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τ-TILTING MODULES FOR SELF-INJECTIVE NAKAYAMA
ALGEBRAS

TAKAHIDE ADACHI

Abstract. In this paper, we study τ -tilting modules over Nakayama algebras. First, for
self-injective Nakayama algebras, we give a classification of τ -tilting modules. Secondly,
for Nakayama algebras, we give a combinatorial method to provide Hasse quivers of
support τ -tilting modules.

1. Introduction

In tilting theory of algebras, tilting modules are important objects. As a way to con-
struct tilting modules, there is the notion of tilting mutations introduced by Riedtmann-
Schofield [8]. Roughly speaking, tilting mutations are operations which construct new
tilting modules by replacing indecomposable direct summands of given tilting modules.
However, it is known that tilting mutations have the following disadvantage. Namely,
any basic almost complete tilting module can be completed to a basic tilting module in
at most two different ways [8, 9]. This means that tilting mutations are not always de-
fined. To overcome the disadvantage of tilting modules, the notion of τ -tilting modules
was introduced in [2]. The authors showed any basic almost support τ -tilting module can
be completed to a basic support τ -tilting module in exactly two different ways. More-
over, for a given algebra Λ, it is shown that there are bijections between support τ -tilting
Λ-modules, two-term silting complexes for Λ (see [1, 7]), and cluster-tilting objects in a
2-CY triangulated category C if Λ is an associated 2-CY tilted algebra to C (see [4, 6]).
Thus it is important to give a classification of support τ -tilting Λ-modules.

In this paper, we study τ -tilting modules over Nakayama algebras. First, we classify τ -
tilting modules over self-injective Nakayama algebras. We shall give a bijection between
τ -tilting modules and proper support τ -tilting modules. In this case, proper support
τ -tilting modules are reduced to tilting modules over path algebras of Dynkin quivers
of type A. A classification of tilting modules of the path algebras is well-known (e.g.
triangulations of polygons). Thus we can easily obtain proper support τ -tilting modules.

Secondly, we give a combinatorial method to provide Hasse quivers of support τ -tilting
modules over Nakayama algebras. Then Rejection Lemma of Drozd-Kirichenko plays
important role. The rejection lemma gives a connection of indecomposable modules be-
tween an algebra and its factor algebra by some ideal. Any Nakayama algebra is given
by a sequence of Drozd-Kirichenko rejection from some semisimple algebra. We study a
connection of support τ -tilting modules between two algebras of Drozd-Kirichenko rejec-
tion. Using the connection, we construct Hasse quivers of Nakayama algebras from some
semisimple algebra.

The detailed version of this paper will be submitted for publication elsewhere.
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Notation. Throughout this paper, K is an algebraically closed field, and Λ is a basic
finite dimensional K-algebra. We denote by modΛ the category of finitely generated right
Λ-modules, and by indΛ the set of isomorphism classes of indecomposable Λ-modules.
For two sets X and Y , we denote by X ⊔ Y the disjoint union of X and Y . We denote
by Cn the cyclic quiver and by A⃗n the Dynkin quiver of type A with linear orientation:

1
α1

  A
AA

AA
AA

A

n

αn

;;wwwwwwwwww
2

α2

��
n− 1

αn−1

OO

3

α3~~}}
}}
}}
}}

· · ·
αn−2

ccHHHHHHHHH

n n− 1
αn−1oo · · ·

αn−2oo 2
α2oo 1

α1oo

2. Preliminaries

Let Λ be a basic finite dimensional K-algebra with a complete set {e1, e2, · · · , en} of
primitive orthogonal idempotents, and EΛ := {

∑
j∈J ej | ∅ ̸= J ⊂ {1, 2, · · · , n}}. For

a module M ∈ modΛ, we denote by |M | the number of nonisomorphic indecomposable
direct summands of M . We write by τΛ the Auslander-Reiten translation of Λ, and by
⟨e⟩ a two-sided ideal of Λ generated by e ∈ Λ.

In this section, we recall definitions and basic properties of τ -tilting modules.

Definition 1. Let Λ be a finite dimensional K-algebra, and M ∈ modΛ a module.

(1) We call M τ -rigid Λ-module if HomΛ(M, τΛM) = 0.
(2) We call M τ -tilting Λ-module if it is τ -rigid and |M | = |Λ|.
(3) We call M support τ -tilting Λ-module if there exists an idempotent e ∈ Λ such

that M is a τ -tilting (Λ/⟨e⟩)-module. In this case, if e ̸= 0, we call M proper
support τ -tilting Λ-module.

In the rest of the paper, we denote by tiltΛ (respectively, τ -tiltΛ, sτ -tiltΛ, psτ -tiltΛ)
the set of isomorphism classes of basic tilting (respectively, τ -tilting, support τ -tilting,
proper support τ -tilting) Λ-modules.

Lemma 2. [2, Proposition 2.3] For any proper support τ -tilting Λ-module M , there
uniquely exists an idempotent e ∈ EΛ such that M is a τ -tilting (Λ/⟨e⟩)-module. We
write by eM the above idempotent e.

The following is straightforward.

Proposition 3. The following hold.

(1) τ -tiltΛ = tiltΛ if Λ is a hereditary algebra.
(2) sτ -tiltΛ = τ -tiltΛ ⊔ psτ -tiltΛ.

(3) psτ -tiltΛ =
⊔
e∈EΛ

τ -tilt(Λ/⟨e⟩).

By the proposition above, we have important observations.
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Remark 4. We can decompose sτ -tiltΛ as the disjoint union of τ -tiltΛ and psτ -tiltΛ. More-
over, proper support τ -tilting Λ-modules are reduced to τ -tilting modules over smaller
algebras. To determine sτ -tiltΛ, it is thus important to construct τ -tilting Λ-modules.

The following lemma will be useful.

Lemma 5. [2, Lemma 2.1] Let I be a two-sided ideal of Λ, and M,N ∈ mod(Λ/I). Then
the following hold.

(1) If HomΛ(N, τΛM) = 0, then HomΛ/I(N, τΛ/IM) = 0.
(2) Assume that I = ⟨e⟩ for an idempotent e ∈ Λ. Then HomΛ(N, τΛM) = 0 if and

only if HomΛ/I(N, τΛ/IM) = 0.

We call M ∈ modΛ almost support τ -tilting Λ-module if there exists an idempotent
e ∈ Λ such that M is a τ -rigid (Λ/⟨e⟩)-module and |M | = |Λ| − |eΛ| − 1.

Proposition 6. [2, Theorem 2.18] Any basic almost support τ -tilting Λ-module can be
completed to a basic support τ -tilting module in exactly two different ways.

For any M,N ∈ sτ -tiltΛ, we write M ≥ N if Fac(M) ⊇ Fac(N).

Proposition 7. [2, Theorem 2.7] Let Λ be a finite dimensional K-algebra. Then ≥ gives
a partial order on sτ -tiltΛ.

By the proposition above, we have an associated Hasse quiver. We recall Hasse quivers.

Definition 8. We define the Hasse quiver of sτ -tiltΛ as follows:

• The vertices set is sτ -tiltΛ.
• We draw an arrow from M to N if M > N and there exists no L ∈ sτ -tiltΛ such
that M > L > N .

We denote by Γ(sτ -tiltΛ) the Hasse quiver of sτ -tiltΛ.

3. Main result I

In this section, we study τ -tilting modules over self-injective Nakayama algebras. As
an application of this section, we can easily obtain support τ -tilting modules over self-
injective Nakayama algebras.

Throughout this section, the following notation is used. Let Λ := Λrn be a connected
self-injective Nakayama algebra with |Λ| = n and the Loewy length ℓ(Λ) = r. Then we
have Λ ≃ KCn/R

r, where Cn is the cyclic quiver and R is the arrow ideal of KCn (see
[3, V.3.8 Proposition]).

We define an automorphism ϕ : Λ → Λ by ϕ(ei) = ei+1 and ϕ(αi) = αi+1 for any
i ∈ {1, 2, · · · , n}. Then ϕ induces a functor as follows.

