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ABSTRACT. Let I be a non-trivial finite multiplicative group with the unit element e
and A = ®,crA; an [-graded ring. We construct a Frobenius extension A of A and
study when the ring extension A of A, can be a Frobenius extension. Also, formulating
the ring structure of A, we introduce the notion of I-bigraded rings and show that every
I-bigraded ring is isomorphic to the I-bigraded ring A constructed above.

INTRODUCTION

Let I be a non-trivial finite multiplicative group with the unit element e and A =
PrerA, an [-graded ring. In this note, assuming A, is a local ring, we study when a
ring extension A of A, can be a Frobenius extension, the notion of which we recall below.
Auslander-Gorenstein rings (see Definition 2) appear in various fields of current research
in mathematics. For instance, regular 3-dimensional algebras of type A in the sense of
Artin and Schelter, Weyl algebras over fields of characteristic zero, enveloping algebras
of finite dimensional Lie algebras and Sklyanin algebras are Auslander-Gorenstein rings
(see [2], [5], [6] and [14], respectively). However, little is known about constructions
of Auslander-Gorenstein rings. We have shown in [9, Section 3] that a left and right
noetherian ring is an Auslander-Gorenstein ring if it admits an Auslander-Gorenstein
resolution over another Auslander-Gorenstein ring. A Frobenius extension A of a left and
right noetherian ring R is a typical example such that A admits an Auslander-Gorenstein
resolution over R.

Now we recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku
[11, 12] which we modify as follows (cf. [1, Section 1]). We use the notation A/R to denote
that a ring A contains a ring R as a subring. We say that A/R is a Frobenius extension if
the following conditions are satisfied: (F1) A is finitely generated as a left R-module; (F2)
A is finitely generated projective as a right R-module; (F3) there exists an isomorphism
¢ : A = Hompg(A, R) in Mod-A. Note that ¢ induces a unique ring homomorphism
0 : R — A such that z¢(1) = ¢(1)f(z) for all z € R. A Frobenius extension A/R is
said to be of first kind if A = Hompg(A, R) as R-A-bimodules, and to be of second kind
if there exists an isomorphism ¢ : A = Homp(A, R) in Mod-A such that the associated
ring homomorphism 6 : R — A induces a ring automorphism of R. Note that a Frobenius
extension of first kind is a special case of a Frobenius extension of second kind. Let A/R
be a Frobenius extension. Then A is an Auslander-Gorenstein ring if so is R, and the
converse holds true if A is projective as a left R-module, and if A/R is split, i.e., the
inclusion R — A is a split monomorphism of R-R-bimodules. It should be noted that A
is projective as a left R-module if A/R is of second kind.

The detailed version of this paper will be submitted for publication elsewhere.



To state our main theorem we have to construct a Frobenius extension A/A of first kind.
Namely, we will define an appropriate multiplication on a free right A-module A with a
basis {v; }.er so that A/A is a Frobenius extension of first kind. Denote by {7, }.es the
dual basis of {v, },er for the free left A-module Hom (A, A) and set v = X,¢/7,. Assume
A is local, A, A,—1 Crad(Ae) for all x # e and A is reflexive as a right A.-module. Our
main theorem states that the following are equivalent: (1) A = Homy, (A, A.) as right
A-modules; (2) There exist a unique s € I and some a € Homy, (A, A.) such that ¢, ,
Vee N = Homy, (Avg, Ao), A = (= a(y(Ap))) for all z € I; (3) There exist a unique s € [
and some «a, € Homy, (A, A.) such that ¢, : A, — Homy, (Au-1, Ao),a = (b ag(ab))
for all z € I (Theorem 18). Assume A/A. is a Frobenius extension. We show that it is of
second kind (Corollary 20), and that A is an Auslander-Gorenstein ring if and only if so
is A (Theorem 21).

