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Abstract. Quantum projective planes are well studied in noncommutative algebraic
geometry. However, there has never been a precise definition of a quantum affine plane.
In this paper, we define a quantum affine plane, and classify quantum affine planes by
using 3-iterated quadratic Ore extensions of k.

1. Preliminaries

Throughout this paper, we fix an algebraically closed field k of characteristic 0, and we
assume that all vector spaces and algebras are over k. In this paper, a graded algebra
means a connected graded algebra finitely generated over k. A connected graded algebra
is an N-graded algebra A =

⊕

i∈N Ai such that A0 = k. We denote by GrModA the
category of graded right A-modules. An AS-regular algebra defined below is one of the
main objects of study in noncommutative algebraic geometry.

Definition 1 ([1]). A noetherian connected graded algebra A is called a d-dimensional
AS-regular algebra if

• gl.dimA = d < ∞, and

• Ext iA(k, A)
∼=

{

k i = d
0 i 6= d.

One of the first achievements of noncommutative algebraic geometry was classifying
all 3-dimensional AS-regular algebras by Artin, Tate and Van den Bergh using geometric
techniques [2]. In this paper, we will use their classification only in the quadratic case.

Let T (V ) be the tensor algebra on V over k where V is a finite dimensional vector
space. We say that A is a quadratic algebra if A is a graded algebra of the form T (V )/(I)
where I ⊆ V ⊗k V is a subspace and (I) is the two-sided ideal of T (V ) generated by I.
For a quadratic algebra A = T (V )/(I), we define

V(I) = {(p, q) ∈ P(V ∗)× P(V ∗)| f(p, q) = 0 for all f ∈ I}.

Definition 2 ([5]). A quadratic algebra A = T (V )/(I) is called geometric if there exists a
geometric pair (E, τ) where E ⊆ P(V ∗) is a closed k-subscheme and τ is a k-automorphism
of E such that
(G1) V(I) = {(p, τ(p) ∈ P(V ∗)× P(V ∗)| p ∈ E}, and
(G2) I = {f ∈ V ⊗k V | f(p, τ(p)) = 0 for all p ∈ E}.

Let A = T (V )/(I) be a quadratic algebra. If A satisfies the condition (G1), then A
determines a geometric pair (E, τ). If A satisfies the condition (G2), then A is determined
by a geometric pair (E, τ), so we will write A = A(E, τ). All 3-dimensional quadratic
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AS-regular algebras are geometric by [2]. Moreover, it follows that they can be classified
in terms of geometric pairs (E, τ), where E is either P2 or a cubic curve in P

2 by [2].

2. Ore extensions.

Ore extensions are defined as follows:

Definition 3 ([4]). Let R be an algebra, σ an automorphism of R and δ a σ-derivation
(i.e., δ : R → R is a linear map such that δ(ab) = δ(a)b+ σ(a)δ(b) for all a, b ∈ R). Then
σ, δ uniquely determine an algebra S satisfying the following two properties;

• S = R[z] as a left R-module .
• For any a ∈ R, za = σ(a)z + δ(a).

The algebra S is denoted by R[z; σ, δ] and is called the Ore extension of R associated to
σ and δ. Then we define an n-iterated Ore extension of k by

k[z1; σ1, δ1][z2; σ2, δ2] · · · [zn; σn, δn].

Iterated graded Ore extensions of k are defined bellow.

Definition 4. Let A be a graded algebra, σ a graded automorphism of A and δ a graded
σ-derivation (i.e., δ : A → A is a linear map of degree ℓ for some ℓ ∈ N such that
δ(ab) = δ(a)b+ σ(a)δ(b) for all a, b ∈ A). Then σ, δ uniquely determine a graded algebra
B satisfying the following two properties

• B = A[z] with deg(z) = ℓ as a graded left A-module.
• For any a ∈ A, za = σ(a)z + δ(a).

The graded algebra B is denoted by A[z; σ, δ] and is called the graded Ore extension of
A associated to σ and δ. Then we define an n-iterated graded Ore extension of k by

k[z1; σ1, δ1][z2; σ2, δ2] · · · [zn; σn, δn].

If deg(xi) = 1 for any i ∈ {1, 2, · · · , n}, the above algebra is a quadratic algebra. Then
we call it an n-iterated quadratic Ore extension of k.

It is known that n-iterated quadratic Ore extensions of k are n-dimensional quadratic
AS-regular algebras. Moreover, if n 6 2, then n-dimensional AS-regular algebras are
n-iterated graded Ore extensions of k by [6]. In this paper, we answer the question which
3-dimensional quadratic AS-regular algebras are 3-iterated quadratic Ore extensions of k.

