CLASSIFYING τ -TILTING MODULES OVER NAKAYAMA ALGEBRAS

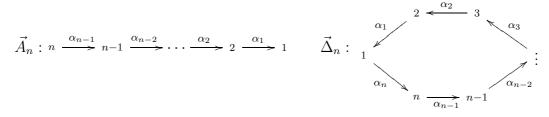
TAKAHIDE ADACHI

ABSTRACT. In this article, we study τ -tilting modules over Nakayama algebras. We establish bijection between τ -tilting modules and triangulations of a regular polygon with a puncture.

Throughout this article, Λ is a basic connected finite dimensional algebra over an algebraically closed field K and by a module we mean a finite dimensional right module. For a Λ -module M with a minimal projective presentation $P^{-1} \xrightarrow{p} P^0 \to M \to 0$, we define a Λ -module τM by an exact sequence

$$0 \to \tau M \to \nu P^{-1} \stackrel{\nu p}{\to} \nu P^0,$$

where $\nu := \operatorname{Hom}_{K}(\operatorname{Hom}_{\Lambda}(-,\Lambda), K)$. In this article, the following quivers are useful:



In representation theory of finite dimensional algebra, tilting modules play an important role because they induce derived equivalences. Recently, the authors in [2] introduced the notion of τ -tilting modules, which is a generalization of (classical) tilting modules. They showed there are close relationships between τ -tilting modules and some important notions: torsion classes, silting complexes, and cluster-tilting objects. For background and results of τ -tilting modules, we refer to [2].

Our aim of this article is to give a generalization of the following well-known result. A Λ -module M is called *tilting* if $pdM \leq 1$, $Ext^1_{\Lambda}(M, M) = 0$ and $|M| = |\Lambda|$, where pdM is the projective dimension and |M| the number of nonisomorphic indecomposable direct summands of M.

Theorem 1. Let $\Lambda = K\vec{A_n}$ be a path algebra. Then there is a one-to-one correspondence between

- (1) the set tilt Λ of isomorphism classes of basic tilting Λ -modules,
- (2) the set of triangulations of an (n+2)-regular polygon.

The following theorem is our main result of this article. A Λ -module M is called τ -rigid if $\operatorname{Hom}_{\Lambda}(M, \tau M) = 0$. A τ -rigid Λ -module M is called τ -tilting if $|M| = |\Lambda|$.

The detailed version of this paper will be submitted for publication elsewhere.

Theorem 2. [1] Let Λ be a Nakayama algebra with $n := |\Lambda|$. Assume that the Loewy length of every indecomposable projective Λ -module is at least n. Then there is a one-toone correspondence between

- (1) the set τ -tilt Λ of isomorphism classes of basic τ -tilting Λ -modules,
- (2) the set $\mathcal{T}(n)$ of triangulations of an n-regular polygon with a puncture.

First, recall the definition and basic properties of Nakayama algebras. An algebra Λ is said to be *Nakayama* if every indecomposable projective Λ -module and every indecomposable injective Λ -module are *uniserial* (*i.e.*, it has a unique composition series). We give a characterization of Nakayama algebras by using quivers.

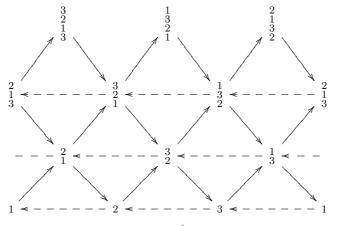
Proposition 3. [3, V.3.2] A basic connected algebra Λ is Nakayama if and only if its quiver Q_{Λ} is one of \vec{A}_n or $\vec{\Delta}_n$.

In the following, we assume that Λ is a basic connected Nakayama algebra and $n := |\Lambda|$. We give a concrete description of indecomposable Λ -modules. We denote by P_i (respectively, S_i) the indecomposable projective (respectively, the simple) Λ -module corresponding to the vertex i in Q_{Λ} and $\ell(M)$ the Loewy length of a Λ -module M.

Proposition 4. [3, V.3.5, V.4.1 and V.4.2] Let M be an indecomposable nonprojective Λ -module. Then there exists an indecomposable projective Λ -module P_i and an integer $1 \leq t < \ell(P_i)$ such that $M \simeq P_i/\operatorname{rad}^t P_i$. In this case, we have $\tau M \simeq P_{i-1}/\operatorname{rad}^t P_{i-1}$ and $t = \ell(M) = \ell(\tau M)$.

Every indecomposable Λ -module M is uniquely determined, up to isomorphism, by its simple top S_i and the Loewy length $t = \ell(M)$. In this case, M has a unique composition series with the associated composition factors $S_i = S_{i_1}, S_{i_2}, \dots, S_{i_t}$, where $i_1, \dots, i_t \in$ $\{1, 2, \dots, n\}$ with $i_{j+1} = i_j - 1 \pmod{n}$ for any j.

