Λ/A , A/R the following hold.

- (1) Λ/R is a Frobenius extension.
- (2) Assume Λ/A is of first kind. If A/R is of second (resp., first) kind, then so is Λ/R .

Proof. (1) Obviously, (F1) and (F2) are satisfied. Also, we have

$$\Lambda \cong \operatorname{Hom}_{A}(\Lambda, A)$$

$$\cong \operatorname{Hom}_{A}(\Lambda, \operatorname{Hom}_{R}(A, R))$$

$$\cong \operatorname{Hom}_{R}(\Lambda \otimes_{A} A, R)$$

$$\cong \operatorname{Hom}_{R}(\Lambda, R)$$

in Mod- Λ .

(2) Let $\psi: \Lambda \xrightarrow{\sim} \operatorname{Hom}_A(\Lambda, A)$ be an isomorphism of A- Λ -bimodules and $\phi: A \xrightarrow{\sim} \operatorname{Hom}_R(A, R)$ an isomorphism in Mod-A such that the associated ring homomorphism $\theta: R \to A$ induces a ring automorphism $\theta: R \xrightarrow{\sim} R$. Setting $\gamma = \psi(1)$ and $\alpha = \phi(1)$, as in (1), we have an isomorphism in Mod- Λ

$$\xi: \Lambda \xrightarrow{\sim} \operatorname{Hom}_R(\Lambda, R), \lambda \mapsto (\mu \mapsto \alpha(\gamma(\lambda \mu))).$$

For any $x \in R$, we have

$$x\xi(1)(\mu) = x\alpha(\gamma(\mu))$$

$$= \alpha(\theta(x)\gamma(\mu))$$

$$= \alpha(\gamma(\theta(x)\mu))$$

$$= \xi(1)(\theta(x)\mu)$$

for all $\mu \in \Lambda$ and $x\xi(1) = \xi(1)\theta(x)$.

Definition 8 ([1]). A ring extension A/R is said to be split if the inclusion $R \to A$ is a split monomorphism of R-R-bimodules.

Proposition 9 (cf. [1]). For any Frobenius extension A/R the following hold.

- (1) If R is an Auslander-Gorenstein ring, then so is A with inj dim $A \leq \text{inj dim } R$.
- (2) Assume A is projective as a left R-module and A/R is split. If A is an Auslander-Gorenstein ring, then so is R with inj dim R = inj dim A.

Proof. (1) See [9, Theorem 3.6].

(2) It follows by [1, Proposition 1.7] that R is a right and left noetherian ring with inj dim R = inj dim $R^{\text{op}} = \text{inj}$ dim A. Let $A \to E^{\bullet}$ be a minimal injective resolution in Mod-A. For any $i \geq 0$, $\text{Hom}_R(-, E^i) \cong \text{Hom}_A(-\otimes_R A, E^i)$ as functors on Mod-R and E^i_R is injective, and $E^i \otimes_R - \cong E^i \otimes_A A \otimes_R - \text{as functors on Mod-} R^{\text{op}}$ and flat dim $E^i_R \leq \text{flat dim } E^i_A \leq i$. Now, since R_R appears in A_R as a direct summand, it follows that R satisfies the Auslander condition.

2. Graded rings

Throughout the rest of this note, I stands for a non-trivial finite multiplicative group with the unit element e.

Throughout this and the next sections, we fix a ring A together with a family $\{\delta_x\}_{x\in I}$ in $\operatorname{End}_{\mathbb{Z}}(A)$ satisfying the following conditions:

- (D1) $\delta_x \delta_y = 0$ unless x = y and $\sum_{x \in I} \delta_x = \mathrm{id}_A$;
- (D2) $\delta_x(a)\delta_y(b) = \delta_{xy}(\delta_x(a)b)$ for all $a, b \in A$ and $x, y \in I$.

Namely, setting $A_x = \text{Im } \delta_x$ for $x \in I$, $A = \bigoplus_{x \in I} A_x$ is an *I*-graded ring. In particular, A/A_e is a split ring extension.

To prove our main theorem (Theorem 18), we need an extension ring Λ of A such that Λ/A is a Frobenius extension of first kind. Let Λ be a free right A-module with a basis $\{v_x\}_{x\in I}$ and define a multiplication on Λ subject to the following axioms:

- (M1) $v_x v_y = 0$ unless x = y and $v_x v_x = v_x$ for all $x \in I$;
- (M2) $av_x = \sum_{y \in I} v_y \delta_{yx^{-1}}(a)$ for all $a \in A$ and $x \in I$.

