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Notation

k: field,

A: finite dimensional k-algebra,

Ae:= A ⊗k Aop: enveloping algebra,

HHn(A) ∼= ExtnAe(A,A): Hochschild cohomology group of A,

HH∗(A) ∼= ⊕n≥0HH
n(A): Hochschild cohomology ring of A with

Yoneda product,

N : ideal of HH∗(A) generated by all homogeneous nilpotent

elements.

HH∗(A)/N : Hochschild cohomology ring of A modulo nilpotence.
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The support variety of M

Definition [[SnSo(2004)], Definision 3.3]

The support variety of A-module M is given by

V (M) = {m ∈ MaxSpec HH∗(A)/N|AnnExt∗A(M,M) ⊆ m′}

where AnnExt∗A(M,M) is the annihilator of Ext∗A(M,M) and m′ is the

preimage of m in HH∗(A).

Question [Sn(2009)]

Whether we can give necessary and sufficient conditions on a finite

dimensional algebra for the Hochschild cohomology ring modulo nilpotence

to be finitely generated as an algebra?
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With respect to sufficient condition, it is shown that HH∗(A)/N is finitely

generated as an algebra for various classes of algebras by many authors as

follows:

Any block of a group ring of a finite group (See [Ev(1961)], [V(1959)])

Any block of a finite dimensional cocommutative Hopf algebra (See

[FSu(1997)])

Finite dimensional algebras of finite global dimension (See [Ha(1989)])

Finite dimensional self-injective algebras of finite representation type

over an algebraically closed field (See [GSnSo(2003)])

Finite dimensional monomial algebras (See [GSnSo(2006)])

A class of special biserial algebras (See [SnT(2010)])

A Hecke algebra (See [ScSn])
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Koenig and Nagase produced many examples of finite dimensional

algebras A with a stratifying ideal for which HH∗(A)/N is finitely

generated as an algebra. (See [KN(2009)])

Stratifying ideal

Let e be an idempotent of A. If the two sided ideal AeA satisfies the

following conditions, this ideal is called a stratifying ideal.

The multiplication map Ae ⊗eAe eA → AeA is an isomorphism.

For all n ≥ 1, ToreAe
n (Ae, eA) = 0.
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Quiver algebra defined by two cycles and a quantum-like

relation

Let s, t ≥ 1 be integers. We consider the quiver algebra Aq = kQ/Iq.

Q: the quiver with s + t − 1 vertices and s + t arrows as follows:
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��

��
��

a(2)
α2�� b(2)

β2 �� b(3)
β3
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��
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αs−1

�� a(s)

αs
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b(t)

βt

����������

βt−1

��

Iq: the ideal of kQ generated by

Xsa, XsY t − qY tXs, Y tb

where X:= α1 + α2 + · · · + αs, Y := β1 + β2 + · · · + βt, integers

a, b ≥ 2 and q is non-zero element in k.
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Quantum complete intersection

In the case s = t = 1, Aq = k〈x, y〉/〈xa, xy − qyx, yb〉 is a quantum

complete intersection. This algebra is self-injective algebra.

In the case a = b = 2, the Hochschild cohomology ring of Aq was

determined by [BGMS(2005)] for any element q in k.

In the case a, b ≥ 2, the Hochschild cohomology ring of Aq was

determined by [BE(2008)] where q is not a root of unity.

In [BO(2008)], Bergh and Oppermann showed that Aq holds the

finiteness conditions if and only if q is a root of unity.
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Hochschild cohomology group

Let the following sequence be an Ae-projective resolution of A:

· · · → Pn
dn−→ Pn−1 → · · · → P1

d1−→ P0
d0−→ A → 0.

Then we have the complex:

0 → HomAe(P0, A)
d∗
1−→ HomAe(P1, A)

d∗
2−→ · · · .

Hochschild cohomology group

The n-th Hochschild cohomology group of A is defined by

HHn(A) = ExtnAe(A,A) = Kerd∗
n+1/Imd∗

n

where d∗
n = HomAe(dn, A) for n ≥ 1.
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Projective resolution of Aq

We have the Ae-projective resolution of Aq:

· · ·Pn
dn−→ Pn−1 → · · · → P1

d1−→ P0
π−→ Aq → 0.

