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ABSTRACT. A submodule of a module M is called to be closed if it has no proper
essential extensions in M. A submodule X of M is called to be a complement if it is
maximal with respect to X NY = 0, for some submodule Y of M. It is well known that
closed and complement submodule are the same. A module M is called to be extending
(M has condition (C)) if any submodule of M is essential in a summand of M. It is
known that quasi-injective module is extending. In this note we generalize this by using
hereditary torsion theories and state related results.

1. INTRODUCTION

Throughout this paper R is a ring with a unit element, every right R-module is unital
and Mod-R is the category of right R-modules. A subfunctor of the identity functor of
Mod-R is called a preradical. For preradical o, T, := {M € Mod-R|oc(M) = M} is the
class of o-torsion right R-modules, and F, := {M € Mod-R|o(M) = 0} is the class of
o-torsion free right R-modules. A preradical ¢ is called to be idempotent(a radical) if
t(t(M)) = t(M)(t(M/t(M)) = 0). Let C be a subclass of Mod-R. A torsion theory for C
is a pair of (T,F) of classes of objects of C such that (i) Homg(7, F) =0 for all T € T,
F e F. (ii) If Homg(M, F) = 0 for all ' € F, then M € T. (iii) If Homg(T,N) = 0
for all T € T, then N € F. It is well known that (7;, F;) is a torsion theory for an
idempotent radical . A preradical t is called to be left exact if t(N) = N N¢(M) holds
for any module M and its submodule N. For a preradical ¢ and a module M and its
submodule N, N is called to be o-dense submodule of M if M/N € T,. If N is an
essential and o-dense submodule of M, then N is called to be a o-essential submodule
of M(M is a o-essential extension of N). If N is essential in M, we denote N C° M. If
N is o-essential in M, we denote N C?¢ M. For an idempotent radical ¢ a module M is
called to be o-injective if the functor Hompg(_, M) preserves the exactness for any exact
sequence 0 - A — B — C — 0 with C' € 7,. We denote E(M) the injective hull of a
module M. For an idempotent radical o, E, (M) is called the o-injective hull of a module
M, where E,(M) is defined by E,(M)/M = o(E(M)/M). Then even if o is not left
exact, E,(M) is o-injective and a o-essential extension of M, is a maximal o-essential
extension of M and is a minimal o-injective extension of M. If N is o-essential in M,
then it holds that E,(N) = E,(M). Let B be a submodule of a module M. We call B is
o-essentially closed in M if B has no proper o-essential extension in M.

The final version of this paper will be submitted for publication elsewhere.

—202—



2. COMPLEMENT AND CLOSED SUBMODULE

First we state o-essentially closed submodules and complement submodules relative to
torsion theories. Following proposition generalize Proposition 1.4 in [2].

Proposition 1. Let o be a left exact radical and B be a submodule of a module M. We
denote B/B := o(M/B). Then the following conditions from (1) to (9) are equivalent.

(1) B is essentially closed in B.

(2)

(3) B is a complement of a submodule in B.

(4) If X is a complement of B in B, then B is a complement of X in B.

(5) It holds that B = E,(B) N M.

(6) If BC X C° B, then X/B C° B/B.

(7) It holds that B = E(B)N B.

(8) There exists submodules My and K of M such that K C My, M/M, € F, and B
is a complement of K in M;.

(9) If BC X C°° M, then X/B C°¢ M/B.

Proof. (2)—(1): Let B be o-essentially closed in M. Let H a module such that B C°
H C B. Since H/B C B/B = o(M/B) € T,, H/B € T,. Thus B C°® H C M, and so
H = B by (2).

(1)—(2): Let B be essentially closed in B. Let N be a module such that B C°¢ N C M,
and so B C¢* N and N/B € T,. Then N/B C o(M/B) = B/B. Thus it holds that
BC*NCRB. By(l), B=N.

(2)—(6): Suppose that B is o-essentially closed in M and X an essential submodule
of B containing B. Let Y/B be a submodule of B/B such that X/BNY/B = 0. Then
X NY = B. Since X is essential in B, B = Y N X is essential in Y N B = Y. Since
Y/B=Y/(YNX)=(Y+X)/X CB/X « B/BcT,, Bis c-essential in Y. As B is
o-essentially closed in M, it follows that Y = B. Thus X/B is essential in B/B.

