TRIANGULATED SUBCATEGORIES OF EXTENSIONS AND TRIANGLES OF RECOLLEMENTS

KIRIKO KATO

ABSTRACT. Let T be a triangulated category with triangulated subcategories X and Y. We show that the subcategory of extensions X * Y is triangulated if and only if every morphism from X to Y factors thorough $X \cap Y$.

In this situation, we show that there is a stable t-structure $\begin{pmatrix} X \\ X \cap Y \end{pmatrix}$ in $\begin{pmatrix} X*Y \\ X \cap Y \end{pmatrix}$. We use this to give a recipe for constructing triangles of recollements and recover some triangles of recollements from the literature.

This is joint work with Peter Jørgensen.

1. INTRODUCTION

Let T be a triangulated category. If X and Y are full subcategories of T, then the subcategory of extensions X * Y is the full subcategory of objects e for which there is a distinguished triangle $x \to e \to y$ with $x \in X, y \in Y$. Subcategories of extensions have recently been of interest to a number of authors, see [1], [5], [6], [12].

We give necessary and sufficient conditions for X * Y to be triangulated. It has been known that X * Y is triangulated if there is no morphism from X to Y. Theorem 1 shows that this classical fact essentially gives the sufficient condition as well.

Theorem 1. Let X, Y be triangulated subcategories of T. Then X * Y is a triangulated subcategory of T \Leftrightarrow Y * X \subseteq X * Y \Leftrightarrow . Hom_{T/X \cap Y}(X/X \cap Y, Y/X \cap Y) = 0.

If this is the case, $X/X \cap Y$ and $Y/X \cap Y$ give a stable t-structure in $X * Y/X \cap Y$. Recall that a pair of triangulated subcategories (U, V) of T is called a stable t-structure if U * V = T and $Hom_T(U, V) = 0$, see [9, def. 9.14]. Indeed, for a given thick subcategory U of T, there is a one-to -one correspondence between stable t-structures of T/U and pairs of thick subcategories X, Y with T = X * Y and $X \cap Y = U$, see [7] Lemma 4.6.

Finally, under stronger assumptions, we show that a pair (or a triple) of triangulated subcategories of extensions induces a so-called (triangle of) recollements in a quotient category. A pair of stable t-structures (U, V), (V, W) is the equivalent notion to a recollement [8]. A triangle of recollements is a triple of stable t-structures (U, V), (V, W), (W, U). Triangles of recollements were introduced in [4, def. 0.3] and have a very high degree of symmetry; for instance, $U \simeq V \simeq W \simeq T/U \simeq T/V \simeq T/W$. They have applications to the construction of triangle equivalences, see [4, prop. 1.16].

This is a preliminary report. The detailed version of this paper will be submitted for publication elsewhere.

2. TRIANGULATED SUBCATEGORY OF EXTENSIONS

Theorem 1 ([7] Theorem 4.1). Let X, Y be triangulated subcategories of T and let $Q: T \to T/X \cap Y$ be the quotient functor. Then the following are equivalent.

- (1) X * Y is a triangulated subcategory of T.
- (2) $\mathbf{Y} * \mathbf{X} \subseteq \mathbf{X} * \mathbf{Y}$.
- (3) Each morphism $f: x \to y$ with $x \in X, y \in Y$ factors through some object of $X \cap Y$.
- (4) $\operatorname{Hom}_{Q(\mathsf{T})}(Q(\mathsf{X}), Q(\mathsf{Y})) = 0.$
- (5) X * Y' is a triangulated subcategory of T for every triangulated subcategory Y' of Y containing $X \cap Y$.
- (6) X' * Y is a triangulated subcategory of T for every triangulated subcategory X' of X containing $X \cap Y$.

If $X \cap Y = 0$ in particular, we recover the following. This fact is well known but we have been unable to locate a reference.

Corollary 2. Let X, Y be triangulated subcategories of T. If $Hom_T(X, Y) = 0$ then X * Y is a triangulated subcategory of T.

Lemma 3 ([7] Lemma 4.6). Let U and V be triangulated subcategories of T and assume that S = U * V is triangulated. Let $Q : T \to T/U \cap V$ and $Q' : S \to S/U \cap V$ be the quotient functors. We have the following.

