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Throughout this talk

R : a commutative Noetherian ring.

mod(R) : the category of finitely generated R-modules.

Art(R) : the category of artinian R-modules.

a subcategory: a nonempty full subcategory which is closed under

isomorphism.

Definition.

A subcategory X of an abelian category A is said to be

wide if it is closed under kernels, cokernels and extensions.

Serre if it is wide and closed under subobjects.

(if and only if ∀ 0→ L→ M → N → 0 in A, M ∈ X ⇔ L, N ∈ X .)
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§0. Classification theory of subcategories.

[Hopkins, 1987], [Neeman,1992], [Thomason, 1997]

Classifying thick subcategories of the derived category.

(A thick subcategory : closed under direct summands and exact triangle.)

[Gabriel, 1962]

He gives a bijection:

{
Serre subcategories

of mod(R)

}
−−−−→
←−−−−

{
specialization closed subsets

of Spec R

}
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[Takahashi, 2008], [Krause, 2008]

∃ 1-1 correspondences:

⎧⎨
⎩

subcategories of mod(R)

closed under

submodules and extensions

⎫⎬
⎭

Ψ−−−−→
←−−−−

Φ

{
subsets of Spec R

}
�⏐⏐⊆

�⏐⏐⊆

{
Serre subcategories

of mod(R)

} Ψ−−−−→
←−−−−

Φ

{
specialization closed

subsets of Spec R

}

where Ψ(M) = ∪M∈MAssRM and Φ(S) = {M ∈ mod(R)|AssRM ⊆ S}.

In addition, Takahashi pointed out that

[Takahashi, 2008]

Every wide subcategory of mod(R) is a Serre subcategory of mod(R).
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In this talk we want to consider the artinian analogue of these result.

Every wide subcategory of Art(R) is a Serre subcategory of Art(R).

∃ 1-1 correspondences:
8<
:

subcategories of Art(R)
closed under

quotient and extensions

9=
;

Ψ−−−−−→
←−−−−−

Φ

j
subsets of

closed prime ideals of R̂

ff

x??⊆
x??⊆

j
Serre subcategories

of Art(R)

ff Ψ−−−−−→
←−−−−−

Φ

8<
:

specialization closed
subsets of

closed prime ideals of R̂

9=
;
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§1. Wide subcategories of Art(R).

Let M ∈ Art(R). We denote by Soc(M) the sum of simple submodules of

M. Since Soc(M) is artinian,

Soc(M) = ⊕s
i=1(R/mi )

ni .

Set JM =
⋂s

i=1 m and R̂(M) = lim←−R/Jn
M .

Lemma 1 ([Sharp, 1992])

∀x ∈ M,∃k ∈ N s.t. (JM)kx = 0.

Hence M has the natural structure of R̂(M)-modules in such a way that
N ⊂ M is an R-submodule if and only if it is an R̂(M)-submodule.
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Proof.

Since Soc(M) = ⊕s
i=1(R/mi )

ni ,

M ↪→ ⊕s
i=1(ER(R/mi ))

ni

where ER(R/mi ) is an injective hull of R/mi .

Hence, ∀x ∈ M, ∃k , Jk
M = (m1 · · ·ms)

kx = 0.

Let x ∈ M and r̂ = (rn + Jn
M)n∈N ∈ R̂(M). Suppose that Jk

Mx = 0.

Check that M has the structure of an R̂(M)-module such that

r̂ x := rkx .
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Strategy.

∀M ∈ Art(R), M can be regard as a module over “a certain complete

semi-local ring” R̂.

The Matlis duality theorem holds over a noetherian complete

semi-local ring.

By using Matlis duality we replace the categorical property on a

subcategory of mod(R̂) with that of Art(R).