We denote by $\{\gamma_x\}_{x\in I}$ the dual basis of $\{v_x\}_{x\in I}$ for the free left A-module $\operatorname{Hom}_A(\Lambda, A)$, i.e., $\lambda = \sum_{x\in I} v_x \gamma_x(\lambda)$ for all $\lambda \in \Lambda$. It is not difficult to see that

$$\lambda \mu = \sum_{x,y \in I} v_x \delta_{xy^{-1}}(\gamma_x(\lambda)) \gamma_y(\mu)$$

for all $\lambda, \mu \in \Lambda$. Also, setting $\gamma = \sum_{x \in I} \gamma_x$, we define a mapping

$$\phi: \Lambda \to \operatorname{Hom}_A(\Lambda, A), \lambda \mapsto \gamma \lambda.$$

Proposition 10. The following hold.

- (1) Λ is an associative ring with $1 = \sum_{x \in I} v_x$ and contains A as a subring via the injective ring homomorphism $A \to \Lambda, a \mapsto \sum_{x \in I} v_x a$.
- (2) ϕ is an isomorphism of A- Λ -bimodules, i.e., Λ/A is a Frobenius extension of first kind.

Proof. (1) Let $\lambda \in \Lambda$. Obviously, $\sum_{x \in I} v_x \cdot \lambda = \lambda$. Also, by (D1) we have

$$\lambda \cdot \sum_{y \in I} v_y = \sum_{x,y \in I} v_x \delta_{xy^{-1}}(\gamma_x(\lambda))$$
$$= \sum_{x \in I} v_x \gamma_x(\lambda)$$
$$= \lambda.$$

Next, for any $\lambda, \mu, \nu \in \Lambda$ by (D2) we have

$$(\lambda \mu)\nu = \sum_{x,y,z \in I} v_x \delta_{xz^{-1}} (\delta_{xy^{-1}} (\gamma_x(\lambda)) \gamma_y(\mu)) \gamma_z(\nu)$$
$$= \sum_{x,y,z \in I} v_x \delta_{xy^{-1}} (\gamma_x(\lambda)) \delta_{yz^{-1}} (\gamma_y(\mu)) \gamma_z(\nu)$$
$$= \lambda(\mu \nu).$$

The remaining assertions are obvious.

(2) Let $\lambda \in \text{Ker } \phi$. For any $y \in I$ we have $0 = \gamma(\lambda v_y) = \sum_{x \in I} \delta_{xy^{-1}}(\gamma_x(\lambda))$ and $\delta_{xy^{-1}}(\gamma_x(\lambda)) = 0$ for all $x \in I$. Thus for any $x \in I$ we have $\delta_{xy^{-1}}(\gamma_x(\lambda)) = 0$ for all $y \in I$ and by (D1) $\gamma_x(\lambda) = 0$, so that $\lambda = 0$. Next, for any $f = \sum_{x \in I} a_x \gamma_x \in \text{Hom}_A(\Lambda, A)$, setting $\lambda = \sum_{x,z \in I} v_x \delta_{xz^{-1}}(a_z)$, by (D1) we have

$$(\gamma \lambda)(v_y) = \gamma(\lambda v_y)$$

$$= \sum_{x \in I} \delta_{xy^{-1}}(\gamma_x(\lambda))$$

$$= \sum_{x,z \in I} \delta_{xy^{-1}}(\delta_{xz^{-1}}(a_z))$$

$$= a_y$$

$$= f(v_y)$$

for all $y \in I$ and $f = \gamma \lambda$. Finally, for any $a \in A$ by (D1) we have

$$(\gamma a)(\lambda) = \gamma(a\lambda)$$

$$= \sum_{x,y \in I} \delta_{yx^{-1}}(a)\gamma_x(\lambda)$$

$$= a\gamma(\lambda)$$

for all $\lambda \in \Lambda$ and $\gamma a = a\gamma$.

Remark 11. Denote by |I| the order of I. If $|I| \cdot 1_A \in A^{\times}$, then Λ/A is a split ring extension.

Lemma 12. The following hold.

