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Abstract. A submodule of a module M is called to be closed if it has no proper
essential extensions in M . A submodule X of M is called to be a complement if it is
maximal with respect to X ∩ Y = 0, for some submodule Y of M . It is well known that
closed and complement submodule are the same. A module M is called to be extending
(M has condition (C1)) if any submodule of M is essential in a summand of M . It is
known that quasi-injective module is extending. In this note we generalize this by using
hereditary torsion theories and state related results.

1. INTRODUCTION

Throughout this paper R is a ring with a unit element, every right R-module is unital
and Mod-R is the category of right R-modules. A subfunctor of the identity functor of
Mod-R is called a preradical. For preradical σ, Tσ := {M ∈ Mod-R|σ(M) = M} is the
class of σ-torsion right R-modules, and Fσ := {M ∈ Mod-R|σ(M) = 0} is the class of
σ-torsion free right R-modules. A preradical t is called to be idempotent(a radical) if
t(t(M)) = t(M)(t(M/t(M)) = 0). Let C be a subclass of Mod-R. A torsion theory for C
is a pair of (T ,F) of classes of objects of C such that (i) HomR(T, F ) = 0 for all T ∈ T ,
F ∈ F . (ii) If HomR(M,F ) = 0 for all F ∈ F , then M ∈ T . (iii) If HomR(T,N) = 0
for all T ∈ T , then N ∈ F . It is well known that (Tt,Ft) is a torsion theory for an
idempotent radical t. A preradical t is called to be left exact if t(N) = N ∩ t(M) holds
for any module M and its submodule N . For a preradical σ and a module M and its
submodule N , N is called to be σ-dense submodule of M if M/N ∈ Tσ. If N is an
essential and σ-dense submodule of M , then N is called to be a σ-essential submodule
of M(M is a σ-essential extension of N). If N is essential in M , we denote N ⊆e M . If
N is σ-essential in M, we denote N ⊆σe M . For an idempotent radical σ a module M is
called to be σ-injective if the functor HomR( ,M) preserves the exactness for any exact
sequence 0 → A → B → C → 0 with C ∈ Tσ. We denote E(M) the injective hull of a
module M . For an idempotent radical σ, Eσ(M) is called the σ-injective hull of a module
M , where Eσ(M) is defined by Eσ(M)/M := σ(E(M)/M). Then even if σ is not left
exact, Eσ(M) is σ-injective and a σ-essential extension of M , is a maximal σ-essential
extension of M and is a minimal σ-injective extension of M . If N is σ-essential in M ,
then it holds that Eσ(N) = Eσ(M). Let B be a submodule of a module M . We call B is
σ-essentially closed in M if B has no proper σ-essential extension in M .

The final version of this paper will be submitted for publication elsewhere.
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2. COMPLEMENT AND CLOSED SUBMODULE

First we state σ-essentially closed submodules and complement submodules relative to
torsion theories. Following proposition generalize Proposition 1.4 in [2].

Proposition 1. Let σ be a left exact radical and B be a submodule of a module M . We

denote B/B := σ(M/B). Then the following conditions from (1) to (9) are equivalent.

(1) B is essentially closed in B.

(2) B is σ-essentially closed in M .

(3) B is a complement of a submodule in B.

(4) If X is a complement of B in B, then B is a complement of X in B.

(5) It holds that B = Eσ(B) ∩M .

(6) If B ⊆ X ⊆e B, then X/B ⊆e B/B.

(7) It holds that B = E(B) ∩ B.

(8) There exists submodules M1 and K of M such that K ⊆ M1, M/M1 ∈ Fσ and B
is a complement of K in M1.

(9) If B ⊆ X ⊆σe M , then X/B ⊆σe M/B.

Proof. (2)→(1): Let B be σ-essentially closed in M . Let H a module such that B ⊆e

H ⊆ B. Since H/B ⊆ B/B = σ(M/B) ∈ Tσ, H/B ∈ Tσ. Thus B ⊆σe H ⊆ M, and so
H = B by (2).

(1)→(2): Let B be essentially closed in B. Let N be a module such that B ⊆σe N ⊆M,
and so B ⊆e N and N/B ∈ Tσ. Then N/B ⊆ σ(M/B) = B/B. Thus it holds that
B ⊆e N ⊆ B. By (1), B = N .

