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Abstract. We study subcategories of the category of artinian modules. We prove that
all wide subcategories of artinian modules are Serre subcategories. We also provide
the bijection between the set of Serre subcategories of artinian modules and the set of
specialization closed subsets of the set of closed prime ideals of some completed ring.

1. Introduction

Let R be a commutative noetherian ring andM be an R-module. We denote by Mod(R)
the category of R-modules and R-homomorphisms and by mod(R) the full subcategory
consisting of finitely generated R-modules. We also denote by Spec R the set of prime
ideals of R and by AssRM the set of associated prime ideals of M . A subcategory of an
abelian category is said to be a wide subcategory if it is closed under kernels, cokernels
and extensions. We also say that a subcategory is a Serre subcategory if it is a wide
subcategory which is closed under subobjects.

Classifying subcategories of a module category also has been studied by many authors.
Classically, Gabriel [2] gives a bijection between the set of Serre subcategories of mod(R)
and the set of specialization closed subsets of Spec R. Recently, Takahashi [10] and Krause
[4] proved the following.

Theorem 1. [5, Theorem 4.1][3, Corollary 2.6] Let R be a noetherian ring. Then we have

the following 1-1 correspondences;

{ subcategories of mod(R) closed under submodules and extensions }
∼= { subsets of Spec R }.

Moreover this induces the bijection

{ Serre subcategories of mod(R) } ∼=
{

specialization closed subsets of Spec R
}

.

In addition, Takahashi [10] pointed out a property concerning wide subcategories of
mod(R).

Theorem 2. [10, Theorem 3.1, Corollary 3.2] Let R be a noetherian ring. Then every

wide subcategory of mod(R) is a Serre subcategory of mod(R).

In this note, we want to consider the artinian analogue of these results. We prove that
all wide subcategories of artinian modules are Serre subcategories (Theorem 9). We also
provide the bijection between the set of Serre subcategories and the set of specialization
closed subsets of the set of closed prime ideals of some completed ring (Theorem 26). We

We refer to [3] for more details on the present article.
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consider some completion of a ring (see Proposition 16), so that all of artinian modules
can be regarded as modules over it.

Throughout the note, we always assume that R is a commutative ring with identity, and
by a subcategory we mean a nonempty full subcategory which is closed under isomorphism.

2. wide subcategories of artinian modules

In this section, we investigate wide subcategories of artinian modules.
Let M be an artinian R-module. We denote by Soc(M) the sum of simple submodules

of M . Since Soc(M) is also artinian, there exist only finitely many maximal ideals m of
R for which Soc(M) has a submodule isomorphic to R/m. Let the distinct such maximal

ideals be m1, · · · ,ms. Set JM =
⋂s

i=1 m and R̂(M) = lim
←−

R/Jn
M .

Lemma 3. [9, Lemma 2.2] Each non-zero element m ∈M is annihilated by some power

of JM . Hence M has the natural structure of a module over R̂(M) in such a way that a

subset of M is an R-submodule if and only if it is an R̂(M)-submodule.

Proof. We need in the present note how the R̂(M)-module structure is defined for an
artinian module M . For this reason we briefly recall the proof of the lemma.

Since Soc(M) = ⊕s
i=1(R/mi)

ni,M can be embedded in⊕s
i=1(ER(R/mi))

ni where ER(R/m)
is an injective hull of R/m. Note that an element of ER(R/m) is annihilated by some
power of m. Hence one can show that each element of M is annihilated by some power of
m1 · · ·ms = JM .

Let x ∈M and r̂ = (rn + Jn
M)n∈N ∈ R̂(M). Suppose that Jk

Mx = 0. It is straightforward

to check that M has the structure of an R̂(M)-module such that r̂x = rkx.
�

By virtue of Lemma 3, each artinian R-module can be regarded as a module over
some complete semi-local ring. We note that the Matlis duality theorem holds over a
noetherian complete semi-local ring (cf. [6, Theorem 1.6] ). It is the strategy of the note
that we replace the categorical property on a subcategory of finitely generated (namely,
noetherian) modules with that of artinian modules by using Matlis duality. We denote
by Art(R) the subcategory consisting of artinian R-modules. The following lemma holds
from the Matlis duality theorem.

