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Abstract. Let B a block ideal of the group algebra of a finite group G over a field k

with a defect group P . We shall give a criterion for a (kP, kP )-bimodule defined by a
(P, P )-double coset to be isomorphic to a direct summand of the source algebra of the
block B viewed as a (kP, kP )-bimodule.
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1. Block ideals, source algebras and cohomology rings

Throughout this note we let G denote a finite group and k an algebraically closed field
of characteristic p dividing the order of G.

Let B be a block ideal of the group algebra kG; let P be a defect group of B. Let X
be a source module of B, which is an indecomposable direct summand of B as k[G×P op]-
module having ∆P as vertex; X has a trivial source. The source module X can be written
as X = kGi with a source idempotent i. Let (P, bP ) be the Sylow B-subpair such that the
Brauer constructionX(P ) belongs to bP ; let F(P,bP )(B,X) = { (R, bR) | (R, bR) ⊆ (P, bP ) }
be the Brauer category associated with (P, bP ). Then the cohomology ring H∗(G,B,X)
of the block B with respect to X is defined to be the subring of the cohomology ring
H∗(P, k) of the defect group P consisting of F(P,bP )(B,X)-stable elements (Linckelmann
[4]).

The cohomology ring H∗(G,B,X) is so tightly related to the source algebra ikGi =
X∗ ⊗B X . Namely

Theorem 1 ([4, Theorem 5.1], [7, Theorem 1]). Under the notation above an element

ζ ∈ H∗(P, k) belongs to the cohomology ring H∗(G,B,X) if and only if the diagonal

embedding δP ζ ∈ HH ∗(kP ) is ikGi-stable, where ikGi is viewed as a (kP, kP )-bimodule.

Upon this fact the author proposed in [7] a conjecture that the transfer map defined
by the source algebra would describe the block cohomology. To be more precise we
let tikGi : HH ∗(kP ) → HH ∗(kP ) be the transfer map defined by ikGi as a (kP, kP )-
bimodule. Then we can define a map t : H∗(P, k) → H∗(P, k) giving rise to the following
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commutative diagram

H∗(P, k)
δP−−−→ HH ∗(kP )

t





y





y

tikGi

H∗(P, k) −−−→
δP

HH ∗(kP )

.

Conjecture. Under the notation above it would follow that

H∗(G,B,X) = tH∗(P, k).

If we let

ikGi ≃
⊕

PxP

k[PxP ]

be a direct sum decomposition of indecomposable (kP, kP )-bimodules, then the map t is
described as follows:

t : H∗(P, k) → H∗(P, k); ζ 7→
∑

PxP

trP resP ∩
xP

xζ.

However we have had few knowledge for indecomposable direct summands of ikGi; we
have for an element x ∈ G outside the inertia group NG(P, bP ) of the Sylow subpair (P, bP )
almost no information for k[PxP ] to be isomorphic to a direct summand of ikGi, whereas
the direct summands isomorphic to k[Px] for x ∈ NG(P, bP ) is so well understood, as we
can see in [8, Theorem 44.3].

The aim in this note is to give a criterion for a (kP, kP )-bimodule k[PgP ] to be iso-
morphic to a direct summand of ikGi. Here we fix a notation; for a double coset PgP we
let

tPgP : H∗(P, k) → H∗(P, k); ζ 7→ trP resP ∩
gP

gζ.

Theorem 2. Let (R, bR), (S, bS) ⊆ (P, bP ); assume that CP (R) is a defect group of bR or

CP (S) is a defect group of bS. For g ∈ G with g(R, bR) = (S, bS) if the map

tg : H
∗(P, k) → H∗(P, k); ζ 7→ trP resS

gζ

does not vanish, then the following hold:

(1) S = P ∩ gP ; hence tg = tPgP ,

(2) the (kP, kP )-bimodule k[PgP ] is isomorphic to a direct summand of ikGi,
(3) a (kP, kP )-bimodule k[Pg′P ] is isomorphic to k[PgP ] if and only if Pg′P = PcgP

for some c ∈ CG(S).

Note in the above that the blocks bR and bS are considered as blocks in kCG(R) and
kCG(S), respectively. We prove the theorem above in Section 2.

In Kawai–Sasaki [1] we calculated cohomology rings of 2-blocks of tame representation
type and of blocks with defect groups isomorphic to wreathed 2-groups of rank 2. There
we constructed transfer maps on the cohomology rings of defect groups; the images of
these maps are just the cohomology rings of the blocks. In Section 3 we shall apply
Theorem 2 to show that our transfer maps are defined by direct summands of the source
algebras of block ideals of tame representation type.
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2. Direct summands of source algebras and transfer maps

Proof of Theorem 2. We first show in this section the following proposition.

