ON THE RING OF COMPLEX-VALUED FUNCTIONS ON A FINITE RING

YASUYUKI HIRANO

ABSTRACT. Greferath, Fadden and Zumbrägel [3] consider rings of complex-valued functions on some finite rings R. In this paper we consider the structure of such rings. First we consider the case when R is a finite local ring. Next we consider the case when R is a finite semisimple ring. Finally we consider rings of complex-valued invariant functions on some finite rings.

1. RINGS OF FUNCTIONS FROM A FINITE RING TO THE FIELD OF COMPLEX NUMBERS

Greferath, Fadden and Zumbrägel [3] consider rings of complex-valued functions on some finite rings. First we give some definitions.

Definition 1. Let *R* be a ring and let **C** denote the field of complex numbers. A function $f : R \to \mathbf{C}$ is said to be *finite* if $\{r \in R \mid f(r) \neq 0\}$ is a finite set.

Consider the set $\mathbf{C}^R = \{f \mid f : R \to \mathbf{C} \text{ is finite}\}$ of all finite functions from R to C.

Definition 2. For $f, g \in \mathbb{C}^R$ and for $\lambda \in \mathbb{C}$ we define addition and scalar multiplication by

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda f)(x) = \lambda f(x).$$

Then \mathbf{C}^{R} is a **C**-vector space. We define multiplication by

$$(f * g)(x) = \sum_{\substack{a, b \in R \\ ab = x}} f(a)g(b).$$

Then \mathbf{C}^R is a **C**-algebra.

For any element $r \in R$, we define the function δ_r by

$$\delta_r(x) = \begin{cases} 1 & \text{if } x = r \\ 0 & \text{otherwise.} \end{cases}$$

Then δ_1 is is the identity of the **C**-algebra \mathbf{C}^R . We can easily see that $\delta_r * \delta_s = \delta_{rs}$ for each $r, s \in R$. Also we can see that the set $\{\delta_r \mid r \in R\}$ forms a **C**-basis of vector space.

The detailed version of this paper will be submitted for publication elsewhere.

Definition 3. Let R be a ring with addition + and multiplication \cdot . We denote the semigroup algebra of the semigroup (R, \cdot) over \mathbf{C} by $\mathbf{C}[R]$. Any element of $\mathbf{C}[R]$ can be written as a finite sum of the form $\sum_{r \in R} a_r \hat{r}$. For the definition of semigroup algebras, see [4, Page 33].

Other definitions and some basic results in this paper can be found in [2]. We start with the following fundamental proposition.

Proposition 4. Let R be a finite ring. Then the C-algebra \mathbb{C}^R is isomorphic to the semigroup algebra $\mathbb{C}[R]$ of multiplicative semigroup (R, \cdot) of the ring R.

Proof. Recall that the semigroup algebra $\mathbb{C}[R]$ is a C-vector space with the C-basis $\{\hat{r} \mid r \in R\}$ and multiplication defined by

$$\hat{r}\hat{s}=\hat{rs}$$

for each $r, s \in R$. We define a mapping $\phi : \mathbf{C}^R \to \mathbf{C}[R]$ by $\phi(\delta_r) = \hat{r}$ for each $r \in R$. Then ϕ is an isomorphism of **C**-algebras.

2. Semigroup rings

First we give some basic results on semigroup rings of the semigroups of some rings.

Proposition 5. Let R be a ring, let I be an ideal of R and let \mathbf{Z} denote the ring of rational integers.

(1) Let A denote the ideal of $\mathbf{Z}[R]$ generated by $\{\widehat{r+s} - \widehat{r} - \widehat{s} \mid r, s \in R\}$. Then $\mathbf{Z}[R]/A \cong R$.

(2) Let B denote the ideal of $\mathbb{C}[R]$ generated by $\{\hat{r} - \hat{s} \mid r - s \in I\}$. Then $\mathbb{C}[R]/B \cong \mathbb{C}[R/I]$.

Proposition 6. Let R be a finite ring, let R^* denote the group of units in R and let C denote the ideal of $\mathbf{C}[R]$ generated by $\{\hat{r} \mid r \in R - R^*\}$. Then $\mathbf{C}[R]/C \cong \mathbf{C}[R^*]$.

