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Abstract. We introduce systematic methods to construct Grothendieck categories from
colored quivers and develop a theory of the specialization orders on the atom spectra
of Grothendieck categories. We showed that any partially ordered set is realized as the
atom spectrum of some Grothendieck category, which is an analog of Hochster’s result
in commutative ring theory. In this paper, we explain techniques in the proof by using
examples.
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1. Introduction

The aim of this paper is to provide systematic methods to construct Grothendieck
categories with certain structures and to establish a theory of the specialization orders
on the spectra of Grothendieck categories. There are important Grothendieck categories
appearing in representation theory of rings and algebraic geometry: the category ModΛ of
(right) modules over a ring Λ, the category QCohX of quasi-coherent sheaves on a scheme
X ([2, Lem 2.1.7]), and the category of quasi-coherent sheaves on a noncommutative
projective scheme introduced by Verevkin [10] and Artin and Zhang [1]. Furthermore, by
using the Gabriel-Popescu embedding ([7, Proposition]), it is shown that any Grothendieck
category can be obtained as the quotient category of the category of modules over some
ring by some localizing subcategory. In this sense, the notion of Grothendieck category is
ubiquitous.

In commutative ring theory, Hochster characterized the topological spaces appearing
as the prime spectra of commutative rings with Zariski topologies ([3, Theorem 6 and
Proposition 10]). Speed [8] pointed out that Hochster’s result gives the following char-
acterization of the partially ordered sets appearing as the prime spectra of commutative
rings.

Theorem 1 (Hochster [3, Proposition 10] and Speed [8, Corollary 1]). Let P be a partially

ordered set. Then P is isomorphic to the prime spectrum of some commutative ring with

the inclusion relation if and only if P is an inverse limit of finite partially ordered sets in

the category of partially ordered sets.
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We showed a theorem of the same type for Grothendieck categories. In [4] and [5], we in-
vestigated Grothendieck categories by using the atom spectrum ASpecA of a Grothendieck
category A. It is the set of equivalence classes of monoform objects, which generalizes the
prime spectrum of a commutative ring.

In fact, our main result claims that any partially ordered set is realized as the atom
spectrum of some Grothendieck categories.

Theorem 2. Any partially ordered set is isomorphic to the atom spectrum of some

Grothendieck category.

In this paper, we explain key ideas to show this theorem by using examples. For more
details, we refer the reader to [6].

2. Atom spectrum

In this section, we recall the definition of atom spectrum and fundamental properties.
Throughout this paper, let A be a Grothendieck category.

Definition 3. A nonzero object H in A is called monoform if for any nonzero subobject
L of H , there does not exist a nonzero subobject of H which is isomorphic to a subobject
of H/L.

Monoform objects have the following properties.

Proposition 4. Let H be a monoform object in A. Then the following assertions hold.

(1) Any nonzero subobject of H is also monoform.

(2) H is uniform, that is, for any nonzero subobjects L1 and L2 of H, we have L1∩L2 6=
0.

Definition 5. For monoform objects H and H ′ in A, we say that H is atom-equivalent

to H ′ if there exists a nonzero subobject of H which is isomorphic to a subobject of H ′.

Remark 6. The atom equivalence is an equivalence relation between monoform objects in
A since any monoform object is uniform.

Now we define the notion of atoms, which was originally introduced by Storrer [9] in
the case of module categories.

Definition 7. Denote by ASpecA the quotient set of the set of monoform objects in A
by the atom equivalence. We call it the atom spectrum of A. Elements of ASpecA are
called atoms in A. The equivalence class of a monoform object H in A is denoted by H.

The following proposition shows that the atom spectrum of a Grothendieck category is
a generalization of the prime spectrum of a commutative ring.

Proposition 8. Let R be a commutative ring. Then the map SpecR → ASpec(ModR)

given by p 7→ (R/p) is a bijection.

The notions of associated primes and support are also generalized as follows.

Definition 9. Let M be an object in A.
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(1) Define the atom support of M by

ASuppM = {H ∈ ASpecA | H is a subquotient of M}.

(2) Define the set of associated atoms of M by

AAssM = {H ∈ ASpecA | H is a subobject of M}.

The following proposition is a generalization of a proposition which is well known in
the commutative ring theory.

Proposition 10. Let 0 → L → M → N → 0 be an exact sequence in A. Then the

following assertions hold.

