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Abstract. In this paper we investigate the rings with the direct summand condition,
and we give the applications to coding theory. We study the linear codes over the finite
ring with this condition. In particular, we consider dual codes and cyclic codes.
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1. Introduction

For a ring R, we consider the condition that every finitely generated free submodule N
of a finitely generated free R-module M is a direct summand of M . For example QF rings
satisfy this condition. In [4], Y. Hirano proved that a commutative artinian ring satisfies
this condition. He also found some class of noncommutative rings with this condition.

In [10], T. Sumiyama studied maximal Galois subrings of finite local rings. Y. Hirano
characterized finite frobenius rings in [3]. By the way, since several years, codes over
finite Frobenius rings draw considerable attension in coding theory. In [2], M. Greferath
investigated splitting codes over finite rings. In [1], A. A. Andrade and Palazzo Jr.
studied linear codes over finite rings. J. A. Wood established the extension theorem and
MacWilliams identities over finite Frobenius rings in [11]. K. Shiromoto and L. Storme
gave a Griesner type bound for linear codes over finite QF rings in [9].

Throughout this paper, R denotes a ring with 1 6= 0, n denotes a natural number with
n ≥ 2, unless otherwise stated.

2. Rings with the direct summand condition

For a ring R, we consider the following direct summand condition for free left modules:
(DS)l Every finitely generated free submodule N of a finitely generated free left R-

module M is a direct summand of M .
Similarly, we consider the direct summand condition for free right modules:
(DS)r Every finitely generated free submodule N of a finitely generated free right R-

module M is a direct summand of M .
If R satisfies the both conditions, it is said that it has the condition (DS).
For a semisimple ring, every module is semisimple, and every submodule of a semisimple

module is a direct summand. Thus, a semisimple ring satisfies the condition (DS).

Definition 1. For a ring R, R is called a QF (quasi-Frobenius) ring if R is left artinian
and left self-injective.

The detailed version of this paper will be submitted for publication elsewhere.
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It is well-known that the definition of a QF ring is left-right symmetric.

Proposition 2. Let R be a QF ring. Then R satisfies the condition (DS).

For any left R-module RM , M∗ = HomR(RM, RR) is a right R-module. In fact the
right R-actions of M∗ is defined by

(f ·r)(m) = f(m)·r

where r ∈ R, m ∈ M and f ∈ M∗.
The natural homomorphism ξ : M → M∗∗ is defined by

ξ(m)(f) = f(m)

wherem ∈ M and f ∈ M∗. A moduleM is called torsionless if the natural homomorphism
ξ : M → M∗∗ is injective. A torsionless module M is said to be reflexive if the natural
injection ξ : M → M∗∗ is an isomorphism.

Proposition 3. Let R be a ring, and let RN be a left R-submodule of Rn. If RN is a

direct summand of Rn, then RN is reflexive.

For any submodule A ⊆ M , let A◦ = {f ∈ M∗ | f(A) = 0}, which is a submodule of
M∗. And, for any submodule I ⊆ M∗, let I⋄ = ∩f∈Iker(f), which is a submodule of M .

Lemma 4. Let R be a ring, and let RM be a reflexive left R-module. If I is a right

R-submodule of M∗, then I⋄ ∼= I◦ as left R-modules.

Lemma 5. Let R be a ring, and let RM be a free left R-module. If A is a direct summand

of M , then A◦⋄ = A.

By Lemma 4 and Lemma 5, we get the following theorem.

Theorem 6. Let R be a ring, and let RM be a reflexive free left R-module. If A is a

direct summand of M , then A◦◦ ∼= A as left R-modules.

Corollary 7. Let R be a ring with the condition (DS), and let RN be a finitely generated

free left R-submodule of Rn. Then N◦◦ ∼= N as left R-modules.

3. Codes over finite rings with the condition (DS)l

Let R be a finite ring. A linear left(right) code C of length n over R is a left(right)
R-submodule of the left(right) R-module Rn = {(a0, · · · , an−1) | ai ∈ R}. If C is a free
R-module, C is said to be a free code.

On Rn define the standard inner product by

< x, y >=
∑n−1

i=0
xiyi

for x = (x0, x1, · · · , xn−1), y = (y0, y1, · · · , yn−1) ∈ Rn.
The dual code C⊥ of a linear left code C is defined by

C⊥ = {a ∈ Rn | < c, a >= 0 for any c ∈ C}.