- (1) $v_x \lambda v_y = v_x \delta_{xy^{-1}}(\gamma_x(\lambda))$ for all $\lambda \in \Lambda$ and $x, y \in I$.
- (2) $v_x \Lambda v_y = v_x A_{xy^{-1}}$ for all $x, y \in I$.
- (3) $v_x a \cdot v_y b = v_x ab$ for all $x, y, z \in I$ and $a \in A_{xy^{-1}}, b \in A_{yz^{-1}}$.

Proof. Immediate by the definition.

Setting $\Lambda_{x,y} = v_x \Lambda v_y$ for $x, y \in I$, we have $\Lambda = \bigoplus_{x,y \in I} \Lambda_{x,y}$ with $\Lambda_{x,y} \Lambda_{z,w} = 0$ unless y = z and $\Lambda_{x,y} \Lambda_{y,z} \subseteq \Lambda_{x,z}$ for all $x, y, z \in I$. Also, setting $\lambda_{x,y} = \delta_{xy^{-1}}(\gamma_x(\lambda)) \in A_{xy^{-1}}$ for $\lambda \in \Lambda$ and $x, y \in I$, we have a group homomorphism

$$\eta: I^{\mathrm{op}} \to \mathrm{Aut}(\Lambda), x \mapsto \eta_x$$

such that $\eta_x(\lambda)_{y,z} = \lambda_{yx^{-1},zx^{-1}}$ for all $\lambda \in \Lambda$ and $x,y,z \in I$. We denote by Λ^I the subring of Λ consisting of all λ such that $\eta_x(\lambda) = \lambda$ for all $x \in I$.

Proposition 13. The following hold.

- (1) $\eta_y(v_x) = v_{xy} \text{ for all } x, y \in I.$
- (2) $\Lambda^I = A$.
- (3) $(\lambda \mu)_{x,z} = \sum_{y \in I} \lambda_{x,y} \mu_{y,z}$ for all $\lambda, \mu \in \Lambda$ and $x, z \in I$.

Proof. (1) Since $\eta_y(v_x)_{z,w} = \delta_{zw^{-1}}(\gamma_{zy^{-1}}(v_x))$ for all $z, w \in I$, we have

$$\eta_y(v_x)_{z,w} = \begin{cases} 1 & \text{if } z = w \text{ and } x = zy^{-1}, \\ 0 & \text{otherwise.} \end{cases}$$

(2) For any $a \in A$, since $\eta_x(a)_{y,z} = a_{yx^{-1},zx^{-1}} = \delta_{(yx^{-1})(zx^{-1})^{-1}}(a) = \delta_{yz^{-1}}(a) = a_{y,z}$ for all $x, y, z \in I$, we have $a \in \Lambda^I$. Conversely, for any $\lambda \in \Lambda^I$ we have $\delta_{y^{-1}}(\gamma_x(\lambda)) = \lambda_{x,yx} = \eta_{x^{-1}}(\lambda)_{e,y} = \lambda_{e,y} = \delta_{y^{-1}}(\gamma_e(\lambda))$ for all $x, y \in I$, so that $\gamma_x(\lambda) = \gamma_e(\lambda)$ for all $x \in I$.

(3) For any $\lambda, \mu \in \Lambda$ and $x, z \in I$ by (D2) we have

$$\begin{split} (\lambda \mu)_{x,z} &= \sum_{y \in I} \delta_{xz^{-1}} (\delta_{xy^{-1}} (\gamma_x(\lambda)) \gamma_y(\mu)) \\ &= \sum_{y \in I} \delta_{xy^{-1}} (\gamma_x(\lambda)) \delta_{yz^{-1}} (\gamma_y(\mu)) \\ &= \sum_{y \in I} \lambda_{x,y} \mu_{y,z}. \end{split}$$

Remark 14. We have $\eta_y(v_x a_x)v_y b_y = v_{xy}a_x b_y$ for all $a_x \in A_x$ and $b_y \in A_y$.

Proposition 15. The following hold.

- (1) $\operatorname{End}_{\Lambda}(v_x\Lambda) \cong A_e$ as rings for all $x \in I$.
- (2) $v_x \Lambda \ncong v_y \Lambda$ in Mod- Λ for all $x, y \in I$ with $A_{xy^{-1}} A_{yx^{-1}} \subseteq \operatorname{rad}(A_e)$.

Proof. (1) We have $\operatorname{End}_{\Lambda}(v_x\Lambda) \cong v_x\Lambda v_x \cong A_e$ as rings.