Lemma 9. The automorphism ϕ : Λ → Λ induces an equivalence of categories Φ :
modΛ → modΛ such that Φ(eiΛ) ≃ ei+1Λ for any i ∈ {1, 2, · · · , n}. Moreover, for any
nonprojective module M ∈ modΛ, we have Φ(M) ≃ τM .

Let Ψ be a quasi-inverse of Φ. Then we have Ψ(eiΛ) ≃ ei−1Λ and Ψ(M) ≃ τ−M for any
i ∈ {1, 2, · · · , n} and nonprojective module M ∈ modΛ. By Remark 4, it is important
to construct τ -tilting modules for given an algebra. Our main result of this section is to
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construct τ -tilting Λ-modules from proper support τ -tilting Λ-module. Proper support
τ -tilting Λ-modules are reduced to tilting modules over path algebras of Dynkin quivers
of type A with linear orientation. A classification of tilting (KA⃗l)-modules is already
well-known for any integer l > 0. Indeed, there is a bijection

tilt(KA⃗l)←→ { triangulations of (l + 2)-gon }.
Thus we can easily obtain proper support τ -tilting modules over a self-injective Nakayama
algebra.

In the rest of the paper, we denote by modnpΛ the full subcategory of modΛ consisting
Λ-modules which does not have nonzero projective direct summands. we let psτ -tiltnpΛ :=
psτ -tiltΛ ∩ modnpΛ, and τ -tiltnpΛ := τ -tiltΛ ∩ modnpΛ. We decompose M ∈ modΛ as
M =Mnp⊕Mpr, where Mnp ∈ modnpΛ and Mpr is a maximal projective direct summand
of M .

we state our main theorem of this section.

Theorem 10. Let Λ := Λrn.

(1) There is a bijection

τ -tiltΛ←→ psτ -tiltnpΛ

given by τ -tiltΛ ∋M 7→Mnp ∈ psτ -tiltnpΛ and psτ -tiltnpΛ ∋M 7→M⊕Φ(eMΛ) ∈
τ -tiltΛ.

(2) Moreover, if r ≥ n, we have psτ -tiltnpΛ = psτ -tiltΛ. Namely, (1) gives a bijection

τ -tiltΛ←→ psτ -tiltΛ.

As an immediate consequence of Theorem 10, we have the following corollary.

Corollary 11. The following hold.

(1) If r ≥ n, we have

sτ -tiltΛ = {M, M ⊕ Φ(eMΛ) | M ∈ psτ -tiltΛ}

=
⊔
e∈EΛ

{M, M ⊕ Φ(eΛ) | M ∈ tilt(Λ/⟨e⟩)}.

(2) If r < n, we have

sτ -tiltΛ = (psτ -tiltΛ \ psτ -tiltnpΛ) ⊔ {M, M ⊕ Φ(eMΛ) | M ∈ psτ -tiltnpΛ}.

In the rest of this section, we give the proof of Theorem 10.

Proposition 12. If M is in psτ -tiltnpΛ, then M ⊕ Φ(eMΛ) is a τ -tilting Λ-module.

Proof. Let M ∈ modnpΛ be a τ -tilting (Λ/⟨e⟩)-module, where e := eM ∈ EΛ. Thus M is
a τ -rigid Λ-module by Lemma 5. Moreover we have

HomΛ(Φ(eΛ), τΛM) ≃ HomΛ(ΨΦ(eΛ),Ψ(τΛM)) ≃ HomΛ(eΛ,M) = 0

and

|M ⊕ Φ(eΛ)| = |M |+ |Φ(eΛ)| = |M |+ |eΛ| = |Λ|
by Lemma 9 and M ∈ modnpΛ. Thus M ⊕ Φ(eMΛ) is a τ -tilting Λ-module. □
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Conversely, we shall construct a proper support τ -tilting Λ-module for a given τ -tilting
Λ-module.

Proposition 13. Assume that M ∈ modΛ is not in modnpΛ. If M is a τ -tilting Λ-
module, then Mnp is a proper support τ -tilting Λ-module.

Proof. Let M is a τ -tilting Λ-module and not in modnpΛ. We decompose M as M =
Mnp ⊕Mpr and assume Mpr = eΛ, where e ∈ EΛ is an idempotent. Then Mnp is trivially
a τ -rigid Λ-module. Since M is a τ -tilting Λ-module, we have

HomΛ(ϕ
−1(e)Λ,Mnp) ≃ HomΛ(Φ(ϕ

−1(e)Λ),Φ(Mnp)) ≃ HomΛ(eΛ, τΛM) = 0

by Lemma 9, and

|Mnp| = |M | − |eΛ| = |Λ| − |ϕ−1(e)Λ|.

Thus Mnp is a τ -tilting (Λ/⟨ϕ−1(e)⟩)-module or proper support τ -tilting Λ-module by
Lemma 5. □

By Proposition 12 and 13, there is a bijection

τ -tiltΛ \ τ -tiltnpΛ←→ psτ -tiltnpΛ.

To complete the proof of Theorem 10, we have only to show that any τ -tilting Λ-module
always has a nonzero projective Λ-module as a direct summand.

We need the following lemma.

Lemma 14. Let X, Y ∈ modΛ be indecomposable with the Loewy length ℓ(X) ≥ ℓ(Y ),
and PX a projective cover of X. Then HomΛ(X, Y ) = 0 if and only if HomΛ(PX , Y ) = 0.

Proposition 15. Each τ -tilting Λ-module has a nonzero projective Λ-module as a direct
summand.

Proof. Let M = X ⊕N be a τ -tilting Λ-module such that X is indecomposable and the
Loewy length ℓ(X) ≥ ℓ(N). In particular, we have ℓ(N) = ℓ(τN) because Λ is Nakayama.
By the definition, N is an almost support τ -tilting Λ-module. Assume that M has no
projective Λ-module as a direct summand. Since M is τ -rigid, HomΛ(X, τN) vanishes.
By Lemma 14, we have HomΛ(PX , τN) = 0, where PX is a projective cover of X. Since
Λ is a Nakayama algebra, PX is indecomposable. Therefore we have

|PX ⊕N | = |PX |+ |N | = |PX |+ |M | − |X| = |M | = |Λ|.

Namely, PX ⊕ N is a τ -tilting Λ-module. Moreover, N is a support τ -tilting Λ-module
by Proposition 13. This means that almost support τ -tilting Λ-module N has pairwise
nonisomorphic 3 support τ -tilting Λ-modules N,X ⊕N and PX ⊕N . By Proposition 6,
this is contradiction. □

Now we are ready to prove Theorem 10.

Proof of Theorem 10. (1) It follows from Proposition 12, 13 and 15.
(2) One can show that any proper support τ -tilting Λ-module has no projective Λ-

module as a direct summand. □
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As an application of Theorem 10, we can easily calculate τ -tilting modules over self-
injective Nakayama algebras.

Finally, we give a example.

Example 16. Let Λ := Λ3
3. To obtain τ -tilting Λ-modules, we need to know factor

algebras Λ/⟨e⟩ for any idempotent e ∈ EΛ. Indeed, we have Λ/⟨ei⟩ ≃ KA⃗2, Λ/⟨ei+ ej⟩ ≃
KA⃗1, and Λ/⟨e1+e2+e3⟩ = {0} for i, j ∈ {1, 2, 3}. Thus proper support τ -tilting modules
are given as follows:

τ -tilt(Λ/⟨e3⟩) = tilt(KA⃗2) = { 1
2 ⊕ 2 , 1

2 ⊕ 1 }

τ -tilt(Λ/⟨e2 + e3⟩) = tilt(KA⃗1) = {1}
τ -tilt(Λ/⟨e1 + e2 + e3⟩) = {0}

and cyclic permutation. By Theorem 10, we have

sτ -tiltΛ = { {0} , 1 , 2 , 3 , 1
2 ⊕ 2 , 1

2 ⊕ 1 , 2
3 ⊕ 3 , 2

3 ⊕ 2 , 3
1 ⊕ 1 , 3

1 ⊕ 3 }

⊔ { 1
2
3
⊕ 2

3
1
⊕ 3

1
2
, 1 ⊕ 1

2
3
⊕ 3

1
2
, 2 ⊕ 2

3
1
⊕ 1

2
3
, 3 ⊕ 3

1
2
⊕ 2

3
1
,

1
2 ⊕ 2 ⊕ 1

2
3
, 1
2 ⊕ 1 ⊕ 1

2
3
, 2
3 ⊕ 3 ⊕ 2

3
1
, 2
3 ⊕ 2 ⊕ 2

3
1
, 3
1 ⊕ 1 ⊕ 3

1
2
, 3
1 ⊕ 3 ⊕ 3

1
2
}

and the Hasse quiver Γ(sτ -tiltΛ) as follows:
1
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4. Main result II

In this section, we give a combinatorial method to provide Hasse quivers of support
τ -tilting modules over Nakayama algebras. Then Rejection Lemma of Drozd-Kirichenko
plays important role.