(2)→(6): Suppose that B is σ-essentially closed in M and X an essential submodule
of B containing B. Let Y/B be a submodule of B/B such that X/B ∩ Y/B = 0. Then
X ∩ Y = B. Since X is essential in B, B = Y ∩ X is essential in Y ∩ B = Y . Since
Y/B = Y/(Y ∩ X) ∼= (Y +X)/X ⊆ B/X և B/B ∈ Tσ, B is σ-essential in Y . As B is
σ-essentially closed in M , it follows that Y = B. Thus X/B is essential in B/B.

(6)→(4): Let X be a complement of B in B. Let B′ be a complement of X in B
containing B. Then (X⊕B)∩B′ = (X ∩B′)⊕B = B. Thus ((X⊕B)/B)∩ (B′/B) = 0.
Since X ⊕B is essential in B, it holds that (X ⊕B)/B is essential in B/B by (6) . Since
((X ⊕B)/B) ∩ (B′/B) = 0, then B′ = B, as desired.

(4)→(3): Since there exists a complement of B in B, it is obvious.
(3)→(2): Let B be a complement of a submodule K of B. Then B is essentially closed

in B. We show that B is σ-essentially closed in M . Let B′ be a submodule of M such
that B′ is a σ-essential extension of B. Then B ∩ B = B is essential in B′ ∩ B. Since B
is essentially closed in B, B = B′ ∩B . Since Tσ ∋ B′/B = B′/(B′ ∩B) ∼= (B′ +B)/B ⊆
M/B ∼= (M/B)/σ(M/B) ∈ Fσ, it follows that B

′ = B, as desired.
(2)→(5): It is easily verified that Eσ(B) ∩M is σ-essential extension of B in M . By

(2), it follows that Eσ(B) ∩M = B.
(5)→(2): Let X be a module such that B ⊆ X ⊆ M and B is σ-essential in X . Then

Eσ(B) = Eσ(X). By (5), B = Eσ(B)∩M . Since B ⊆ X ⊆ Eσ(X)∩M = Eσ(B)∩M = B,
it follows that X = B, as desired.

(1)→(7): Since E(B)∩B is essential extension of B in B, it holds that B = E(B)∩B.
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(7)→(1): Let X be a module such that B ⊆ X ⊆ B such that X is σ-essential extension
of B. Then it follows that E(X) = E(B). Since B ⊆ X ⊆ E(X) ∩ B = E(B) ∩ B = B,
it concludes that B = X .

(2)→(8): Let B be σ-essentially closed in M . Then M/B ∈ Fσ. We take a complement
K of B in B. Then B ⊕ K is essential in B and (B ⊕ K)/K is essential in B/K. We
take a complement L of K containing B in B. Since (B ⊕K)/K is σ-essential in B/K,
(B ⊕K)/K is σ-essential in (L⊕K)/K. Thus L is σ-essential extension of B. Thus by
(2) B = L, and so B is a complement of K in B.

(8)→(2): Suppose that there exists submodules M1 and K of M such that K ⊆ M1,
M/M1 ∈ Fσ and B is a complement of K in M1. Then B is essentially closed in M1. We
show that B is σ-essentially closed in M . Let B1 be a submodule of M such that B is
σ-essential in B1. Then B = B ∩M1 is essential in B1∩M1(⊆M1). Since B is essentially
closed in M1, B = B1 ∩ M1. Since Tσ ∋ B1/B = B1/(B1 ∩ M1) ∼= (B1 + M1)/M1 ⊆
M/M1 ∈ Fσ, it follows that B1 = B.

(2)→(9): Suppose that B is σ-essentially closed in M . Let X be a submodule of
M such that B ⊆ X ⊆σe M. Let Q be a submodule of M containing B such that
(X/B) ∩ (Q/B) = 0. Then B = Q ∩ X ⊆e Q ∩M = Q. Since Q/B = Q/(Q ∩ X) ∼=
(Q+X)/X ⊆M/X ∈ Tσ, it holds that B ⊆

σe Q ⊆M . Since B is σ-essentially closed in
M, B = Q, and so (Q/B) = 0. Thus X/B is σ-essential in M/B.