Lemma 4. Let (R,m1, · · · ,ms) be a noetherian complete semi-local ring and set E =
⊕s

i=1ER(R/mi). For each subcategory X of Mod(R), we denote by X ∨ = {M∨ | M ∈ X}
where (−)∨ = HomR(−, E). Then the following assertions hold.

(1) If X is a subcategory of Art(R) (resp. mod(R)) which is closed under quotient

modules (resp. submodules) and extensions, then X ∨ is a subcategory of mod(R)
(resp. Art(R)) which is closed under submodules (resp. quotient modules) and

extensions.

(2) If X is a wide subcategory of Art(R) (resp. mod(R)), then X ∨ is also a wide

subcategory of mod(R) (resp. Art(R)).
(3) If X is a Serre subcategory of Art(R) (resp. mod(R)), then X ∨ is also a Serre

subcategory of mod(R) (resp. Art(R)).
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Definition 5. Let M be an R-module. For a nonnegative integer n, we inductively define
a subcategory Widn

R(M) of Mod(R) as follows:

(1) Set Wid0R(M) = {M}.
(2) For n ≥ 1, let WidnR(M) be a subcategory of Mod(R) consisting of all R-modules

X having an exact sequence of either of the following three forms:

A→ B → X → 0,
0→ X → A→ B,
0→ A→ X → B → 0

where A,B ∈Widn−1
R (M).

Remark 6. Let M be an R-module. Then the following hold.

(1) There is an ascending chain {M} = Wid0
R(M) ⊆ Wid1

R(M) ⊆ · · · ⊆ Widn
R(M) ⊆

· · · ⊆ WidR(M) of subcategories Mod(R). Here we denote by WidR(M) the
smallest wide subcategory of Mod(R) which contains M .

(2)
⋃

n≥0Widn
R(M) is wide and the equality WidR(M) =

⋃

n≥0Widn
R(M) holds.

(3) IfM is artinian, then
⋃

n≥0Widn
R(M), hence WidR(M), is a subcategory of Art(R).

Definition 7. Let J be an ideal of R. For each R-module M , we denote by ΓJ(M) the set
of elements of M which are annihilated by some power of J , namely ΓJ(M) =

⋃

n∈N(0 :M
Jn). An R-module M is said to be J-torsion if M = ΓJ(M). We denote by ArtJ(R) the
subcategory consisting of artinian J-torsion R-modules.

Proposition 8. Let M be an artinian R-module. Then WidR(M) and WidR̂(M)(M) are

equivalent as subcategories of Art(R̂(M)).

Proof. Since a J-torsioness is closed under taking kernels, cockerels and extension, we can
naturally identify WidR(M) with a subcategory of ArtJM (R). �

Theorem 9. Let R be a noetherian ring. Then every wide subcategory of Art(R) is a

Serre subcategory of Art(R).

Proof. Let X be a wide subcategory of Art(R). It is sufficiently to show that X is closed
under submodules. Assume that X is not closed under submodules. Then there exists
an R-module X in X and R-submodule M of X such that M does not belong to X .
Applying Lemma 3 to X , X is a module over the complete semi-local ring R̂ := R̂(JX)

and M is an R̂-submodule of X . Now we consider the wide subcategory WidR(X). By

virtue of Proposition 8, WidR(X) = WidR̂(X) as a subcategory of Art(R̂). Since R̂ is
a complete semi-local ring, by Matlis duality, we have the equivalence of the categories
WidR̂(X) ∼= {WidR̂(X)∨}op ∼= WidR̂(X

∨)op where (−)∨ = HomR̂(−, ER̂(R̂/JXR̂)). Since

WidR̂(X
∨) is a wide subcategory of finitely generated R̂-modules, it follows from Theorem

2 that WidR̂(X
∨) is a Serre subcategory. Thus M∨ is contained in WidR̂(X

∨). Using
Matlis duality again, we conclude that M must be contained in WidR̂(X) = WidR(X),
hence also in X . This is a contradiction, so that X is closed under submodules.