- (1) $(Q'(\mathsf{U}), Q'(\mathsf{V}))$ is a stable t-structure of $Q'(\mathsf{S})$.
- (2) If $U \cap V$ is thick, then (Q(U), Q(V)) is a stable t-structure of Q(S). In particular, S = T if and only if Q(S) = Q(T).

Remark 4. Yoshizawa gives the following example in [12, cor. 3.3]: If R is a commutative noetherian ring and S is a Serre subcategory of Mod R, then (mod R) * S is a Serre subcategory of Mod R. Here Mod R is the category of R-modules and mod R is the full subcategory of finitely generated R-modules.

One might suspect a triangulated analogue to say that if T is compactly generated and U is a triangulated subcategory of T, then so is $T^c * U$ where T^c denotes the triangulated subcategory of compact objects. See [10, defs. 1.6 and 1.7]. However, this is false:

Set $\mathsf{T} = \mathsf{D}(\mathbb{Z})$ and $\mathsf{U} = \mathsf{D}(\mathbb{Q})$. Then T is compactly generated by $\{\Sigma^i \mathbb{Z} \mid i \in \mathbb{Z}\}$. There is a homological epimorphism of rings $\mathbb{Z} \to \mathbb{Q}$ which induces an embedding of triangulated categories $\mathsf{U} \hookrightarrow \mathsf{T}$, see [2, def. 4.5]and [11, thm. 2.4]. Since \mathbb{Q} is a field, each object of U has homology modules of the form $\coprod \mathbb{Q}$. This means that viewed in T , the only object of U which has finitely generated homology modules is 0. Hence 0 is the only object of U which is compact in T , see [10, cor. 2.3]. That is, $\mathsf{T}^c \cap \mathsf{U} = 0$.

If $T^c * U$ were a triangulated subcategory of T, then Theorem B would give that (T^c, U) was a stable t-structure in $T^c * U$, but this is false since the canonical map $\mathbb{Z} \to \mathbb{Q}$ is a non-zero morphism from an object of T^c to an object of U.

3. Recollements

In the previous section we see that a pair of triangulated subcategories induces a stable t-structure if the category of their extensions is triangulated. It is natural to ask whether a (triangle of) recollement(s) is induced by a triple of triangulated subcategories X, Y, Z with X * Y, Y * Z (and Z * X) triangulated. Apparently we don't know which category the recollement lives in. However using "enlargement" and "restriction" of categories, we construct a subquotient category with desired recollement. Throughout this section, $\langle X_1, \dots, X_n \rangle$ is the smallest triangulated subcategory containing X_1, \dots, X_n .

Lemma 5 (restriction. [7] Lemma 6.1). Let U, V and W be triangulated subcategories of T.

- (1) Assume both U * V and V * W are triangulated. Then $S = (U * V) \cap (V * W)$ is represented as $S = U_1 * V = V * W_1$ where $U_1 = U \cap S$ and $W_1 = W \cap S$.
- (2) Assume each of U * V, V * W and W * U is triangulated. Then $S = (U * V) \cap (V * W) \cap (W * U)$ is represented as $S = U_1 * V_1 = V_1 * W_1 = W_1 * U_1$ where $U_1 = U \cap S$, $V_1 = V \cap S$ and $W_1 = W \cap S$.

Lemma 6 (enlargement. [7] Lemma5.1). Let U and V be triangulated subcategories of T. Assume U * V is triangulated. For each triangulated subcategories $U' \subset U$ and $V' \subset V$, we have the following.

- (1) $\mathsf{U} * \mathsf{V} = \mathsf{U} * \langle \mathsf{V}, \mathsf{U}' \rangle$.
- (2) $\langle \mathsf{V}, \mathsf{U}' \rangle \cap \mathsf{U} = \langle \mathsf{U} \cap \mathsf{V}, \mathsf{U}' \rangle.$
- (3) $\mathsf{U} * \mathsf{V} = \langle \mathsf{U}, \mathsf{V}' \rangle * \mathsf{V}.$
- (4) $\langle \mathsf{U},\mathsf{V}'\rangle \cap \mathsf{V} = \langle \mathsf{U} \cap \mathsf{V},\mathsf{V}'\rangle.$

Lemma 7. Let U, V and W be triangulated subcategory of T.