Let Λ_n^r be a self-injective Nakayama algebra with $n = |\Lambda|$ and the Loewy length r. The Auslander-Reiten quiver of Λ_3^4 is given by the following:



Then the following modules are all τ -tilting Λ_3^4 -modules:

$$\begin{array}{c} \frac{1}{3} \oplus \frac{2}{3} \oplus \frac{3}{2}, & \frac{1}{3} \oplus \frac{2}{3} \oplus 1, & \frac{2}{1} \oplus \frac{2}{3} \oplus 1, & \frac{2}{1} \oplus \frac{2}{3} \oplus 1, & \frac{2}{1} \oplus \frac{2}{3} \oplus 2, & \frac{3}{1} \oplus \frac{2}{3} \oplus 2, \\ \frac{3}{2} \oplus \frac{3}{2} \oplus 2, & \frac{3}{1} \oplus \frac{3}{2} \oplus 3, & \frac{3}{1} \oplus \frac{1}{3} \oplus 3, & \frac{1}{3} \oplus \frac{1}{3} \oplus 3, & \frac{1}{3} \oplus \frac{1}{3} \oplus 3, & \frac{1}{3} \oplus \frac{1}{3} \oplus 1. \end{array}$$

By the example above, note that every τ -tilting module does not have an indecomposable Λ -module M with the Loewy length $\ell(M) = 3$ as a direct summand. This is always the case as the following result shows. By Proposition 4, we can easily understand the existence of homomorphisms between indecomposable Λ -modules.

Lemma 5. Assume that $M = P_i/\operatorname{rad}^j P_i$ and $N = P_k/\operatorname{rad}^l P_k$. Then the following are equivalent.

(1) $\operatorname{Hom}_{\Lambda}(M, N) \neq 0.$

$$(2) \ i \in \{k, k-1, \cdots, k-l+1 \pmod{n}\} \ and \ k-l+1 \in \{i, i-1, \cdots, i-j+1 \pmod{n}\}.$$

Thus we have the following result.

arc is an inner arc or a projective arc.

Proposition 6. Let M be an indecomposable nonprojective Λ -module. Then M is τ -rigid if and only if $\ell(M) < n$.

Proof. By Proposition 4, we can assume that $M = P_i/\operatorname{rad}^j P_i$ and $\tau M = P_{i-1}/\operatorname{rad}^j P_{i-1}$. Then we have

$$\operatorname{Hom}_{\Lambda}(M,\tau M) \neq 0 \stackrel{5}{\Leftrightarrow} \begin{cases} i \in \{i-1, i-2, \cdots, i+j \pmod{n}\} \\ i+j \in \{i, i-1, \cdots, i-j+1 \pmod{n}\} \\ \Leftrightarrow \ell(M) \geq n. \end{cases}$$

To study a connection between τ -tilting modules and triangulations of an *n*-regular polygon with a puncture, recall the definition and basic properties of triangulations. Let \mathcal{G}_n be an *n*-regular polygon with a puncture. We label the points of \mathcal{G}_n counterclockwise around the boundary by $1, 2, \dots, n \pmod{n}$. Let $i, j \in \mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$. An *inner* arc $\langle i, j \rangle$ in \mathcal{G}_n is a path from the point *i* to the point *j* homotopic to the boundary path $i, i + 1, \dots, i + l = j \pmod{n}$ such that $1 < l \leq n$. Then we call *i* an *initial* point, *j* a *terminal* point and $\ell(\langle i, j \rangle) := l$ the *length* of the inner arc. A *projective* arc $\langle \bullet, j \rangle$ in \mathcal{G}_n is a path from the puncture to the point *j*. Then we call *j* a *terminal* point. An *admissible*

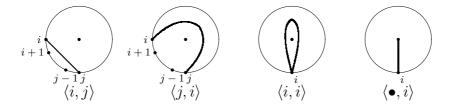


FIGURE 1. Admissible arcs in a polygon with a puncture

Two admissible arcs in \mathcal{G}_n are called *compatible* if they do not intersect in \mathcal{G}_n (except their initial and terminal points). A *triangulation* of \mathcal{G}_n is a maximal set of distinct pairwise compatible admissible arcs. Note that the set of all projective arcs gives a triangulation of \mathcal{G}_n . Triangulations have the following property.

Proposition 7. Each triangulation of \mathcal{G}_n consists of exactly *n* admissible arcs and contains at least one projective arc.

FIGURE 2. Triangulations of \mathcal{G}_4

We give a bijection between indecomposable τ -rigid Λ -modules and admissible arcs in \mathcal{G}_n . By Proposition 6, every indecomposable nonprojective τ -rigid Λ -module M is uniquely determined by its simple top S_j and its simple socle S_k . Thus we denote by (k-2,j) the τ -rigid module M above. Moreover, we put $(\bullet, j) := P_j$ for any j. We denote by τ -rigid Λ the set of isomorphism classes of indecomposable τ -rigid Λ -modules.

Proposition 8. The following hold.

