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ABSTRACT. Quantum projective planes are well studied in noncommutative algebraic
geometry. However, there has never been a precise definition of a quantum affine plane.
In this paper, we define a quantum affine plane, and classify quantum affine planes by
using 3-iterated quadratic Ore extensions of k.

1. PRELIMINARIES

Throughout this paper, we fix an algebraically closed field £ of characteristic 0, and we
assume that all vector spaces and algebras are over k. In this paper, a graded algebra
means a connected graded algebra finitely generated over k. A connected graded algebra
is an N-graded algebra A = @, A; such that Ay = k. We denote by GrModA the
category of graded right A-modules. An AS-regular algebra defined below is one of the
main objects of study in noncommutative algebraic geometry.

Definition 1 ([1]). A noetherian connected graded algebra A is called a d-dimensional
AS-regular algebra if

e gl.dimA = d < 0o, an

o Exti(k, A) = { ’5 z L g.

One of the first achievements of noncommutative algebraic geometry was classifying
all 3-dimensional AS-regular algebras by Artin, Tate and Van den Bergh using geometric
techniques [2]. In this paper, we will use their classification only in the quadratic case.

Let T(V) be the tensor algebra on V over k where V' is a finite dimensional vector
space. We say that A is a quadratic algebra if A is a graded algebra of the form T'(V') /(1)
where I C V ®;, V is a subspace and (I) is the two-sided ideal of T'(V') generated by I.
For a quadratic algebra A = T(V))/(I), we define

V(I) ={(p,q) e P(V*) x P(V")| f(p.q) = 0 for all f € I}.

Definition 2 ([5]). A quadratic algebra A = T'(V') /(1) is called geometric if there exists a
geometric pair (E, 7) where ' C P(V*) is a closed k-subscheme and 7 is a k-automorphism
of E such that

(G1) V(I) = {(p,7(p) € B(V*) x B(V")| p € E}, and

(G2) I={feV& V] f(p,7(p)) =0 for all p € E}.

Let A =T(V)/(I) be a quadratic algebra. If A satisfies the condition (G1), then A
determines a geometric pair (E, 7). If A satisfies the condition (G2), then A is determined
by a geometric pair (E,7), so we will write A = A(FE, 7). All 3-dimensional quadratic
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AS-regular algebras are geometric by [2]. Moreover, it follows that they can be classified
in terms of geometric pairs (F, 7), where E is either P? or a cubic curve in P? by [2].

2. ORE EXTENSIONS.
Ore extensions are defined as follows:

Definition 3 ([4]). Let R be an algebra, o an automorphism of R and § a o-derivation
(i.e., 0 : R — R is a linear map such that 6(ab) = d(a)b+ o(a)d(b) for all a,b € R). Then
o, 0 uniquely determine an algebra S satisfying the following two properties;

e S = R|z] as a left R-module .

e For any a € R, za = o(a)z + d(a).
The algebra S is denoted by R[z;0,0] and is called the Ore extension of R associated to
o and . Then we define an n-iterated Ore extension of k by

klz1; 01, 01][22; 02, 2] - - [20; O, G-
Iterated graded Ore extensions of k are defined bellow.

Definition 4. Let A be a graded algebra, ¢ a graded automorphism of A and  a graded
o-derivation (i.e., 6 : A — A is a linear map of degree ¢ for some ¢ € N such that
d(ab) = d(a)b+ o(a)d(b) for all a,b € A). Then o, 6 uniquely determine a graded algebra
B satistying the following two properties

e B = Alz] with deg(z) = ¢ as a graded left A-module.

e For any a € A, za =o(a)z + d(a).
The graded algebra B is denoted by A[z;0,d] and is called the graded Ore extension of
A associated to o and §. Then we define an n-iterated graded Ore extension of k by

k[z1; 01, 61][29; 02, 02] - - - [2n; O, O]

If deg(z;) = 1 for any i € {1,2,--- ,n}, the above algebra is a quadratic algebra. Then
we call it an n-iterated quadratic Ore extension of k.

It is known that n-iterated quadratic Ore extensions of k are n-dimensional quadratic
AS-regular algebras. Moreover, if n < 2, then n-dimensional AS-regular algebras are
n-iterated graded Ore extensions of k by [6]. In this paper, we answer the question which
3-dimensional quadratic AS-regular algebras are 3-iterated quadratic Ore extensions of k.