(2) For any $f: v_x \Lambda \to v_y \Lambda$ and $g: v_y \Lambda \to v_x \Lambda$ in Mod- Λ , since $f(v_x) = v_y a$ with $a \in A_{yx^{-1}}$ and $g(v_y) = v_x b$ with $b \in A_{xy^{-1}}$, we have $g(f(v_x)) = v_x ba$ with $ba \in rad(A_e)$. \square

The proposition above asserts that if A_e is local and $A_x A_{x^{-1}} \subseteq \operatorname{rad}(A_e)$ for all $x \neq e$ then Λ is semiperfect and basic. We refer to [3] for semiperfect rings.

3. Auslander-Gorenstein Rings

In this section, we will ask when A/A_e is a Frobenius extension.

Lemma 16. For any $x \in I$ the following hold.

- (1) $av_x = v_x a$ for all $a \in A_e$ and Λv_x is a Λ - A_e -bimodule.
- (2) $\Lambda v_x = \sum_{y \in I} v_y A_{yx^{-1}}$.
- (3) $A \stackrel{\sim}{\to} \Lambda v_x, a \mapsto \sum_{y \in I} v_y \delta_{yx^{-1}}(a)$ as A- A_e -bimodules.
- (4) If Λv_x is reflexive as a right A_e -module, then $\operatorname{End}_{\Lambda}(\operatorname{Hom}_{A_e}(\Lambda v_x, A_e)) \cong A_e$ as rings.

Proof. (1) and (2) Immediate by the definition.

(3) By (2) we have a bijection $f_x: A \xrightarrow{\sim} \Lambda v_x, a \mapsto \sum_{y \in I} v_y \delta_{yx^{-1}}(a)$. Since every $\delta_{yx^{-1}}$ is a homomorphism in Mod- A_e , so is f_x . Finally, for any $a, b \in A$ we have

$$a \cdot (\sum_{y \in I} v_y \delta_{yx^{-1}}(b)) = \sum_{y,z \in I} v_z \delta_{zy^{-1}}(a) \delta_{yx^{-1}}(b)$$

$$= \sum_{z \in I} v_z (\sum_{y \in I} \delta_{zy^{-1}}(a) \delta_{yx^{-1}}(b))$$

$$= \sum_{z \in I} v_z \delta_{zx^{-1}} (\sum_{y \in I} \delta_{zy^{-1}}(a)b)$$

$$= \sum_{z \in I} v_z \delta_{zx^{-1}}(ab)$$

and f_x is a homomorphism in Mod- A^{op} .

(4) Since the canonical homomorphism

$$\Lambda v_x \to \operatorname{Hom}_{A_e^{\operatorname{op}}}(\operatorname{Hom}_{A_e}(\Lambda v_x, A_e), A_e), \lambda \mapsto (f \mapsto f(\lambda))$$

is an isomorphism, $\operatorname{End}_{\Lambda}(\operatorname{Hom}_{A_e}(\Lambda v_x, A_e)) \cong \operatorname{End}_{\Lambda^{\operatorname{op}}}(\Lambda v_x)^{\operatorname{op}} \cong v_x \Lambda v_x \cong A_e$ as rings. \square

It follows by Lemma 16(1) that $\delta_e \gamma_e : \Lambda \to A_e$ is a homomorphism of A_e -bimodules and Λ/A_e is a split ring extension.

Lemma 17. For any $x, y \in I$ and $a, b \in A$ we have

$$v_x a \cdot (\sum_{z \in I} v_z \delta_{zy^{-1}}(b)) = v_x (\sum_{z \in I} \delta_{xz^{-1}}(a) \delta_{zy^{-1}}(b))$$

Proof. Immediate by the definition.

Theorem 18. Assume A_e is local, $A_x A_{x^{-1}} \subseteq \operatorname{rad}(A_e)$ for all $x \neq e$ and A is reflexive as a right A_e -module. Then the following are equivalent.

- (1) $A \cong \operatorname{Hom}_{A_e}(A, A_e)$ as right A-modules.
- (2) There exist a unique $s \in I$ and some $\alpha \in \text{Hom}_{A_e}(A, A_e)$ such that

$$\phi_{sx,x}: v_{sx}\Lambda \xrightarrow{\sim} \operatorname{Hom}_{A_e}(\Lambda v_x, A_e), \lambda \mapsto (\mu \mapsto \alpha(\gamma(\lambda \mu)))$$

for all $x \in I$.