Proposition 3. Let P 6 G be an arbitrary p-subgroup. The (kP, kP )-bimodules k[PxP ]
and k[PyP ], where x, y ∈ G, are isomorphic if and only if PyP = PcxP for some

c ∈ CG(P ∩ xP ) with the property that P ∩ xP = P ∩ cxP . In this case P ∩ xP and P ∩ yP
are conjucate in P and the transfer maps tPxP and tDyD coincide.

Proof. Proof. The (kP, kP )-bimodule k[PxP ] as a k[P×P op]-module has (x,1)∆(x
−1

P ∩ P )
as vertex; and we see that

k[PxP ] = k[P × P op]⊗
k[(x,1)∆(x

−1
P∩P )]

k.

Hence we have that

k[PxP ] ≃ k[PyP ] ⇐⇒∃ (a, b) ∈ P × P op s.t.

(x,1)∆(x
−1

P ∩ P ) = (a,b)
(

(y,1)∆(y
−1

P ∩ P )
)

.

The last equation is equivalent to the following equation:

{ (xs, s−1) | s ∈ x−1

P ∩ P } = { (ayt, b·t−1·b−1) | t ∈ y−1

P ∩ P }.

Here, the multiplication in right component of pairs is in the oposite group P op so that,
rewriting it by using the multiplication in P , we obtain that b·t−1·b−1 = b−1t−1b. Namely
we see for an arbitrary s ∈ x−1

P ∩P that there exists a unique element t ∈ y−1

P ∩P such
that

xs = ayt, s−1 = b−1t−1b.

The second equation above implies that t = bs. Substitute this to the first one to obtain

xs = aybs.

This equation holds for an arbitrary s ∈ x−1

P ∩ P ; hence there exists an element c ∈
CG(P ∩ xP ) such that

ayb = cx.

Note that P ∩ xP = xb−1

(y
−1

P ∩ P ), since s = b−1

t. Then we have that

P ∩ cxP = P ∩ aybP = P ∩ ayP (∵ b ∈ P )

= a(P ∩ yP ) (∵ a ∈ P )

= cxb−1y−1

(P ∩ yP ) = cxb−1

(y
−1

P ∩ P ) = c(P ∩ xP )

= P ∩ xP. (∵ c ∈ CG(P ∩ xP ))

Suppose conversely for an element c ∈ CG(P ∩ xP ) that PyP = PcxP with P ∩ xP =
P ∩ cxP . Then we have

(cx)−1

P ∩ P = (cx)−1

(P ∩ cxP ) = (cx)−1

(P ∩ xP ) = x−1c−1x(x
−1

P ∩ P )

= x−1

P ∩ P. (∵ x−1c−1x ∈ CG(
x−1

P ∩ P ))
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Then the indecomposable k[P × P op]-module k[PcxP ] has vertex

(cx,1)∆((cx)
−1

P ∩ P ) = (cx,1)∆(x
−1

P ∩ P ) = { (cxs, s−1) | s ∈ x−1

P ∩ P }

= { (xs, s−1) | s ∈ x−1

P ∩ P } = (x,1)∆(x
−1

P ∩ P ).

Hence we see that k[PcxP ] ≃ k[PxP ], as desired.
Also wee see, under the condition above, since we can write cx = ayb with suitable

a, b ∈ P , that

P ∩ xP = P ∩ cxP = P ∩ aybP = P ∩ ayP = a(P ∩ yP ),

hence clearly the last assertion holds. �

Proof of Theorem 2. Because S 6 P ∩ gP we see for ζ ∈ H∗(P, k) that

trP resS
gζ = trP trP ∩

gP resS resP ∩
gP

gζ

= |P ∩ gP : S | trP resP ∩
gP

gζ.

Hence if P ∩ gP > S, then the map tg vanishes. Thus we have that S = P ∩ gP .
If CP (R) is a defect group of bR, then we see by [3, Lemma 3.3 (iv)] that the (kS, kR)-

bimodule k[gR] = k[Sg] is isomorphic with a direct summand of ikGi. If on the other
hand CP (S) is a defect group of bS, then an argument similar to that in the proof of
[3, Lemma 3.3 (iv)] tells us that the (kS, kR)-bimodule k[Sg] is isomorphic to a direct
summand of ikGi. Namely in both cases k[Sg] is isomorphic to a direct summand of ikGi
as (kS, kR)-bimodule.