(9)→(2): Suppose that B ⊆σe X ⊆ M . Let B′ be a complement of B in M . Then
B⊕B′ ⊆σe M and hence by (9) (B⊕B′)/B ⊆σe M/B. Since B∩(B′∩X) = 0, B′∩X = 0.
Since ((B ⊕ B′)/B) ∩ (X/B) = [(B ⊕ B′) ∩X ]/B = [B ⊕ (B′ ∩X)]/B = 0, (X/B) = 0,
as desired. �

3. σ-QUASI-INJECTIVE MODULE

We call A σ-M-injective if HomR(−, A) preserves the exactness for any exact sequence
0→ N → M → M/N → 0, where M/N ∈ Tσ. The following proposition is a generaliza-
tion of Theorem 15 in [1].

Proposition 2. Let σ be a left exact radical. Then A is σ-M-injective if and only if

f(M) ⊆ A for any f ∈ HomR(Eσ(M), Eσ(A)).

Proof. (←): Let σ be an idempotent radical and N be a submodule of M such that
M/N ∈ Tσ. Since Eσ(M)/M ∈ Tσ and Tσ is closed under taking extensions, it follows
that Eσ(M)/N ∈ Tσ. Consider the following diagram.

0→ N → Eσ(M)→ Eσ(M)/N → 0
↓f ↓g

0→ A −→ Eσ(A)

For any f ∈ HomR(N,A), f is extended to g ∈ HomR(Eσ(M), Eσ(A)). By the as-
sumption it follows that g(M) ⊆ A, and so f is extended to g|M ∈ HomR(M,A), as
desired.

(→): Let σ be a left exact radical and f ∈ HomR(Eσ(M), Eσ(A)). Then f |M∩f−1A ∈
HomR(M ∩ f−1(A), A). Since M/(M ∩ f−1(A)) ≃ (M + f−1(A))/f−1(A) ≃ (f(M) +
A)/A ⊆ Eσ(A)/A ∈ Tσ, M/(M ∩ f−1(A)) ∈ Tσ. Consider the following diagram.
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0→ M ∩ f−1(A)→M →M/(M ∩ f−1(A))→ 0

f ↓ ւg

A

Thus by the assumption f |M∩f−1(A) is extended to g ∈ HomR(M,A), and so (g−f)(M∩
f−1(A)) = 0 . Hence we obtain ker(g − f) ⊇ M ∩ f−1(A). If x ∈ (g − f)−1(A), then
there exists an a ∈ A such that g(x) − f(x) = a, and then f(x) = g(x) − a ∈ A and
so x ∈ f−1(A). It follows that (g − f)−1(A) ⊆ f−1(A), and so M ∩ (g − f)−1(A) ⊆
M ∩ f−1(A) ⊆ ker(g− f). If a = (g− f)(m) ∈ (g− f)M ∩A for a ∈ A and m ∈M , then
m ∈ (g − f)−1a ⊆ M ∩ (g − f)−1A ⊆ ker(g − f), and so 0 = (g − f)(m) = a. Thus it
follows that (g − f)M ∩ A = 0. Since A is essential in Eσ(A), (g − f)M = 0, and so we
obtain that f(M) = g(M) ⊆ A, as desired. �

We obtain the following corollary as a torsion theoretic generalization of the Johnson
Wong theorem [4] by putting M = A in Proposition 2. We call a module A σ-quasi-
injective if A is σ-A-injective.

Corollary 3. Let σ be a left exact radical. Then A is σ-quasi-injective if and only if

f(A) ⊆ A for any f ∈ HomR(Eσ(A), Eσ(A)).

The following lemma generalizes Proposition 2.3 in [3].

Lemma 4. If A is σ-quasi-injective and Eσ(A) = M ⊕N , then A = (M ∩A)⊕ (N ∩A).

Proof. Let pM(pN) be a canonical projection from Eσ(A) to M(N) respectively. Then by
Corollay 3, it follows that pM(A) ⊆ A and pN(A) ⊆ A. If A ∋ a = m + n ∈ M +N for
m ∈ M and n ∈ N , then A ∋ pM(a) = pM(m+ n) = m ∈ M , and so m ∈ A ∩M , and it
is similarly proved that n ∈ A ∩N . Thus A ⊆ (M ∩ A)⊕ (N ∩ A), as desired. �

4. (σ-Ci) CONDITIONS

Next we consider (Ci) conditions relative to torsion theories. For (Ci) conditions, see [5].
We call a module M σ-quasi-injective if for any σ-dense submodule N of M , HomR( ,M)
preserves the exactness of a short exact sequence 0 → N → M → M/N → 0. The
following proposition generalize Proposition 2.1 in [5]. We call a module M has (σ-C1) if
every σ-dense submodule of M is essential in a summand of M . We call a module M has
(σ-C2) if a σ-dense submodule A of M is isomorphic to a summand A1 of M , then A is
a summand of M .