Let Λ be a finite dimensional K-algebra (not necessarily Nakayama). The following
lemma is called Rejection Lemma of Drozd-Kirichenko[5].

Lemma 17 (Rejection Lemma of Drozd-Kirichenko). Let Λ be a finite dimensional K-
algebra, and Q a projective-injective indecomposable summand of Λ. Then the following
hold.

(1) I := soc(Q) is a two-sided ideal of Λ.
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(2) There exists a one-to-one correspondence between ind(Λ/I) and ind(Λ) \ {Q}.

From now, we always assume that Q is a projective-injective indecomposable sum-
mand of Λ, and I := soc(Q). In the rest of the paper, we denote by sτ -tiltQ/I(Λ/I)

(respectively, sτ -tiltI(Λ/I)) the subset of sτ -tilt(Λ/I) consisting Λ-modules which have
Q/I as a direct summand (respectively, does not have I as a composition factor). We let
sτ -tiltIQ/I(Λ/I) := sτ -tiltQ/I(Λ/I)∩sτ -tiltI(Λ/I) and sτ -tiltIQ/IΛ := {M ∈ sτ -tiltΛ | bas(M⊗Λ

Λ/I) ∈ sτ -tiltIQ/I(Λ/I)}, where bas(X) means a basic part of X ∈ modΛ.
The following theorem is very important.

Theorem 18. Let Λ be a finite dimensional K-algebra, Q be a projective-injective inde-
composable summand of Λ, and I := soc(Q).

(1) The map M 7→ bas(M ⊗Λ Λ/I) gives a surjection

sτ -tiltΛ // // sτ -tilt(Λ/I)

which preserves the partial orders. Moreover, the restriction gives a bijection

sτ -tiltΛ \ sτ -tiltIQ/IΛ←→ sτ -tilt(Λ/I) \ sτ -tiltIQ/I(Λ/I)

where the inverse is given by

sτ -tiltQ/I(Λ/I) \ sτ -tiltIQ/I(Λ/I) ∋ Q/I ⊕ U 7→ Q⊕ U ∈ sτ -tiltΛ \ sτ -tiltIQ/IΛ
sτ -tilt(Λ/I) \ sτ -tiltQ/I(Λ/I) ∋ N 7→ N ∈ sτ -tiltΛ \ sτ -tiltIQ/IΛ.

(2) We have

sτ -tiltΛ = (sτ -tiltΛ \ sτ -tiltIQ/IΛ) ⊔ {N,Q⊕N | N ∈ sτ -tiltIQ/I(Λ/I)}.

By Theorem 18, we can recover sτ -tiltΛ from sτ -tilt(Λ/I). Moreover, since the map
preserves the partial orders, Hasse quivers of sτ -tiltΛ and sτ -tilt(Λ/I) are almost same.
Thus, as a result of Theorem 18, we have two corollaries for a construction of the Hasse
quiver Γ(sτ -tiltΛ).

If any M ∈ sτ -tiltQ/I(Λ/I) has I as a composition factor, we have sτ -tiltIQ/IΛ = ∅.
Thus we have a bijection between sτ -tiltΛ and sτ -tilt(Λ/I).

Corollary 19. If Q/I has I as a composition factor, then the map of Theorem 18 is a
bijection. In particular, there exists a quiver isomorphism

Γ(sτ -tiltΛ) −→ Γ(sτ -tilt(Λ/I)).

Assume that X ≥ N in sτ -tilt(Λ/I) and N ∈ sτ -tiltQ/I(Λ/I). Then we remark that X
is also in sτ -tiltQ/I(Λ/I).

Corollary 20. Γ(sτ -tiltΛ) is obtained from Γ(sτ -tilt(Λ/I)) by the following two steps:
First we replace any arrow X → N in Γ(sτ -tilt(Λ/I)) satisfying N ∈ sτ -tiltIQ/I(Λ/I) as
follows:
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• If X is in sτ -tiltQ/I(Λ/I) but not in sτ -tiltIQ/I(Λ/I),

X

��

Q⊕ (X/(Q/I))

� �
replacing by a subquiver Q⊕N .

��
N N

• If X is in sτ -tiltIQ/I(Λ/I),

X

��

Q⊕X
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replacing by a subquiver X

##G
GG

GG
GG

GG
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yyrrr
rrr

rrr
rr

N N

Finally we replace other vetices by the bijection of Theorem 18(1).

From now, we assume that Λ is Nakayama with n = |Λ|. Let Q be a projective-injective
indecomposable summand of Λ, and I := soc(Q). If the Loewy length of Q is bigger than
n or ℓ(Q/I) ≥ n, then Q/I is sincere. Namely, Q/I has I as a composition factor. Then
we have a quiver isomorphism Γ(sτ -tiltΛ)→ Γ(sτ -tilt(Λ/I)) by Corollary 19.

On the other hand, if the Loewy length of Q is not bigger than n or ℓ(Q/I) < n,
then Q/I does not have I as a composition factor. In this case, by Corollary 20, we can
construct the Hasse quiver of Λ from Λ/I.

Since Nakayama algebras have a projective-injective indecomposable module and its
factor algebras is also Nakayama (see [3, V.3.3 Lemma and V.3.4 Lemma ]), we can
iteratively apply the rejection lemma to Nakayama algebras.

Let Λ0 := Λ be a Nakayama algebra with n = |Λ|. By iteratively applying the rejection
lemma, we have a sequence of Nakayama algebras

· · · // // Λ−2
// // Λ−1

// // Λ0
// // Λ1

// // · · · // // Λm = Kn

such that Λi := Λi−1/Ii−1 and Λm is a semisimple algebra Kn, where Qi is a projective-
injective indecomposable Λi-module, Ii := soc(Qi) and m > 0 is an integer. Thus we
always can construct the Hasse quiver of any Nakayama algebra from some semisimple
algebra by the observation above.

Theorem 21. Let Λ be a Nakayama algebra with n = |Λ|. Then Γ(sτ -tiltΛ) is obtained
from Γ(sτ -tilt(Kn)).

Example 22. Let Λ0 := Λ3
3 be a self-injecitve Nakayama algebra. Then we have a

sequence of Nakayama algebras

Λ0
// // Λ1

// // Λ2
// // Λ3

// // Λ4
// // Λ5

// // Λ6
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by the rejection lemma. Thus we have Hasse quivers from K3 to Λ3
3 by Theorem 21.

(1) Λ6 = K3 1 2 3
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(4) Λ3 = K( 3 2
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(5) Λ2 = KCn/⟨α2α3, α3α1⟩
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(6) Λ1 = KCn/⟨α1α2α3, α3α1⟩
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(7) Λ0 = Λ3
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DIMENSIONS OF TRIANGULATED CATEGORIES
WITH RESPECT TO SUBCATEGORIES

TOKUJI ARAYA

Abstract. We introduce the concept of the dimension of a triangulated category with
respect to a fixed full subcategory. For the bounded derived category of an abelian cate-
gory, upper bounds of the dimension with respect to a contravariantly finite subcategory
are given. Our methods not only recover some known results on the dimensions of de-
rived categories in the sense of Rouquier, but also apply to various commutative and
non-commutative noetherian rings.

