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Abstract. We give necessary and sufficient conditions for strong Koszulness of toric
rings associated with stable set polytopes of graphs.

1. Introduction

LetG be a simple graph on the vertex set V (G) = [n] with the edge set E(G). S ⊂ V (G)
is said to be stable if {i, j} 6∈ E(G) for all i, j ∈ S. Note that ∅ is stable. For each stable
set S of G, we define ρ(S) =

∑

i∈S ei ∈ R
n, where ei is the i-th unit coordinate vector in

R
n.
The convex hull of {ρ(S) | S is a stable set of G} is called the stable set polytope of G

(see [2] ) , denoted by QG. QG is a kind of (0, 1)-polytope. For this polytope, we define
the subring of k[T,X1, . . . , Xn] as follows:

k[QG] := k[T ·Xa1
1 · · ·Xan

n | (a1, . . . , an) is a vertex of QG],

where k is a field. k[QG] is called the toric ring associated with the stable set polytope of

G. We can regard k[QG] as a graded k-algebra by setting deg T ·Xa1
1 · · ·Xan

n = 1.
In the theory of graded algebras, the notion of Koszulness (introduced by Priddy [15]

) plays an important role and is closely related to the Gröbner basis theory.
Let P be an integral convex polytope (i.e., a convex polytope each of whose vertices

has integer coordinates) and k[P] := k[T · Xa1
1 · · ·Xan

n | (a1, . . . , an) is a vertex of P] be
the toric ring associated with P. In general, it is known that

The defining ideal of k[P] possesses a quadratic Gröbner basis
⇓

k[P] is Koszul
⇓

The defining ideal of k[P] is generated by quadratic binomials

follows from general theory (for example, see [1]).
In this note, we study the notion of a strongly Koszul algebra. In [7], Herzog, Hibi, and

Restuccia introduced this concept and discussed the basic properties of strongly Koszul
algebras. Moreover, they proposed the conjecture that the strong Koszulness of R is at
the top of the above hierarchy, that is,

Conjecture 1 (see [7]). The defining ideal of a strongly Koszul algebra k[P] possesses a
quadratic Gröbner basis.

The final version of this paper has been submitted for publication elsewhere.
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A ring R is trivial if R can be constructed by starting from polynomial rings and
repeatedly applying tensor and Segre products. In this note, we propose the following
conjecture.

Conjecture 2. Let P be a (0, 1)-polytope and k[P] be the toric ring generated by P. If

k[P] is strongly Koszul, then k[P] is trivial.

In the case of a (0, 1)-polytope, Conjecture 2 implies Conjecture 1. If P is an order
polytope or an edge polytope of bipartite graphs, then Conjecture 2 holds true [7].

In this note, we prove Conjecture 2 for stable set polytopes. The main theorem of this
note is the following:

Theorem 3 ([13]). Let G be a graph. Then the following assertions are equivalent:

(1) k[QG] is strongly Koszul.

(2) G is a trivially perfect graph.

In particular, if k[QG] is strongly Koszul, then k[QG] is trivial.

Throughout this note, we will use the standard terminologies of graph theory in [4].

2. Strongly Koszul algebra

Let k be a field, R be a graded k-algebra, and m = R+ be the homogeneous maximal
ideal of R.

Definition 4 ([7]). A graded k-algebra R is said to be strongly Koszul if m admits a
minimal system of generators {u1, . . . , ut} which satisfies the following condition:

For all subsequences ui1, . . . , uir of {u1, . . . , ut} (i1 ≤ · · · ≤ ir) and for all
j = 1, . . . , r − 1, (ui1, . . . , uij−1

) : uij is generated by a subset of elements
of {u1, . . . , ut}.

A graded k-algebra R is called Koszul if k = R/m has a linear resolution. By the
following theorem, we can see that a strongly Koszul algebra is Koszul.

Proposition 5 ([7, Theorem 1.2]). If R is strongly Koszul with respect to the minimal

homogeneous generators {u1, . . . , ut} of m = R+, then for all subsequences {ui1, . . . , uir}
of {u1, . . . , ut}, R/(ui1, . . . , uir) has a linear resolution.

The following proposition plays an important role in the proof of the main theorem.

Theorem 6 ([7, Proposition 2.1]). Let S be a semigroup and R = k[S] be the semigroup

ring generated by S. Let {u1, . . . , ut} be the generators of m = R+ which correspond to

the generators of S. Then, if R is strongly Koszul, then for all subsequences {ui1, . . . , uir}
of {u1, . . . , ut}, R/(ui1, . . . , uir) is also strongly Koszul.