(3) There exist a unique $s \in I$ and some $\alpha_s \in \text{Hom}_{A_e}(A_s, A_e)$ such that

$$\psi_x: A_{sx} \xrightarrow{\sim} \operatorname{Hom}_{A_e}(A_{x^{-1}}, A_e), a \mapsto (b \mapsto \alpha_s(ab))$$

for all $x \in I$.

Proof. (1) \Rightarrow (2). Let $A \xrightarrow{\sim} \operatorname{Hom}_{A_e}(A, A_e)$, $1 \mapsto \alpha$ in Mod-A. Then, since by Proposition 10(2) $\Lambda \xrightarrow{\sim} \operatorname{Hom}_A(\Lambda, A)$, $\lambda \mapsto \gamma \lambda$ in Mod- Λ , by adjointness we have an isomorphism in Mod- Λ

$$\Lambda \xrightarrow{\sim} \operatorname{Hom}_{A_e}(\Lambda, A_e), \lambda \mapsto (\mu \mapsto \alpha(\gamma(\lambda \mu))).$$

By Proposition 15(1) $\Lambda = \bigoplus_{x \in I} v_x \Lambda$ with the $\operatorname{End}_{\Lambda}(v_x \Lambda)$ local. Also, by (1) and (4) of Lemma 16

$$\operatorname{Hom}_{A_e}(\Lambda, A_e) \cong \bigoplus_{x \in I} \operatorname{Hom}_{A_e}(\Lambda v_x, A_e)$$

with the $\operatorname{End}_{\Lambda}(\operatorname{Hom}_{A_e}(\Lambda v_x, A_e))$ local. Now, according to Proposition 15(2), it follows by the Krull-Schmidt theorem that there exists a unique $s \in I$ such that

$$\phi_{s,e}: v_s \Lambda \xrightarrow{\sim} \operatorname{Hom}_{A_e}(\Lambda v_e, A_e), \lambda \mapsto (\mu \mapsto \alpha(\gamma(\lambda \mu))).$$

Thus, setting $\alpha_s = \alpha|_{A_s}$, by Lemmas 16(2) and 17 we have

$$\psi: A \xrightarrow{\sim} \operatorname{Hom}_{A_e}(A, A_e), a \mapsto (b \mapsto \alpha_s(\delta_s(ab))).$$

It then follows again by Lemmas 16(2) and 17 that

$$\phi_{sx,x}: v_{sx}\Lambda \xrightarrow{\sim} \operatorname{Hom}_{A_e}(\Lambda v_x, A_e), \lambda \mapsto (\mu \mapsto \alpha(\gamma(\lambda \mu)))$$

for all $x \in I$.

- (2) \Rightarrow (3). Since $A = \bigoplus_{x \in I} A_{sx} = \bigoplus_{x \in I} A_{x^{-1}}$, and since $A_{sx} A_{x^{-1}} \subseteq A_s$ for all $x \in I$, ψ induces $\psi_x : A_{sx} \xrightarrow{\sim} \operatorname{Hom}_{A_s}(A_{x^{-1}}, A_e), a \mapsto (b \mapsto \alpha_s(ab))$ for all $x \in I$.
- $(3) \Rightarrow (1)$. Setting $\psi_x : A_{sx} \xrightarrow{\sim} \operatorname{Hom}_{A_e}(A_{x^{-1}}, A_e), a \mapsto (b \mapsto \alpha_s(ab))$ for each $x \in I$, the ψ_x yields $\psi : A \xrightarrow{\sim} \operatorname{Hom}_{A_e}(A, A_e), a \mapsto (b \mapsto \alpha_s(\delta_s(ab)))$.

Remark 19. In the theorem above, α_s is an isomorphism and $A_e \stackrel{\sim}{\to} \operatorname{End}_{A_e}(A_s)$ canonically.

Proof. For any $b \in A_e$, setting $f: A_e \to A_e, 1 \to b$, we have $f = \psi_e(a)$ and hence $b = \alpha_s(a)$ for some $a \in A_s$. Also, Ker $\alpha_s = \text{Ker } \psi_s = 0$. Then, since the composite $A_e \to \text{End}_{A_e}(A_s) \to \text{Hom}_{A_e}(A_s, A_e)$ is an isomorphism, the last assertion follows. \square

Corollary 20. Assume A_e is local and $A_x A_{x^{-1}} \subseteq \operatorname{rad}(A_e)$ for all $x \neq e$. If A/A_e is a Frobenius extension, then it is of second kind.