Art(R)

X −−−−→ mod(R̂)

X∨
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Lemma 2

Let (R ,m1, · · · , ms) be a noeth. complete semi-local ring and
E = ⊕s

i=1ER(R/mi ). For ∀X ⊆ Mod(R), we denote by X∨

{M∨ | M ∈ X} where (−)∨ = HomR(−, E ). Then

Art(R)

(−)∨−−−−−→
←−−−−−

(−)∨
mod(R)

j
closed under

quotient modules and extensions

ff −−−−−→
←−−−−−

j
closed under

submodules and extensions

ff

˘
Wide subcategories

¯ −−−−−→
←−−−−−

˘
Wide subcategories

¯
˘

Serre subcategories
¯ −−−−−→

←−−−−−
˘

Serre subcategories
¯
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Theorem 3

Let R be a noetherian ring. Every wide subcategory of Art(R) is a Serre
subcategory of Art(R).

Remarks.

For M ∈ Mod(R), we denote by WidR(M) the smallest wide
subcategory of Mod(R) which contains M.

If M ∈ Art(R), WidR(M) ⊆ Art(R). Moreover,

WidR(M) ∼= WidR̂(M)(M)

as subcategories of Art(R̂(M)).
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Proof.

Let X ⊆ Art(R) be wide. It is enough to show that X is closed
under submodules.
If not, ∃M ∈ X , ∃N ⊆ M s.t. N �∈ X . Consider WidR(M). Then

WidR(M) ∼= WidR̂(M)

in Art(R̂) where R̂ = R̂(M).

Applying the Matlis duality, we have that

WidR̂(M)op ∼= WidR̂(M)∨ = WidR̂(M∨)

is a Serre subcategory of mod(R̂), where (−)∨ = HomR̂(−, E ).

Since Serre subcategories are closed under quotient modules,

N∨ ∈WidR̂(M∨). Hence

(N∨)∨ = N ∈ {WidR̂(M∨)}∨ = WidR̂(M) ∼= WidR(M) ⊆ X .

This is a contradiction.
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§2. Clssifying subcategories of Art(R).

Definition 4 (Attached prime ideal)

Let M be an R-modules.

M is secondary ⇔ ∀a ∈ R, aM : M → M is either surjective or

nilpotent.

If M is secondary then p =
√

annR(M) is a prime ideal and M is said

to be p-seconadry.

A prime ideal p is an attached prime ideal of M if M has a

p-secondary quotient.

AttRM = { the attached prime ideals of M}.
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Remark.

Given a submodule N ⊆ M, we have

AttRM/N ⊆ AttRM ⊆ AttR(N) ∪AttRM/N.

If M is artinian, then

M = S1 + · · ·+ Sr , where Si : pi -secondary

Namely it has a secondary representation. Moreover,

AttRM = {p1, · · · , pr}.
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Observation.

Let (R ,m) be a noetherian local ring and X ⊆ Art(R) a Serre

subcategory.

By virtue of Lemma 1, we can consider X as a subcategory of Art(R̂)

where R̂ is an m-adic completion of R .

Since X∨ ⊆ mod(R̂) is Serre, X∨, hence X , corresponds to the

specialization closed subset of Spec R̂.

{
Serre subcategories

of Art(R)

}
−−−−→
←−−−−

{
specialization closed subsets

of Spec R̂

}

We should consider

a larger set than Spec R to classify subcategories of Art(R).
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We want to treat all the artinian R-modules as modules over the same
completed ring.

For this, we consider

T = { I | the length of R/I is finite }.

Then {R/I , fI ,I ′} forms the inverse system.

I , I ′ ∈ T and I ′ ⊆ I ⇒ fI ,I ′ : R/I ′ → R/I .

We denote lim←−I∈T R/I by R̂T .
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Lemma 5

Every artinian R-module has the structure of an R̂T -module.
Consequently, we have

Art(R) ∼= Art(R̂T ).

Proposition 6

As topological rings

R̂T ∼=
∏

n∈max(R)

R̂n.