Theorem 5. Let A = A(E, τ) be a 3-dimensional quadratic AS-regular algebra. Then

there exists a 3-iterated quadratic Ore extension B such that GrModA ∼= GrModB if and

only if E is not a elliptic curve.

3. Quantum planes

Definition 6 ([3]). Let R be an algebra. We denote by ModR the category of right
R-modules. We define the noncommutative affine scheme SpecncR associated to R by the
pair (ModR,R).

Let TailsA be the the quotient category GrModA/TorsA where TorsA is the full sub-
category of GrModA consisting of direct limits of modules finite dimensional over k, and
let π be the canonical functor GrModA → TailsA.
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Definition 7 ([3]). Let A be a graded algebra. We define the noncommutative projective
scheme ProjncA associated to A by the pair (TailsA, πA).

The simplest surface in algebraic geometry is the affine plane, which is Spec k[x, y],
so the simplest noncommutative surface must be a quantum affine plane, which should
be SpecncR, where R is a noncommutative analogue of k[x, y]. Since a skew polynomial
algebra R = k〈x, y〉/(xy−λyx) is the simplest example of a noncommutative analogue of
k[x, y] in noncommutative algebraic geometry, it can be regarded as a coordinate ring of a
quantum affine plane. However, there has never been a precise definition of quantum affine
plane. In the projective case, if A is a (d+ 1)-dimensional quadratic AS-regular algebra,
then we call ProjncA a d-dimensional quantum projective space (q-Pd). In particular,
if A is a 3-dimensional quadratic AS-regular algebra, then we call ProjncA a quantum
projective plane (q-P2).

In algebraic geometry, the following result is well known. If A is a polynomial algebra
k[x, y, z] and u ∈ A1, then

ProjA = ProjA/(u) ∪ SpecA[u−1]
0

∼ = ∼ = ∼ =

P
2

P
1

A
2

.

Meanwhile, if A be a 3-dimensional quadratic AS-regular algebra and u ∈ A1 a normal
element (i.e., uA = Au), then ProjncA is a q-P2 and ProjncA/(u) is a q-P1. Following the
above facts, we define a quantum affine plane as follows.

Definition 8. Let A be a 3-dimensional quadratic AS-regular algebra and u ∈ A1 a
normal element (i.e., uA = Au), then we define a quantum affine plane by

SpecncA[u
−1]0

where A[u−1]0 is the degree zero part of the noncommutative graded localization of A.

Example 9. The algebra A = k〈x, y, z〉/(yz−αzy, zx−βxz, xy−γyx) where 0 6= α, β, γ ∈
k is a 3-dimensional quadratic AS-regular algebra. Then A has a normal element x ∈ A1,
and one can show that A[x−1]0 ∼= k〈s, t〉/(st− αβγts).

4. Classification of quantum affine planes

In this section, we will classify quantum affine planes. We define SpecncR and SpecncR
′

are isomorphic if there exists an equivalence functor F : ModR → ModR′ such that
F (R) ∼= R′. Since SpecncR and SpecncR

′ are isomorphic if and only if R ∼= R′, we call the
coordinate ring A[u−1]0 a quantum affine plane.

Although it is difficult to find normal elements of a given algebra in general, we can
find normal elements of 3-dimensional quadratic AS-regular algebras by using geometric
pairs.

Lemma 10. Let A = A(E, τ) be a 3-dimensional quadratic AS-regular algebra, and let

u ∈ A1. Then u ∈ A1 is a normal element if and only if

(1) V(u) ⊂ E,
(2) τ(V(u)) = V(u).
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In addition, the following lemma is very useful to classify quantum affine planes.

Lemma 11. Let A be a 3-dimensional quadratic AS-regular algebra and u ∈ A1 a normal

element. Then there exist a 3-iterated quadratic Ore extension B and a normal element

v ∈ B1 which satisfy

GrModA ∼= GrModB and A[u−1]0 ∼= B[v−1]0.

By using the above lemmas,

Theorem 12. Every quantum affine plane is isomorphic to exactly one of the following:

k〈s, t〉/(st− λts) =: Sλ (0 6= λ ∈ k)

k〈s, t〉/(st− λts+ 1) =: Tλ (0 6= λ ∈ k)

k〈s, t〉/(ts− st + t)

k〈s, t〉/(ts− st + t2)

k〈s, t〉/(ts− st + t2 + 1)

where

Sλ
∼= Sλ′ ⇔ λ′ = λ±1, Tλ

∼= Tλ′ ⇔ λ′ = λ±1.

All of the above algebras are 2-iterated (ungraded) Ore extensions of k. Hence, we see
that quantum affine planes have nice properties like a polynomial algebras. For example,
they are noetherian domains and have finite global dimension.
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