From now on we assume that σ is a left exact radical.

Proposition 5. Any σ-quasi-injective module M has (σ-C1) and (σ-C2).

Proof. (σ-C1): Let N be a σ-dense submodule of a σ-quasi-injective module M . Consider
the exact sequence 0 → M/N → Eσ(M)/N → Eσ(M)/M → 0. Since Tσ is closed
under taking extensions, it follows that Eσ(M)/N ∈ Tσ. Since Tσ is closed under taking
factor modules, it holds that Eσ(M)/Eσ(N) ∈ Tσ. As Eσ(N) is σ-injective, there exists
a submodule E of Eσ(M) such that Eσ(M) = Eσ(N)⊕ E. Since M is σ-quasi-injective,
it follows that M = (M ∩ Eσ(N)) ⊕ (E ∩M) by Lemma 4. Thus N is σ-essential in
M ∩ Eσ(N) which is a summand of M , as desired. (σ-C2): Since M is σ-quasi-injective,
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M is σ-M-injective. As A1 is a direct summand of M , A1 is σ-M-injective. Consider the
following exact sequence.

0→ A
g
→ M →M/A→ 0 (with M/A ∈ Tσ)

↓h ↓f
A1 ⊆⊕

M

, where h is isomorphism from A to A1 and f is a homomorphism from M to A1 such
that fg = h. It is easily verified that A is a summand of M . �

We call a moduleM has (σ-C3) ifM1 andM2 are summands ofM such thatM1∩M2 = 0
and M/(M1 ⊕M2) ∈ Tσ, then M1 ⊕M2 is a summand of M . We call a module M has
(σ-C ′

3) if M1 and M2 are summands of M such that M1,M/M2 ∈ Tσ and M1 ∩M2 = 0,
then M1⊕M2 is a summand of M . It is easily verified that (σ-C3)⇒(σ-C ′

3). The following
proposition generalize Proposition 2.2 in [5].

Proposition 6. If a module M has (σ-C2), then M has (σ-C ′

3).

Proof. Let M1 and M2 be summands of M such that M1,M/M2 ∈ Tσ and M1 ∩M2 = 0.
Since M1 is a summand of M , there exists a submodule M∗

1 such that M = M1⊕M∗

1 . Let
π be a projection M = M1 ⊕M∗

1 → M∗

1 . By modular law, M1⊕M2 = M ∩ (M1⊕M2) =
(M1 ⊕ M∗

1 ) ∩ (M1 ⊕ M2) = M1 ⊕ (M∗

1 ∩ (M1 ⊕ M2)). Thus π(M2) = π(M1 ⊕ M2) =
π(M1 ⊕ (M∗

1 ∩ (M1 ⊕ M2))) = M∗

1 ∩ (M1 ⊕ M2). Thus M1 ⊕ M2 = M1 ⊕ π(M2) and
π(M2) ⊆ M∗

1 . Then ker π|M2
= ker π ∩M2 = M1 ∩M2 = 0, π|M2

: M2 ։ π(M2)(⊆ M)
is an isomorphism. Since M∗

1 /π(M2) ≃ M/M2 ∈ Tσ and M/M∗

1 ≃ M1 ∈ Tσ, the middle
term of 0 → M∗

1 /π(M2) → M/π(M2) → M/M∗

1 → 0 is in Tσ. Thus π(M2) is σ-dense
submodule of M . Thus we get π(M2) ⊆

⊕ M by (σ-C2). Thus there exists a module
X such that M = X ⊕ π(M2). By modular law, M∗

1 = (X ∩ M∗

1 ) ⊕ π(M2). Thus
M = M1⊕M

∗

1 = M1⊕(X∩M
∗

1 )⊕π(M2) = (M1⊕π(M2))⊕(X∩M
∗

1 ) = M1⊕M2⊕(X∩M
∗

1 ),
and so M1 ⊕M2 ⊆

⊕ M . �

We call a module of M σ-continuous if it has (σ-C1) and (σ-C2). We call a module
M σ-quasi-continuous if it has (σ-C1) and (σ-C ′

3). We have just seen that the following
implications hold: σ-injective ⇒ σ-quasi-injective ⇒ σ-continuous ⇒ σ-quasi-continuous
⇒ σ-C1

Proposition 7. A module M has (σ-C1) if and only if every essentially closed σ-dense-
submodule of M is a summand of M .