As we saw above, the ring A plays an essential role in our argument. Formulating
the ring structure of A, we introduce the notion of group-bigraded rings as follows. A
ring A together with a group homomorphism 7 : I°° — Aut(A),z — 7, is said to be an
I-bigraded ring, denoted by (A,n), if 1 = > _, v, with the v, orthogonal idempotents
and 7,(v,) = vy for all 2,y € I. A homomorphism ¢ : (A,n) = (A',7) is defined as a
ring homomorphism ¢ : A — A’ such that ¢(v,) = v, and pn, = nle for all x € I. We
conclude that every I-bigraded ring is isomorphic to the I-bigraded ring A constructed
above (Proposition 24).

This note is organized as follows. In Section 1, we recall basic facts on Auslander-
Gorenstein rings and Frobenius extensions. In Section 2, we construct a Frobenius ex-
tension A/A of first kind and study the ring structure of A. In Section 3, we prove the
main theorem. In Section 4, we introduce the notion of group-bigraded rings and study
the structure of such rings.

1. PRELIMINARIES

For a ring R we denote by rad(R) the Jacobson radical of R, by R* the set of units in
R, by Z(R) the center of R and by Aut(R) the group of ring automorphisms of R. Usually,
the identity element of a ring is simply denoted by 1. Sometimes, we use the notation 15
to stress that it is the identity element of the ring R. We denote by Mod-R the category
of right R-modules. Left R-modules are considered as right R°°’-modules, where R°P
denotes the opposite ring of R. In particular, we denote by inj dim R (resp., inj dim R°P)
the injective dimension of R as a right (resp., left) R-module and by Hompg(—, —) (resp.,
Hompor (—, —)) the set of homomorphisms in Mod-R (resp., Mod-R°?). Sometimes, we
use the notation Xg (resp., gX) to stress that the module X considered is a right (resp.,
left) R-module.

We start by recalling the notion of Auslander-Gorenstein rings.

Proposition 1 (Auslander). Let R be a right and left noetherian ring. Then for any
n > 0 the following are equivalent.
(1) In a minimal injective resolution I* of R in Mod-R, flat dim I* < i for all 0 <
1 < n.
(2) In a minimal injective resolution J* of R in Mod-R°, flat dim J* < i for all
0<1<n.



(3) Forany1<i<n+1, any M € mod-R and any submodule X of Ext'(M, R) €
mod-R% we have Extlh, (X, R) = 0 for all 0 < j < i.

(4) Foranyl <i<n+1, any X € mod-R° and any submodule M of Exth., (X, R) €
mod-R we have Ext?(M, R) = 0 for all 0 < j < i.

Proof. See e.g. [7, Theorem 3.7]. O

Definition 2 ([6]). A right and left noetherian ring R is said to satisfy the Auslander
condition if it satisfies the equivalent conditions in Proposition 1 for all n > 0, and to
be an Auslander-Gorenstein ring if it satisfies the Auslander condition and inj dim R =
inj dim R°P < oo.

It should be noted that for a right and left noetherian ring R we have inj dim R =
inj dim R°? whenever inj dim R < oo and inj dim R < oo (see [15, Lemma A]).

Next, we recall the notion of Frobenius extensions of rings due to Nakayama and
Tsuzuku [11, 12], which we modify as follows (cf. [1, Section 1]).

Definition 3. A ring A is said to be an extension of a ring R if A contains R as a subring,
and the notation A/R is used to denote that A is an extension ring of R. A ring extension
A/R is said to be Frobenius if the following conditions are satisfied:

(F1) A is finitely generated as a left R-module;

(F2) A is finitely generated projective as a right R-module;

(F3) A= Hompg(A, R) as right A-modules.

In case R is a right and left noetherian ring, for any Frobenius extension A/R the
isomorphism A = Homp(A, R) in Mod-A yields an Auslander-Gorenstein resolution of A
over R in the sense of [9, Definition 3.5].

The next proposition is well-known and easily verified.

Proposition 4. Let A/R be a ring extension and ¢ : A = Hompg(A, R) an isomorphism
in Mod-A. Then the following hold.