Proof. Set $t = \alpha_s^{-1}(1) \in A_s$. Then for any $u \in A_s$ there exists $f \in \operatorname{End}_{A_e}(A_s)$ such that u = f(t) and hence u = at for some $a \in A_e$. Thus $A_e t = A_s$ and there exists $\theta \in \operatorname{Aut}(A_e)$ such that $\theta(a)t = ta$ for all $a \in A_e$. Then $(\alpha_s\theta(a))(t) = \alpha_s(\theta(a)t) = \alpha_s(ta) = \alpha_s(t)a = a = (a\alpha_s)(t)$ and $\alpha_s\theta(a) = a\alpha_s$ for all $a \in A_e$. Now, setting $\psi : A \xrightarrow{\sim} \operatorname{Hom}_{A_e}(A, A_e), a \mapsto (b \mapsto \alpha_s(\delta_s(ab)))$, we have $(a\psi(1))(b) = a\alpha_s(\delta_s(b)) = (a\alpha_s)(\delta_s(b)) = (\alpha_s\theta(a))(\delta_s(b)) = \alpha_s(\theta(a)\delta_s(b)) = \alpha_s(\delta_s(\theta(a)b)) = (\psi(1)\theta(a))(b)$ for all $a, b \in A$, so that $a\psi(1) = \psi(1)\theta(a)$ for all $a \in A$.

Theorem 21. Assume A_e is local, $A_x A_{x^{-1}} \subseteq \operatorname{rad}(A_e)$ for all $x \neq e$, and A/A_e is a Frobenius extension. Then A is an Auslander-Gorenstein ring if and only if so is Λ .

Proof. The "only if" part follows by Propositions 9(1) and 10(2). Assume Λ is an Auslander-Gorenstein ring. By Proposition 10(2) Λ/A is a Frobenius extension of first kind, and by Corollary 20 A/A_e is a Frobenius extension of second kind. Thus by Proposition 7 Λ/A_e is a Frobenius extension of second kind. Also, by Lemma 16(1) Λ/A_e is split. Hence by Propositions 6 and 9(2) A_e is an Auslander-Gorenstein ring and by Proposition 9(1) so is A.

4. Bigraded rings

Formulating the ring structure of Λ constructed in Section 2, we make the following.

Definition 22. A ring Λ together with a group homomorphism

$$\eta: I^{\mathrm{op}} \to \mathrm{Aut}(\Lambda), x \mapsto \eta_x$$

is said to be an *I*-bigraded ring, denoted by (Λ, η) , if $1 = \sum_{x \in I} v_x$ with the v_x orthogonal idempotents and $\eta_y(v_x) = v_{xy}$ for all $x, y \in I$. A homomorphism $\varphi : (\Lambda, \eta) \to (\Lambda', \eta')$ is defined as a ring homomorphism $\varphi : \Lambda \to \Lambda'$ such that $\varphi(v_x) = v_x'$ and $\varphi \eta_x = \eta_x' \varphi$ for all $x \in I$.

Throughout this section, we fix an *I*-bigraded ring (Λ, η) . Set $A_x = v_x \Lambda v_e$ for $x \in I$ and $A = \bigoplus_{x \in I} A_x$. Note that $\eta_y(A_x) = v_{xy} \Lambda v_y$ for all $x, y \in I$. For any $a_x \in A_x$ and $b_y \in A_y$ we define the multiplication $a_x \cdot b_y$ in A as the multiplication $\eta_y(a_x)b_y$ in Λ (cf. Remark 14).

Proposition 23. The following hold.

- (1) A is an associative ring with $1 = v_e$.
- (2) A is an I-graded ring.

Proof. (1) For any $a_x \in A_x$, $b_y \in A_y$ and $c_z \in A_z$ we have

$$(a_x \cdot b_y) \cdot c_z = \eta_y(a_x)b_y \cdot c_z$$

$$= \eta_z(\eta_y(a_x)b_y)c_z$$

$$= \eta_{yz}(a_x)\eta_z(b_y)c_z$$

$$= a_x \cdot (b_y \cdot c_z).$$

Also, for any $a_x \in A_x$ we have $v_e \cdot a_x = \eta_x(v_e)a_x = v_xa_x = a_x$ and $a_x \cdot v_e = \eta_e(a_x)v_e = a_xv_e = a_x$.