1. Introduction

This is a joint work with T. Aihara, O. Iyama, R. Takahashi and M. Yoshiwaki [1]. The
notion of the dimension of a triangulated category has been introduced by Rouquier [14]
based on work of Bondal and Van den Bergh [9] on Brown representability. It measures
how many extensions are needed to build the triangulated category out of a single object,
up to finite direct sum, direct summand and shift. First of all, we recall its definition.

Definition 1. Let T be a triangulated category and X ,Y be subcategories of T .
(1) We denote by X ∗ Y the subcategory of T consisting of objects M that admit

triangles X → M → Y → X[1] with X ∈ X and Y ∈ Y . Then (X ∗ Y) ∗ Z =
X ∗ (Y ∗ Z) holds by octahedral axiom.

(2) Set ⟨X ⟩ := add{X[i] | X ∈ X , i ∈ Z}. For a positive integer n, let

⟨X ⟩Tn = ⟨X ⟩n := add(⟨X ⟩ ∗ ⟨X ⟩ ∗ · · · ∗ ⟨X ⟩︸ ︷︷ ︸
n

).

Clearly ⟨X ⟩n is closed under shifts. For an object M of T , we set

⟨M⟩n := ⟨addM⟩n.
(3) The (triangle) dimension of T is defined as

tri. dim T := inf{n ≥ 0 | T = ⟨M⟩n+1, ∃M ∈ T }.

We give an example.

Example 2. Let R be an artinian local ring with a maximal ideal m and a residue class
field k = R/m. Since R is artin, there exists a positive integer ℓ such that mℓ = 0. In this
case, We have tri. dimDb(modR) ≤ ℓ−1. Indeed, letX be a bounded complex onR. Then
the short exact sequence 0 → miX → mi−1X → mi−1X/miX → 0 of complexes induces
the exact triangle miX → mi−1X → mi−1X/miX → miX[1] for each i. Since mi−1X/miX
is annihilated by m, it is isomorphic to

⊕
i k

⊕[i], and we have mi−1X/miX ∈ ⟨k⟩1. On

The detailed version of this paper will be submitted for publication elsewhere.
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the other hand, we can see that mℓ−iX belongs to ⟨k⟩i by induction on i. Thus we get
X = m0X belongs to ⟨k⟩ℓ.

We give the definition of the (triangle) dimension of triangulated category with respect
to a subcategory.

Definition 3. Let T be a triangulated category and X be a fullsubcategory of T . Then
we define

X - tri. dim T := inf{n ≥ 0 | T = ⟨X ⟩n+1}.

2. Main results

First of this section, we give some basic definitions and preliminary results.
Let X be an additive category. An X -module is an additive contravariant functor

from X to the category of abelian groups. A morphism between X -modules is a natural
transformation. For any object X ∈ X , the functor HomX (−, X) is an X -module. We say
that an X -module F is finitely presented if there is an exact sequence HomX (−, X1) →
HomX (−, X0) → F → 0 with X0, X1 ∈ X [3, 16]. The category of finitely presented X -
modules is denoted by modX . The assignment X 7→ HomX (−, X) makes a fully faithful
functor X → modX , which is called the Yoneda embedding of X .

We recall here a well-known criterion for modX to be abelian. Let X be an additive
category and f : X → Y be a morphism in X . A morphism g : Z → X in X is called
a pseudo-kernel if HomX (−, Z) → HomX (−, X) → HomX (−, Y ) is exact on X . We say
that X has pseudo-kernels if all morphisms in X have pseudo-kernels.

Proposition 4. [4] Let X be an additive category. Then modX is an abelian category if
and only if X has pseudo-kernels.

We give a class of additive categories having pseudo-kernels. We say that a subcategory
X of an additive category A is contravariantly finite if for any object M ∈ A there exist
X ∈ X and a morphism f : X → M such that HomA(X

′, f) is surjective for all X ′ ∈ X
[8].

Example 5. Let A be an additive category and X be a contravariantly finite subcategory
of A. If A has pseudo-kernels, then X also has pseudo-kernels. Hence if A is an abelian
category, then so is modX .

Let A be an abelian category and X be a subcategory of A. We say that X generates
A if for any object M of A there is an epimorphism X →M with X ∈ X .

Now we can state the main result.

Theorem 6. Let A be an abelian category and X a contravariantly finite subcategory
which generates A. Then there is an inequality X - tri. dimDb(A) ≤ gl. dim(modX ).

In representation theory, the notion of tilting modules/complexes plays an important
role to control derived categories [13]. Its dual notion of cotilting modules was studied
by Auslander and Reiten as a non-commutative generalization of canonical modules over
commutative rings [5, 6, 7]. Now, we apply the results above to rings admitting cotilting
modules. Let us begin with recalling the definition of a cotilting module.
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Definition 7. Let A be a noetherian ring and T be a finitely generated A-module. Denote
by XT the subcategory of modA consisting of modules X with ExtiA(X,T ) = 0 for all
i > 0. We call T cotilting if it satisfies the following three conditions.

(1) The injective dimension of the A-module T is finite.
(2) ExtiA(T, T ) = 0 for all i > 0 (i.e., T ∈ XT ).
(3) For any X ∈ XT , there exists an exact sequence 0→ X → T ′ → X ′ → 0 in modA

with T ′ ∈ addT and X ′ ∈ XT .

Example 8. (1) Let R be a commutative Cohen-Macaulay local ring with a canonical
module ωR. We denote by CM(R) the category of maximal Cohen-Macaulay R-
modules. Then ωR is a cotilting module over R and XωR

= CM(R) holds. Let Λ
be an R-order. For any tilting Λop-module T in the sense of Miyashita [12] with
T ∈ CM(R), the Λ-module HomR(T, ωR) is cotilting. For the cotilting Λ-module
ωΛ := HomR(Λ, ωR) it holds that XωΛ

= CM(Λ).
(2) Let Λ be an Iwanaga-Gorenstein ring. Then Λ is a cotilting module over Λ, and

hence XΛ = CM(Λ).

Let R and Λ be as above. We set A := R or Λ. Let T be a cotilting A-module. It comes
from Auslander-Buchweitz approximation theory [5], we can see that the subcategory XT
of modA is a contravariantly finite subcategory which generates modA.

Immediately we have the following inequality, which is a special case of [10].

Proposition 9. Let T be a cotilting module of A. Then one has

gl. dim(modXT ) ≤ max{2, inj. dimT}.

Let R be a commutative Cohen-Macaulay local ring with a canonical module ωR. Since
the injective dimension of ωR is equal to the Krull dimension of R, we obtain the following
corollary.

Corollary 10. Let R be a commutative Cohen-Macaulay local ring with a canonical mod-
ule. Then one has

CM(R)- tri. dimDb(modR) ≤ max{1, dimR}.
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[3] I. Assem; D. Simson; A. Skowroński, Elements of the Representation Theory of Associative
Algebras 1: Techniques of Representation Theory, London Mathematical Society Student Texts 65,
Cambridge University Press, Cambridge, 2006.

[4] M. Auslander, Coherent functors, 1966 Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) pp.
189–231 Springer, New York.

[5] M. Auslander; R.-O. Buchweitz, The homological theory of maximal Cohen-Macaulay approxi-
mations, Colloque en l’honneur de Pierre Samuel (Orsay, 1987). Mem. Soc. Math. France (N.S.) No.
38 (1989), 5–37.

[6] M. Auslander; I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86
(1991), no. 1, 111–152.

–14–



[7] M. Auslander; I. Reiten, Cohen-Macaulay and Gorenstein Artin algebras, Representation theory of
finite groups and finite-dimensional algebras (Bielefeld, 1991), 221–245, Progr. Math., 95, Birkhauser,
Basel, 1991.

[8] M. Auslander; S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981) 426–454.
[9] A. Bondal; M. van den Bergh, Generators and representability of functors in commutative and

noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258.
[10] O. Iyama, Auslander correspondence, Adv. Math. 210 (2007) 51–82.
[11] H. Krause; D. Kussin, Rouquier’s theorem on representation dimension, Trends in representation

theory of algebras and related topics, 95–103, Contemp. Math., 406, Amer. Math. Soc., Providence,
RI, 2006.

