COMPLEMENTS AND CLOSED SUBMODULES RELATIVE TO TORSION THEORIES

YASUHIKO TAKEHANA

ABSTRACT. A submodule of a module M is called to be closed if it has no proper essential extensions in M. A submodule X of M is called to be a complement if it is maximal with respect to $X \cap Y = 0$, for some submodule Y of M. It is well known that closed and complement submodule are the same. A module M is called to be extending (M has condition (C_1) if any submodule of M is essential in a summand of M. It is known that quasi-injective module is extending. In this note we generalize this by using hereditary torsion theories and state related results.

1. INTRODUCTION

Throughout this paper R is a ring with a unit element, every right R-module is unital and Mod-R is the category of right R-modules. A subfunctor of the identity functor of Mod-R is called a preradical. For preradical σ , $\mathcal{T}_{\sigma} := \{M \in \text{Mod-}R | \sigma(M) = M\}$ is the class of σ -torsion right *R*-modules, and $\mathcal{F}_{\sigma} := \{M \in \text{Mod-}R | \sigma(M) = 0\}$ is the class of σ -torsion free right *R*-modules. A prenadical *t* is called to be idempotent (a radical) if t(t(M)) = t(M)(t(M/t(M)) = 0). Let C be a subclass of Mod-R. A torsion theory for C is a pair of $(\mathcal{T},\mathcal{F})$ of classes of objects of \mathcal{C} such that (i) $\operatorname{Hom}_{\mathcal{B}}(T,F)=0$ for all $T\in\mathcal{T}$, $F \in \mathcal{F}$. (ii) If $\operatorname{Hom}_R(M, F) = 0$ for all $F \in \mathcal{F}$, then $M \in \mathcal{T}$. (iii) If $\operatorname{Hom}_R(T, N) = 0$ for all $T \in \mathcal{T}$, then $N \in \mathcal{F}$. It is well known that $(\mathcal{T}_t, \mathcal{F}_t)$ is a torsion theory for an idempotent radical t. A preradical t is called to be left exact if $t(N) = N \cap t(M)$ holds for any module M and its submodule N. For a preradical σ and a module M and its submodule N, N is called to be σ -dense submodule of M if $M/N \in \mathcal{T}_{\sigma}$. If N is an essential and σ -dense submodule of M, then N is called to be a σ -essential submodule of M(M) is a σ -essential extension of N). If N is essential in M, we denote $N \subseteq^{e} M$. If N is σ -essential in M, we denote $N \subseteq \sigma^e M$. For an idempotent radical σ a module M is called to be σ -injective if the functor $\operatorname{Hom}_R(-, M)$ preserves the exactness for any exact sequence $0 \to A \to B \to C \to 0$ with $C \in \mathcal{T}_{\sigma}$. We denote E(M) the injective hull of a module M. For an idempotent radical σ , $E_{\sigma}(M)$ is called the σ -injective hull of a module M, where $E_{\sigma}(M)$ is defined by $E_{\sigma}(M)/M := \sigma(E(M)/M)$. Then even if σ is not left exact, $E_{\sigma}(M)$ is σ -injective and a σ -essential extension of M, is a maximal σ -essential extension of M and is a minimal σ -injective extension of M. If N is σ -essential in M, then it holds that $E_{\sigma}(N) = E_{\sigma}(M)$. Let B be a submodule of a module M. We call B is σ -essentially closed in M if B has no proper σ -essential extension in M.

The final version of this paper will be submitted for publication elsewhere.

2. COMPLEMENT AND CLOSED SUBMODULE

First we state σ -essentially closed submodules and complement submodules relative to torsion theories. Following proposition generalize Proposition 1.4 in [2].

Proposition 1. Let σ be a left exact radical and B be a submodule of a module M. We denote $\overline{B}/B := \sigma(M/B)$. Then the following conditions from (1) to (9) are equivalent.