(1) There is a bijection

$$\tau\text{-rigid}\Lambda \longrightarrow \{\langle i,j\rangle \mid i,j \in \mathbb{Z}_n, \ \ell(\langle i,j\rangle) \le \ell(P_j)\} \prod \{\langle \bullet,i\rangle \mid i \in \mathbb{Z}_n\}$$

- given by $(i, j) \mapsto \langle i, j \rangle$ for $i \in \{1, 2, \cdots, n\} \sqcup \{\bullet\}$ and $j \in \{1, 2, \cdots, n\}$.
- (2) For any $i, k \in \{1, 2, \dots, n\} \coprod \{\bullet\}$ and $j, l \in \{1, 2, \dots, n\}$, $(i, j) \oplus (k, l)$ is τ -rigid if and only if $\langle i, j \rangle$ and $\langle k, l \rangle$ are compatible.

Proof. (1) By Proposition 6, every indecomposable τ -rigid Λ -module M is either a projective Λ -module or a Λ -module satisfying $\ell(M) < n$. Thus we can easily check the map is a well-defined bijection.

(2) It follows from Lemma 5.

Instead of proving Theorem 2, we give a proof of the following theorem which is a generalization of Theorem 2. Let $\ell_i := \ell(P_i)$ for any $i \in \{1, 2, \dots, n\}$. We denote by $\mathcal{T}(n; \ell_1, \ell_2, \dots, \ell_n)$ the subset of $\mathcal{T}(n)$ consisting of triangulations such that the length of every inner arc with the terminal point j is at most ℓ_j for any $j \in \{1, 2, \dots, n\}$.

Theorem 9. Let Λ be a Nakayama algebra. Then the map in Proposition 8 induces a bijection

$$\tau$$
-tilt $\Lambda \longrightarrow \mathcal{T}(n; \ell_1, \ell_2, \cdots, \ell_n).$

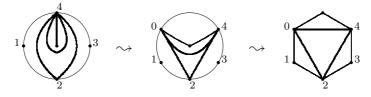
Proof. By Proposition 7 and 8, we can easily check that the map is a bijection.

As an application of Theorem 9, we have the following corollary.

Corollary 10. Let $\Lambda = K\vec{A_n}$ be a path algebra. Then the map in Proposition 8 induces a bijection

$$\operatorname{tilt} \Lambda \to \mathcal{U}(n) := \{ X \in \mathcal{T}(n) \mid \langle \bullet, n \rangle \in X \}.$$

Note that $\mathcal{U}(n)$ can identify the set of triangulations of an (n+2)-regular polygon. As a result, we can recover Theorem 1.



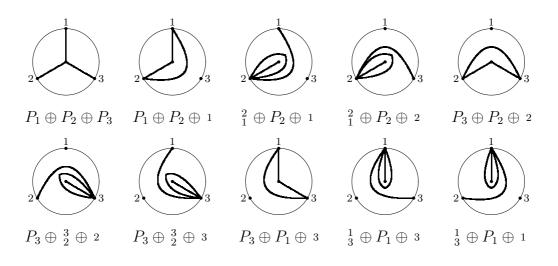
Proof. By Theorem 9, there is a bijection between τ -tilt Λ and $\mathcal{T}(n; 1, 2, \dots, n)$. Since Λ is hereditary, we have tilt $\Lambda = \tau$ -tilt Λ . We have only to show that

 $\mathcal{U}(n) = \mathcal{T}(n; 1, 2, \cdots, n)$

Indeed, assume that $X \in \mathcal{U}(n)$. Since X contains the projective arc $\langle \bullet, n \rangle$, we have $\ell(\langle i, j \rangle) \leq j$ for each inner arc $\langle i, j \rangle \in X$. Thus, we have $X \in \mathcal{T}(n; 1, 2, \dots, n)$. Conversely, assume that $X \in \mathcal{T}(n; 1, 2, \dots, n)$. Clearly, the projective arc $\langle \bullet, n \rangle$ is compatible with all admissible arc in X. Thus, we have $\langle \bullet, n \rangle \in X$, and hence $X \in \mathcal{U}(n)$. \Box

Finally, we give an example of Theorem 9.

Example 11. Let $\Lambda := \Lambda_3^r$ be a self-injective Nakayama algebra with $r \geq 3$. Then we have the following description of τ -tilting Λ -modules.



References

- [1] T. Adachi, τ -tilting modules over Nakayama algebras, arXiv: 1309.2216.
- [2] T. Adachi, O. Iyama, I. Reiten, τ -tilting theory, to appear in Compos. Math.
- [3] I. Assem, D. Simson, A. Skowroński, Elements of the Representation Theory of Associative Algebras. Vol. 1, London Mathematical Society Student Texts 65, Cambridge university press (2006).

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY FROCHO, CHIKUSAKU, NAGOYA 464-8602 JAPAN *E-mail address*: m09002b@math.nagoya-u.ac.jp