By this theorem, we have

Corollary 7 (see [14]). If k[QG] is strongly Koszul, then k[QGW
] is strongly Koszul for

all induced subgraphs GW of G.
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3. Hibi ring and comparability graph

In this section, we introduce the concepts of a Hibi ring and a comparability graph.
Both are defined with respect to a partially ordered set.

Let P = {p1, . . . , pn} be a finite partially ordered set consisting of n elements, which is
referred to as a poset. Let J(P ) be the set of all poset ideals of P , where a poset ideal
of P is a subset I of P such that if x ∈ I, y ∈ P , and y ≤ x, then y ∈ I. Note that
∅ ∈ J(P ).

First, we give the definition of the Hibi ring introduced by Hibi.

Definition 8 ([8]). For a poset P = {p1, . . . , pn}, the Hibi ringRk[P ] is defined as follows:

Rk[P ] := k[T ·
∏

i∈I

Xi | I ∈ J(P )] ⊂ k[T,X1, . . . , Xn]

Example 9. Consider the following poset P = (1 ≤ 3, 2 ≤ 3 and 2 ≤ 4).

P =

1 •

3 •

2•

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏ 4•

J(P ) = {1, 2} • {2, 4}•

{1, 2, 4}•ttttttttt

❏❏❏❏❏❏❏❏❏

{2}•

❏❏
❏❏

❏❏
❏❏

❏

tt
tt
tt
tt
t

{1, 2, 3} •
❏❏❏❏❏❏❏❏❏

{1, 2, 3, 4}
•
❏❏❏❏❏❏❏❏❏

ttttttttt

{1} •
tt
tt
tt
tt
t

∅
•

❏❏
❏❏

❏❏
❏❏

❏

tt
tt
tt
tt
t

Then we have

Rk[P ] = k[T, TX1, TX2, TX1X2, TX2X4, TX1X2X3, TX1X2X4, TX1X2X3X4].

Hibi showed that a Hibi ring is always normal. Moreover, a Hibi ring can be represented
as a factor ring of a polynomial ring: if we let

IP := (XIXJ −XI∩JXI∪J | I, J ∈ J(P ), I 6⊆ J and J 6⊆ I)

be the binomial ideal in the polynomial ring k[XI | I ∈ J(P )] defined by a poset P , then
Rk[P ] ∼= k[XI | I ∈ J(P )]/IP . Hibi also showed that IP has a quadratic Gröbner basis for
any term order which satisfies the following condition: the initial term ofXIXJ−XI∩JXI∪J

is XIXJ . Hence a Hibi ring is always Koszul from general theory.
Next, we introduce the concept of a comparability graph.

Definition 10. A graph G is called a comparability graph if there exists a poset P which
satisfies the following condition:

{i, j} ∈ E(G) ⇐⇒ i ≥ j or i ≤ j in P.

We denote the comparability graph of P by G(P ).
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Example 11. The lower-left poset P defines the comparability graph G(P ).

P =

•

•⑧⑧⑧⑧⑧⑧⑧⑧⑧

•
❄❄❄❄❄❄❄❄❄

•

❄❄
❄❄

❄❄
❄❄

❄

•⑧⑧⑧⑧⑧⑧⑧⑧⑧ G(P ) =

• •

• •sssssssssss
•

•✗
✗
✗
✗
✗
✗
✗
✗
✗
✗
✗
✗

❑❑❑❑❑❑❑❑❑❑❑

⑤⑤⑤⑤⑤⑤⑤⑤⑤

✬
✬
✬
✬
✬
✬
✬
✬
✬
✬
✬
✬

❇❇
❇❇

❇❇
❇❇

❇

Remark 12. It is possible that P 6= P
′

but G(P ) = G(P
′

). Indeed, for the following poset
P

′

, G(P
′

) is identical to G(P ) in the above example.

P
′

=

•

•

•
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧

•

•

❄❄
❄❄

❄❄
❄❄

❄

♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦❖❖❖❖❖❖❖❖❖❖❖❖❖

Complete graphs are comparability graphs of totally ordered sets. Bipartite graphs and
trivially perfect graphs (see the next section) are also comparability graphs. Moreover,
if G is a comparability graph, then the suspension (e.g., see [11, p.4]) of G is also a
comparability graph.

Recall the following definitions of two types of polytope which are defined by a poset.