Clearly, C⊥ is a linear right code over R.
Similarly, for a linear right code D, we can define the dual code

D⊥ = {b ∈ Rn | < b, d >= 0 for any d ∈ D},
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Then D⊥ is a linear left code over R.
For a left(right) code C ⊆ Rn, C is called a self-dual code if C = C⊥. In this case, C

is a bi-module.
For any left R-submodule C ⊆ Rn, C◦ is defined by

C◦ = {λ ∈ HomR(RR
n, RR) | λ(C) = 0}.

Then C◦ is a right R-submodule of a right R-module HomR(RR
n, RR).

For every x ∈ Rn, we define a right R-module homomorphism δx : Rn → R as δx(y) =<
y, x >.

Let e1, · · · , en be fundamental vectors. We define a natural right R-module homomor-
phism ǫ : (RR

n)∗ → Rn
R as ǫ(f) = (f(e1), · · · , (en)). Then ǫ is an isomorphism. In fact

δ : Rn
R → (RR

n)∗ with δ(x) = δx is an inverse map.

Proposition 8. Let R be a finite ring, and let C ⊆ Rn be a linear left code. Then

C⊥ ∼= C◦ as right R-modules.

Theorem 9. Let R be a finite ring with the condition (DS). For a free left code C ⊆ Rn,

(C⊥)⊥ = C.

Given any subset T ⊆ R, a left annihilator of T is a set

l.annR(T )= {r ∈ R | rt = 0 for all t ∈ T}

which is a left ideal of R. A right annihilator r.annR(T ) is defined, similarly.
Then we can get the following corollary.

Corollary 10. Let R be a finite ring with the condition (DS). For a free left submodule

C of RR, we have

l.annR(r.annRC) = C.

Similarly, if R satisfies the direct summand condition for free modules, then we have
r.annR(l.annRD) = D for any free right submodule D of RR.

Theorem 11. Let R be a finite ring with the condition (DS)l. If C ⊆ Rn is a free left

code of finite rank, then C⊥ is a free right code of finite rank and rankC⊥ = n− rankC.

4. Cyclic codes

Let R be a finite ring. A linear left(right) code C ⊆ Rn is called cyclic if

(a0, a1, · · · , an−1) ∈ C implies (an−1, a0, a1, · · · , an−2) ∈ C.

Let E be the following square matrix;

E =









0 1 0
. . .

0 1
1 0 · · · 0









.

It follows that a left code C ⊆ Rn is cyclic if and only if it is invariant under right
multiplication by E.

Proposition 12. Let R be a finite ring, and let C ⊆ Rn be a linear left code. If C is a

cyclic left code, C⊥ is a cyclic right code.
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By Theorem 9 and Proposition 12, we get the following corollary.

Corollary 13. Let R be a finite ring with the condition (DS), and let C ⊆ Rn be a free

left code. Then C is a cyclic left code if and only if C⊥ is a cyclic right code.

In what follows, we shall use the following conventions:
(g)l is the left ideal generated by g ∈ R[X ].
(g)r is the right ideal generated by g ∈ R[X ].
(g) is the two-sided ideal generated by g ∈ R[X ].

Cyclic codes are understood in terms of left ideals in quotient rings of polynomial
rings. The left R-module isomorphism ρ : Rn → R[X ]/(Xn − 1) sending the vector
a = (a0, a1, · · · , an−1) to the equivalence class of polynomial an−1X

n−1 + · · ·+ a1X + a0,
allows us to identify the cyclic left code with the left ideal of R[X ]/(Xn − 1).

Notice that Xn − 1 is the central element of R[X ].

Theorem 14. Let R be a finite ring. There is a one to one correspondence between cyclic

left codes in Rn and left ideals of R[X ]/(Xn − 1).

Definition 15. Let R be a finite ring, and let C be a cyclic left code in R[X ]/(Xn−1). If
there exist monic polynomials g and h such that ρ(C) = (g)l/(X

n − 1) and Xn − 1 = hg,
then C is called the principal cyclic left code. In this case, g(X) is called the generator
polynomial and h(X) is called the parity check polynomial of C. Similarly, for a cyclic
right code C, C is called the principal cyclic right code if ρ(C) = (g)r/(X

n − 1) and
Xn − 1 = gh.

Proposition 16. Let R be a finite ring, and let C ⊆ Rn be a principal cyclic left code

with the generator polynomial g(X) of degree n− k. Then C is a free left code of rank k.

Let C ⊆ Rn be a free left(right) code. If a basis of C is used as rows of a matrix G, the
matrix G is called a generator matrix of C. If G is a k× n generator matrix of a free left
code C, then, for any c ∈ C, we have c = aG for some a ∈ Rk. If G is a k × n generator
matrix of a free right code D, then, for any d ∈ D, we have td = tGtb for some b ∈ Rk. A
generator matrix of C⊥ is called a parity check matrix of C.