(1) There exists a unique ring homomorphism 6 : R — A such that x¢(1) = ¢(1)0(x)

forall x € R.
(2) If ¢/ :+ A = Hompg(A, R) is another isomorphism in Mod-A, then there exists
u € A* such that ¢'(1) = ¢(1)u and 0'(x) = u='0(x)u for all x € R.

(3) ¢ is an isomorphism of R-A-bimodules if and only if 0(x) = = for all x € R.
Definition 5 (cf. [11, 12]). A Frobenius extension A/R is said to be of first kind if A =
Hompg (A, R) as R-A-bimodules, and to be of second kind if there exists an isomorphism
¢: A= Hompg(A, R) in Mod-A such that the associated ring homomorphism 6 : R — A
induces a ring automorphism 6 : R = R.

Proposition 6. If A/R is a Frobenius extension of second kind, then A is projective as
a left R-module.

Proof. Let ¢ : A = Hompg(A, R) be an isomorphism in Mod-A such that the associated
ring homomorphism 6 : R — A induces a ring automorphism @ : R = R. Then # induces
an equivalence Uy : Mod-R® = Mod-R° such that for any M € Mod-R°° we have
UgM = M as an additive group and the left R-module structure of UyM is given by the



law of composition R x M — M, (x,m) — 6(x)m. Since ¢ yields an isomorphism of R-A-
bimodules UyA = Homp(A, R), and since Homp(A, R) is projective as a left R-module,
it follows that UyA and hence A are projective as left R-modules. OJ

Proposition 7. For any Frobenius extensions AJA, A/R the following hold.

(1) A/R is a Frobenius extension.
(2) Assume A/A is of first kind. If A/R is of second (resp., first) kind, then so is
A/R.
Proof. (1) Obviously, (F1) and (F2) are satisfied. Also, we have
A = Homu(A, A)
=~ Homu (A, Homg(A, R))
= Homp(A®4 A, R)
=~ Hompg(A, R)
in Mod-A.
(2) Let ¢ : A = Homy(A, A) be an isomorphism of A-A-bimodules and ¢ : A =
Hompg(A, R) an isomorphism in Mod-A such that the associated ring homomorphism

6 : R — A induces a ring automorphism 6 : R = R. Setting v = ¥(1) and a = ¢(1), as
in (1), we have an isomorphism in Mod-A

£: A5 Homp(A, R), A — (= a(y(Aw))).

For any x € R, we have

for all p € A and z£(1) = £(1)8(x). O

Definition 8 ([1]). A ring extension A/R is said to be split if the inclusion R — A is a
split monomorphism of R-R-bimodules.

Proposition 9 (cf. [1]). For any Frobenius extension A/R the following hold.

(1) If R is an Auslander-Gorenstein ring, then so is A with inj dim A < inj dim R.
(2) Assume A is projective as a left R-module and A/ R is split. If A is an Auslander-
Gorenstein ring, then so is R with inj dim R = inj dim A.

Proof. (1) See [9, Theorem 3.6].

(2) Tt follows by [1, Proposition 1.7] that R is a right and left noetherian ring with
inj dim R = inj dim R° = inj dim A. Let A — E* be a minimal injective resolution in
Mod-A. For any i > 0, Homg(—, E*) = Homs(— ®r A, E?) as functors on Mod-R and
E% is injective, and E' ®r — = E'®4 A ®g — as functors on Mod-R°P and flat dim F% <
flat dim EY < 4. Now, since Rp appears in Ag as a direct summand, it follows that R
satisfies the Auslander condition. OJ



2. GRADED RINGS

Throughout the rest of this note, I stands for a non-trivial finite multiplicative group
with the unit element e.

Throughout this and the next sections, we fix a ring A together with a family {0, },cs
in Endz(A) satistying the following conditions:

(D1) 6,0, =0 unless v =y and ), 0, = idy;

(D2) 6,(a)éy(b) = 64y(d,(a)b) for all a,b € A and x,y € I.

Namely, setting A, = Im ¢, for x € I, A = @, A, is an [-graded ring. In particular,
A/A, is a split ring extension.