- (1) B is essentially closed in \overline{B} .
- (2) B is σ -essentially closed in M.
- (3) B is a complement of a submodule in \overline{B} .
- (4) If X is a complement of B in \overline{B} , then B is a complement of X in \overline{B} .
- (5) It holds that $B = E_{\sigma}(B) \cap M$.
- (6) If $B \subseteq X \subseteq^{e} \overline{B}$, then $X/B \subseteq^{e} \overline{B}/B$.
- (7) It holds that $B = E(B) \cap \overline{B}$.
- (8) There exists submodules M_1 and K of M such that $K \subseteq M_1$, $M/M_1 \in \mathcal{F}_{\sigma}$ and B is a complement of K in M_1 .
- (9) If $B \subseteq X \subseteq^{\sigma e} M$, then $X/B \subseteq^{\sigma e} M/B$.

Proof. (2) \rightarrow (1): Let *B* be σ -essentially closed in *M*. Let *H* a module such that $B \subseteq {}^{e}$ $H \subseteq \overline{B}$. Since $H/B \subseteq \overline{B}/B = \sigma(M/B) \in \mathcal{T}_{\sigma}$, $H/B \in \mathcal{T}_{\sigma}$. Thus $B \subseteq {}^{\sigma e} H \subseteq M$, and so H = B by (2).

 $(1) \to (2)$: Let *B* be essentially closed in \overline{B} . Let *N* be a module such that $B \subseteq^{\sigma e} N \subseteq M$, and so $B \subseteq^{e} N$ and $N/B \in \mathcal{T}_{\sigma}$. Then $N/B \subseteq \sigma(M/B) = \overline{B}/B$. Thus it holds that $B \subseteq^{e} N \subseteq \overline{B}$. By (1), B = N.

(2) \rightarrow (6): Suppose that *B* is σ -essentially closed in *M* and *X* an essential submodule of \overline{B} containing *B*. Let *Y*/*B* be a submodule of \overline{B}/B such that $X/B \cap Y/B = \overline{0}$. Then $X \cap Y = B$. Since *X* is essential in \overline{B} , $B = Y \cap X$ is essential in $Y \cap \overline{B} = Y$. Since $Y/B = Y/(Y \cap X) \cong (Y + X)/X \subseteq \overline{B}/X \iff \overline{B}/B \in \mathcal{T}_{\sigma}$, *B* is σ -essential in *Y*. As *B* is σ -essentially closed in *M*, it follows that Y = B. Thus X/B is essential in \overline{B}/B .

 $(6) \rightarrow (4)$: Let X be a complement of B in \overline{B} . Let B' be a complement of X in \overline{B} containing B. Then $(X \oplus B) \cap B' = (X \cap B') \oplus B = B$. Thus $((X \oplus B)/B) \cap (B'/B) = \overline{0}$. Since $X \oplus B$ is essential in \overline{B} , it holds that $(X \oplus B)/B$ is essential in \overline{B}/B by (6). Since $((X \oplus B)/B) \cap (B'/B) = \overline{0}$, then B' = B, as desired.

 $(4) \rightarrow (3)$: Since there exists a complement of B in \overline{B} , it is obvious.

 $(3) \to (2)$: Let *B* be a complement of a submodule *K* of \overline{B} . Then *B* is essentially closed in \overline{B} . We show that *B* is σ -essentially closed in *M*. Let *B'* be a submodule of *M* such that *B'* is a σ -essential extension of *B*. Then $B \cap \overline{B} = B$ is essential in $B' \cap \overline{B}$. Since *B* is essentially closed in \overline{B} , $B = B' \cap \overline{B}$. Since $\mathcal{T}_{\sigma} \ni B'/B = B'/(B' \cap \overline{B}) \cong (B' + \overline{B})/\overline{B} \subseteq$ $M/\overline{B} \cong (M/B)/\sigma(M/B) \in \mathcal{F}_{\sigma}$, it follows that B' = B, as desired.

(2) \rightarrow (5): It is easily verified that $E_{\sigma}(B) \cap M$ is σ -essential extension of B in M. By (2), it follows that $E_{\sigma}(B) \cap M = B$.

 $(5) \to (2)$: Let X be a module such that $B \subseteq X \subseteq M$ and B is σ -essential in X. Then $E_{\sigma}(B) = E_{\sigma}(X)$. By (5), $B = E_{\sigma}(B) \cap M$. Since $B \subseteq X \subseteq E_{\sigma}(X) \cap M = E_{\sigma}(B) \cap M = B$, it follows that X = B, as desired.

