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Abstract. Let T be a triangulated category with triangulated subcategories X and Y.
We show that the subcategory of extensions X ∗ Y is triangulated if and only if every
morphism from X to Y factors thorough X ∩ Y.

In this situation, we show that there is a stable t-structure
(

X

X∩Y
,

Y

X∩Y

)

in X∗Y

X∩Y
. We use

this to give a recipe for constructing triangles of recollements and recover some triangles
of recollements from the literature.

This is joint work with Peter Jørgensen.

1. Introduction

Let T be a triangulated category. If X and Y are full subcategories of T, then the
subcategory of extensions X ∗ Y is the full subcategory of objects e for which there is a
distinguished triangle x → e → y with x ∈ X, y ∈ Y. Subcategories of extensions have
recently been of interest to a number of authors, see [1], [5], [6], [12].

We give necessary and sufficient conditions for X ∗ Y to be triangulated. It has been
known that X ∗ Y is triangulated if there is no morphism from X to Y. Theorem 1 shows
that this classical fact essentially gives the sufficient condition as well.

Theorem 1. Let X, Y be triangulated subcategories of T. Then X∗Y is a triangulated

subcategory of T ⇔ Y ∗ X ⊆ X ∗ Y ⇔ . HomT/X∩Y(X/X ∩ Y,Y/X ∩ Y) = 0.
If this is the case, X/X ∩ Y and Y/X ∩ Y give a stable t-structure in X ∗ Y/X ∩ Y.

Recall that a pair of triangulated subcategories (U,V) of T is called a stable t-structure if
U ∗V = T and HomT(U,V) = 0, see [9, def. 9.14]. Indeed, for a given thick subcategory U

of T, there is a one-to -one correspondence between stable t-structures of T/U and pairs
of thick subcategories X,Y with T = X ∗ Y and X ∩ Y = U, see [7] Lemma 4.6 .

Finally, under stronger assumptions, we show that a pair (or a triple) of triangulated
subcategories of extensions induces a so-called (triangle of) recollements in a quotient
category. A pair of stable t-structures (U,V), (V,W) is the equivalent notion to a recolle-
ment [8]. A triangle of recollements is a triple of stable t-structures (U,V), (V,W), (W,U).
Triangles of recollements were introduced in [4, def. 0.3] and have a very high degree of
symmetry; for instance, U ≃ V ≃ W ≃ T/U ≃ T/V ≃ T/W. They have applications to
the construction of triangle equivalences, see [4, prop. 1.16].

This is a preliminary report. The detailed version of this paper will be submitted for publication
elsewhere.
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2. Triangulated subcategory of extensions

Theorem 1 ([7] Theorem 4.1 ). Let X, Y be triangulated subcategories of T and let

Q : T → T/X ∩ Y be the quotient functor. Then the following are equivalent.

(1) X ∗ Y is a triangulated subcategory of T.

(2) Y ∗ X ⊆ X ∗ Y.

(3) Each morphism f : x → y with x ∈ X, y ∈ Y factors through some object of X∩Y.

(4) HomQ(T)(Q(X), Q(Y)) = 0.

(5) X ∗Y′ is a triangulated subcategory of T for every triangulated subcategory Y′ of Y

containing X ∩ Y.

(6) X′ ∗Y is a triangulated subcategory of T for every triangulated subcategory X′ of X

containing X ∩ Y.

If X ∩ Y = 0 in particular, we recover the following. This fact is well known but we
have been unable to locate a reference.

Corollary 2. Let X, Y be triangulated subcategories of T. If HomT(X,Y) = 0 then X ∗ Y
is a triangulated subcategory of T.

Lemma 3 ([7] Lemma 4.6 ). Let U and V be triangulated subcategories of T and assume

that S = U∗V is triangulated. Let Q : T → T/U∩V and Q′ : S → S/U∩V be the quotient

functors. We have the following.

(1) (Q′(U), Q′(V)) is a stable t-structure of Q′(S).
(2) If U ∩ V is thick, then (Q(U), Q(V)) is a stable t-structure of Q(S). In particular,

S = T if and only if Q(S) = Q(T).