(6)—(4): Let X be a complement of B in B. Let B’ be a complement of X in B
containing B. Then (X @® B)NB' = (XNB)®B = B. Thus (X® B)/B)N(B’'/B) = 0.
Since X @ B is essential in B, it holds that (X @ B)/B is essential in B/B by (6) . Since
(X@® B)/B)N(B'/B) =0, then B’ = B, as desired.

(4)—(3): Since there exists a complement of B in B, it is obvious.

(3)—(2): Let B be a complement of a submodule K of B. Then B is essentially closed
in B. We show that B is o-essentially closed in M. Let B’ be a submodule of M such
that B’ is a o-essential extension of B. Then BN B = B is essential in B’ N B. Since B
is essentially closed in B, B= B'NB . Since T, > B'/B = B'/(B'NB) = (B'+B)/B C
M/B = (M/B)/o(M/B) € F,, it follows that B’ = B, as desired.

(2)—(5): It is easily verified that E,(B) N M is o-essential extension of B in M. By
(2), it follows that E,(B) N M = B.

(5)—(2): Let X be a module such that B C X C M and B is o-essential in X. Then
E,(B) = E,(X). By (5), B = E,(B)NM. Since B C X C E,(X)NM = E,(B)NM = B,
it follows that X = B, as desired.

(1)—=(7): Since E(B)N B is essential extension of B in B, it holds that B = F(B)NB.
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(7)—(1): Let X be a module such that B C X C B such that X is o-essential extension
of B. Then it follows that E(X) = E(B). Since BC X C E(X)NB = E(B)NB = B,
it concludes that B = X.

(2)—(8): Let B be o-essentially closed in M. Then M/B € F,. We take a complement
K of Bin B. Then B @ K is essential in B and (B @ K)/K is essential in B/K. We
take a complement L of K containing B in B. Since (B @ K)/K is o-essential in B/K,
(B® K)/K is o-essential in (L @ K)/K. Thus L is o-essential extension of B. Thus by
(2) B =L, and so B is a complement of K in B.

(8)—(2): Suppose that there exists submodules M; and K of M such that K C M,
M/M, € F, and B is a complement of K in M;. Then B is essentially closed in M;. We
show that B is o-essentially closed in M. Let B; be a submodule of M such that B is
o-essential in By. Then B = BN M; is essential in By N M;(C M;). Since B is essentially
closed in Ml, B = By N M;. Since 7:7 > Bl/B = Bl/(Bl N Ml) = (Bl + Ml)/Ml -
M/M; € F,, it follows that B; = B.

(2)—(9): Suppose that B is o-essentially closed in M. Let X be a submodule of
M such that B € X C% M. Let (Q be a submodule of M containing B such that
(X/B)N(Q/B) =0. Then B=QNX C*QNM = Q. Since /B =Q/(QNX) =
(Q+X)/X CM/X €7,, it holds that B C?¢ ) C M. Since B is o-essentially closed in
M, B =@, and so (Q/B) = 0. Thus X/B is o-essential in M/B.

(9)—(2): Suppose that B C?¢ X C M. Let B’ be a complement of B in M. Then
B®B' C?¢ M and hence by (9) (B&B')/B C¢ M/B. Since BN(B'NX) =0, B'NX = 0.
Since (B® B')/B)N(X/B)=[(B® B)NnX|/B=[B®(B'NX)]/B=0, (X/B)=0,
as desired. O

3. 0-QUASI-INJECTIVE MODULE

We call A o-M-injective if Hompg(—, A) preserves the exactness for any exact sequence
0—>N—M— M/N — 0, where M/N € 7T,. The following proposition is a generaliza-
tion of Theorem 15 in [1].

Proposition 2. Let o be a left exact radical. Then A is o-M-injective if and only if
f(M) C A for any f € Homr(Ey(M), E,(A)).

Proof. (<-): Let o be an idempotent radical and N be a submodule of M such that
M/N € 7,. Since E,(M)/M € 7T, and 7, is closed under taking extensions, it follows
that E,(M)/N € T,. Consider the following diagram.