 $(1) \rightarrow (7)$: Since $E(B) \cap \overline{B}$ is essential extension of B in \overline{B} , it holds that $B = E(B) \cap \overline{B}$.

 $(7) \rightarrow (1)$: Let X be a module such that $B \subseteq X \subseteq \overline{B}$ such that X is σ -essential extension of B. Then it follows that E(X) = E(B). Since $B \subseteq X \subseteq E(X) \cap \overline{B} = E(B) \cap \overline{B} = B$, it concludes that B = X.

 $(2) \to (8)$: Let *B* be σ -essentially closed in *M*. Then $M/\overline{B} \in \mathcal{F}_{\sigma}$. We take a complement *K* of *B* in \overline{B} . Then $B \oplus K$ is essential in \overline{B} and $(B \oplus K)/K$ is essential in \overline{B}/K . We take a complement *L* of *K* containing *B* in \overline{B} . Since $(B \oplus K)/K$ is σ -essential in \overline{B}/K , $(B \oplus K)/K$ is σ -essential in $(L \oplus K)/K$. Thus *L* is σ -essential extension of *B*. Thus by (2) B = L, and so *B* is a complement of *K* in \overline{B} .

 $(8) \rightarrow (2)$: Suppose that there exists submodules M_1 and K of M such that $K \subseteq M_1$, $M/M_1 \in \mathcal{F}_{\sigma}$ and B is a complement of K in M_1 . Then B is essentially closed in M_1 . We show that B is σ -essentially closed in M. Let B_1 be a submodule of M such that B is σ -essential in B_1 . Then $B = B \cap M_1$ is essential in $B_1 \cap M_1 (\subseteq M_1)$. Since B is essentially closed in M_1 , $B = B_1 \cap M_1$. Since $\mathcal{T}_{\sigma} \ni B_1/B = B_1/(B_1 \cap M_1) \cong (B_1 + M_1)/M_1 \subseteq$ $M/M_1 \in \mathcal{F}_{\sigma}$, it follows that $B_1 = B$.

 $(2) \rightarrow (9)$: Suppose that B is σ -essentially closed in M. Let X be a submodule of M such that $B \subseteq X \subseteq^{\sigma e} M$. Let Q be a submodule of M containing B such that $(X/B) \cap (Q/B) = 0$. Then $B = Q \cap X \subseteq^{e} Q \cap M = Q$. Since $Q/B = Q/(Q \cap X) \cong (Q+X)/X \subseteq M/X \in \mathcal{T}_{\sigma}$, it holds that $B \subseteq^{\sigma e} Q \subseteq M$. Since B is σ -essentially closed in M, B = Q, and so (Q/B) = 0. Thus X/B is σ -essential in M/B.

 $(9) \rightarrow (2)$: Suppose that $B \subseteq {}^{\sigma e} X \subseteq M$. Let B' be a complement of B in M. Then $B \oplus B' \subseteq {}^{\sigma e} M$ and hence by $(9) (B \oplus B')/B \subseteq {}^{\sigma e} M/B$. Since $B \cap (B' \cap X) = 0, B' \cap X = 0$. Since $((B \oplus B')/B) \cap (X/B) = [(B \oplus B') \cap X]/B = [B \oplus (B' \cap X)]/B = 0, (X/B) = 0$, as desired.

3. σ -QUASI-INJECTIVE MODULE

We call $A \sigma - M$ -injective if $\operatorname{Hom}_R(-, A)$ preserves the exactness for any exact sequence $0 \to N \to M \to M/N \to 0$, where $M/N \in \mathcal{T}_{\sigma}$. The following proposition is a generalization of Theorem 15 in [1].

Proposition 2. Let σ be a left exact radical. Then A is σ -M-injective if and only if $f(M) \subseteq A$ for any $f \in Hom_R(E_{\sigma}(M), E_{\sigma}(A))$.