where

P2n =
2n∐
l=0

Ae1 ⊗ e1A ⊕
s∐

i=2

Aea(i) ⊗ ea(i)A ⊕
t∐

j=2

Aeb(j) ⊗ eb(j)A,

P2n+1 =

2n∐
l=1

Ae1 ⊗ e1A ⊕
s∐

i=1

Aea(i+1) ⊗ ea(i)A ⊕
t∐

j=1

Aeb(j+1) ⊗ eb(j)A.
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Projective resolution of Aq

And we have the following complex:

0 → HomAe(P0, A)
d∗
1−→ HomAe(P1, A)

d∗
2−→ HomAe(P2, A) → · · · ,

where

HomAe(P2n, A) ∼=
2n∐
l=0

e1Ae1 ⊕
s∐

i=2

ea(i)Aea(i) ⊕
t∐

j=2

eb(j)Aeb(j),

HomAe(P2n+1, A) ∼=
2n∐
l=1

e1Ae1 ⊕
s∐

i=1

ea(i+1)Aea(i) ⊕
t∐

j=1

eb(j+1)Aeb(j).
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Hochschild cohomology ring of Aq modulo nilpotence

Let q an r-th root of unity in k and z the remainder when we divide z by

r for any integer z. Then we have 0 ≤ z ≤ r − 1.

Theorem 1

Let s, t ≥ 2. Then HH∗(Aq)/N is isomorphic to the polynomial ring of

two variables:

HH∗(Aq)/N ∼=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k[x2r, y2r] if a �= 0, b �= 0,

k[x2, y2r] if a �= 0, b = 0,

k[x2r, y2] if a = 0, b �= 0,

k[x2, y2] if a = b = 0.

where xn = e1,0 +
∑t

j=2 eb(j), y
n = e1,n +

∑s
i=2 ea(i) in HHn(Aq).

Theorem 2

In the case where q is not a root of unity, HH∗(Aq)/N ∼= k.
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One point extension of Aq

We consider the algebra B = kΓ/Iq,v,u. Γ: the quiver with s + t vertices

and s + t + 1 arrows as follows:
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β3
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����������
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����������
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Iq,v,u: the ideal of kΓ generated by

Xsa, XsY t − qY tXs, Y tb, γXsv+u

for a, b ≥ 2, 0 ≤ v ≤ a − 1, 0 ≤ u ≤ s − 1 and (v, u) �= (0, 0) where we

set X:= α1 + α2 + · · · + αs and Y := β1 + β2 + · · · + βt.
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Projective resolusion of one point extension algebra

B =

(
k M

0 A

)
: one point extension algebra of A by the A-module

M .

F : ModAe → ModBe: the natural functors given by

F(Q) =

(
0 M

0 A

)
⊗A Q.

G: ModA → ModBe: the natural functors given by G(L) =

(
0 L

0 0

)
.

Ae-projective resolution of A: · · · → Qn
δn→ · · · δ1→ Q0

δ0→ A → 0.

A-projective resolution of M : · · · → Ln
rn→ · · · r1→ L0

r0→ M → 0.

We give an explicit projective bimodule resolution of a one point extension

algebra by using the following Theorem.
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Projective resolusion of one point extension algebra

Theorem [GMS(2003)]

We have a Be-projective resolution of B:

· · · → Pn
dn−→ Pn−1 → · · · → P1

d1−→ P0
d0−→ B → 0.

P0 = F(Q0) ⊕ (Be′ ⊗ e′B) where e′ =

(
1 0

0 0

)
∈ B.

Pn = F(Qn) ⊕ G(Ln−1).

d0 = (F(δ0), idBe′⊗e′B).

dn =

(
F(δn) σn

0 −G(rn−1)

)
for n ≥ 1.

σn: G(Ln−1) → F(Qn−1) is a Be-homomorphism such that

F(δn) ◦ σn+1 = σn ◦ G(ηn),

σ0 is the natural monomorphism.
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Projective resolution of B

Remark
The following sequence is a minimal projective resolution of M .

· · · → L2n
r2n−→ L2n−1

r2n−1−→ · · · → L1
r1−→ L0

r0−→ M → 0

where L2n = e1Aq, L2n+1 = ea(s+1−u)Aq for n ≥ 0, r0 is a natural

epimorphism and for n ≥ 1,

r2n−1(ea(s+1−u)) = Xsv+uea(s+1−u),

r2n(e1) = Xs(a−v−1)+s−ue1.