[12] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146.
[13] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3,

436–456.
[14] R. Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008), 193–256.
[15] R. Takahashi, Classifying thick subcategories of the stable category of Cohen-Macaulay modules,

Adv. Math. 225 (2010), no. 4, 2076–2116.
[16] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical Society

Lecture Note Series, 146, Cambridge University Press, Cambridge, 1990.
[17] M. Yoshiwaki, On self-injective algebras of stable dimension zero, Nagoya Math. J. 203 (2011),

101–108.

Liberal Arts Division,
Tokuyama College of Technology,
Gakuendai, Shunan, Yamaguchi, 745-8585, Japan

E-mail address: araya@tokuyama.ac.jp

–15–



DERIVED EQUIVALENCE CLASSIFICATION OF GENERALIZED
MULTIFOLD EXTENSIONS OF PIECEWISE HEREDITARY

ALGEBRAS OF TREE TYPE

HIDETO ASASHIBA AND MAYUMI KIMURA

Abstract. We give a derived equivalence classification of algebras of the form Â/⟨ϕ⟩
for some piecewise hereditary algebra A of tree type and some automorphism ϕ of Â
such that ϕ(A[0]) = A[n] for some positive integer n.

Introduction

Throughout this note we fix an algebraically closed field k, and assume that all alge-
bras are basic and finite-dimensional k-algebras and that all categories are k-categories.

Let A be an algebra and n a positive integer. Then an algebra of the form T nψ (A) :=

Â/⟨ψ̂νnA⟩ for some automorphism ψ of A is called a twisted n-fold extension of A.

Further an algebra of the form Â/⟨ϕ⟩ for some automorphism ϕ of Â with jump n
is called a generalized n-fold extension of A, where ϕ is called an automorphism with
jump n if ϕ(A[0]) = A[n]. Since obviously ψ̂νnA is an automorphism with jump n, we see
that twisted n-fold extensions are generalized n-fold extensions. An algebra is called
a generalized (resp. twisted) multifold extension if it is a generalized (resp. twisted)
n-fold extension for some positive integer n. In [3], we gave the derived equivalence
classification of twisted multifold extensions of piecewise hereditary algebras of tree
type by giving a complete invariant. In this note we extend this result to generalized
multifold extensions of piecewise hereditary algebras of tree type.

1. Preliminaries

For a category R we denote by R0 and R1 the class of objects and morphisms of R,
respectively. A category R is said to be locally bounded if it satisfies the following:

• Distinct objects of R are not isomorphic;
• R(x, x) is a local algebra for all x ∈ R0;
• R(x, y) is finite-dimensional for all x, y ∈ R0; and
• The set {y ∈ R0 | R(x, y) ̸= 0 or R(y, x) ̸= 0} is finite for all x ∈ R0.

A category is called finite if it has only a finite number of objects.
A pair (A,E) of an algebra A and a complete set E := {e1, . . . , en} of orthogonal

primitive idempotents of A can be identified with a locally bounded and finite category
R by the following correspondences. Such a pair (A,E) defines a category R(A,E) := R
as follows: R0 := E, R(x, y) := yAx for all x, y ∈ E, and the composition of R is

The detailed version of this paper will be submitted for publication elsewhere.
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defined by the multiplication of A. Then the category R is locally bounded and finite.
Conversely, a locally bounded and finite category R defines such a pair (AR, ER) as
follows: AR :=

⊕
x,y∈R0

R(x, y) with the usual matrix multiplication (regard each

element of A as a matrix indexed by R0), and ER := {(1lxδ(i,j),(x,x))i,j∈R0 | x ∈ R0}.
We always regard an algebra A as a locally bounded and finite category by fixing a
complete set A0 of orthogonal primitive idempotents of A.

Definition 1.1. Let A be an algebra.
(1) The repetition Â of A is a k-category defined as follows (Â turns out to be locally

bounded):

• Â0 := A0 × Z = {x[i] := (x, i) | x ∈ A0, i ∈ Z}.

• Â(x[i], y[j]) :=


{f [i] | f ∈ A(x, y)} if j = i,

{ϕ[i] | ϕ ∈ DA(y, x)} if j = i+ 1,

0 otherwise,

for all x[i], y[j] ∈ Â0.

• For each x[i], y[j], z[k] ∈ Â0 the composition Â(y[j], z[k])×Â(x[i], y[j])→ Â(x[i], z[k])
is given as follows.
(i) If i = j, j = k, then this is the composition of A A(y, z)×A(x, y)→ A(x, z).
(ii) If i = j, j + 1 = k, then this is given by the right A-module structure of

DA: DA(z, y)× A(x, y)→ DA(z, x).
(iii) If i+1 = j, j = k, then this is given by the left A-module structure of DA:

A(y, z)×DA(y, x)→ DA(z, x).
(iv) Otherwise, the composition is zero .

(2) We define an automorphism νA of Â, called the Nakayama automorphism of Â,
by νA(x

[i]) := x[i+1], νA(f
[i]) := f [i+1], νA(ϕ

[i]) := ϕ[i+1] for all i ∈ Z, x ∈ A0, f ∈ A1, ϕ ∈∪
x,y∈A0

DA(y, x).

(3) For each n ∈ Z, we denote by A[n] the full subcategory of Â formed by x[n] with

x ∈ A, and by 1l[n] : A
∼
→ A[n] ↪→ Â, x 7→ x[n], the embedding functor.

We cite the following from [3, Lemma 2.3].

Lemma 1.2. Let ψ : A→ B be an isomorphism of algebras. Denote by ψyx : A(y, x)→
B(ψy, ψx) the isomorphism defined by ψ for all x, y ∈ A. Define ψ̂ : Â→ B̂ as follows.

• For each x[i] ∈ Â, ψ̂(x[i]) := (ψx)[i];

• For each f [i] ∈ Â(x[i], y[i]), ψ̂(f [i]) := (ψf)[i]; and

• For each ϕ[i] ∈ Â(x[i], y[i+1]), ψ̂(ϕ[i]) := (D((ψyx)
−1)(ϕ))[i] = (ϕ ◦ (ψyx)−1)[i].

Then

(1) ψ̂ is an isomorphism.

(2) Given an isomorphism ρ : Â→ B̂, the following are equivalent.

(a) ρ = ψ̂;
(b) ρ satisfies the following.

(i) ρνA = νBρ;
(ii) ρ(A[0]) = A[0];

–17–



(iii) The diagram

A
ψ−−−→ B

1l[0]

y y1l[0]

A[0] −−−→
ρ

B[0]

is commutative; and
(iv) ρ(ϕ[0]) = (ϕ ◦ (ψyx)−1)[0] for all x, y ∈ A and all ϕ ∈ DA(y, x).

An algebra is called a tree algebra if its ordinary quiver is an oriented tree. Let
R be a locally bounded category with the Jacobson radical J and with the ordinary
quiver Q. Then by definition of Q there is a bijection f : Q0 → R0, x 7→ fx and
injections āy,x : Q1(x, y)→ J(fx, fy)/J

2(fx, fy) such that āy,x(Q1(x, y)) forms a basis of
J(fx, fy)/J

2(fx, fy), whereQ1(x, y) is the set of arrows from x to y inQ for all x, y ∈ Q0.
For each α ∈ Q1(x, y) choose ay,x(α) ∈ J(fx, fy) such that a(α) + J2(fx, fy) = āy,x(α).
Then the pair (f, a) of the bijection f and the family a of injections ay,x : Q1(x, y) →
J(fx, fy) (x, y ∈ Q0) uniquely extends to a full functor Φ: kQ→ R, which is called a
display functor for R.

A path µ from y to x in a quiver with relations (Q, I) is called maximal if µ ̸∈ I but
αµ, µβ ∈ I for all arrows α, β ∈ Q1. For a k-vector space V with a basis {v1, . . . , vn}
we denote by {v∗1, . . . , v∗n} the basis of DV dual to the basis {v1, . . . , vn}. In particular
if dimk V = 1, v∗ ∈ DV is defined for all v ∈ V \{0}.