Proof. (\leftarrow): Let σ be an idempotent radical and N be a submodule of M such that $M/N \in \mathcal{T}_{\sigma}$. Since $E_{\sigma}(M)/M \in \mathcal{T}_{\sigma}$ and \mathcal{T}_{σ} is closed under taking extensions, it follows that $E_{\sigma}(M)/N \in \mathcal{T}_{\sigma}$. Consider the following diagram.

$$0 \to N \to E_{\sigma}(M) \to E_{\sigma}(M)/N \to 0$$
$$\downarrow_{f} \qquad \downarrow_{g}$$
$$0 \to A \longrightarrow E_{\sigma}(A)$$

For any $f \in \operatorname{Hom}_R(N, A)$, f is extended to $g \in \operatorname{Hom}_R(E_{\sigma}(M), E_{\sigma}(A))$. By the assumption it follows that $g(M) \subseteq A$, and so f is extended to $g|_M \in \operatorname{Hom}_R(M, A)$, as desired.

 (\rightarrow) : Let σ be a left exact radical and $f \in \operatorname{Hom}_R(E_{\sigma}(M), E_{\sigma}(A))$. Then $f|_{M \cap f^{-1}A} \in \operatorname{Hom}_R(M \cap f^{-1}(A), A)$. Since $M/(M \cap f^{-1}(A)) \simeq (M + f^{-1}(A))/f^{-1}(A) \simeq (f(M) + A)/A \subseteq E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}, M/(M \cap f^{-1}(A)) \in \mathcal{T}_{\sigma}$. Consider the following diagram.

$$\begin{array}{ccc} 0 \to & M \cap f^{-1}(A) \to M \to M/(M \cap f^{-1}(A)) \to 0 \\ & & f \downarrow & \swarrow g \\ & & A \end{array}$$

Thus by the assumption $f|_{M\cap f^{-1}(A)}$ is extended to $g \in \operatorname{Hom}_R(M, A)$, and so $(g-f)(M\cap f^{-1}(A)) = 0$. Hence we obtain $\ker(g-f) \supseteq M \cap f^{-1}(A)$. If $x \in (g-f)^{-1}(A)$, then there exists an $a \in A$ such that g(x) - f(x) = a, and then $f(x) = g(x) - a \in A$ and so $x \in f^{-1}(A)$. It follows that $(g-f)^{-1}(A) \subseteq f^{-1}(A)$, and so $M \cap (g-f)^{-1}(A) \subseteq M \cap f^{-1}(A) \subseteq \ker(g-f)$. If $a = (g-f)(m) \in (g-f)M \cap A$ for $a \in A$ and $m \in M$, then $m \in (g-f)^{-1}a \subseteq M \cap (g-f)^{-1}A \subseteq \ker(g-f)$, and so 0 = (g-f)(m) = a. Thus it follows that $(g-f)M \cap A = 0$. Since A is essential in $E_{\sigma}(A)$, (g-f)M = 0, and so we obtain that $f(M) = g(M) \subseteq A$, as desired. \Box

We obtain the following corollary as a torsion theoretic generalization of the Johnson Wong theorem [4] by putting M = A in Proposition 2. We call a module $A \sigma$ -quasi-injective if A is σ -A-injective.

Corollary 3. Let σ be a left exact radical. Then A is σ -quasi-injective if and only if $f(A) \subseteq A$ for any $f \in Hom_R(E_{\sigma}(A), E_{\sigma}(A))$.

The following lemma generalizes Proposition 2.3 in [3].

Lemma 4. If A is σ -quasi-injective and $E_{\sigma}(A) = M \oplus N$, then $A = (M \cap A) \oplus (N \cap A)$.

Proof. Let $p_M(p_N)$ be a canonical projection from $E_{\sigma}(A)$ to M(N) respectively. Then by Corollay 3, it follows that $p_M(A) \subseteq A$ and $p_N(A) \subseteq A$. If $A \ni a = m + n \in M + N$ for $m \in M$ and $n \in N$, then $A \ni p_M(a) = p_M(m+n) = m \in M$, and so $m \in A \cap M$, and it is similarly proved that $n \in A \cap N$. Thus $A \subseteq (M \cap A) \oplus (N \cap A)$, as desired. \Box

4. $(\sigma - C_i)$ CONDITIONS

Next we consider (C_i) conditions relative to torsion theories. For (C_i) conditions, see [5]. We call a module M σ -quasi-injective if for any σ -dense submodule N of M, $\operatorname{Hom}_R(_, M)$ preserves the exactness of a short exact sequence $0 \to N \to M \to M/N \to 0$. The following proposition generalize Proposition 2.1 in [5]. We call a module M has $(\sigma - C_1)$ if every σ -dense submodule of M is essential in a summand of M. We call a module M has $(\sigma - C_2)$ if a σ -dense submodule A of M is isomorphic to a summand A_1 of M, then A is a summand of M.