Proposition 17. Let R be a finite ring, and let C ⊆ Rn be a principal cyclic left code

with the generator polynomial

g(X) = gn−kX
n−k + · · ·+ g1X + g0

with gn−k = 1. Then C has the k × n generator matrix G of the form

G =















g0 g1 · · · gn−k 0 · · · 0
0 g0 g1 · · · gn−k · · · 0

0
. . .

. . .
. . .

. . .
. . . 0

...
...

0 · · · 0 g0 g1 · · · gn−k















.

The generator matrix of the principal cyclic right code ρ(C) = (g)r/(X
n−1) with Xn−1 =

gh is the same form.

Next, we determine the parity check matrix of a principal cyclic left code.
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Proposition 18. Let R be a finite ring with the condition (DS)l, and let C ⊆ Rn be a

principal cyclic left code with the generator polynomial g(X) of degree n−k and the parity

check polynomial

h(X) = hkX
k + · · ·+ h1X + h0

with hk = 1. Suppose Xn − 1 = hg = gh ∈ R[X ]. Then C has the (n − k) × n parity

check matrix H of the form

H =















hk · · · h1 h0 0 · · · 0
0 hk · · · h1 h0 · · · 0

0
. . .

. . .
. . .

. . .
. . . 0

...
...

0 · · · 0 hk · · · h1 h0















.

Corollary 19. Let R be a finite ring with the condition (DS)l, and let C ⊆ Rn be a

principal cyclic left code with the generator polynomial g(X) of degree n − k and the

parity check polynomial

h(X) = hkX
k + · · ·+ h1X + h0

with hk = 1. Suppose Xn − 1 = hg = gh ∈ R[X ]. Then C⊥ is the principal cyclic right

code, and we have

ρ(C⊥) = (h⊥)r/(X
n − 1),

where h⊥(X) = (h0X
k + · · ·+ hk−1X + hk)h0

−1.

Proposition 20. Let R be a finite ring, and let C ⊆ Rn be a principal cyclic left code with

the generator polynomial g(X) and the parity check polynomial h(X). Suppose Xn − 1 =
hg = gh ∈ R[X ]. Then a ∈ C if and only if ρ(a)h = 0 in R[X ]/(Xn − 1).

Then we get the following corollary.

Corollary 21. Let R be a finite ring, and let C ⊆ Rn be a principal cyclic left code with

the generator polynomial g(X) and the parity check polynomial h(X). Suppose Xn − 1 =
hg = gh ∈ R[X ]. Set R = R[X ]/(Xn − 1). Then we have

ρ(C) = (g)l/(X
n − 1) = l.annR

(

h
)

.

By Corollary 19 and Proposition 20, we get the following corollary.

Corollary 22. Let R be a finite ring with the condition (DS)l, and let C ⊆ Rn be a

principal cyclic left code with the generator polynomial

g(X) = gn−kX
n−k + · · ·+ g1X + g0

with gn−k = 1 and the parity check polynomial h(X). Suppose Xn− 1 = hg = gh ∈ R[X ].
Set R = R[X ]/(Xn − 1). Then we have

ρ(C⊥) = (h⊥)r/(X
n − 1) = r.annR

(

g⊥
)

,

where g⊥(X) = g−1

0
(g0X

n−k + · · ·+ gn−k−1X + gn−k).

Now we give a basic example.

Example 23. Let Z2 be a finite field of two elements, and M2(Z2) be a set of 2 × 2
matrices over Z2. Let R = D2(Z2), where
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D2(Z2) =

{(

a b
0 a

)

∈ M2(Z2)

∣

∣

∣

∣

a, b ∈ Z2

}

.

R is a finite commutative local ring with the unique maximal ideal

M =

{(

0 b
0 0

)

∈ M2(Z2)

∣

∣

∣

∣

b ∈ Z2

}

.

Then R satisfies the condition (DS).

Now set i =

(

1 1
0 1

)

. Then we have

R = { 0, 1, i, 1 + i }

with i2 = 1. Thus we get D2(Z2) = Z2[ i ].
Now we get the following factorizations:

X4 − 1 = (X2 + (1 + i)X + i)(X2 + (1 + i)X + i).

Set ρ(C) = (X2 + (1 + i)X + i)/(X4 − 1). Then C is a principal cyclic code of rank 2.
And we get ρ(C⊥) = (X2 + (1 + i)X + i)/(X4 − 1). Hence this is a self-dual code.
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