Theorem 5. Let A = A(E,T) be a 3-dimensional quadratic AS-regular algebra. Then
there exists a 3-iterated quadratic Ore extension B such that GrModA = GrModB if and
only if E is not a elliptic curve.

3. QUANTUM PLANES

Definition 6 ([3]). Let R be an algebra. We denote by ModR the category of right
R-modules. We define the noncommutative affine scheme Spec,.R associated to R by the
pair (ModR, R).

Let TailsA be the the quotient category GrModA/TorsA where TorsA is the full sub-
category of GrModA consisting of direct limits of modules finite dimensional over k, and
let m be the canonical functor GrModA — TailsA.



Definition 7 ([3]). Let A be a graded algebra. We define the noncommutative projective
scheme Proj,.A associated to A by the pair (TailsA, 7A).

The simplest surface in algebraic geometry is the affine plane, which is Spec k[x,y],
so the simplest noncommutative surface must be a quantum affine plane, which should
be Spec,.R, where R is a noncommutative analogue of k[z,y]. Since a skew polynomial
algebra R = k(x,y)/(zy — Ayx) is the simplest example of a noncommutative analogue of
k[x,y] in noncommutative algebraic geometry, it can be regarded as a coordinate ring of a
quantum affine plane. However, there has never been a precise definition of quantum affine
plane. In the projective case, if A is a (d + 1)-dimensional quadratic AS-regular algebra,
then we call Proj,.A a d-dimensional quantum projective space (q-P?). In particular,
if A is a 3-dimensional quadratic AS-regular algebra, then we call Proj,cA a quantum
projective plane (q-P?).

In algebraic geometry, the following result is well known. If A is a polynomial algebra
klx,y, z] and u € Ay, then

ProjA = ProjA/(u) U SpecAu],
2l 2l 2l
P2 P! A?
Meanwhile, if A be a 3-dimensional quadratic AS-regular algebra and u € A; a normal
element (i.e., uA = Au), then Proj,.A is a ¢-P? and Proj,.A/(u) is a ¢-P!. Following the
above facts, we define a quantum affine plane as follows.

Definition 8. Let A be a 3-dimensional quadratic AS-regular algebra and u € A; a
normal element (i.e., uA = Au), then we define a quantum affine plane by

SpecyeAluo
where A[u=1]y is the degree zero part of the noncommutative graded localization of A.

Example 9. The algebra A = k(z,y, 2)/(yz—azy, ze—fxz, vy—yyx) where 0 # «a, 8,7 €
k is a 3-dimensional quadratic AS-regular algebra. Then A has a normal element z € Ay,
and one can show that Alz™']y = k(s,t)/(st — afvyts).

4. CLASSIFICATION OF QUANTUM AFFINE PLANES

In this section, we will classify quantum affine planes. We define Spec,.R and Spec, R’
are isomorphic if there exists an equivalence functor F' : ModR — ModR' such that
F(R) = R'. Since Spec,.R and Spec,.R’ are isomorphic if and only if R = R’, we call the
coordinate ring A[u"!]y a quantum affine plane.

Although it is difficult to find normal elements of a given algebra in general, we can
find normal elements of 3-dimensional quadratic AS-regular algebras by using geometric
pairs.

Lemma 10. Let A = A(FE, 1) be a 3-dimensional quadratic AS-reqular algebra, and let
u € Ay Then u € Ay is a normal element if and only if

(1) V(u) C E,
(2) T7(V(u) = V(u).



In addition, the following lemma is very useful to classify quantum affine planes.

Lemma 11. Let A be a 3-dimensional quadratic AS-reqular algebra and uw € Ay a normal
element. Then there exist a 3-iterated quadratic Ore extension B and a normal element
v € By which satisfy

GrModA = GrModB and Alu™']y = B[v™o.
By using the above lemmas,

Theorem 12. Fvery quantum affine plane is isomorphic to exactly one of the following:

k(s,t)/(st — Ats) =: Sy (0 #£ X € k)
k(s,t)/(st — Mts + 1) = Ty (0 £ X € k)
k(s,t)/(ts — st +t)

k(s,t)/(ts — st 4 t?)

k(s,t)/(ts — st +t> + 1)

where
S\ Sy & p— )\:H, =T, < N = )\il.

All of the above algebras are 2-iterated (ungraded) Ore extensions of k. Hence, we see
that quantum affine planes have nice properties like a polynomial algebras. For example,
they are noetherian domains and have finite global dimension.
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