From now on we assume that σ is a left exact radical.

Proposition 5. Any σ -quasi-injective module M has $(\sigma - C_1)$ and $(\sigma - C_2)$.

Proof. $(\sigma - C_1)$: Let N be a σ -dense submodule of a σ -quasi-injective module M. Consider the exact sequence $0 \to M/N \to E_{\sigma}(M)/N \to E_{\sigma}(M)/M \to 0$. Since \mathcal{T}_{σ} is closed under taking extensions, it follows that $E_{\sigma}(M)/N \in \mathcal{T}_{\sigma}$. Since \mathcal{T}_{σ} is closed under taking factor modules, it holds that $E_{\sigma}(M)/E_{\sigma}(N) \in \mathcal{T}_{\sigma}$. As $E_{\sigma}(N)$ is σ -injective, there exists a submodule E of $E_{\sigma}(M)$ such that $E_{\sigma}(M) = E_{\sigma}(N) \oplus E$. Since M is σ -quasi-injective, it follows that $M = (M \cap E_{\sigma}(N)) \oplus (E \cap M)$ by Lemma 4. Thus N is σ -essential in $M \cap E_{\sigma}(N)$ which is a summand of M, as desired. $(\sigma - C_2)$: Since M is σ -quasi-injective, M is σ -M-injective. As A_1 is a direct summand of M, A_1 is σ -M-injective. Consider the following exact sequence.

$$0 \to A \xrightarrow{g} M \to M/A \to 0 \text{ (with } M/A \in \mathcal{T}_{\sigma})$$
$$\downarrow_{h} \qquad \downarrow_{f}$$
$$A_{1} \subseteq_{\oplus} M$$

, where h is isomorphism from A to A_1 and f is a homomorphism from M to A_1 such that fg = h. It is easily verified that A is a summand of M.

We call a module M has $(\sigma - C_3)$ if M_1 and M_2 are summands of M such that $M_1 \cap M_2 = 0$ and $M/(M_1 \oplus M_2) \in \mathcal{T}_{\sigma}$, then $M_1 \oplus M_2$ is a summand of M. We call a module M has $(\sigma - C'_3)$ if M_1 and M_2 are summands of M such that $M_1, M/M_2 \in \mathcal{T}_{\sigma}$ and $M_1 \cap M_2 = 0$, then $M_1 \oplus M_2$ is a summand of M. It is easily verified that $(\sigma - C_3) \Rightarrow (\sigma - C'_3)$. The following proposition generalize Proposition 2.2 in [5].

Proposition 6. If a module M has $(\sigma - C_2)$, then M has $(\sigma - C'_3)$.

Proof. Let M_1 and M_2 be summands of M such that $M_1, M/M_2 \in \mathcal{T}_{\sigma}$ and $M_1 \cap M_2 = 0$. Since M_1 is a summand of M, there exists a submodule M_1^* such that $M = M_1 \oplus M_1^*$. Let π be a projection $M = M_1 \oplus M_1^* \to M_1^*$. By modular law, $M_1 \oplus M_2 = M \cap (M_1 \oplus M_2) = (M_1 \oplus M_1^*) \cap (M_1 \oplus M_2) = M_1 \oplus (M_1^* \cap (M_1 \oplus M_2))$. Thus $\pi(M_2) = \pi(M_1 \oplus M_2) = \pi(M_1 \oplus M_2)) = M_1^* \cap (M_1 \oplus M_2)$. Thus $M_1 \oplus M_2 = M_1 \oplus \pi(M_2)$ and $\pi(M_2) \subseteq M_1^*$. Then ker $\pi|_{M_2} = \ker \pi \cap M_2 = M_1 \cap M_2 = 0$, $\pi|_{M_2} : M_2 \twoheadrightarrow \pi(M_2) \subseteq M)$ is an isomorphism. Since $M_1^*/\pi(M_2) \simeq M/M_2 \in \mathcal{T}_{\sigma}$ and $M/M_1^* \simeq M_1 \in \mathcal{T}_{\sigma}$, the middle term of $0 \to M_1^*/\pi(M_2) \to M/\pi(M_2) \to M/M_1^* \to 0$ is in \mathcal{T}_{σ} . Thus $\pi(M_2)$ is σ -dense submodule of M. Thus we get $\pi(M_2) \subseteq^{\oplus} M$ by $(\sigma - C_2)$. Thus there exists a module X such that $M = X \oplus \pi(M_2)$. By modular law, $M_1^* = (X \cap M_1^*) \oplus \pi(M_2)$. Thus $M = M_1 \oplus M_1^* = M_1 \oplus (X \cap M_1^*) \oplus \pi(M_2) = (M_1 \oplus \pi(M_2)) \oplus (X \cap M_1^*) = M_1 \oplus M_2 \oplus (X \cap M_1^*)$, and so $M_1 \oplus M_2 \subseteq^{\oplus} M$.