As in the proof of [7, Theorem 1] we can take an indecomposable direct summand
k[PxP ] of ikGi such that

k[Sg]
∣

∣ k[PxP ]

as (kS, kR)-bimodules; then we can write g = caxb using suitable elements a, b ∈ P and

an element c ∈ CG(S). Since S = P ∩ caxbP 6
caxP , we have that a−1

S = a−1c−1

S 6
xP so

that a−1

S 6 P ∩ xP . Therefore it follows that

resS
gζ = resS

caxbζ = resS
caxζ

= cresS
axζ = resS

axζ (∵ c ∈ CG(S))

= aresa−1
S

xζ

= aresa−1
S
resP∩

xP
xζ (∵ a−1

S 6 P ∩ xP )

so that

trP resS
gζ = trP aresa−1

S
resP∩

xP
xζ

= trP trP∩

xP res a−1
S
resP ∩

xP
xζ (∵ a ∈ P )

= trP |P ∩ xP : a−1

S | resP ∩
xP

xζ

= |P ∩ xP : a−1

S | trP resP ∩
xP

xζ.

This implies that

a−1

S = P ∩ xP, trP resS
gζ = trP resP ∩

xP
xζ.
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Thus we see that
S = a(P ∩ xP ) = P ∩ axP = P ∩ c−1gP.

Because c ∈ CG(S), we can apply Proposition 3 to k[PgP ] and k[Pc−1gP ] to conclude
that k[Pc−1gP ] ≃ k[PgP ]. Moreover, since Pc−1gP = PaxbP = PxP , we have that
k[PgP ]

∣

∣ ikGi.
Finally we see for c ∈ CG(S) that

cg(R, bR) = (S, bS) and that

trP resS
cgζ = trP cresS

gζ = trP resS
gζ for ζ ∈ H∗(P, k).

Hence we have that P ∩ cgP = S. Again Proposition 3 says that k[PcgP ] ≃ k[PgP ]. The
”only if” part of our assertion (3) is obvious by Proposition 3. �

3. Tame 2-blocks

Linckelmann [5] says that the family

F = { (S, bS) ⊆ (P, bP ) | (S, bS) is extremal and essential } ∪ { (P, bP ) }

is a conjugation family.
For a subpair (S, bS) ⊆ (P, bP ) we consider the following stability condition:

S(S, bS) resS
gζ = resS ζ ∀ g ∈ NG(S, bS).

Then we see

H∗(G,B,X) = { ζ ∈ H∗(P, k) | ζ satisfies S(S, bS) for an arbitrary (S, bS) ∈ F }.

In the rest of the note we let p = 2 and assume that the block B is of tame representation
type; the defect group P is one of the followings:

(1) dihedral 2-group

Dn = 〈 x, y | x2n−1

= y2 = 1, yxy−1 = x−1 〉, n > 3;

(2) generalized quaternion 2-group

Qn = 〈 x, y | x2n−2

= y2 = z, z2 = 1, yxy−1 = x−1 〉, n > 3;

(3) semidihedral 2-group

SDn = 〈 x, y | x2n−1

= y2 = 1, yxy−1 = x−1+2n−2

〉, n > 4.

The following would be well known.

Proposition 4. (1) If P = Dn (n > 3), then

{ (E, bE) ⊆ (P, bP ) | E ≃ a four-group, NG(E, bE)/CG(E) ≃ GL(2, 2) } ∪ { (P, bP ) }

is a conjugation family.

(2) If P = SDn (n > 4), then

{ (E, bE) ⊆ (P, bP ) | E ≃ a four-group, NG(E, bE)/CG(E) ≃ GL(2, 2) }

∪ { (V, bV ) ⊆ (P, bP ) | V ≃ a quaternion group, NG(V, bV )/V CG(V ) ≃ GL(2, 2) }

∪ { (P, bP ) }

is a conjugation family.
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(3) If P = Qn (n > 4), then

{ (V, bV ) ⊆ (P, bP ) | V ≃ a quaternion group, NG(V, bV )/V CG(V ) ≃ GL(2, 2) }

∪ { (P, bP ) }

is a conjugation family.

3.1. Blocks with semidihedral defect groups. In this subsection we let P = SDn (n >

4); let

E = 〈 x2n−2

, y 〉, V = 〈 x2n−3

, xy 〉.

Here we state the cohomology ring H∗(P, k) of P = SDn = 〈 x, y | x2n−1

= y2 =

1, yxy−1 = x−1+2n−2

〉, n > 4. Let ξ = x∗, η = y∗ ∈ H1(P, k). Let α ∈ H2(〈 x 〉, k) be
the standard element. Let ν = normP α ∈ H4(P, k). Choose an element θ ∈ H3(P, k)
appropriately; we can describe as follows:

H∗(P, k) = k[ξ, η, θ, ν]/(ξ2 − ξη, ξ3, ξθ, θ2 − η6 − η2ν − ξ2ν).

We constructed in Kawai–Sasaki [1] a transfer map from H∗(P, k) to H∗(G,B,X).
From now on we assume that NG(E, bE)/CG(E) ≃ GL(2, 2) and NG(V, bV )/V CG(V ) ≃

GL(2, 2). Let ω and ω′ are automorphisms of E and V of order three, respectively. Then
the cohomology ring of the block is described as follows:

H∗(G,B,X) = { ζ ∈ H∗(P, k) | resE ζ = resE
ωζ, resV ζ = resV

ω′

ζ }.