�
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3. Classifying subcategories of artinian modules

In this section, we shall give the artinian analogue of the classification theorem of
subcategories of finitely generated modules (Theorem 26). First, we state the notion and
the basic properties of attached prime ideals which play a key role of our theorem. For
the detail, we recommend the reader to look at [8, 9] and [5, §6 Appendix.] .

Definition 10. Let M be an R-module. We say that M is secondary if for each a ∈ R
the endomorphism of M defined by the multiplication map by a is either surjective or
nilpotent.

Remark 11. If M is secondary then p =
√

annR(M) is a prime ideal and M is said to be
p-secondary.

Definition 12. Let M be an R-module.

(1) M = S1 + · · · + Sr is said to be a secondary representation if Si is a secondary
submodule of M for all i. And we also say that the representation is minimal if
the prime ideals pi =

√

annR(Si) are all distinct, and none of the Si is redundant
(2) A prime ideal p is said to be an attached prime ideal of M if M has a p-secondary

quotient. We denote by AttRM the set of the attached prime ideals of M .

Remark 13. Let M be an R-module.

(1) If M = S1 + · · · + Sr is a minimal representation and pi =
√

annR(Si). then
AttRM = {p1, · · · , pr}. See [5, Theorem 6.9] .

(2) Given a submodule N ⊆M , we have

AttRM/N ⊆ AttRM ⊆ AttR(N) ∪ AttRM/N.

See [5, Theorem 6.10] .
(3) It is known that if M is artinian then M has a secondary representation. Thus it

has a minimal one. See [5, Theorem 6.11] .

In the rest of this section, we always assume that R is a noetherian ring. The fol-
lowing observation tells us that we should consider a larger set than Spec R to classify
subcategories of artinian modules.

Example 14. Let (R,m) be a noetherian local ring and X a Serre subcategory of Art(R).

By virtue of Lemma 3, Art(R) is equivalent to Art(R̂) where R̂ is an m-adic completion

of R. Now we consider X as a subcategory of Art(R̂). Since X ∨ is a Serre subcategory

of mod(R̂) (Lemma 4), X ∨, hence X , corresponds to the specialization closed subset of

Spec R̂ by Theorem 1. That is, there is the bijection between the set of Serre subcategories
of Art(R) and the set of specialization closed subsets of Spec R̂.

As mentioned in Lemma 3, we can determine some complete semi-local rings for each
artinian module respectively, so that the artinian module has the module structure over
such a completed ring. Now we attempt to treat all the artinian R-modules as modules
over the same completed ring. For this, we consider the following set of ideals of R:

T = { I | the length of R/I is finite }.
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The set T forms a directed set ordered by inclusion. Then we can consider the inverse
system {R/I, fI,I ′} where fI,I ′ are natural surjections. We denote lim

←−I∈T
R/I by R̂

T
.

The proof of the following lemma will go through similarly to the proof of Lemma 3.

Lemma 15. Every artinian R-module has the structure of an R̂
T
-module in such a way

that a subset of an artinian R-module M is an R-submodule if and only if it is an R̂
T
-

submodule. Consequently, we have an equivalence of categories Art(R) ∼= Art(R̂
T
).

We set another family of ideals of R as

J = { mk1
1 · · ·m

ks
s | mi is a maximal ideal of R, ki ∈ N}.

It is also a directed set ordered by inclusion and we denote by R̂
J
its inverse limit on the

system via natural surjections.
Next we consider a direct product of rings

∏

n∈max(R)

R̂n

where max(R) is the set of maximal ideals of R and R̂m is an m-adic completion of R. We
regard the ring as a topological ring by a product topology, namely the linear topology
defined by ideals which are of the form mk1

1 R̂m1 × · · · ×mks
s R̂ms

×
∏

n6=m1,··· ,ms
R̂n for some

mi ∈ max(R) and ki ∈ N. For the rings R̂
T
, R̂

J
and

∏

n∈max(R) R̂n, we have the following.

Proposition 16. [1, §2.13. Proposition 17] There is an isomorphism of topological rings

R̂
T

∼= R̂
J

∼=
∏

n∈max(R)

R̂n.