We call a module of M σ -continuous if it has $(\sigma - C_1)$ and $(\sigma - C_2)$. We call a module M σ -quasi-continuous if it has $(\sigma - C_1)$ and $(\sigma - C'_3)$. We have just seen that the following implications hold: σ -injective $\Rightarrow \sigma$ -quasi-injective $\Rightarrow \sigma$ -continuous $\Rightarrow \sigma$ -quasi-continuous $\Rightarrow \sigma$

Proposition 7. A module M has $(\sigma - C_1)$ if and only if every essentially closed σ -densesubmodule of M is a summand of M.

Proof. \Rightarrow): Let N be an essentially closed σ -dense submodule of M. Since $M/N \in \mathcal{T}_{\sigma}$, there exists a decomposition $M = X \oplus Y$ such that $N \subseteq^{\sigma e} X \subseteq M$. As N is essentially closed in M and so N = X. Thus $M = N \oplus Y$.

 \Leftarrow): Let N be a σ -dense submodule of M. Let X be a complement of N in M and Y be a complement of X in M containing N. Then Y is essentially closed σ -dense in M. By the assumption Y is a summand of M. We show that N is essential in Y. If N is not essential in Y, there exists a nonzero submodule H of Y such that $N \cap H = 0$. If $N \cap (X \oplus H) \ni n = x + h$, where $n \in N, x \in X$ and $h \in H$. Then $x = n - h \in X \cap Y = 0$. Thus x = 0, and so $n = h \in N \cap H = 0$. Therefore $N \cap (X \oplus H) = 0$. By construction of X, $X = X \oplus H$, and so H = 0. Thus N is essential in Y. Thus if $M/N \in \mathcal{T}_{\sigma}$, then there exists a submodule Y of M such that $N \subseteq^{e} Y$ and Y is a summand of M.

Proposition 8. For a submodule A of a module M, if A is σ -essentially closed in a summand of M, then A is σ -essentially closed in M.

Proof. Let $M = M_1 \oplus M_2$ with $A \sigma$ -essentially closed in M_1 . Let π denote the projection $M_1 \oplus M_2 \twoheadrightarrow M_1$. Assume that $A \subseteq^{\sigma e} B \subseteq M$. It is easy to see that $A = \pi(A) \subseteq^{\sigma e} \pi(B) \subseteq M_1$. Since A is σ -essentially closed in M_1 , $\pi(B) = A \subseteq B$, and so $(1 - \pi)(B) \subseteq B$. Since $(1 - \pi)(B) \cap A = 0$ and $A \subseteq^e B$, $(1 - \pi)(B) = 0$. Thus $A \subseteq^{\sigma e} B = \pi(B) \subseteq M_1$. Since A is σ -essentially closed in M_1 , it holds that A = B.

Lemma 9. If $M = A \oplus B$ and $A \subseteq^{e} K \subseteq M$, then K = A.

Proof. By modular law it follows that $K = A \oplus (K \cap B)$, and so $A \cap (K \cap B) = 0$. Since A is essential in $K, K \cap B = 0$, and so $K = A \oplus (K \cap B) = A$.

The following proposition generalize Theorem 2.8 in [5].

Proposition 10. Consider the following conditions.