Remark 4. Yoshizawa gives the following example in [12, cor. 3.3]: If R is a commutative
noetherian ring and S is a Serre subcategory of ModR, then (modR) ∗ S is a Serre
subcategory of ModR. Here ModR is the category of R-modules and modR is the full
subcategory of finitely generated R-modules.

One might suspect a triangulated analogue to say that if T is compactly generated and
U is a triangulated subcategory of T, then so is Tc ∗ U where Tc denotes the triangulated
subcategory of compact objects. See [10, defs. 1.6 and 1.7]. However, this is false:

Set T = D(Z) and U = D(Q). Then T is compactly generated by {Σi
Z | i ∈ Z }. There

is a homological epimorphism of rings Z → Q which induces an embedding of triangulated
categories U →֒ T, see [2, def. 4.5]and [11, thm. 2.4]. Since Q is a field, each object of U
has homology modules of the form

∐

Q. This means that viewed in T, the only object
of U which has finitely generated homology modules is 0. Hence 0 is the only object of U
which is compact in T, see [10, cor. 2.3]. That is, Tc ∩ U = 0.

If Tc ∗U were a triangulated subcategory of T, then Theorem B would give that (Tc,U)
was a stable t-structure in Tc ∗ U, but this is false since the canonical map Z → Q is a
non-zero morphism from an object of Tc to an object of U.

3. Recollements

In the previous section we see that a pair of triangulated subcategories induces a stable
t-structure if the category of their extensions is triangulated. It is natural to ask whether
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a (triangle of) recollement(s) is induced by a triple of triangulated subcategories X,Y,Z
with X ∗ Y , Y ∗ Z (and Z ∗ X) triangulated. Apparently we don’t know which category
the recollement lives in. However using ”enlargement” and ”restriction” of categories,
we construct a subquotient category with desired recollement. Throughout this section,
〈X1, · · · ,Xn〉 is the smallest triangulated subcategory containing X1, · · · ,Xn.

Lemma 5 (restriction. [7] Lemma 6.1). Let U, V and W be triangulated subcategories of

T.

(1) Assume both U ∗ V and V ∗ W are triangulated. Then S = (U ∗ V) ∩ (V ∗ W) is

represented as S = U1 ∗ V = V ∗W1 where U1 = U ∩ S and W1 = W ∩ S.

(2) Assume each of U ∗ V, V ∗W and W ∗ U is triangulated. Then S = (U ∗ V) ∩ (V ∗
W)∩ (W ∗U) is represented as S = U1 ∗V1 = V1 ∗W1 = W1 ∗U1 where U1 = U∩S,

V1 = V ∩ S and W1 = W ∩ S.

Lemma 6 (enlargement. [7] Lemma5.1 ). Let U and V be triangulated subcategories of

T. Assume U ∗V is triangulated. For each triangulated subcategories U′ ⊂ U and V′ ⊂ V,

we have the following.

(1) U ∗ V = U ∗ 〈V,U′〉.
(2) 〈V,U′〉 ∩ U = 〈U ∩ V,U′〉.
(3) U ∗ V = 〈U,V′〉 ∗ V.
(4) 〈U,V′〉 ∩ V = 〈U ∩ V,V′〉.

Lemma 7. Let U,V and W be triangulated subcategory of T.

(1) Assume U ∗ V = V ∗ W and is triangulated. Set S = U ∗ V and let Q : S →
S/〈U ∩ V,V ∩W〉 be the canonical quotient functor. Then both (Q(U), Q(V)) and

(Q(V), Q(W)) are stable t-structures of S/〈U ∩ V,V ∩W〉.
(2) Assume U∗V = V ∗W = W ∗U and is triangulated. Set S = U∗V and let Q : S →

S/〈U ∩ V,V ∩ W,W ∩ U〉 be the canonical quotient functor. Then (Q(U), Q(V)),
(Q(V), Q(W)) and (Q(W), Q(U))are stable t-structures of S/〈U∩V,V∩W,W∩U〉.