Lemma 1.3. Let A be a tree algebra and Φ : kQ→ A a display functor with I := KerΦ.
Then
(1) Φ uniquely induces the display functor Φ̂ : kQ̂→ Â for Â, where

(i) Q̂ = (Q̂0, Q̂1, ŝ, t̂) is defined as follows:

• Q̂0 := Q0 × Z = {x[i] := (x, i) | x ∈ Q0, i ∈ Z},
• Q1 × Z := {α[i] := (α, i) | α ∈ Q1, i ∈ Z},
Q̂1 := (Q1 × Z) ⊔ {µ∗[i] | µ is a maximal path in (Q, I), i ∈ Z},
• ŝ(α[i]) := s(α)[i], t̂(α[i]) := t(α)[i] for all α[i] ∈ Q1×Z, and if µ is a maximal
path from y to x in (Q, I) then, ŝ(µ∗[i]) := x[i], t̂(µ∗[i]) := y[i+1].

(ii) Φ̂ is defined by Φ̂(x[i]) := (Φx)[i], Φ̂(α[i]) := (Φα)[i], and Φ̂(µ∗[i]) := (Φ(µ)∗)[i]

for all i ∈ Z, x ∈ Q0, α ∈ Q1 and maximal paths µ in (Q, I).

(2) We define an automorphism νQ of Q̂ by νQ(x
[i]) := x[i+1], νQ(α

[i]) := α[i+1],
νQ(µ

∗[i]) := µ∗[i+1] for all i ∈ Z, x ∈ Q0, α ∈ Q1, and maximal paths µ in (Q, I).

(3) Ker Φ̂ is equal to the ideal Î defined by the full commutativity relations on Q̂ and the

zero relations µ = 0 for those paths µ of Q̂ for which there is no path t̂(µ)⇝ νQ(ŝ(µ)).

(Therefore note that if a path αn · · ·α1 is in I, then α
[i]
n · · ·α[i]

1 is in Î for all i ∈ Z.)

Let R be a locally bounded category. A morphism f : x → y in R1 is called a
maximal nonzero morphism if f ̸= 0 and fg = 0, hf = 0 for all g ∈ radR(z, x), h ∈
radR(y, z), z ∈ R0.
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Lemma 1.4. Let A be an algebra and x[i], y[j] ∈ Â0. Then there exists a maximal
nonzero morphism in Â(x[i], y[j]) if and only if y[j] = νA(x

[i]).

Proof. This follows from the fact that Â(-, x[i+1]) ∼= DÂ(x[i], -) for all i ∈ Z, x ∈ A0. □

Lemma 1.5. Let A be an algebra. Then the actions of ϕνA and νAϕ coincide on the
objects of Â for all ϕ ∈ Aut(Â).

Proof. Let x[i] ∈ Â0. Then there is a maximal nonzero morphism in Â(x[i], νA(x
[i])) by

Lemma 1.4. Since ϕ is an automorphism of Â, there is a maximal nonzero morphism
in Â(ϕ(x[i]), ϕ(νA(x

[i]))). Hence ϕ(νA(x
[i])) = νA(ϕ(x

[i])) by the same lemma. □

The following is immediate by the lemma above.

Proposition 1.6. Let A be an algebra, n an integer, and ϕ an automorphism of Â.
Then the following are equivalent:

(1) ϕ is an automorphism with jump n;
(2) ϕ(Ai) = A[i+n] for some integer i; and
(3) ϕ(Aj) = A[j+n] for all integers j.

In the sequel, we always assume that n is a positive integer when we consider a
morphism with jump n. Let Q be a quiver. We denote by Q̄ the underlying graph
of Q, and call Q finite if both Q0 and Q1 are finite sets. Each automorphism of Q is
regarded as an automorphism of Q̄ preserving the orientation of Q, thus Aut(Q) can be
regarded as a subgroup of Aut(Q̄). Suppose now that Q is a finite oriented tree. Then
it is also known that Aut(Q) ≤ Aut0(Q̄) := {f ∈ Aut(Q̄) | ∃x ∈ Q0, f(x) = x}. We
say that Q is an admissibly oriented tree if Aut(Q) = Aut0(Q̄). We quote the following
from [3, Lemma 4.1]:

Lemma 1.7. For any finite tree T there exists an admissibly oriented tree Q with a
unique source such that Q̄ = T .

We recall the following (cf. [3, Section 4.1]):

Definition 1.8. Let R be a locally bounded category. The formal additive hull addR
of R is a category defined as follows.

• (addR)0 := {
⊕n

i=1 xi := (x1, . . . , xn) | n ∈ N, x1, . . . , xn ∈ R0};
• For each x =

⊕m
i=1 xi, y =

⊕m
j=1 yi ∈ (addR)0,

(addR)(x, y) := {(µj,i)j,i | µj,i ∈ R(xi, yj) for all i = 1, . . . ,m, j = 1, . . . , n}; and

• The composition is given by the matrix multiplication.

It is well known that theYoneda functor YR : addR→ prjR,
⊕n

i=1 xi 7→
⊕n

i=1R(-, xi)
is an equivalence. Let F : R → S be a functor of locally bounded categories. Then F
naturally induces functors addF : addR→ addS and F̃ := Kb(addF ) : Kb(addR)→
Kb(addS), which are isomorphisms if F is an isomorphism.
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2. Reduction to hereditary tree algebras

Proposition 2.1. Let A be a piecewise hereditary algebra of tree type Q̄ for an admis-
sibly oriented tree Q, and n a positive integer. Then we have the following:

(1) For any ϕ ∈ Aut(Â) with jump n, there exists some ψ ∈ Aut(k̂Q) with jump n

such that Â/⟨ϕ⟩ is derived equivalent to k̂Q/⟨ψ⟩; and
(2) If we set ϕ′ := νnAϕ̂0 ∈ Aut(Â), where ϕ0 := (1l[0])−1ν−nϕ|A[0]1l[0], then there

exists some ψ′ ∈ Aut(k̂Q) with jump n such that Â/⟨ϕ′⟩ is derived equivalent

to k̂Q/⟨ψ′⟩, and that the actions of ψ and ψ′ coincide on the objects of k̂Q.

Proof. (1) We set ϕi := (1l[i])−1ν−nϕ|A[i]1l[i] ∈ Aut(A) for all i ∈ Z. By [3, Lemma 5.4],
there exists a tilting triple (A,E, kQ) with an isomorphism ζ : E → kQ such that E is

⟨η̃⟩-stable up to isomorphisms for all η ∈ Aut(A). In particular, E is ⟨ϕ̃i⟩-stable up to

isomorphisms for all i ∈ Z. Then (Â, Ê, k̂Q) is a tilting triple with an isomorphism ζ̂
by [1, Theorem 1.5] and the following holds.

Claim 1. Ê is ⟨ϕ̃⟩-stable up to isomorphisms.

Indeed for each T ∈ E0 and i ∈ Z, we have

ϕ̃1̃l
[i]
(T ) = ν̃nν̃−nϕ̃1̃l

[i]
(T )

= ν̃n1̃l
[i]
ϕ̃i(T )

= 1̃l
[i+n]

ϕ̃i(T ).

(2.1)

Since E is ⟨ϕ̃i⟩-stable up to isomorphisms, there is some T ′ ∈ E such that T ′ ∼= ϕ̃i(T ),

and hence 1̃l
[i+n]

ϕ̃i(T ) ∼= 1̃l
[i+n]

(T ′) ∈ Ê, as desired.
By [3, Remark 3.5], we have a ⟨ϕ̃⟩-stable tilting subcategory Ê ′ and an isomorphism

θ : Ê ′ ∼
→ Ê. Therefore by [2, Proposition 5.4] Â/⟨ϕ⟩ and Ê ′/⟨ϕ̃⟩ are derived equivalent.