It holds that (3) \Leftrightarrow (4) \rightarrow (1) \rightarrow (2). If ker $f \in \mathcal{T}_{\sigma}$ for any idempotent $f \in End_R(E_{\sigma}(M))$, then (2) \rightarrow (3) holds.

- (1) M has (σC_1) and (σC_3) .
- (2) $M = X \oplus Y$ for σ -dense submodules X, Y of M such that X is a complement of Y in M and Y is a complement of X in M.
- (3) $f(M) \subseteq M$ for any idempotent f in $End_R(E_{\sigma}(M))$.
- (4) If $E_{\sigma}(M) = \oplus E_i$, then $M = \oplus (M \cap E_i)$.

Proof. (1) \rightarrow (2): Let X and Y be σ -dense submodules of M such that X is a complement of Y in M and Y is a complement of X in M. Since X and Y are essentially closed in M, X and Y are direct summands of M by $(\sigma - C_1)$. Then $X \oplus Y$ is σ -essential in M. By $(\sigma - C_3), X \oplus Y$ is a direct summand of M, and so $M = X \oplus Y \oplus Z \supseteq^e (X \oplus Y)$. Therefore it follows that Z = 0, and so $M = X \oplus Y$.

 $(2) \rightarrow (3)$: We assume that ker $f \in \mathcal{T}_{\sigma}$ for any idempotent $f \in \operatorname{End}_{R}(E_{\sigma}(M))$. Let $A_{1} = M \cap f(E_{\sigma}(M))$ and $A_{2} = M \cap (1 - f)(E_{\sigma}(M))$. Then $A_{1} \cap A_{2} = 0$. Since $E_{\sigma}(M) = f(E_{\sigma}(M)) \oplus \ker f$ for any idempotent f in $\operatorname{End}_{R}(E_{\sigma}(M))$ and $M/A_{i} \simeq (M + f(E_{\sigma}(M)))/f(E_{\sigma}(M)) \subseteq E_{\sigma}(M)/f(E_{\sigma}(M)) \simeq \ker f \in \mathcal{T}_{\sigma}, M/A_{i} \in \mathcal{T}_{\sigma}$ for i = 1, 2. Let B_{1} be a complement of A_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} be a complement of B_{1} containing A_{2} in M and B_{2} is $A_{1} \oplus B_{2} \to M$. Then by $(2) M = B_{1} \oplus B_{2} \oplus M$ such that $(f - \pi)(x) = y$. Then $f(x) = y + \pi(x) \in M$, and so $f(x) \in A_{1} \oplus A_{2} \subseteq B_{1} \oplus B_{2} = M$. $\pi(x) = \pi(f(x)) + \pi(1 - f)(x) = f(x) + 0$, and so y = 0. Thus $M \cap (f - \pi)(M) = 0$. Since M is essential in $E_{\sigma}(M), (f - \pi)(M) = 0$, and so $f(M) = \pi(M) \subseteq M$.

 $(3) \to (4): \text{ Let } E_{\sigma}(M) = \bigoplus_{i \in I} E_i, \text{ then it is clear that } M \supseteq \bigoplus_{i \in I} (M \cap E_i). \text{ Let } m \text{ be}$ an element of $M \subseteq E_{\sigma}(M) = \bigoplus_{i \in I} E_i.$ Then there exists a finite index subset F of Isuch that $m \in \bigoplus_{i \in F} E_i.$ Write $E_{\sigma}(M) = (\bigoplus_{i \in F} E_i) \oplus (\bigoplus_{i \in I-F} E_i).$ Then there exist orthogonal idempotents $f_i \in \text{End}_R(E_{\sigma}(M))(i \in F)$ such that $E_i = f_i(E_{\sigma}(M)).$ Since $f_i(M) \subseteq M$ by $(3), m = \sum_{i \in F} f_i(m) \in \bigoplus_{i \in F} (M \cap E_i).$ Thus $M \subseteq \bigoplus_{i \in I} (M \cap E_i), \text{ and } M = \bigoplus_{i \in I} (M \cap E_i).$ $(4) \to (1)$: Let A be a σ -dense submodule of M. Consider the following exact sequence. $0 \to M/A \to E_{\sigma}(M)/A \to E_{\sigma}(M)/M \to 0$. Since \mathcal{T}_{σ} is closed under taking extensions, $E_{\sigma}(M)/A \in \mathcal{T}_{\sigma}$. As $E_{\sigma}(M)/A \twoheadrightarrow E_{\sigma}(M)/E_{\sigma}(A)$, $E_{\sigma}(M)/E_{\sigma}(A) \in \mathcal{T}_{\sigma}$. Thus $0 \to E_{\sigma}(A) \to E_{\sigma}(M) \to E_{\sigma}(M)/E_{\sigma}(A) \to 0$ splits. Then $E_{\sigma}(M) = E_{\sigma}(A) \oplus E$. By (4) $M = (M \cap E_{\sigma}(A)) \oplus (M \cap E)$. Since $(M \cap E_{\sigma}(A))/A \subseteq E_{\sigma}(A)/A \in \mathcal{T}_{\sigma}$, A is σ -essential in $M \cap E_{\sigma}(A)$ which is a direct summand of M. Thus M has $(\sigma - C_1)$.