(1) ASuppM = ASuppL ∪ ASuppN .

(2) AAssL ⊂ AAssM ⊂ AAssL ∪ AAssN .

A partial order on the atom spectrum is defined by using atom support.

Definition 11. Let α and β be atoms in A. We write α ≤ β if for any object M in A
satisfying α ∈ ASuppM also satisfies β ∈ ASuppM .

Proposition 12. The relation ≤ on ASpecA is a partial order.

In the case where A is the category of modules over a commutative ring R, the notion of
associated atoms, atom support, and the partial order on the atom spectrum coincide with
associated primes, support, and the inclusion relation between prime ideals, respectively,
through the bijection in Proposition 8.

3. Construction of Grothendieck categories

In order to construct Grothendieck categories, we use colored quivers.

Definition 13. (1) A colored quiver is a sextuple Γ = (Q0, Q1, C, s, t, u), where Q0,
Q1, and C are sets, and s : Q1 → Q0, t : Q1 → Q0, and u : Q1 → C are maps. We
regard the colored quiver Γ as the quiver (Q0, Q1, s, t) with the color u(r) on each
arrow r ∈ Q1.

(2) We say that a colored quiver Γ = (Q0, Q1, C, s, t, u) satisfies the finite arrow con-

dition if for each v ∈ Q0 and c ∈ C, the number of arrows r satisfying s(r) = v
and u(r) = c is finite.

From now on, we fix a field K. From a colored quiver satisfying the finite arrow
condition, we construct a Grothendieck category as follows.

Definition 14. Let Γ = (Q0, Q1, C, s, t, u) be a colored quiver satisfying the finite arrow
condition. Denote a free K-algebra on C by SC = K 〈sc | c ∈ C〉. Define a K-vector space
MΓ by MΓ =

⊕

v∈Q0
Fv, where Fv = xvK is a one-dimensional K-vector space generated

by an element xv. Regard MΓ as a right SC-module by defining the action of sc ∈ SC as
follows: for each vertex v in Q,

xv · sc =
∑

r

xt(r),
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where r runs over all the arrows r ∈ Q1 with s(r) = v and u(r) = c. The number of such
arrows r is finite since Γ satisfies the finite arrow condition. Denote by AΓ the smallest
full subcategory of ModSC which contains MΓ and is closed under submodules, quotient
modules, and direct sums.

The category AΓ defined above is a Grothendieck category. The following proposition
is useful to describe the atom spectrum of AΓ.

Proposition 15. Let Γ = (Q0, Q1, C, s, t, u) be a colored quiver satisfying the finite arrow

condition. Then ASpecAΓ is isomorphic to the subset ASuppMΓ of ASpec(ModSC) as

a partially ordered set.

Example 16. Define a colored quiver Γ = (Q0, Q1, C, s, t, u) by Q0 = {v, w}, Q1 = {r},
C = {c}, s(r) = v, t(r) = w, and u(r) = c. This is illustrated as

v

c

��
w

.

Then we have SC = K 〈sc〉 = K[sc],MΓ = xvK⊕xwK as aK-vector space, and xvsc = xw,
xwsc = 0. The subspace L = xwK of MΓ is a simple SC-submodule, and L is isomorphic
to MΓ/L as an SC-module. Hence we have

ASpecAΓ = ASuppMΓ = ASuppL ∪ASupp
MΓ

L
= {L}.

The next example explains the way to distinguish simple modules corresponding differ-
ent vertices.

Example 17. Let Γ = (Q0, Q1, C, s, t, u) be the colored quiver

v cv
yy

c

��
w cw

xx

and let N = xvK and L = xwK. Then we have an exact sequence

0 → L → MΓ → N → 0

of K-vector spaces and this can be regarded as an exact sequence in ModSC . Hence we
have

ASpecAΓ = ASuppMΓ = ASuppL ∪ASuppN = {L,N},

where L 6= N .

In order to realize a partially ordered set with nontrivial partial order, we use an infinite
colored quiver.

Example 18. Let Γ be the colored quiver

v0
c0 // v1

c1 // · · · .

Let L be the simple SC-module defined by L = K as a K-vector space and Lsci = 0 for
each i ∈ Z

≥0. Then we have ASpecAΓ = {MΓ, L}, where MΓ < L.

－77－



We refer the reader to [6] for further techniques to show Theorem 2.
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