Then we have the following Be-module:

G(L2n) = Be2 ⊗ e1B,

G(L2n+1) = Be2 ⊗ ea(s+1−u)B.
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Projective resolution of B

We have the Be-projective resolution of B:

· · ·Pn
dn−→ Pn−1 → · · · → P1

d1−→ P0
π−→ B → 0.

where

d1 :ε1′ 
→ γε00 − ε0′γ,

d2n :ε2n+1′ 
→ γε2n2n − ε2n′Xs(a−1−v)+s−u,

d2n+1 :ε2n′ 
→
v−1∑
l=0

s−1∑
l′=0

γXsl+l′ε2n−1
a(s−l′)X

s(v−l)+u−1−l′

+

u−1∑
l′=0

γXsv+l′ε2n−1
a(s−l′)X

u−1−l′ − ε2n−1′Xsv+u,

where we set ε00 = ε2n2n = e1 ⊗ e1, ε
2n+1
a(i) = ea(i+1) ⊗ ea(i), ε

0′ = e2 ⊗ e2,

ε2n′ = e2 ⊗ ea(s+1−u) and ε2n+1′ = e2 ⊗ e1 for n ≥ 0.
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Projective resolution of B

Let P ∗
n := HomBe(Pn, B). We have the following complex:

0 → P ∗
1

d∗
1−→ P ∗

2

d∗
2−→ P ∗

3 → · · · → P ∗
2n

d∗
2n−→ P ∗

2n+1 → · · · ,

where

P ∗
2n

∼=
2n∐
l=0

e1Be1 ⊕
s∐

i=2

ea(i)Bea(i) ⊕
t∐

j=2

eb(j)Beb(j) ⊕ e2Bea(s+1−u),

P ∗
2n+1

∼=
2n∐
l=1

e1Be1 ⊕
s∐

i=1

ea(i+1)Bea(i) ⊕
t∐

j=1

eb(j+1)Beb(j) ⊕ e2Be1.
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Main result

Theorem 3
If s, t ≥ 2 and q is an r-th root of unity then

HH∗(B)/N ∼=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k ⊕ k[x2r, y2r]x2r if a �= 0, b �= 0,

k ⊕ k[x2, y2r]x2 if a �= 0, b = 0,

k ⊕ k[x2r, y2]x2r if a = 0, b �= 0,

k ⊕ k[x2, y2]x2 if a = b = 0.

where xn = e1,0 +
∑t

j=2 eb(j) in HHn(B) and yn = e1,n +
∑s

i=2 ea(i).

This is not finitely generated as an algebra.
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Example 1

In the case s = t = 1, HH∗(B)/N is determined in [Sn(2009)]. Γ is the

quiver

1

α

��

β

		
γ �� 2

and I = 〈α2, β2, αβ − βα, αγ〉. Snashall showed the following Theorem.

[Sn(2009), Theorem 4.5]

HH∗(B)/N ∼=
{
k ⊕ k[x, y]x if chark = 2,

k ⊕ k[x2, y2]x2 if chark �= 2.
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Example 2

Γ is the quiver

1

α

��

β

		
γ �� 2

and I = 〈α2, β2, αβ − βα〉. Then we have the minimal A-projective

resolution of AA.

0 → A → A → 0.

Theorem 4

Let C = kΓ/I.

HH∗(C)/N ∼=
{
k[x, y] if chark = 2,

k[x2, y2] if chark �= 2.
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Example 3

Γ is the quiver

1

α

��

β

		
γ �� 2

and I1 = 〈α2, β2, αβ − βα, γα, γβ〉.
Remark

The minimal A-projective resolution of S(1) given by

rn : An+1 → An :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e1,1 
→ e1,1α,

e1,2l1 
→ e1,2l1−1β − e1,2l1α,

e1,2l2+1 
→ e1,2l2−1β + e1,2l2+1α,

e1,n+1 
→ e1,nβ.
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Example 4

Let ∆ be the quiver

1

α

��

β

		
γ1 �� 2

γ2 �� 3

and I2 = 〈α2, β2, αβ − βα, γ1α, γ2γ1〉.
Remark

The following sequence is a minimal A-projective resolution of S(2).

· · · → e1B
rn−→ e1B

rn−1−→ · · · → e1B
r1−→ e2B

r0−→ S(2) → 0

where r0 is a natural epimorphism and

r1(e1) = γ1,

rn(e1) = α for n ≥ 2.
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Theorem 5

Let D = kΓ/I1.

HH∗(D)/N ∼= k

Theorem 6

Let E = k∆/I2.

HH∗(E)/N ∼=
{
k ⊕ k[x, y]x if chark = 2,

k ⊕ k[x2, y2]x2 if chark �= 2.
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