For a ring R, J(R) denotes the Jacobson radical of R.

Proposition 7. Let R be a finite local ring and let R^* denote the group of units in R. Then $J(\mathbf{C}[R]) = \sum_{r \in J(R)} \mathbf{C}(\hat{r} - \hat{0})$ and $\mathbf{C}[R]/J(\mathbf{C}[R]) \cong \mathbf{C}\hat{0} \oplus \mathbf{C}[R^*].$

Example 8. Consider the ring
$$R = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a, b, c \in GF(2) \right\}$$
. Then $|R| = 2^4 =$

16. Then $R^* = \left\{ \begin{pmatrix} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{pmatrix} \mid a \neq 0, b, c \in GF(2) \right\}$. We can easily see that R^* is the

dihedral group D_8 of order 8 and so $\mathbf{C}[R^*] \cong \mathbf{C}^4 \oplus M_2(\mathbf{C})$. Therefore $\mathbf{C}[R]/J(\mathbf{C}[R]) \cong \mathbf{C}^5 \oplus M_2(\mathbf{C})$.

By Proposition 7 we have the following corollaries.

Corollary 9. Let R be a finite commutative local ring and let n denote the number of elements of R^* . Then $\mathbb{C}[R]$ is the direct sum of n + 1 finite commutative local rings.

Corollary 10. Let R be a finite commutative ring and suppose that $R = R_1 \oplus \cdots \oplus R_d$, where $R_1, \cdots R_d$ are finite commutative local rings. Then \mathbf{C}^R is the direct sum of $(|R_1^*| + 1) \times \cdots \times (|R_d^*| + 1)$ finite commutative local rings.

Corollary 11. Consider the Galois field G(n, p). Then the C-algebra $\mathbf{C}^{G(n,p)}$ is isomorphic to \mathbf{C}^{p^n} .

Let V be a vector space over **C**. We define a multiplication on the **C**-linear space $\mathbf{C} \oplus V$ by the formula $(a, v) \cdot (b, w) = (ab, aw + bv)$ for any $a, b \in \mathbf{C}, v, w \in V$. Then $\mathbf{C} \oplus V$ becomes an **C**-algebra. We denote this algebra by $\mathbf{C} \ltimes V$.

Example 12. Consider the ring $\mathbb{C}[\mathbb{Z}/8\mathbb{Z}]$ and let $g_i = \hat{i} - \hat{0}$ for $i = 1, 2, \dots, 7$. Then $\mathbb{C}[\mathbb{Z}/8\mathbb{Z}]$ is the direct sum of two sided ideals $\mathbb{C}\hat{0}$ and $S = \mathbb{C}g_1 + \mathbb{C}g_2 + \dots + \mathbb{C}g_7$. The identity of the ring S is g_1 . Let us set $e_1 = (1/4)(g_1 - g_3 - g_5 + g_7)$, $e_2 = (1/4)(g_1 + g_3 - g_5 - g_7)$, $e_3 = (1/4)(g_1 - g_3 + g_5 - g_7)$ and $e_4 = (1/4)(g_1 + g_3 + g_5 + g_7)$. Then e_1, e_2, e_3, e_4 are orthogonal central primitive idempotents of S and $g_1 = e_1 + e_2 + e_3 + e_4$. We can easily see $e_1S \cong \mathbb{C}$, $e_2S \cong \mathbb{C}$, $e_3S \cong \mathbb{C} \ltimes \mathbb{C}$ and $e_4S \cong \mathbb{C} \ltimes (\mathbb{C} \oplus \mathbb{C})$. Therefore $\mathbb{C}[\mathbb{Z}/8\mathbb{Z}] \cong \mathbb{C}^3 \oplus \{\mathbb{C} \ltimes \mathbb{C}\} \oplus \{\mathbb{C} \ltimes (\mathbb{C} \oplus \mathbb{C})\}$.

3. RINGS OF FUNCTIONS FROM A FINITE SEMISIMPLE RING TO THE FIELD OF COMPLEX NUMBERS

In this section we consider the case when the ring R is a finite simple ring.