In the rest of the talk, we identify R̂T with
∏

n∈max(R) R̂n and denote them

by R̂.
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AttR̂M = ?

Why do we consider closed prime ideals?

Let M be an artinian R-module. As an R̂(:= lim←−I∈T R/I )-module, we can

show that √
annR̂(M) = ∩I∈T (

√
annR̂(M) + I ).

Namely the radical of annR̂(M) is a closed ideal of R̂.

Hence, for M ∈ Art(R), AttR̂(M) is a subset of the set of closed prime

ideals of R̂.
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Proposition 7

∀P ∈ Spec
∏

n∈max(R) R̂n: a closed prime ideal,

P = p×
∏

n∈max(R),m�=n

R̂n

for some prime ideal p ∈ Spec R̂m. Thus,

{ closes prime ideals of
∏

n∈max(R)

R̂n} =
∐

n∈max(R)

Spec R̂n
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Lemma 8

Let M ∈ Art(R). Assume that AssRM = {m1, . . . ,ms}. Then

M = ⊕s
i=1Γmi (M).

Here Γm(M) = {x ∈ M|∃k s.t. mkx = 0}.

Proposition 9

Let M be an m-torsion R-module. Then

AttR̂M = AttR̂m
M

as a subset of
∐

n∈max(R) Spec R̂n.
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Corollary 10

Let M ∈ Art(R). Then

AttR̂M =
∐

m∈AssRM

AttR̂m
Γm(M)

as a subset of
∐

n∈max(R) Spec R̂n.
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A key to classify the subcategories.

Theorem 11 ([Takahashi, 2008], [Krause, 2008])

Let M and N ∈ mod(R). Then

M ∈ sub-extR(N)⇔ AssRM ⊆ AssRN.

Theorem 12

Let M and N ∈ Art(R). Then

M ∈ quot-extR(N)⇔ AttR̂M ⊆ AttR̂N.
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Lemma 13

Let (R ,m1, · · · , ms) be a complete semi-local ring and set
E = ⊕s

i=1ER(R/mi ). For M ∈ Art(R), we have

AttRM = AssRHomR(M, E ).

Proof of Thm 12.

Suppose that M ∈ quot-extR(N) (hence, M ∈ quot-extR̂(N)). Then

AttR̂M ⊆ AttR̂N.

Conversely suppose that AttR̂M ⊆ AttR̂N. Since

M = ⊕m∈AssRMΓm(M), N = ⊕n∈AssRNΓn(N)

and quot-extR(N) is closed under direct sums and direct
summands, we may assume that M and N are m-torsion.
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Consider M and N as artinian R̂m-moduls s.t. AttR̂m
M ⊆ AttR̂m

N.

By the Matlis duality, we have

M∨, N∨ ∈ mod(R̂m) and AssR̂m
M∨ ⊆ AssR̂m

N∨.

Thus,

M∨ ∈ sub-extR̂m
(N∨).

Hence
M∨∨ ∼= M ∈ sub-extR̂m

(N∨)∨

= quot-extR̂m
(N)

= quot-extR(N).
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For X ⊆ Art(R), we define

Ψ(X ) = AttX = ∪M∈XAttR̂M.

For a subset S of
∐

n∈max(R) Spec R̂n, we define

Φ(S) = {M ∈ Art(R) |AttR̂M ⊆ S}.

Note that

Ψ(X ) is a subset of
∐

n∈max(R) Spec R̂n.

Φ(S) is closed under quotient modules and extensions.
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Theorem 14

Let R be a noetherian ring. Then Ψ and Φ induce an inclusion preserving
bijection:

{subcategories of Art(R) closed under quotient modules and extensions}
∼= {subsets of the set consisting of closed prime ideals of R̂}.

Moreover this induces the bijection:

{Serre subcategories of Art(R)}
∼=

{
specialization closed subsets of

the set consisting of closed prime ideals of R̂

}
.
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Thank you for your attention.

ご清聴ありがとうございました.
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