Let M_1 and M_2 be direct summands of M such that $M_1 \cap M_2 = 0$ and $M/M_1, M_2 \in \mathcal{T}_{\sigma}$. Then $M/(M_1 \oplus M_2) \in \mathcal{T}_{\sigma}$. Consider the following exact sequence. $0 \to M/(M_1 \oplus M_2) \to E_{\sigma}(M)/(M_1 \oplus M_2) \to E_{\sigma}(M)/M \to 0$. Thus $E_{\sigma}(M)/(M_1 \oplus M_2) \in \mathcal{T}_{\sigma}$. Thus $E_{\sigma}(M)/(E_{\sigma}(M_1) \oplus E_{\sigma}(M_2)) \in \mathcal{T}_{\sigma}$. Thus $0 \to E_{\sigma}(M_1) \oplus E_{\sigma}(M_2) \to E_{\sigma}(M) \to E_{\sigma}(M)/(E_{\sigma}(M_1) \oplus E_{\sigma}(M_2)) \to 0$ splits. Thus there exists a submodule E of $E_{\sigma}(M)$ such that $E_{\sigma}(M) = E_{\sigma}(M_1) \oplus E_{\sigma}(M_2) \oplus E$. Then by (4) $M = (M \cap E_{\sigma}(M_1)) \oplus (M \cap E_{\sigma}(M_2)) \oplus (M \cap E)$. Since M_i is a summand of M and M_i is essential in $M \cap E_{\sigma}(M_i), M_i = M \cap E_{\sigma}(M_i)$ by Lemma 9. Thus $M = M_1 \oplus M_2 \oplus (M \cap E)$, as desired. Thus M has $(\sigma - C_3)$.

 $(4) \to (3): \operatorname{End}_R(E_{\sigma}(M)) \ni f = f^2, \text{ then } E_{\sigma}(M) = f(E_{\sigma}(M)) \oplus f^{-1}(0). \text{ By } (4) M = (M \cap f(E_{\sigma}(M))) \oplus (M \cap f^{-1}(0)). \text{ For any } m \in M, \text{ there exists } x \in M \cap f(E_{\sigma}(M)) \text{ and } y \in M \cap f^{-1}(0) \text{ such that } m = x + y. \text{ Then } f(m) = f(x) + f(y) = x + 0 \in M, \text{ and so } f(M) \subseteq M.$

References

- [1] G. Azumaya, *M-projective and M-injectives modules*, unpublished (1974).
- [2] K. R. Goodearl, Ring Theory, Dekker, New York, (1976).
- [3] M. Harada, Note on quasi-injective modules, Osaka J. Math. 2 (1965), 351–356.
- [4] R. E. Johnson and E. T. Wong, *Quasi-injective modules and irreducible rings*, J. London Math. Soc. 36 (1961), 260–268.
- [5] S. H. Mohamed and B. J. Müller, Continuous and discrete modules, Cambridge Univ. Press, (1990).

GENERAL EDUCATION HAKODATE NATIONAL COLLEGE OF TECHNOLOGY Y14-1 TOKURA-CHO HAKODATE-SI HOKKAIDO, 042-8501 JAPAN

E-mail address: takehana@hakodate-ct.ac.jp