(2) Obviously,
$$A_x A_y \subseteq A_{xy}$$
 for all $x, y \in I$.

In the following, for each $x \in I$ we denote by $\delta_x : A \to A_x$ the projection. Then, setting $\lambda_{x,y} = v_x \lambda v_y$ for $\lambda \in \Lambda$ and $x,y \in I$, we have a mapping $\varphi : A \to \Lambda$ such that $\varphi(a)_{x,y} = \eta_y(\delta_{xy^{-1}}(a))$ for all $a \in A$ and $x,y \in I$.

Proposition 24. The following hold.

- (1) $\varphi: A \to \Lambda$ is an injective ring homomorphism with $\operatorname{Im} \varphi = \Lambda^I$.
- (2) $v_x \Lambda v_y = v_x \varphi(A_{xy^{-1}})$ for all $x, y \in I$.
- (3) $\{v_x\}_{x\in I}$ is a basis for the right A-module Λ .
- (4) $\varphi(a)v_x = \sum_{y \in I} v_y \varphi(\delta_{yx^{-1}}(a))$ for all $a \in A$ and $x \in I$.
- (5) $v_x \varphi(a) v_y \varphi(b) = v_x \varphi(ab)$ for all $x, y, z \in I$ and $a \in A_{xy^{-1}}, b \in A_{yz^{-1}}$.

Proof. (1) Obviously, φ is a monomorphism of additive groups. Also, we have

$$\varphi(v_e)_{x,y} = \begin{cases} v_x & \text{if } x = y, \\ 0 & \text{otherwise} \end{cases}$$

and $\varphi(1_A) = 1_\Lambda$. Let $a_x \in A_x, b_y \in A_y$ and $z, w \in I$. Since $\varphi(a_x \cdot b_y)_{z,w} = \varphi(\eta_y(a_x)b_y)_{z,w} = \eta_w(\delta_{zw^{-1}}(\eta_y(a_x)b_y)), \varphi(a_x \cdot b_y)_{z,w} = 0$ unless $xy = zw^{-1}$. If $xy = zw^{-1}$, then $\eta_w(\delta_{zw^{-1}}(\eta_y(a_x)b_y)) = 0$

 $\eta_{yw}(a_x)\eta_w(b_y)$. On the other hand,

$$(\varphi(a_x)\varphi(b_y))_{z,w} = \sum_{u \in I} \varphi(a_x)_{z,u}\varphi(b_y)_{u,w}$$
$$= \sum_{u \in I} \eta_u(\delta_{zu^{-1}}(a_x))\eta_w(\delta_{uw^{-1}}(b_y)).$$

Thus $(\varphi(a_x)\varphi(b_y))_{z,w}=0$ unless $zu^{-1}=x$ and $uw^{-1}=y$, i.e., $zw^{-1}=xy$. If $zw^{-1}=xy$, then $\sum_{u\in I}\eta_u(\delta_{zu^{-1}}(a_x))\eta_w(\delta_{uw^{-1}}(b_y))=\eta_{yw}(a_x)\eta_w(b_y)$. As a consequence, $\varphi(a_x\cdot b_y)_{z,w}=(\varphi(a_x)\varphi(b_y))_{z,w}$. The first assertion follows.

Next, for any $a \in A$ and $x, y, z \in I$ we have

$$\eta_{x}(\varphi(a))_{y,z} = v_{y}\eta_{x}(\varphi(a))v_{z}
= \eta_{x}(v_{yx^{-1}}\varphi(a)v_{zx^{-1}})
= \eta_{x}(\varphi(a)_{yx^{-1},zx^{-1}})
= \eta_{x}(\eta_{zx^{-1}}(\delta_{yz^{-1}}(a)))
= \eta_{z}(\delta_{yz^{-1}}(a))
= \varphi(a)_{y,z},$$

so that Im $\varphi \subseteq \Lambda^I$. Conversely, let $\lambda \in \Lambda^I$. Then $\lambda_{x,y} = \eta_y(\lambda_{xy^{-1},e}) = \lambda_{xy^{-1},e}$ for all $x,y \in I$. Thus, setting $a = \sum_{x \in I} \lambda_{x,e}$, we have $\varphi(a)_{x,y} = \eta_y(\delta_{xy^{-1}}(a)) = \eta_y(\lambda_{xy^{-1},e}) = \lambda_{xy^{-1},e} = \lambda_{x,y}$ for all $x,y \in I$ and $\varphi(a) = \lambda$.