For any f € Hompg(N, A), f is extended to ¢ € Homg(E,(M), E,(A)). By the as-
sumption it follows that g(M) C A, and so f is extended to g|yy € Hompg(M, A), as
desired.

(—): Let o be a left exact radical and f € Hompg(E,(M), E,(A)). Then f|yns-14 €
Homa(M 1 f~1(A), A). Since M/(M 01 f~(A)) = (M + [ (A))/F1(4) ~ (F(M) +
A)JACE,(A)JAeT,, M/(Mn f~1(A)) € T,. Consider the following diagram.
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0— MnfYA) —>M-—M/(Mnf1A)—0
fil g

Thus by the assumption f|yny-1(a) is extended to g € Homp(M, A), and so (g— f)(MN
f7Y(A)) = 0 . Hence we obtain ker(g — f) 2 M N f~YA). If x € (9 — f)"*(A), then
there exists an a € A such that g(z) — f(z) = a, and then f(z) = g(x) —a € A and
so x € fYA). Tt follows that (g — f)"'(A) C f~Y(A), and so M N (g — f)"}(A) C
Mnf YA Cker(g—f). fa=(g— f)(m) e (9g— f)MNAfora € Aand m € M, then
me (g—f)rtaC Mn(g— f)tACker(g— f),and so 0 = (g — f)(m) = a. Thus it
follows that (g — f)M N A = 0. Since A is essential in E,(A), (¢ — f)M =0, and so we
obtain that f(M) = g(M) C A, as desired. O

We obtain the following corollary as a torsion theoretic generalization of the Johnson
Wong theorem [4] by putting M = A in Proposition 2. We call a module A o-quasi-
injective if A is o-A-injective.

Corollary 3. Let o be a left exact radical. Then A is o-quasi-injective if and only if
f(A) - A f07“ any f € HOTTLR(EJ(A), EO'(A))

The following lemma generalizes Proposition 2.3 in [3].
Lemma 4. If A is o-quasi-injective and E,(A) = M @& N, then A= (M NA)& (NNA).

Proof. Let py(pn) be a canonical projection from E,(A) to M(N) respectively. Then by
Corollay 3, it follows that py(A) € A and py(A) CA. If Asa=m+ne M+ N for
m € M and n € N, then A 3 py(a) =py(m+n) =m € M, and som € AN M, and it
is similarly proved that n € ANN. Thus AC (M NA)® (NNA), as desired. O

4. (0-C;) CONDITIONS

Next we consider (C;) conditions relative to torsion theories. For (C;) conditions, see [5].
We call a module M o-quasi-injective if for any o-dense submodule N of M, Hompg(_, M)
preserves the exactness of a short exact sequence 0 - N — M — M/N — 0. The
following proposition generalize Proposition 2.1 in [5]. We call a module M has (o-C}) if
every o-dense submodule of M is essential in a summand of M. We call a module M has
(0-Cy) if a o-dense submodule A of M is isomorphic to a summand A; of M, then A is
a summand of M.

From now on we assume that o is a left exact radical.

Proposition 5. Any o-quasi-injective module M has (0-Cy) and (o-Cy).

Proof. (0-C4): Let N be a o-dense submodule of a o-quasi-injective module M. Consider
the exact sequence 0 — M/N — E,(M)/N — E,(M)/M — 0. Since 7, is closed
under taking extensions, it follows that E,(M)/N € 7T,. Since 7, is closed under taking
factor modules, it holds that E,(M)/E,(N) € T,. As E,(N) is o-injective, there exists
a submodule E of E,(M) such that E,(M) = E,(N) @ E. Since M is o-quasi-injective,
it follows that M = (M N E,(N)) & (E N M) by Lemma 4. Thus N is o-essential in
M N E,(N) which is a summand of M, as desired. (o-C5): Since M is o-quasi-injective,
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M is o-M-injective. As A; is a direct summand of M, A; is o-M-injective. Consider the
following exact sequence.
0—-A % M — M/A—0 (with M/A<€T,)

Iy
A Cao M

, where h is isomorphism from A to A; and f is a homomorphism from M to A; such
that fg = h. It is easily verified that A is a summand of M. OJ

We call a module M has (0-Cs) if M; and My are summands of M such that MMMy = 0
and M/(M; & Ms) € T,, then M; & M, is a summand of M. We call a module M has
(0-C%) if My and My are summands of M such that My, M/My € T, and M; N My = 0,
then M; & M, is a summand of M. It is easily verified that (o-C3)=-(0-C%). The following
proposition generalize Proposition 2.2 in [5].