Definition 13 (see [16]). Let P = {p1, . . . , pn} be a finite poset.

(1) The order polytopeO(P ) of P is the convex polytope which consists of (a1, . . . , an) ∈
R

n such that 0 ≤ ai ≤ 1 with ai ≥ aj if pi ≤ pj in P .
(2) The chain polytope C(P ) of P is the convex polytope which consists of (a1, . . . , an) ∈

R
n such that 0 ≤ ai ≤ 1 with ai1+· · ·+aik ≤ 1 for all maximal chain pi1 < · · · < pik

of P .

Let C(P ) and O(P ) be the chain polytope and order polytope of a finite poset P ,
respectively. In [16], Stanley proved that

{The vertices of O(P )} = {ρ(I) | I is a poset ideal of P},

{The vertices of C(P )} = {ρ(A) | A is an anti-chain of P},

where A = {pi1, . . . , pik} is an anti-chain of P if pis 6≤ pit and pis 6≥ pit for all s 6= t. Hence
we have QG(P ) = C(P ).

In [9], Hibi and Li answered the question of when C(P ) and O(P ) are unimodularly
equivalent. From their study, we have the following theorem.

Theorem 14 ([9, Theorem 2.1]). Let P be a poset and G(P ) be the comparability graph

of P . Then the following are equivalent:

(1) The X-poset in Example 3.4 does not appear as a subposet (refer to [17, Chapter
3]) of P .

(2) Rk[P ] ∼= k[QG(P )].

－111－



Example 15. The cycle of length 4 C4 and the path of length 3 P4 are comparability
graphs of Q1 and Q2, respectively.

Q1 =

• •

• •
❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

Q2 =

• •

• •
❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

Hence k[QC4
] ∼= Rk[Q1] and k[QP4

] ∼= Rk[Q2].

A ring R is trivial if R can be constructed by starting from polynomial rings and
repeatedly applying tensor and Segre products. Herzog, Hibi and Restuccia gave an
answer for the question of when is a Hibi ring strongly Koszul.

Theorem 16 (see [7, Theorem 3.2]). Let P be a poset and R = Rk[P ] be the Hibi ring

constructed from P . Then the following assertions are equivalent:

(1) R is strongly Koszul.

(2) R is trivial.

(3) The N-poset as described below does not appear as a subposet of P .

•

•

❖❖❖
❖❖❖

•

❖❖❖
❖❖❖

•

By this theorem, Corollary 7, and Example 15, we have

Corollary 17. If G contains C4 or P4 as an induced subgraph, then k[QG] is not strongly
Koszul.

4. trivially perfect graph

In this section, we introduce the concept of a trivially perfect graph. As its name sug-
gests, a trivially perfect graph is a kind of perfect graph; it is also a kind of comparability
graph, as described below.

Definition 18. For a graph G, we set

α(G) := max{#S | S is a stable set of G},

m(G) := #{the set of maximal cliques of G}.

We call α(G) the stability number (or independence number) of G.

In general, α(G) ≤ m(G). Moreover, if G is chordal, then m(G) ≤ n by Dirac’s theorem
[5]. In [6], Golumbic introduced the concept of a trivially perfect graph.
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Definition 19 ([6]). We say that a graph G is trivially perfect if α(GW ) = m(GW ) for
any induced subgraph GW of G.

For example, complete graphs and star graphs (i.e., the complete bipartite graph K1,r)
are trivially perfect.

We define some additional concepts related to perfect graphs. Let CG be the set of all
cliques of G. Then we define

ω(G) := max{#C | C ∈ CG},

θ(G) := min{s | C1

∐

· · ·
∐

Cs = V (G), Ci ∈ CG},

χ(G) := θ(G),

where G is the complement of G. These invariants are called the clique number, clique
covering number, and chromatic number of G, respectively.

In general, α(G) = ω(G), θ(G) ≤ m(G) and ω(G) ≤ χ(G). The definition of a perfect
graph is as follows.

Definition 20. We say that a graph G is perfect if ω(GW ) = χ(GW ) for any induced
subgraph GW of G.

Lovász proved that G is perfect if and only if G is perfect [12]. The theorem is now
called the weak perfect graph theorem. With it, it is easy to show that a trivially perfect
graph is perfect.

Proposition 21. Trivially perfect graphs are perfect.