If we set ψ := (ζ̂θ)ϕ̃(ζ̂θ)−1, then (2.1) shows that ψ is an automorphism with jump n,

and that Ê ′/⟨ϕ̃⟩ ∼= k̂Q/⟨ψ⟩. Hence Â/⟨ϕ⟩ and k̂Q/⟨ψ⟩ are derived equivalent.
(2) Note that ϕ′ is also an automorphism with jump n. By the same argument

we see that Ê is also ⟨ϕ̃′⟩-stable up to isomorphisms; there exists a ⟨ϕ̃′⟩-stable tilting

subcategory Ê ′′ and an isomorphism θ′ : Ê ′′ ∼
→ Ê; and Â/⟨ϕ′⟩ and Ê ′′/⟨ϕ̃′⟩ are de-

rived equivalent. Set ψ′ := (ζ̂θ′)ϕ̃′(ζ̂θ′)−1, then ψ′ is an automorphism with jump n,

Ê ′′/⟨ϕ̃′⟩ ∼= k̂Q/⟨ψ′⟩, and Â/⟨ϕ′⟩ and k̂Q/⟨ψ′⟩ are derived equivalent. Now for i = 0

(2.1) shows that ϕ̃1̃l
[0]
(T ) = 1̃l

[n]
ϕ̃0(T ) for all T ∈ E0. Since ϕ′

0 = ϕ0, the same cal-

culation shows that ϕ̃′1̃l
[0]
(T ) = 1̃l

[n]
ϕ̃0(T ) for all T ∈ E0. Thus the actions of ϕ̃ and

ϕ̃′ coincide on the objects of E[0], which shows that the actions of ψ and ψ′ coincide
on the objects of kQ[0]. Hence by Lemma 1.5 their actions coincide on the objects of

k̂Q. □

3. Hereditary tree algebras

Remark 3.1. Let Q be an oriented tree.
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(1) We may identify k̂Q = kQ̂/Î as stated in Lemma 1.3, and we denote by µ the

morphism µ+ Î in k̂Q for each morphism µ in kQ̂.
(2) Let x, y ∈ Q̂0. Since Î contains full commutativity relations, we have dimk k̂Q(x, y)

≤ 1, and in particular Q̂ has no double arrows.

(3) Let α : x→ y be in Q̂1 and ϕ ∈ Aut(k̂Q). Then there exists a unique arrow ϕx→
ϕy in Q̂, which we denote by (π̂ϕ)(α), and we have ϕ(α) = ϕα(π̂ϕ)(α) ∈ k̂Q(ϕx, ϕy)
for a unique ϕα ∈ k× := k \ {0}. This defines an automorphism π̂ϕ of Q̂, and thus a

group homomorphism π̂ : Aut(k̂Q)→ Aut(Q̂).
(4) Similarly, let α : x → y be in Q1 and ψ ∈ Aut(kQ). Then there exists a unique

arrow ψx→ ψy in Q, which we denote by (πψ)(α). This defines an automorphism πψ
of Q, and thus a group homomorphism π : Aut(kQ)→ Aut(Q).

We cite the following from [3, Proposition 7.4].

Proposition 3.2. Let R be a locally bounded category, and g, h automorphisms of R
acting freely on R. If there exists a map ρ : R0 → k× such that ρ(y)g(f) = h(f)ρ(x)
for all morphisms f : x→ y in R, then R/⟨g⟩ ∼= R/⟨h⟩. □
Definition 3.3. (1) For a quiver Q = (Q0, Q1, s, t) we set Q[Q−1

1 ] to be the quiver

Q[Q−1
1 ] := (Q0, Q1 ⊔ {α−1 | α ∈ Q1}, s′, t′),

where s′|Q1 := s, t′|Q1 := t, s′(α−1) := t(α) and t′(α−1) := s(α) for all α ∈ Q1. A walk
in Q is a path in Q[Q−1

1 ].
(2) Suppose that Q is a finite oriented tree. Then for each x, y ∈ Q0 there exists a

unique shortest walk from x to y in Q, which we denote by w(x, y). If w(x, y) =
αεnn · · ·α

ε1
1 for some α1, · · · , αn ∈ Q1 and ε1, . . . , εn ∈ {1,−1}, then we define a

subquiver W (x, y) of Q by W (x, y) := (W (x, y)0,W (x, y)1, s
′, t′), where W (x, y)0 :=

{s(αi), t(αi) | i = 1, . . . , n}, W (x, y)1 := {α1, . . . , αn}, and s′, t′ are restrictions of s, t
to W (x, y)1, respectively. Since Q is an oriented tree, w(x, y) is uniquely recovered
by W (x, y). Therefore we can identify w(x, y) with W (x, y), and define a sink and a
source of w(x, y) as those in W (x, y).

Proposition 3.4. Let Q be a finite oriented tree and ϕ, ψ automorphisms of k̂Q acting

freely on k̂Q. If the actions of ϕ and ψ coincide on the objects of k̂Q, then there exists a

map ρ : (Q̂0 =) k̂Q0 → k× such that ρ(y)ψ(f) = ϕ(f)ρ(x) for all morphisms f : x→ y

in k̂Q. Hence in particular, k̂Q/⟨ϕ⟩ is isomorphic to k̂Q/⟨ψ⟩.

Proof. Assume that the actions of ϕ, ψ ∈ Aut(k̂Q) coincides on the objects of k̂Q.
Then ϕ and ψ induce the same quiver automorphism q = π̂ϕ = π̂ψ of Q̂, and there

exist (ϕα)α∈Q̂1
, (ψα)α∈Q̂1

∈ (k×)Q̂1 such that for each α ∈ Q̂1 we have

ϕ(α) = ϕαq(α), ψ(α) = ψαq(α).

For each path λ = αn · · ·α1 in Q̂ with α1, . . . , αn ∈ Q̂1 we set ϕλ := ϕαn · · ·ϕα1 . Then
we have

ϕ(λ) = ϕλq(λ),
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where q(λ) := q(αn) · · · q(α1) because ϕ(αn) · · ·ϕ(α1) = ϕαn · · ·ϕα1q(αn) · · · q(α1).

To show the statement we may assume that ψα = 1 for all α ∈ Q̂1. Since for each

x, y ∈ Q̂0 the morphism space k̂Q(x, y) is at most 1-dimensional and has a basis of the

form µ for some path µ, it is enough to show that there exists a map ρ : Q̂0 → k×

satisfying the following condition:

ρ(v[j]) = ϕβρ(u
[i]) for all β : u[i] → v[j] in Q̂1. (3.1)

We define a map ρ as follows:
Fix a maximal path µ : y ⇝ x in Q. Then x is a sink and y is a source in Q. We
can write µ as µ = αl · · ·α1 for some α1, . . . , αl ∈ Q1. First we set ρ(x[0]) := 1. By
induction on 0 ≤ i ∈ Z we define ρ(x[i]) and ρ(x[−i]) by the following formulas:

ρ(x[i+1]) := ϕµ[i+1]ϕµ∗[i]ρ(x
[i]), (3.2)

ρ(x[i−1]) := ϕ−1
µ∗[i−1]ϕ

−1
µ[i]
ρ(x[i]). (3.3)

Now for each i ∈ Z and u ∈ Q0 if w(u, x) = βεmm · · · β
ε1
1 for some β1, . . . , βm ∈ Q1 and

ε1, . . . , εm ∈ {1,−1}, then we set

ρ(u[i]) := ϕ−ε1
β
[i]
1

· · ·ϕ−εm
β
[i]
m

ρ(x[i]). (3.4)

We have to verify the condition (3.1).
Case 1. β = α[i] : u[i] → v[i] for some i ∈ Z, and α : u → v in Q1. Since Q is an

oriented tree, we have either w(u, x) = w(v, x)α or w(v, x) = w(u, x)α−1. In either
case we have ρ(v[i]) = ϕα[i]ρ(u[i]) by the formula (3.4).

Case 2. Otherwise, we have β = λ∗[i] : u[i] → v[i+1] for some maximal path λ : v ⇝ u
in Q and i ∈ Z. In this case the condition (3.1) has the following form:

ρ(v[i+1]) = ϕλ∗[i]ρ(u
[i]). (3.5)

Two paths are said to be parallel if they have the same source and the same target.
We prepare the following for the proof.