Proposition 6. If a module M has (6-C5), then M has (o-C%).

Proof. Let My and M; be summands of M such that My, M /My € T, and M; N My = 0.
Since M, is a summand of M, there exists a submodule M; such that M = M; & M;. Let
7 be a projection M = M; @ M{ — M;. By modular law, My & My = M N (M, @& M) =
(M1 D Mf) N (M1 D Mg) = M1 D (]\4{< N (M1 D MQ)) Thus W(Mg) = 7T(M1 D Mg) =
7T(M1 D (]\4;< N (M1 D Mg))) = Mik N (M1 D Mg) Thus M1 D M2 = M1 D W(Mg) and
w(Ms) € M;. Then ker |y, = kerm N My = My N My = 0, 7|pg, : My — 7(Ms)(C M)
is an isomorphism. Since Mj/m(My) ~ M/My € T, and M/M{ ~ M, € 7T,, the middle
term of 0 — M /m(My) — M/m(My) — M/M{ — 0 is in 7,. Thus 7 (M) is o-dense
submodule of M. Thus we get m(My) C® M by (0-C3). Thus there exists a module
X such that M = X & 7(My). By modular law, M{ = (X N M{) & n(Mz). Thus
and so M, @ M, C® M. O

We call a module of M o-continuous if it has (o-C) and (0-C3). We call a module
M o-quasi-continuous if it has (0-C}) and (0-C%). We have just seen that the following
implications hold: o-injective = o-quasi-injective = o-continuous = o-quasi-continuous
= o-C}

Proposition 7. A module M has (c-C1) if and only if every essentially closed o-dense-
submodule of M is a summand of M.

Proof. =-): Let N be an essentially closed o-dense submodule of M. Since M/N € T,
there exists a decomposition M = X @Y such that N C?¢© X C M. As N is essentially
closed in M and so N = X. Thus M =N &Y.

<): Let N be a o-dense submodule of M. Let X be a complement of N in M and
Y be a complement of X in M containing N . Then Y is essentially closed o-dense in
M. By the assumption Y is a summand of M. We show that N is essential in Y. If N
is not essential in Y, there exists a nonzero submodule H of Y such that NN H = 0. If
NN(X®H)>n=x+h,wheren € Nyx € X andh € H. Thenz =n—h e XNY =0.
Thus x =0, and son =h € NN H = 0. Therefore N N (X @ H) = 0. By construction of
X, X=X®H,and so H=0. Thus N is essential in Y. Thus if M/N € 7T, then there
exists a submodule Y of M such that N C¢Y and Y is a summand of M. O
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Proposition 8. For a submodule A of a module M, if A is o-essentially closed in a
summand of M, then A is o-essentially closed in M.

Proof. Let M = M; & M, with A g-essentially closed in M;. Let 7w denote the projection
M, & My — M. Assume that A C7¢ B C M. It is easy to see that A = w(A) C?° 7(B) C
M;. Since A is o-essentially closed in M, 7(B) = A C B, and so (1 — 7)(B) C B. Since
(1-m)(B)NA=0and AC®B, (1—m)(B)=0. Thus A C°* B =7(B) C M;. Since A
is o-essentially closed in My, it holds that A = B. 0

Lemma 9. [f M = A& B and A C° K C M, then K = A.

Proof. By modular law it follows that K = A& (K N B), and so AN (K N B) = 0. Since
Ais essential in K, KNB=0,andso K =A& (KNB)=A. O

The following proposition generalize Theorem 2.8 in [5].

Proposition 10. Consider the following conditions.
It holds that (3) < (4) — (1) — (2). Ifker f € T, for any idempotent f € Endr(E,(M)),
then (2) — (3) holds.
(1) M has (c-Cy) and (o0-Cs).
(2) M =X @Y for o-dense submodules X,Y of M such that X is a complement of
Y in M andY is a complement of X in M.
(3) f(M) C M for any idempotent f in Endr(E,(M)).
(4) If E,(M) = ®FE;, then M =@ (M N E;).