Proof. Assume that G is trivially perfect. By [12], it is enough to show that G is perfect.
For all induced subgraphs GW of G, we have

m(GW ) = α(GW ) = ω(GW ) ≤ χ(GW ) = θ(GW ) ≤ m(GW )

by general theory (note that GW = GW ). �

Golumbic gave a characterization of trivially perfect graphs.

Theorem 22 ([6, Theorem 2]). The following assertions are equivalent:

(1) G is trivially perfect.

(2) G is C4, P4-free, that is, G contains neither C4 nor P4 as an induced subgraph.

Proof. (1) ⇒ (2): It is clear since α(C4) = 2, m(C4) = 4, and α(P4) = 2, m(P4) = 3.
(2) ⇒ (1): Assume that G contains neither C4 nor P4 as an induced subgraph. If

G is not trivially perfect, then there exists an induced subgraph GW of G such that
α(GW ) < m(GW ). For this GW , there exists a maximal stable set SW of GW which
satisfies the following:

There exists s ∈ SW such that s ∈ C1∩C2 for some distinct pair of cliques C1, C2 ∈ CGW
.

Note that #SW > 1 since GW is not complete. Then there exist x ∈ C1 and y ∈ C2 such
that {x, s}, {y, s} ∈ E(GW ) and {x, y} 6∈ E(GW ).

Let u ∈ SW \ {s}. If {x, u} ∈ E(GW ) or {y, u} ∈ E(GW ), then the induced graph
G

{x,y,s,u} is C4 or P4, a contradiction. Hence {x, u} 6∈ E(GW ) and {y, u} 6∈ E(GW ). Then
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{x, y} ∪ {S \ {s}} is a stable set of GW , which contradicts that S is maximal. Therefore,
G is trivially perfect. �

Next, we show that a trivially perfect graph is a kind of comparability graph. First, we
define the notion of a tree poset.

Definition 23 (see [18]). A poset P is a tree if it satisfies the following conditions:

(1) Each of the connected components of P has a minimal element.
(2) For all p, p

′

∈ P , the following assertion holds: if there exists q ∈ P such that
p, p

′

≤ q, then p ≤ p
′

or p ≥ p
′

.

Example 24. The following poset is a tree:

•

•
❏❏❏❏❏❏❏❏❏❏❏

• •ttttttttttt

• •ttttttttttt

•ttttttttttt

Tree posets can be characterized as follows.

Proposition 25. Let P be a poset. Then the following assertions are equivalent:

(1) P is a tree.

(2) Neither the X-poset in Example 11, the N-poset in Theorem 16, nor the diamond

poset as described below appears as a subposet of P .

•

❏❏❏

•
❏❏❏

ttt

•ttt
ttt

•ttt

❏❏❏

❏❏❏

In [18], Wolk discussed the properties of the comparability graphs of a tree poset and
showed that such graphs are exactly the graphs that satisfy the “diagonal condition”.
This condition is equivalent to being C4, P4-free, and hence we have

Corollary 26. Let G be a graph. Then the following assertions are equivalent:

(1) G is trivially perfect.

(2) G is a comparability graph of a tree poset.

(3) G is C4, P4-free.

Remark 27. A graph G is a threshold graph if it can be constructed from a one-vertex
graph by repeated applications of the following two operations:

(1) Add a single isolated vertex to the graph.
(2) Take a suspension of the graph.

The concept of a threshold graph was introduced by Chvátal and Hammer [3]. They
proved that G is a threshold graph if and only if G is C4, P4, 2K2-free. Hence a trivially
perfect graph is also called a quasi-threshold graph.

－114－



5. Proof of Main theorem

In this section, we prove the main theorem.

Theorem 28 ([13]). Let G be a graph. Then the following assertions are equivalent:

(1) k[QG] is strongly Koszul.

(2) G is trivially perfect.

Proof. We assume that G is trivially perfect. Then there exists a tree poset P such that
G = G(P ) from Corollary 26. This implies that neither the X-poset in Example 11 nor
the N-poset in Theorem 16 appears as a subposet of P by Proposition 25, and hence
k[QG(P )] ∼= Rk[P ] is strongly Koszul by Theorems 14 and 16.

Conversely, if G is not trivially perfect, G contains C4 or P4 as an induced subgraph by
Corollary 26. Therefore, we have that k[QG] is not strongly Koszul by Corollary 17. �

Remark 29. On the recent work with Hibi and Ohsugi, we have that the Conjecture 2 is
false [10]. We proved that there exist infinite many non-trivial strongly Koszul edge rings.
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