We let g0 ∈ NG(E, bE) and g1 ∈ NG(V, bV ) induce the automorphisms ω ∈ AutE and
ω′ ∈ Aut V , respectively:

(1) 〈 x2n−3

, g0 〉CG(E)/CG(E) = NG(E, bE)/CG(E) ≃ GL(2, 2),

(2) 〈 x2n−4

, g1 〉V CG(V )/V CG(V ) = NG(V, bV )/V CG(V ) ≃ GL(2, 2).

Definition 5. We let

TrBP : H∗(P, k) → H∗(P, k); ζ 7→ ζ + trP resE
g0ζ + trP resV

g1ζ.

Theorem 6. The image of TrBP above coincides with the cohomology ring H∗(G,B,X).

Since (E, bE), (V, bV ) ⊆ (P, bP ) are extremal, we see that CP (E) and CP (V ) are defect
groups of bE and bV , respectively. Theorem 2 together with the facts that the maps
[ζ 7→ trP resE

g0ζ ] and [ζ 7→ trP resV
g1ζ ] do not vanish implies that both of (kP, kP )-

bimodules k[Pg0P ] and k[Pg1P ] are isomorphic to direct summands of ikGi; we obtain
the following theorem.

Theorem 7. Let M = kP ⊕ k[Pg0P ]⊕ k[Pg1P ]. Then

(1) M
∣

∣ ikGi;

(2) the map TrBP is induced by the transfer map tM : HH (kP ) → HH (kP );
(3) an element ζ ∈ H∗(P, k) belongs to H∗(G,B,X) if and only if δP ζ ∈ HH ∗(kP ) is

M-stable.

In the other cases of the iniertia quotients, we have similar results.
Suppose that the (kP, kP )-bimodules k[PgP ] is isomorphic to a direct summand of

(kP, kP )-bimodule ikGi.
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LetR = g−1

P∩P and S = P ∩ gP and let (R, bR), (S, bS) ⊆ (P, bP ). Then Külshammer–
Okuyama–Watanabe [2, Proposition 5] says that

g(R, bR) = (S, bS) ⊆ (P, bP ).

The Brauer category F(P,bP )(B,X) is well understood so that the posibilities of fusions
above are completely described and the transfer maps tPgP are also determined.

Hence we obtain the following.

Theorem 8. The source algebra ikGi induces, as a (kP, kP )-bimodule, the transfer map

tikGi : HH ∗(kP ) → HH ∗(kP ) whose restriction to the cohomology ring H∗(P, k) maps

ζ ∈ H∗(P, k) as follows:

ζ 7→ ζ + l0 tr
P resE

g0ζ + l1 tr
P resV

g1ζ.

Here l0, l1 ∈ Z.

3.2. Blocks with dihedral or quaternion defect groups. In the case of P = Dn (n >

3), let us take four-groups

E0 = 〈 x2n−2

, y 〉, E1 = 〈 x2n−2

, xy 〉.

In the case of P = Qn (n > 4, let us take quaternion groups

V0 = 〈 x2n−3

, y 〉, V1 = 〈 x2n−3

, xy 〉.

Then we can construct the transfer maps TrBP : H(P, k) → H(P, k) whose images are
H∗(G,B,X)s, by similar constructions in semidihedral case.

We have also results corresponding to Theorems 7 and 8.

References

[1] H. Kawai, H. Sasaki, Cohomology algebras of 2-blocks of finite groups with defect groups of rank two,
J. Algebra 306 (2) (2006) 301–321.

[2] B. Külshammer, T. Okuyama, A. Watanabe, A lifting theorem with applications to blocks and source
algebras, J. Algebra 232 (2000) 299–309.

[3] M. Linckelmann, On derived equivalences and local structure of blocks of finite groups, Turkish J.
Math. 22 (1988) 93–107.

[4] M. Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebr. Represent.
Theory 2 (1999) 107–135.

[5] M. Linckelmann, Introduction to fusion systems, in: Group representation theory, EPFL Press, Lau-
sanne, 2007, pp. 79–113.

[6] L. Puig, Pointed groups and construction of modules, J. Algebra 116 (1988) 7–129.
[7] H. Sasaki, Cohomology of block ideals of finite group algebras and stable elements, Algebr. Represent.

Theory 16 (2013) 1039–1049.
[8] J. Thévenaz, G-Algebras and modular representation theory, Oxford Mathematical Monographs, Ox-

ford University Press, Oxford, 1995.

School of General Education

Shinshu University

Matsumoto, Nagano 390-8621 JAPAN

E-mail address : sasakitk@shinshu-u.ac.jp

－201－