Proof. ⇒): Let N be an essentially closed σ-dense submodule of M . Since M/N ∈ Tσ,
there exists a decomposition M = X ⊕ Y such that N ⊆σe X ⊆ M . As N is essentially
closed in M and so N = X . Thus M = N ⊕ Y .
⇐): Let N be a σ-dense submodule of M . Let X be a complement of N in M and

Y be a complement of X in M containing N . Then Y is essentially closed σ-dense in
M . By the assumption Y is a summand of M . We show that N is essential in Y . If N
is not essential in Y , there exists a nonzero submodule H of Y such that N ∩H = 0. If
N ∩ (X⊕H) ∋ n = x+h, where n ∈ N, x ∈ X and h ∈ H . Then x = n−h ∈ X ∩Y = 0.
Thus x = 0, and so n = h ∈ N ∩H = 0. Therefore N ∩ (X ⊕H) = 0. By construction of
X , X = X ⊕H , and so H = 0. Thus N is essential in Y . Thus if M/N ∈ Tσ, then there
exists a submodule Y of M such that N ⊆e Y and Y is a summand of M . �
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Proposition 8. For a submodule A of a module M , if A is σ-essentially closed in a

summand of M , then A is σ-essentially closed in M .

Proof. Let M = M1 ⊕M2 with A σ-essentially closed in M1. Let π denote the projection
M1⊕M2 ։ M1. Assume that A ⊆σe B ⊆M . It is easy to see that A = π(A) ⊆σe π(B) ⊆
M1. Since A is σ-essentially closed in M1, π(B) = A ⊆ B, and so (1− π)(B) ⊆ B. Since
(1 − π)(B) ∩ A = 0 and A ⊆e B, (1 − π)(B) = 0. Thus A ⊆σe B = π(B) ⊆ M1. Since A
is σ-essentially closed in M1, it holds that A = B. �

Lemma 9. If M = A⊕ B and A ⊆e K ⊆M , then K = A.

Proof. By modular law it follows that K = A⊕ (K ∩B), and so A ∩ (K ∩B) = 0. Since
A is essential in K, K ∩ B = 0, and so K = A⊕ (K ∩ B) = A. �

The following proposition generalize Theorem 2.8 in [5].

Proposition 10. Consider the following conditions.

It holds that (3)⇔ (4)→ (1)→ (2). If ker f ∈ Tσ for any idempotent f ∈ EndR(Eσ(M)),
then (2)→ (3) holds.

(1) M has (σ-C1) and (σ-C3).
(2) M = X ⊕ Y for σ-dense submodules X, Y of M such that X is a complement of

Y in M and Y is a complement of X in M .

(3) f(M) ⊆M for any idempotent f in EndR(Eσ(M)).
(4) If Eσ(M) = ⊕Ei, then M = ⊕ (M ∩ Ei).

Proof. (1)→(2): Let X and Y be σ-dense submodules of M such that X is a complement
of Y in M and Y is a complement of X in M . Since X and Y are essentially closed in
M , X and Y are direct summands of M by (σ-C1). Then X ⊕ Y is σ-essential in M . By
(σ-C3), X⊕Y is a direct summand of M , and so M = X⊕Y ⊕Z ⊇e (X ⊕Y ). Therefore
it follows that Z = 0, and so M = X ⊕ Y .

(2)→(3): We assume that ker f ∈ Tσ for any idempotent f ∈ EndR(Eσ(M)). Let
A1 = M ∩ f(Eσ(M)) and A2 = M ∩ (1 − f)(Eσ(M)). Then A1 ∩ A2 = 0. Since
Eσ(M) = f(Eσ(M)) ⊕ ker f for any idempotent f in EndR(Eσ(M)) and M/Ai ≃ (M +
f(Eσ(M)))/f(Eσ(M)) ⊆ Eσ(M)/f(Eσ(M)) ≃ ker f ∈ Tσ, M/Ai ∈ Tσ for i = 1, 2. Let B1

be a complement of A1 containing A2 in M and B2 be a complement of B1 containing A2