To prove our main theorem (Theorem 18), we need an extension ring A of A such that
A/A is a Frobenius extension of first kind. Let A be a free right A-module with a basis
{v:}rer and define a multiplication on A subject to the following axioms:

(M1) v,v, = 0 unless z =y and v,v, = v, for all x € I;

(M2) av, =, c;vy0yp-1(a) for all a € A and z € I.

We denote by {7, }.er the dual basis of {v,},es for the free left A-module Hom4(A, A),
e, A= v:7(A) for all A € A. It is not difficult to see that

M= Valay1 (7o (X)) (1)
el
for all A, ;p € A. Also, setting v = >, Vs, we define a mapping
¢ N — Homa(A, A), A — YA
Proposition 10. The following hold.

(1) A is an associative ring with 1 = Y v, and contains A as a subring via the
injective ring homomorphism A — N a — Y, v,a.
(2) ¢ is an isomorphism of A-A-bimodules, i.e., AJA is a Frobenius extension of first

kind.
Proof. (1) Let A € A. Obviously, > _, v, - A = A. Also, by (D1) we have

A Z Uy = Z Uxémy*1 (’yx()‘))

yel z,yel

zel

=\
Next, for any A, u, v € A by (D2) we have

Ay =D b1 Oy (3 (A)7 (1) 7:(v)

z,y,z€l

= 3 by 1 (3 (N)Bya-1 (3 (1)) (v)

x,y,z€1
= Auv).

The remaining assertions are obvious.



(2) Let A € Ker ¢. For any y € I we have 0 = v(Avy) = > _;6,-1(72(A)) and
Ozy-1(72(A)) = 0 for all x € I. Thus for any x € I we have §,,-1(7,(A)) =0 for ally € I
and by (D1) 7,(A) = 0, so that A = 0. Next, for any f = Y _; a7, € Homyu(A, A),

setting A = ) Vz0z,-1(a,), by (D1) we have
(YA (vy) = v(Avy)
= Gy (7(V)

zel

= > buy1(0nam1(a2))

z,z€1

z,z€l

= a,
= f(vy)
for all y € I and f = yA. Finally, for any a € A by (D1) we have
(va)(A) = y(aX)
=Y Gpei(a)(N)

zyel
= ay())

for all A € A and va = ay. O

Remark 11. Denote by |I| the order of I. If |I|-14 € A, then A/A is a split ring

extension.

Lemma 12. The following hold.

(1) v vy = Vp0,y-1(72(N)) for all X € A and z,y € 1.
(2) vuAvy = v, Apy—1 forall z,y € 1.
(3) vea - vyb = vyab for all z,y,z € I anda € Ayy-1,b€ A1,

Proof. Immediate by the definition. O
Setting A, , = v,Av, for z,y € I, we have A = @©y yerAy, with Ay A, = 0 unless

y=zand Ay Ay . C A, forall z,y, 2z € I. Also, setting A\, y = 04-1(72(A)) € Ayy—1 for
A€ A and z,y € I, we have a group homomorphism

n: I — Aut(A),x — 1,

such that 7,(N)y. = Aye-1..-1 for all X € A and z,y, z € I. We denote by A’ the subring
of A consisting of all A such that 7,(\) = A for all z € I.
Proposition 13. The following hold.

(1) ny(vy) = vgy for all x,y € I.

(2) AT = A.

(3) (Mt)ae =D yer Auyhly,z for all A€ A and x,z € 1.
Proof. (1) Since 1y(Vg) 2 = 6zup-1(72y-1(vs)) for all z,w € I, we have

1

(v,) 1 ifz=wandz =2y,
Vg )zw = .
"y ’ 0 otherwise.



(2) For any a € A, since 1,(a),. = Ayp-1:0-1 = Syo-1)za-1)-1(a) = 6,.-1(a) = ay,. for
all z,y, z € I, we have a € AT. Conversely, for any A € AT we have 6,-1(7,()\)) = Ay yo =
Ne-1(N)ey = Aeyy = 0y-1(7e(A)) for all z,y € I, so that 7,(A) = 7.(A) for all x € 1.