Theorem 13. Let R be a finite ring. Then the following are equivalent:

- (i) R is a finite semisimple ring.
- (ii) \mathbf{C}^R is a semisimple Artinian ring.

A von Neumann regular ring is a ring R such that for every a in R there exists an x in R such that a = axa. Since a semisimple Artinian ring is von Neumann regular, we have the following corollary.

Corollary 14. Let R be a finite semisimple ring. Then, for any function $f \in \mathbf{C}^R$, there exists a function $g \in \mathbf{C}^R$ such that a = a * x * a.

Example 15. Let $M_2(GF(2))$ denote the ring of 2×2 matrices over the field GF(2). Then we can prove that $\mathbb{C}[M_2(GF(2))]$ is a semiprime ring. Let us set $H = M_2(GF(2)) - GL_2(GF(2))$. Then we can see that $\mathbb{C}[H] \cong \mathbb{C} \oplus M_3(\mathbb{C})$. In fact, let

 $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_4 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_5 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, e_6 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, e_7 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, e_8 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \text{ and } e_9 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}. \text{ Then } E = \hat{O}, F_1 = \hat{e}_1 - \hat{O}, F_2 = \hat{e}_2 - \hat{O}, F_3 = (\hat{e}_1 - \hat{O}) + (\hat{e}_2 - \hat{O}) + (\hat{e}_3 - \hat{O}) + (\hat{e}_4 - \hat{O}) - (\hat{e}_5 - \hat{O}) - (\hat{e}_6 - \hat{O}) - (\hat{e}_7 - \hat{O}) - (\hat{e}_8 - \hat{O}) + (\hat{e}_9 - \hat{O}) \text{ are primitive orthogaonal idempotents, and} \mathbf{C}[H] = \mathbf{C}E \oplus \mathbf{C}[H](F_1 + F_2 + F_3) \cong \mathbf{C} \oplus M_3 \mathbf{C}). \text{ Since } GL_2(GF(2)) \cong S_3, \text{ we have } \mathbf{C}[M_2(GF(2))]/\mathbf{C}[H] \cong \mathbf{C}[S_3]. \text{ It is easily see that } \mathbf{C}[S_3] \cong \mathbf{C} \oplus \mathbf{C} \oplus M_2(\mathbf{C}) \oplus M_3(\mathbf{C}).$

Question 16. Let R be a (not necessarily finite) semiprime ring. Is C[R] semiprime?

Question 17. Let R be a finite semisimple ring and let C be a commutative ring. What conditions on C imply that C[R] is a separable algebra over C? The definition of separability can be found in [1, Page 40].

4. INVARIANT FUNCTIONS

Let R be a finite ring. A function $f : R \to \mathbb{C}$ is said to be right invariant if f(ax) = f(a) for all $a \in R$ and all $x \in R^*$. Similarly we define a *left invariant function*. A right and left invariant function is called an *invariant function*.

Theorem 18. Let R be a finite ring.

- (1) If we set $e = (1/|R^*|) \sum_{x \in R^*} \hat{x} \in \mathbb{C}[R]$, then e is an idempotent.
- (2) The set of right invariant functions becomes the right ideal $\mathbf{C}[R]e$.
- (3) The set of invariant functions becomes the ring $e\mathbf{C}[R]e$.

Corollary 19. Let R be a finite semisimple ring. The ring of invariant functions from R to C is a semisimple Artinian ring.

References

- F. DeMeyer and E. Ingraham, Separable Algebras Over Commutative Rings, Lecture Notes 181, 1971(Springer-Verlag).
- [2] Y.A. Drozd and V.V. Kirichenko, Finite-dimensional algebras, Springer-Verlag, Berlin, 1994.
- [3] M. Greferath, C.M. Fadden and J. Zumbrägel, Characteristics of invariant weights related to code equivalence over rings, Des. Codes Cryptography 66(1-3) (2013), 145–156.
- [4] J. Okniński, Semigroup Algebras, CH/CRC Pure & Applie Vol.138, Dekker, 1991.

DEPARTMENT OF MATHEMATICS EDUCATION GRADUATE SCHOOL OF EDUCATION NARUTO UNIVERSITY OF EDUCATION NARUTO 772-8502, JAPAN *E-mail address*: yahirano @ naruto-u.ac.jp