in M . Then by (2) M = B1 ⊕ B2. Let π be a projection B1 ⊕ B2 ։ B1. We claim that
M ∩ (f −π)(M) = 0. Let x, y ∈ M such that (f −π)(x) = y. Then f(x) = y+π(x) ∈M ,
and so f(x) ∈ A1. Moreover (1 − f)(x) ∈ M , and so (1 − f)(x) ∈ A2. Therefore
x = f(x)⊕(1−f)(x) ∈ A1⊕A2 ⊆ B1⊕B2 = M . π(x) = π(f(x))+π(1−f)(x) = f(x)+0,
and so y = 0. Thus M ∩ (f −π)(M) = 0. Since M is essential in Eσ(M), (f −π)(M) = 0,
and so f(M) = π(M) ⊆M .

(3)→(4): Let Eσ(M) = ⊕
i∈I

Ei, then it is clear that M ⊇ ⊕
i∈I

(M ∩ Ei). Let m be

an element of M ⊆ Eσ(M) = ⊕
i∈I

Ei. Then there exists a finite index subset F of I

such that m ∈ ⊕
i∈F

Ei. Write Eσ(M) = ( ⊕
i∈F

Ei) ⊕ (⊕Ei
i∈I−F

). Then there exist orthogonal

idempotents fi ∈ EndR(Eσ(M))(i ∈ F ) such that Ei = fi(Eσ(M)). Since fi(M) ⊆ M by
(3), m =

∑

i∈F

fi(m) ∈ ⊕
i∈F

(M ∩ Ei). Thus M ⊆ ⊕
i∈I

(M ∩ Ei), and M = ⊕
i∈I

(M ∩ Ei).
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(4)→(1): Let A be a σ-dense submodule of M . Consider the following exact sequence.
0 → M/A → Eσ(M)/A → Eσ(M)/M → 0. Since Tσ is closed under taking exten-
sions, Eσ(M)/A ∈ Tσ. As Eσ(M)/A ։ Eσ(M)/Eσ(A), Eσ(M)/Eσ(A) ∈ Tσ. Thus
0 → Eσ(A) → Eσ(M) → Eσ(M)/Eσ(A) → 0 splits. Then Eσ(M) = Eσ(A)⊕ E. By (4)
M = (M ∩ Eσ(A))⊕ (M ∩ E). Since (M ∩ Eσ(A))/A ⊆ Eσ(A)/A ∈ Tσ, A is σ-essential
in M ∩ Eσ(A) which is a direct summand of M . Thus M has (σ-C1).

Let M1 and M2 be direct summands of M such that M1∩M2 = 0 and M/M1,M2 ∈ Tσ.
Then M/(M1 ⊕ M2) ∈ Tσ. Consider the following exact sequence. 0 → M/(M1 ⊕
M2) → Eσ(M)/(M1 ⊕ M2) → Eσ(M)/M → 0. Thus Eσ(M)/(M1 ⊕ M2) ∈ Tσ. Thus
Eσ(M)/(Eσ(M1)⊕Eσ(M2)) ∈ Tσ. Thus 0→ Eσ(M1)⊕Eσ(M2)→ Eσ(M)→ Eσ(M)/(Eσ(M1)⊕
Eσ(M2)) → 0 splits. Thus there exists a submodule E of Eσ(M) such that Eσ(M) =
Eσ(M1) ⊕ Eσ(M2) ⊕ E. Then by (4) M = (M ∩ Eσ(M1)) ⊕ (M ∩ Eσ(M2)) ⊕ (M ∩ E).
Since Mi is a summand of M and Mi is essential in M ∩ Eσ(Mi), Mi = M ∩ Eσ(Mi) by
Lemma 9. Thus M = M1 ⊕M2 ⊕ (M ∩ E), as desired. Thus M has (σ-C3).

(4)→(3): EndR(Eσ(M)) ∋ f = f 2, then Eσ(M) = f(Eσ(M)) ⊕ f−1(0). By (4) M =
(M ∩ f(Eσ(M))) ⊕ (M ∩ f−1(0)). For any m ∈ M, there exists x ∈ M ∩ f(Eσ(M)) and
y ∈ M ∩ f−1(0) such that m = x + y. Then f(m) = f(x) + f(y) = x + 0 ∈ M , and so
f(M) ⊆M . �
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