(3) For any A\, u € A and z, z € I by (D2) we have

(M)az = D ozt (Tay1 (7 (A)) 7 (1)

yel

= Z5xy*1(%()\))5yz*1(7y(ﬂ))

yel

= Z Azyhly, -

yel

Remark 14. We have n,(v,a,)vyb, = vgya.b, for all a, € A, and b, € A,

Proposition 15. The following hold.

(1) Enda(v.A) = Ae as rings for all x € 1.
(2) v\ 2 v A in Mod-A for all x,y € I with Ayy-1A,,—1 C rad(A.).

Proof. (1) We have Endj (v, A) = v,Av, = A, as rings.
(2) For any f : v,A — v,A and ¢ : v,A — v,A in Mod-A, since f(v,) = vya with
a€ Ay and g(vy) = v,bwith b € A1, we have g(f(v,)) = vyba with ba € rad(A.). O

The proposition above asserts that if A, is local and A, A,-1 C rad(A,) for all x # e
then A is semiperfect and basic. We refer to [3] for semiperfect rings.

3. AUSLANDER-GORENSTEIN RINGS

In this section, we will ask when A/A, is a Frobenius extension.

Lemma 16. For any x € I the following hold.

(1) av, = vza for all a € A, and Av, is a A-A.-bimodule.

(2) Avy =3 crvyAyer.

(3) A5 Avg,a = Y vy0y0-1(a) as A-Ac-bimodules.

(4) If Av, is reflezive as a right A.-module, then Endy(Homy, (Av,, Ae)) = A. as
TiNngs.

Proof. (1) and (2) Immediate by the definition.



(3) By (2) we have a bijection f, : A = Av,,a > yer VyOya-1(a). Since every dy,-1 is
a homomorphism in Mod-A,, so is f,. Finally, for any a,b € A we have

a () vy0-1(b) = > 0:0.-1(a)601 (D)

yel y,z€1
=3 0> 8.y-1(a)d 01 (b))
zel yel
= 0.0.-1()_ 8.y1(a)b)
zel yel
= Z 0,0,,-1(ab)
zel

and f, is a homomorphism in Mod-A°P.
(4) Since the canonical homomorphism

Avy — Hom gor (Hom g, (Avy, Ae), Ac), A = (f = f(N))
is an isomorphism, End, (Hom 4, (Av,, A.)) = Endper (Av, )P = v, Av, =2 A, as rings. O

It follows by Lemma 16(1) that d.7. : A — A, is a homomorphism of A.-A.-bimodules
and A/A, is a split ring extension.

Lemma 17. For any z,y € I and a,b € A we have
Vot () 0:6.5-1(0) = 1,(D b1 ()01 (D))
zel zel
Proof. Immediate by the definition. O

Theorem 18. Assume A, is local, A,A,—1 C rad(A.) for all x # e and A is reflexive as
a right A.-module. Then the following are equivalent.

(1) A= Homy, (A, A.) as right A-modules.
(2) There exist a unique s € I and some o € Homy_ (A, A.) such that
Gsp : VexA = Homa, (Avy, Ao), A = (= a(y(An)))
forall x € 1.
(3) There exist a unique s € I and some a5 € Homa, (A, Ae) such that
V1 Age — Homy, (A1, A),a = (b a,(ab))
forall x € 1.
Proof. (1) = (2). Let A = Homy, (A, A.),1+ a in Mod-A. Then, since by Proposition
10(2) A = Homy(A, A), X — v\ in Mod-A, by adjointness we have an isomorphism in
Mod-A
A = Homy, (A, A), A = (= a(y(Aw))).

By Proposition 15(1) A = @,crv, A with the Endy (v, A) local. Also, by (1) and (4) of
Lemma 16
Homy, (A, A.) = @,crHomy, (Av,, Ae)



with the Enda (Homy, (Av,, Ac)) local. Now, according to Proposition 15(2), it follows by
the Krull-Schmidt theorem that there exists a unique s € I such that

Pse : vsA = Homy, (Ave, Ae), A = (= a(y(Aw))).