- (1) Assume U * V = V * W and is triangulated. Set S = U * V and let $Q : S \rightarrow S/\langle U \cap V, V \cap W \rangle$ be the canonical quotient functor. Then both (Q(U), Q(V)) and (Q(V), Q(W)) are stable t-structures of $S/\langle U \cap V, V \cap W \rangle$.
- (2) Assume U * V = V * W = W * U and is triangulated. Set S = U * V and let $Q : S \rightarrow S/\langle U \cap V, V \cap W, W \cap U \rangle$ be the canonical quotient functor. Then (Q(U), Q(V)), (Q(V), Q(W)) and (Q(W), Q(U)) are stable t-structures of $S/\langle U \cap V, V \cap W, W \cap U \rangle$.

Proof. (i). We have $S = \langle U, W \cap V \rangle * V = V * \langle W, U \cap V \rangle$ and $\langle U, W \cap V \rangle \cap V = \langle U \cap V, W \cap V \rangle = V \cap \langle W, U \cap V \rangle$ from Lemma 6. Lemma 3 gives two stable t-structures $(Q(\langle U, W \cap V \rangle), Q(V))$ and $(Q(V), Q(\langle W, U \cap V \rangle))$ of Q(S), but $(Q(\langle U, W \cap V \rangle) = Q(U)$ and $Q(\langle W, U \cap V \rangle) = Q(W)$ hence we are done.

(ii). From Lemma 6, we have $S = \langle U, V \cap W \rangle * V = \langle U, V \cap W \rangle * \langle V, W \cap U \rangle$ and $\langle U, V \cap W \rangle \cap \langle V, W \cap U \rangle = \langle \langle U \cap V, V \cap W \rangle, W \cap U \rangle$. Lemma 3 gives a stable t-structure $(Q(\langle U, V \cap W \rangle), Q(\langle V, W \cap U \rangle))$ but $(Q(\langle U, V \cap W \rangle) = Q(U))$ and $Q(\langle V, W \cap U \rangle) = Q(V)$. Analogously we obtain other stable t-structures.

Theorem 8. Let U, V and W be triangulated subcategories of T.

- (1) Assume both U * V and V * W are triangulated. Set S = U * V ∩ V * W and let Q : S → S/⟨U ∩ V, V ∩ W⟩ be the canonical quotient functor. Then (Q(U₁), Q(V)), and (Q(V), Q(W₁)) are stable t-structures of Q(S) where U₁ = U ∩ S and W₁ = W ∩ S.
- (2) Assume each of U*V, V*W and W*U is triangulated. Set S = U*V∩V*W∩W*U and let Q : S → S/⟨U ∩ V, V ∩ W, W ∩ U⟩ be the canonical quotient functor. Then (Q(U₁), Q(V₁)), (Q(V₁), Q(W₁)) and (Q(W₁), Q(U₁)) are stable t-structures of Q(S) where U₁ = U ∩ S, V₁ = V ∩ S and W₁ = W ∩ S.

Example 9 (The homotopy category of projective modules). Let R be an Iwanaga-Gorenstein ring, that is, a noetherian ring which has finite injective dimension from either side as a module over itself. Let $T = K_{(b)}(Prj R)$ be the homotopy category of complexes of projective right-R-modules with bounded homology. Define subcategories of T by

$$\mathsf{X}=\mathsf{K}^-_{(b)}(\operatorname{Prj}\,R) \ , \ \mathsf{Y}=\mathsf{K}_{ac}(\operatorname{Prj}\,R) \ , \ \mathsf{Z}=\mathsf{K}^+_{(b)}(\operatorname{Prj}\,R)$$

where $\mathsf{K}^{-}_{(b)}(\operatorname{Prj} R)$ is the isomorphism closure of the class of complexes P with $P^{i} = 0$ for $i \gg 0$ and $\mathsf{K}^{+}_{(b)}(\operatorname{Prj} R)$ is defined analogously, while $\mathsf{K}_{ac}(\operatorname{Prj} R)$ is the subcategory of acyclic (that is, exact) complexes.