Remark 17. Let M be an artinian R-module. It follows from Lemma 15 that M is also an
artinian R̂-module. Then the radical of annR̂(M) is a closed ideal. To show this, it suffices

to prove that the inclusion
√

annR̂(M) ⊇ ∩I∈T (
√

annR̂(M)+ I) holds. Take an arbitrary

element â ∈ ∩I∈T (
√

annR̂(M) + I). Then there exist some elements b̂I ∈ annR̂(M) and

ĉI ∈ I such that â = b̂I + ĉI for all I. Let x ∈M and suppose that Ix = 0 for some I ∈ T .
Since b̂I ∈

√

annR̂(M), b̂kI ∈ annR̂(M). Hence we see that âkx = (b̂I + ĉI)
kx = 0 holds, so

that â ∈
√

annR̂(M). Consequently, AttR̂M is a subset of the set of closed prime ideals

of R̂.

For closed prime ideals of
∏

n∈max(R) R̂n, we have the following result.

Proposition 18. Every proper closed prime ideal of
∏

n∈max(R) R̂n is of the form p ×
∏

n∈max(R),m 6=n R̂n for some prime ideal p ∈ Spec R̂m. Hence we can identify the set of

closed prime ideals of
∏

n∈max(R) R̂n with the disjoint union of Spec R̂m, i.e.
∐

n∈max(R) Spec R̂n.

We can equate the rings R̂
T
, R̂

J
and

∏

n∈max(R) R̂n by virtue of Proposition 16. In the

rest of this note we always denote them by R̂ and identify the set of closed prime ideals
of R̂ with

∐

n∈max(R) Spec R̂n.
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Lemma 19. [7, Exercise 8.49] Let M be an artinian R-module. Assume AssRM =
{m1, . . . ,ms}. Then M is the direct sums of the submodules Γmi

(M), that is M =
⊕s

i=1Γmi
(M). Here we denote by Γmi

(M) the mi-torsion submodule of M .

Remark 20. Let M be an m-torsion R-module. Then M has the structure of an R̂-module
and an R̂m-module. Note that the R̂m-module action on M is identical with the action
by means of the natural inclusion R̂m →

∏

n∈max(R) R̂n
∼= R̂. We also note from Lemma

15 or Lemma 3 that N is an R̂-submodule (resp. a quotient R̂-module) of M if and only

if it is an R̂m-submodule (resp. a quotient R̂m-module) of M .

Proposition 21. Let M be an m-torsion R-module. Then

AttR̂M = AttR̂m

M

as a subset of
∐

n∈max(R) Spec R̂n.

Combing Proposition 21 with Lemma 19, we have the following corollary.

Corollary 22. Let M be an artinian R-module. Then

AttR̂M =
∐

m∈AssRM

AttR̂m

Γm(M)

as a subset of
∐

n∈max(R) Spec R̂n.

Let us state the result which is a key to classify the subcategory of the category of
noetherian modules.

Theorem 23. [10, Corollary 4.4][4, Corollary 2.6] Let M and N be finitely generated

R-modules. Then M can be generated from N via taking submodules and extension if and

only if AssRM ⊆ AssRN .

The following lemma is due to Sharp [8].

Lemma 24. [8, 3.5.] Let (R,m1, · · · ,ms) be a commutative noetherian complete semi-

local ring and set E = ⊕s
i=1ER(R/mi). For an artinian R-module M , we have

AttRM = AssRHomR(M,E).

The next claim is reasonable as the artinian analogue of Theorem 23.

Theorem 25. Let M and N be artinian R-modules. Then M can be generated from N
via taking quotient modules and extensions as R-modules if and only if AttR̂M ⊆ AttR̂N .

Proof. Suppose that M is contained in quot-extR(N). It is clear from the property of
attached prime ideals (Remark 13) that AttR̂M ⊆ AttR̂N holds.