4., by Lemmas 16(2) and 17 we have
¥ A= Homy, (A, A.),a— (b ay(d,(ab))).
It then follows again by Lemmas 16(2) and 17 that

Thus, setting a; = «

Gsww © Vs 5 Hom 4, (Avg, Ae), A — (= a(y(Ap)))

for all z € I.

(2) = (3). Since A = @pe1Age = PrerAg—1, and since A, A1 C Ay forall z € 1, ¢
induces v, : Ay, — Homy, (A1, Al),a > (b ag(ab)) for all z € 1.

(3) = (1). Setting v, : Ay, — Homy, (A1, Ae),a — (b ay(ab)) for each x € I, the
1, yields ¢ : A = Homy, (A4, A.),a — (b ay(ds(ab))). O

Remark 19. In the theorem above, ay is an isomorphism and A, — End 4, (A,) canonically.

Proof. For any b € A, setting f : A. — A.,1 — b, we have f = 1).(a) and hence
b = a,(a) for some a € A;. Also, Ker ay = Ker ¢y = 0. Then, since the composite
A, — Endy, (As) — Homy, (As, Ae) is an isomorphism, the last assertion follows. O

Corollary 20. Assume A, is local and AyzA,-+ C rad(Ae) for all x # e. If AJ/A. is a
Frobenius extension, then it is of second kind.

Proof. Set t = a;!(1) € A,. Then for any u € A, there exists f € Endy, (A,) such that
u = f(t) and hence u = at for some a € A.. Thus A.t = A, and there exists § € Aut(A,)
such that 0(a)t = ta for all @ € A.. Then (a,0(a))(t) = as(0(a)t) = as(ta) = as(t)a =
a = (ac,)(t) and a,0(a) = aa, for all a € A.. Now, setting 1 : A = Homa, (A, A.),a
(b~ au(6,(ab)), we have (a(1))(b) = a0s(8:(5)) = (ac)(3:(8)) = (a,(a))(6:(8)) =
as(0(a)ds(b)) = as(0s(0(a)b)) = (¥(1)0(a))(b) for all a,b € A, so that ap(1) = ¥(1)0(a)
for all a € A. O

Theorem 21. Assume A, is local, A,A,—1 C rad(A.) for all x # e, and A/A. is a

Frobenius extension. Then A is an Auslander-Gorenstein ring if and only if so is A.

Proof. The ”only if” part follows by Propositions 9(1) and 10(2). Assume A is an
Auslander-Gorenstein ring. By Proposition 10(2) A/A is a Frobenius extension of first
kind, and by Corollary 20 A/A, is a Frobenius extension of second kind. Thus by Proposi-
tion 7 A /A, is a Frobenius extension of second kind. Also, by Lemma 16(1) A/A, is split.
Hence by Propositions 6 and 9(2) A, is an Auslander-Gorenstein ring and by Proposition
9(1) so is A. O

4. BIGRADED RINGS

Formulating the ring structure of A constructed in Section 2, we make the following.



Definition 22. A ring A together with a group homomorphism
n: I — Aut(A),x — 1,

is said to be an I-bigraded ring, denoted by (A, n),if 1 =73 _, v, with the v, orthogonal
idempotents and 7, (v,) = vsy for all ,y € I. A homomorphism ¢ : (A,n) = (A, 7)) is
defined as a ring homomorphism ¢ : A — A’ such that ¢(v,) = v, and ¢n, = n.p for all
x el

Throughout this section, we fix an I-bigraded ring (A, 7). Set A, = v, Av, for x € I and
A = ®,erA,. Note that n,(A,) = vyyAv, for all z,y € I. For any a, € A, and b, € A,
we define the multiplication a, - b, in A as the multiplication 7,(a,)b, in A (cf. Remark
14).