- (2) Let $x, y \in I$ and $a \in A_{xy^{-1}}$. For any $z \neq y$ we have $\delta_{xz^{-1}}(a) = 0$ and hence $v_x \varphi(a) v_z = \varphi(a)_{x,z} = \eta_z(\delta_{xz^{-1}}(a)) = 0$. Thus $v_x \varphi(a) = \varphi(a)_{x,y} = \eta_y(a)$. It follows that $v_x \Lambda v_y = \eta_y(v_{xy^{-1}} \Lambda v_e) = \eta_y(A_{xy^{-1}}) = v_x \varphi(A_{xy^{-1}})$.
 - (3) This follows by (2).
- (4) Note that $\eta_x(\delta_{yx^{-1}}(a)) = v_y \eta_x(\delta_{yx^{-1}}(a))$ for all $y \in I$. Thus $\varphi(a)v_x = \sum_{y \in I} v_y \varphi(a)v_x = \sum_{y \in I} \eta_x(\delta_{yx^{-1}}(a)) = \sum_{y \in I} v_y \eta_x(\delta_{yx^{-1}}(a))$. Also,

$$v_y \varphi(\delta_{yx^{-1}}(a)) = \sum_{z \in I} v_y \varphi(\delta_{yx^{-1}}(a)) v_z$$
$$= \sum_{z \in I} v_y \eta_z (\delta_{yz^{-1}}(\delta_{yx^{-1}}(a)))$$
$$= v_y \eta_x (\delta_{yx^{-1}}(a))$$

for all $y \in I$.

(5) This follows by (2) and (4).

Let us call the *I*-bigraded ring constructed in Section 2 standard. Then the proposition above asserts that every *I*-bigraded ring is isomorphic to a standard one. Namely, according to Lemma 12, $\varphi: A \to \Lambda$ can be extended to an isomorphism of *I*-bigraded rings.

References

[1] H. Abe and M. Hoshino, Frobenius extensions and tilting complexes, Algebras and Representation Theory 11(3) (2008), 215–232.

- [2] M. Artin, J. Tate and M. Van den Bergh, Modules over regular algebras of dimension 3, Invent. Math. **106** (1991), no. 2, 335–388.
- [3] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. **95** (1960), 466-488.
- [4] _____, On the ubiquity of Gorenstein rings, Math. Z. **82** (1963), 8–28.
- [5] J.-E. Björk, *Rings of differential operators*, North-Holland Mathematical Library, **21**. North-Holland Publishing Co., Amsterdam-New York, 1979.
- [6] _____, The Auslander condition on noetherian rings, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), 137-173, Lecture Notes in Math., 1404, Springer, Berlin, 1989.
- [7] R. M. Fossum, Ph. A. Griffith and I. Reiten, *Trivial extensions of abelian categories*, Lecture Notes in Math., **456**, Springer, Berlin, 1976.
- [8] M. Hoshino, Strongly quasi-Frobenius rings, Comm. Algebra 28(8)(2000), 3585–3599.
- [9] M. Hoshino and H. Koga, Auslander-Gorenstein resolution, J. Pure Appl. Algebra 216 (2012), no. 1, 130–139.
- [10] G. Karpilovsky, *The algebraic structure of crossed products*, North-Holland Mathematics Studies, 142, Notas de Matemática, 118. North-Holland Publishing Co., Amsterdam, 1987.
- [11] T. Nakayama and T. Tsuzuku, On Frobenius extensions I, Nagoya Math. J. 17 (1960), 89–110.
- [12] _____, On Frobenius extensions II, Nagoya Math. J. 19 (1961), 127–148.
- [13] D. S. Passman, Infinite crossed products, Pure and Applied Mathematics, 135, Academic Press, Inc., Boston, MA, 1989.
- [14] J. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124 (1996), no. 1-3, 619-647.
- [15] A. Zaks, Injective dimension of semi-primary rings, J. Algebra 13 (1969), 73–86.

Institute of Mathematics University of Tsukuba Ibaraki, 305-8571, Japan

E-mail address: hoshino@math.tsukuba.ac.jp

Interdisciplinary Graduate School of Science and Technology Shinshu University 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan

E-mail address: kameyama@math.shinshu-u.ac.jp

Institute of Mathematics University of Tsukuba Ibaraki, 305-8571, Japan

E-mail address: koga@math.tsukuba.ac.jp