Conversely, suppose that AttR̂M ⊆ AttR̂N . First, we shall show that we may assume
that M and N are m-torsion R-modules for some maximal ideal m. In fact, M (resp.
N) can be decomposed as M = ⊕m∈AssRMΓm(M) (resp. N = ⊕n∈AssRNΓn(N)) and the
assumption implies that AttR̂m

Γm(M) ⊆ AttR̂m

Γm(N) for all m ∈ AssRM by Corollary 22.
If we show that Γm(M) is contained in quot-extR(Γm(N)), we can get the assertion since
quot-extR(N) is closed under direct sums and direct summands.
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Let M and N be m-torsion R-modules and E be an injective hull of R̂m/mR̂m as an

R̂m-module. Since M and N are also artinian R̂m-modules, M∨ and N∨ are finitely
generated R̂m-modules by Matlis duality, where (−)∨ = HomR̂m

(−, E). Since AttR̂m

M
(resp. AttR̂m

N) is equal to AssR̂m

M∨ (resp. AssR̂m

N∨) (Lemma 24), the inclusion

AssR̂m

M∨ ⊆ AssR̂m

N∨

holds. By virtue of Theorem 23, we conclude that M∨ can be generated from N∨ via
taking submodules and extensions, i.e. M∨ ∈ sub-extR̂m

(N∨). Hence it follows from
Matlis duality and Lemma 4 that

M∨∨ ∼= M ∈ sub-extR̂m

(N∨)∨ = quot-extR̂m

(N).

Since artinian R̂m-modules are also artinian R-modules (cf. Lemma 3), we conclude that
M ∈ quot-extR(N).

�

We define by Ψ the map sending a subcategory X of Art(R) to

AttX = ∪M∈X
AttR̂M

and by Φ the map sending a subset S of
∐

n∈max(R) Spec R̂n to

{M ∈ Art(R) |AttR̂M ⊆ S}.

Note from Corollary 22 that Ψ(X ) is a subset of
∐

n∈max(R) Spec R̂n. On the other hand,

it follows from Remark 13 (2) that Φ(S) is closed under quotient modules and extensions.
Now we state the main theorem of this note.

Theorem 26. Let R be a commutative noetherian ring. Then Ψ and Φ induce an inclu-

sion preserving bijection between the set of subcategories of Art(R) which are closed under

quotient modules and extensions and the set of subsets of
∐

n∈max(R) Spec R̂n.

Moreover, they also induce an inclusion preserving bijection between the set of Serre

subcategories of Art(R) and the set of specialization closed subsets of
∐

n∈max(R) Spec R̂n.

Proof. We show the first assertion of the theorem.
Let X be a subcategory of Art(R) which is closed under quotient modules and ex-

tensions. The subcategory ΦΨ(X ) consists of all artinian R-modules M with AttR̂M ⊆
∪X∈X

AttR̂X . It is clear that X is a subcategory of ΦΨ(X ). Let M be an artinian R-
module with AttR̂M ⊆ ∪X∈X

AttR̂X . For each ideal P ∈ AttR̂M , there exists X(P) ∈ X
such thatP ∈ AttR̂X

(P). Take the direct sums of such objects, that isX = ⊕P∈Att
R̂
MX(P).

X is also an object of X , since AttR̂M is a finite set and X is closed under finite direct
sums. It follows from the definition of X that AttR̂M ⊆ AttR̂X . By virtue of Theo-
rem 25, M is contained in quot-extR(X), so that M in X . Hence we have the equality
X = ΦΨ(X ).

Let S be a subset of
∐

n∈max(R) Spec R̂n. It is trivial that the set ΨΦ(S) is contained in

S. Let p be a prime ideal in S. Take a maximal ideal m so that p is a prime ideal of R̂m.
We consider an R̂m-module ER̂m/pR̂m

(R̂m/mR̂m). Then we have the equality:

AttR̂m

ER̂m/pR̂m

(R̂m/mR̂m) = AssR̂m

R̂m/pR̂m = {p}.
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Note that ER̂m

(R̂m/mR̂m) is artinian as an R-module. Indeed, we have the equality

ER̂m

(R̂m/mR̂m) = ER(R/mR) as R-modules ([5, Theorem 18.6 (iii)] ), so that it is an ar-

tinian R-module since ER̂m/pR̂m

(R̂m/mR̂m) is an R̂m-submodule (thus an R-submodule) of

ER̂m

(R̂m/mR̂m). Hence ER̂m/pR̂m

(R̂m/mR̂m) is an artinian R-module which is a p-secondary

R̂m-module. Consequently, ER̂m/pR̂m

(R̂m/mR̂m) belongs to Φ(S), so that p ∈ ΨΦ(S). �
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