Proof. (i). We have S = 〈U,W∩V〉∗V = V∗〈W,U∩V〉 and 〈U,W∩V〉∩V = 〈U∩V,W∩V〉 =
V∩〈W,U∩V〉 from Lemma 6. Lemma 3 gives two stable t-structures (Q(〈U,W∩V〉), Q(V))
and (Q(V), Q(〈W,U∩V〉)) of Q(S), but (Q(〈U,W∩V〉) = Q(U) and Q(〈W,U∩V〉) = Q(W)
hence we are done.

(ii). From Lemma 6, we have S = 〈U,V ∩ W〉 ∗ V = 〈U,V ∩ W〉 ∗ 〈V,W ∩ U〉 and
〈U,V ∩W〉 ∩ 〈V,W ∩ U〉 = 〈〈U ∩ V,V ∩W〉,W ∩ U〉. Lemma 3 gives a stable t-structure
(Q(〈U,V ∩W〉), Q(〈V,W ∩ U〉)) but (Q(〈U,V ∩W〉) = Q(U) and Q(〈V,W ∩ U〉) = Q(V).
Analogously we obtain other stable t-structures. �

Theorem 8. Let U, V and W be triangulated subcategories of T.

(1) Assume both U ∗ V and V ∗W are triangulated. Set S = U ∗ V ∩ V ∗W and let Q :
S → S/〈U∩V,V∩W〉 be the canonical quotient functor. Then (Q(U1), Q(V)), and
(Q(V), Q(W1)) are stable t-structures of Q(S) where U1 = U∩ S and W1 = W ∩ S.

(2) Assume each of U∗V, V∗W and W∗U is triangulated. Set S = U∗V∩V∗W∩W∗U
and let Q : S → S/〈U ∩ V,V ∩ W,W ∩ U〉 be the canonical quotient functor.

Then (Q(U1), Q(V1)), (Q(V1), Q(W1)) and (Q(W1), Q(U1)) are stable t-structures

of Q(S) where U1 = U ∩ S, V1 = V ∩ S and W1 = W ∩ S.
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Example 9 (The homotopy category of projective modules). Let R be an Iwanaga-Go-
renstein ring, that is, a noetherian ring which has finite injective dimension from either
side as a module over itself. Let T = K(b)(Prj R) be the homotopy category of complexes
of projective right-R-modules with bounded homology. Define subcategories of T by

X = K
−

(b)(Prj R) , Y = Kac(Prj R) , Z = K
+
(b)(Prj R)

where K
−

(b)(Prj R) is the isomorphism closure of the class of complexes P with P i = 0

for i ≫ 0 and K
+
(b)(Prj R) is defined analogously, while Kac(Prj R) is the subcategory of

acyclic (that is, exact) complexes.
Note that Y is equal to Ktac(Prj R), the subcategory of totally acyclic complexes, that is,

acyclic complexes which stay acyclic under the functor HomR(−, Q) when Q is projective,
see [3, cor. 5.5 and par. 5.12].

By [4, prop. 2.3(1), lem. 5.6(1), and rmk. 5.14] there are stable t-structures (X,Y),
(Y,Z) in T.

If P ∈ T is given, then there is a distinguished triangle P≥0 → P → P<0 where P≥0

and P<0 are hard truncations. Since P≥0 ∈ Z and P<0 ∈ X, we have T = Z ∗ X.
We can hence apply Lemma 7. The intersection

X ∩ Z = K
−

(b)(Prj R) ∩ K
+
(b)(Prj R) = K

b(Prj R)

is the isomorphism closure of the class of bounded complexes. If we use an obvious short-
hand for quotient categories, Lemma 7 (ii) therefore provides a triangle of recollements

(

K
−

(b)/K
b(Prj R) , Kac(Prj R) , K+

(b)/K
b(Prj R)

)

in K(b)/K
b(Prj R). Note that Kac(Prj R) is equivalent to its projection to K(b)/K

b(Prj R)
by [4, prop. 1.5], so we can write Kac(Prj R) instead of the projection.

This example and its finite analogue were first obtained in [4, thms. 2.8 and 5.8] and
motivated the definition of triangles of recollements.
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