Proposition 23. The following hold.
(1) A is an associative ring with 1 = v,.
(2) A is an I-graded ring.
Proof. (1) For any a, € A, b, € A, and ¢, € A, we have

(ag - by) - ¢, = nylaz)b, - c,
= nz(ny(ax)by)cz
= ny=(az)n2(by)c.
=a, - (by - c.).
Also, for any a, € A, we have v, - a; = 17(Ve)a, = vy, = a, and a; - Ve = Ne(ay)Ve =

AzVe = Gy
(2) Obviously, A, A, C A,, for all z,y € I. O

In the following, for each x € I we denote by d, : A — A, the projection. Then,
setting A\, , = vzAv, for A € A and x,y € I, we have a mapping ¢ : A — A such that
0(a)yy = ny(dzy-1(a)) for alla € A and z,y € I.

Proposition 24. The following hold.

(1) ¢ : A — A is an injective ring homomorphism with Im ¢ = AL,
) vaAvy, = vy (A1) forall x,y € 1.

) {veteer is a baszs for the right A-module A.

) p(a)ve = vyp(dye-1(a)) for alla € A and x € I.

)

vp(a)vyp(b) = vyp(ab) for all x,y,z € I and a € Ayy-1,b € Ay-r.

(2

(3
(4
(5

Proof. (1) Obviously, ¢ is a monomorphism of additive groups. Also, we have

(v,) v, ifx=uy,
Ve )y = .
14 v 0 otherwise

and ¢(14) = 15. Let a, € A;,b, € Ay and z,w € 1. Since p(a,-by),w = ©(My(az)by) 20 =
N (021 (0 (az)by)), (azby) = 0unless zy = zw™t. I zy = zw™!, then 1,,(8,-1 (1, (az)b,)) =



Nyw(@z)Nw (by). On the other hand,
(plaz)p(by))zw = ZSO(ax)Z,u‘P@y)u,w

uel

- Z Nu(0z0=1(a2)) My (=1 (by )

1 1

Thus (p(az)p(by)). = 0 unless zu™! = z and uw™ =y, Le., zw ! = zy. If zw™! = 2y,

then Y o/ Mu(020-1(a2))Nw (Ouw-1(by)) = Nyw(@z)nw(by). As a consequence, p(ay - by).w =
(plag)e(by))zw. The first assertion follows.
Next, for any a € A and z,y, z € I we have

Na(0(a))y,z = vyna(p(a))vs
= 773:<ny—190(a)vz:r—1)
= nx(ﬁp(a)yxfl,zafl)
= 1z (Nzz-1(0y2-1(a)))
= nz(5y2*1 (a))
= @(CL)y,z;
so that Im ¢ C A’. Conversely, let A € A’. Then A\, = n,(Apy-1.) = Agy-1,. for all
x,y € I. Thus, setting a = > ; Aze, we have p(a),, = 1y(dpy-1(a)) = ny(Aay-1,) =
Apy-Le = Agy for all z,y € I and ¢(a) = A
(2) Let z,y € I and a € A,y-1. For any 2z # y we have 6,,-1(a) = 0 and hence
vpp(a)v, = 9(a)y, = 1:(0..-1(a)) = 0. Thus vyp(a) = p(a)y, = ny(a). It follows that
vz Avy = 1y (Vgy-1AVe) = 1y (Agy—1) = Vpp(Agy—1).
(3) This follows by (2).
(4) Note that 7, (d,,-1(a)) = vyn:(dy.-1(a)) forally € I. Thus p(a)v, = ; vp(a)v, =

Zye[ 771(5311_1 (a)) = Zyg[ Uynm(éym—l (a)) AISO,
Uz/SO(éyaf1 (a)) = Z Uz/SO(éyaf1 (a))v.

zel
=> vy (8.1 (8,01 (a)))
zel
= Uyl (0ya—1(a))
for all y € 1.
(5) This follows by (2) and (4). O

Let us call the I-bigraded ring constructed in Section 2 standard. Then the proposi-
tion above asserts that every I-bigraded ring is isomorphic to a standard one. Namely,
according to Lemma 12, ¢ : A — A can be extended to an isomorphism of I-bigraded
rings.
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