Note that Y is equal to $\mathsf{K}_{tac}(\operatorname{Prj} R)$, the subcategory of totally acyclic complexes, that is, acyclic complexes which stay acyclic under the functor $\operatorname{Hom}_R(-, Q)$ when Q is projective, see [3, cor. 5.5 and par. 5.12].

By [4, prop. 2.3(1), lem. 5.6(1), and rmk. 5.14] there are stable t-structures (X, Y), (Y, Z) in T.

If $P \in \mathsf{T}$ is given, then there is a distinguished triangle $P^{\geq 0} \to P \to P^{<0}$ where $P^{\geq 0}$ and $P^{<0}$ are hard truncations. Since $P^{\geq 0} \in \mathsf{Z}$ and $P^{<0} \in \mathsf{X}$, we have $\mathsf{T} = \mathsf{Z} * \mathsf{X}$.

We can hence apply Lemma 7. The intersection

$$\mathsf{X} \cap \mathsf{Z} = \mathsf{K}^-_{(b)}(\operatorname{Prj} R) \cap \mathsf{K}^+_{(b)}(\operatorname{Prj} R) = \mathsf{K}^b(\operatorname{Prj} R)$$

is the isomorphism closure of the class of bounded complexes. If we use an obvious shorthand for quotient categories, Lemma 7 (ii) therefore provides a triangle of recollements

$$\left(\mathsf{K}^{-}_{(b)}/\mathsf{K}^{b}(\operatorname{Prj} R) , \mathsf{K}_{ac}(\operatorname{Prj} R) , \mathsf{K}^{+}_{(b)}/\mathsf{K}^{b}(\operatorname{Prj} R)\right)$$

in $\mathsf{K}_{(b)}/\mathsf{K}^{b}(\operatorname{Prj} R)$. Note that $\mathsf{K}_{ac}(\operatorname{Prj} R)$ is equivalent to its projection to $\mathsf{K}_{(b)}/\mathsf{K}^{b}(\operatorname{Prj} R)$ by [4, prop. 1.5], so we can write $\mathsf{K}_{ac}(\operatorname{Prj} R)$ instead of the projection.

This example and its finite analogue were first obtained in [4, thms. 2.8 and 5.8] and motivated the definition of triangles of recollements.

References

- A. Bondal and M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), 1–36.
- W. Geigle and H. Lenzing, Perpendicular categories and applications to representations and sheaves, J. Algebra 144 (1991), 273–343.
- [3] S. Iyengar and H. Krause, Acyclicity versus total acyclicity for complexes over noetherian rings, Doc. Math. 11 (2006), 207–240.
- [4] O. Iyama, K. Kato, and J. Miyachi, Recollement of homotopy categories and Cohen-Macaulay modules, J. K-Theory 8 (2011), 507–542.
- [5] O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), 117–168.
- [6] P. Jørgensen and K. Kato, Symmetric Auslander and Bass categories, Math. Proc. Cambridge Phil. Soc. 250 (2011), 227–240.
- [7] P. Jørgensen and K. Kato, Triangulated subcategories of extensions and triangles of recollements, preprint 2014.
- [8] J. Miyachi, Localization of Triangulated Categories and Derived Categories, J. Algebra 141 (1991), 463-483.
- [9] J. Miyachi, Derived Categories with applications to representations of algebras, Chiba University, 2000. Available at the author's webpage: http://www.u-gakugei.ac.jp/~miyachi/seminar.html.

- [10] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown Representability, J. Amer. Math. Soc. 9 (1996), 205–236.
- [11] D. Pauksztello, Homological epimorphisms of Differential Graded algebras, Comm. Algebra 37 (2009), 2337–2350.
- [12] T. Yoshizawa, Subcategories of extension modules by Serre subcategories, Proc. Amer. Math. Soc. 140 (2012), 2293-2305.

DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCES GRADUATE SCHOOL OF SCIENCE OSAKA PREFECTURE UNIVERSITY SAKAI, OSAKA 599-8531 JAPAN *E-mail address*: kiriko@mi.s.osakafu-u.ac.jp