Proof. (1)—(2): Let X and Y be o-dense submodules of M such that X is a complement
of Y in M and Y is a complement of X in M. Since X and Y are essentially closed in
M, X and Y are direct summands of M by (0-C}). Then X @Y is o-essential in M. By
(0-C5), X @Y is a direct summand of M, andso M = X dY & Z D¢ (X @Y). Therefore
it follows that Z =0, andso M = X @Y.

(2)—(3): We assume that ker f € 7, for any idempotent f € Endgr(E,(M)). Let
Ay = Mn f(E,(M)) and Ay = M N (1 — f)(E,(M)). Then A; N A, = 0. Since
E,(M) = f(E,(M)) @ ker f for any idempotent f in Endg(E,(M)) and M/A; ~ (M +
F(E(M)))/ £ (E,(M)) € Ey(M)/f(E,(M)) ~ ker f € Ty, M/A; € T, for i = 1,2. Let B,
be a complement of A; containing As in M and By be a complement of B; containing A,
in M. Then by (2) M = By @ Bs. Let 7 be a projection By @ By — B;. We claim that
MN(f—m)(M)=0. Let x,y € M such that (f —7)(xz) =y. Then f(z) = y+n(z) € M,
and so f(z) € A;. Moreover (1 — f)(x) € M, and so (1 — f)(z) € As. Therefore
= [f@)o(1-[f)(x) € 410 Ay C Bi®By = M. w(x) = 7(f(2))+7(1—[f)(z) = f(2)+0,
and so y = 0. Thus M N(f —7)(M) = 0. Since M is essential in E,(M), (f —m)(M) =0,
and so f(M)=n(M) C M.

(3)—(4): Let E, (M) = 'E?Ei, then it is clear that M O &(M N E;). Let m be

1€

il
an element of M C E,(M) = @® FE;. Then there exists a finite index subset F' of [
icl
such that m € @F;. Write E,(M) = (@ E;) ® (®F;). Then there exist orthogonal
ieF iEeF icl-F

idempotents f; € Endg(E,(M))(i € F) such that E; = f;(E,(M)). Since f;(M) C M by
(3), m= > fi(m) € G?F(Mﬁ E;). Thus M C (M NE;),and M = (M N E;).
ic

= iel el
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(4)—(1): Let A be a o-dense submodule of M. Consider the following exact sequence.
0 - M/A - E,(M)/A — E,(M)/M — 0. Since 7, is closed under taking exten-
sions, E,(M)/A € T,. As E,(M)/A - E,(M)/E,(A), E,(M)/E,(A) € T,. Thus
0 — Ey(A) = E;(M) — E,(M)/E,(A) — 0 splits. Then E,(M) = E,(A) ® E. By (4)
M=(MnNE,(A)@®(MNE). Since (MNE,(A))/AC E,(A)JA € T,, A is o-essential
in M N E,(A) which is a direct summand of M. Thus M has (o-C).

Let M; and M be direct summands of M such that M; N My = 0 and M /M, My € T,.
Then M/(M; & My) € T,. Consider the following exact sequence. 0 — M/(M; &
My) — E,(M)/(M; ® My) — Ey;(M)/M — 0. Thus E,(M)/(M; ® M,) € T,. Thus
E,(M)/(Es(M)®BE,(Ms)) € Ty. Thus 0 — E,(M1)®E,(My) — Eyx(M) — Ey(M)/(Ey(M;)®
E,(Ms)) — 0 splits. Thus there exists a submodule E of E,(M) such that E,(M) =
E,(M,) & E,(M,) ® E. Then by (4) M = (M N E,(M,)) & (M N E,(M)) ® (M N E).
Since M; is a summand of M and M; is essential in M N E,(M;), M; = M N E,(M;) by
Lemma 9. Thus M = M, & My & (M N E), as desired. Thus M has (0-Cj).

(+(3): Budp(E,(M)) 5 f = 2, then E,(M) = f(E,(M)) & f(0). By (4) M =

(M N f(E,(M)))® (MnN f71(0)). For any m € M, there exists x € M N f(E,(M)) and

y € M N f~40) such that m = z +y. Then f(m) = f(z) + f(y) =+ 0 € M, and so

f(M) C M. O
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