Claim 2. If ζ and η are parallel paths in Q̂, then we have ϕζ = ϕη.

Indeed, since ζ − η ∈ Î, we have ϕ(ζ) = ϕ(η), which shows

ϕζq(ζ) = ϕηq(η).

Here we have q(ζ) = ψ(ζ) = ψ(η) = q(η), and ψ(ζ) ̸= 0 because ζ ̸= 0. Hence ϕζ = ϕη,
as required.

We now set d(a, b) to be the number of sinks in w(a, b) for all a, b ∈ Q0. By induction
on d(y, v) we can show that the condition (3.5) holds. □

4. Main result

Theorem 4.1. Let A be a piecewise hereditary algebra of tree type and ϕ an automor-
phism of Â with jump n. Then Â/⟨ϕ⟩ and T nϕ0(A) are derived equivalent, where we set

ϕ0 := (1l[0])−1ν−nϕ|A[0]1l[0].
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Proof. Let T be the tree type of A. Then by Lemma 1.7 there exists an admissibly
oriented tree Q with Q̄ = T . We set ϕ′ := νnAϕ̂0 (= ϕ̂0ν

n
A). Then T

n
ϕ0
(A) = Â/⟨ϕ′⟩. By

Proposition 2.1(2) there exist some ψ, ψ′ ∈ Aut(k̂Q) both with jump n such that Â/⟨ϕ⟩
(resp. Â/⟨ϕ′⟩) is derived equivalent to k̂Q/⟨ψ⟩ (resp. k̂Q/⟨ψ′⟩), and the actions of ψ and

ψ′ coincide on the objects of k̂Q. Then by Proposition 3.4 we have k̂Q/⟨ψ⟩ ∼= k̂Q/⟨ψ′⟩.
Hence Â/⟨ϕ⟩ and T nϕ0(A) are derived equivalent. □
Definition 4.2. Let Λ be a generalized n-fold extension of a piecewise hereditary
algebra A of tree type T , say Λ = Â/⟨ϕ⟩ for some ϕ ∈ Aut(A) with jump n. Further
let Q be an admissibly oriented tree with Q̄ = T . Then by Proposition 2.1 there

exists ψ ∈ Aut(k̂Q) with jump n such that Â/⟨ϕ⟩ is derived equivalent to k̂Q/⟨ψ⟩.
We define the (derived equivalence) type type(Λ) of Λ to be the triple (T, n, π(ψ0)),

where ψ0 := (1l[0])−1ν−nkQψ|(kQ)[0]1l
[0] and π(ψ0) is the conjugacy class of π(ψ0) in Aut(T ).

type(Λ) is uniquely determined by Λ.

By Theorem 4.1, we can extend the main theorem in [3] as follows.

Theorem 4.3. Let Λ, Λ′ be generalized multifold extensions of piecewise hereditary
algebras of tree type. Then the following are equivalent:

(i) Λ and Λ′ are derived equivalent.
(ii) Λ and Λ′ are stably equivalent.
(iii) type(Λ) = type(Λ′).
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DECOMPOSING TENSOR PRODUCTS FOR CYCLIC AND
DIHEDRAL GROUPS

ERIK DARPÖ AND CHRISTOPHER C. GILL

Abstract. We give a new formula for the decomposition of a tensor product of in-
decomposable modules of cyclic two-groups. This formula is also shown to describe the
decomposition of tensor products of an important class of modules of dihedral two-groups.

1. Introduction

In this note, we give a new, closed formula for the decomposition of a tensor product of
indecomposable modules of cyclic 2-groups, and show how this formula also describes the
decomposition of tensor products of a class of D2l-modules. The problem of decomposing
such a tensor product of modules of cyclic p-groups in characteristic p has been treated
by several authors (e.g. [4, 6, 5, 1]). However, to date, all solutions have been recursive,
and rather involved. Concentrating on the case p = 2 is a simplification which makes it
possible to give a closed decomposition formula.

Our interest in this problem originated in the study of tensor products of modules of
dihedral 2-groups. Thus, we show that the decomposition formula for modules of cyclic
2-groups also describes the decompositions of tensor products of the D2l-modules induced
from the maximal cyclic subgroup.

Throughout this text, k denotes a field of characteristic 2. The dihedral group of order
2q is written as D2q = ⟨σ, τ | σ2 = τ 2 = (στ)q = 1⟩. Here q will always be a 2-power,
q ⩾ 2. The unique cyclic subgroup of index 2 in D2q is Hq = ⟨στ⟩�D2q.

The indecomposable modules of kCq are classified by their dimensions; that is, up to
isomorphism, for each i ∈ {1, . . . , q} there exists a unique indecomposable kCq-module of
dimension i. Fix a set of representatives {Vi}i⩽q such that dimVi = i. Every projective
indecomposable module is isomorphic to Vq, and the tensor product of a projective with
any other module is again projective. We recall that every non-projective kCq-module is
Ω-periodic of period at most 2. Indeed, for each i < q, the formula Ω(Vi) ≃ Vq−i holds.

There is a unique projection C2q ↠ Cq. This surjection, via the usual inflation op-
eration, induces a full embedding of module categories mod kCq ↪→ mod kC2q, Vi 7→ Vi,
respecting the tensor product. Thus Vi is viewed as a module for all cyclic 2-groups of
order greater than or equal to i.

2. Decomposition formula for tensor products of modules of cyclic
2-groups

The following result makes it possible to compute the decomposition of a tensor product
of any two kCq-modules recursively.

This paper is a summary of results that will be published elsewhere.
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Proposition 1. Let i, j ⩽ q. Then Vi ⊗ Vj ≃ Ω(Vq−i ⊗ Vj)⊕max{i+ j − q, 0}Vq.

If q/2 ≤ i < q then q − i ≤ q/2 hence, by applying Proposition 1, we can transfer the
problem of finding the decomposition of Vi⊗Vj to the smaller module category mod kCq/2.
This gives an inductive process which halts when one of the factors is projective, in which
case the product can be immediately computed. Example 2 below illustrates the proced-
ure. To avoid any ambiguity, we write Ωq to indicate the Heller translate in mod kCq.

Example 2. Consider the module V18⊗V6, a tensor product of indecomposable modules
of kC32. Applying Proposition 1, we see that

V18 ⊗ V6 ≃ Ω32(V14 ⊗ V6).(2.1)

Viewing V14 ⊗ V6 as a module for C16 and again applying Proposition 1, we obtain

V14 ⊗ V6 ≃ Ω16(V2 ⊗ V6)⊕ 4V16.(2.2)

Now V2 ⊗ V6 ∈ mod kC8, and

V2 ⊗ V6 ≃ Ω8(V2 ⊗ V2).(2.3)

In mod kC2, V2 is projective, so V2 ⊗ V2 ≃ 2V2. Applying in turn Equations (2.3), (2.2)
and (2.1), we obtain the decomposition

V18 ⊗ V6 ≃ Ω32(Ω16(Ω8(2V2))⊕ 4V16)

≃ 2V22 ⊕ 4V16.

The idea behind our decomposition formula is to record the successive applications of
Proposition 1 in numerical sequences, which are then used to compute the indecomposable
summands of the tensor product. Let x be any positive integer. Set υ(x) = min{y ∈ N |
2y ⩾ x} and x′ = 2υ(x) − x. A sequence (xn)n⩾0 is defined recursively by x0 = x and
xn+1 = x′n. Let r ∈ N be the first number such that xr is a 2-power. Then (xn)

r
n=0 is

strictly decreasing, whereas xn = 0 for all n > r.
Now, given i, j ∈ N, set [i, j]0 = (i0, j0) = (i, j) and, if [i, j]n = (ia, jb),

(2.4) [i, j]n+1 =

{
(ia+1, jb) if ia ⩾ jb,

(ia, jb+1) if ia < jb.

This defines a sequence ([i, j]n)
w
n=0 =

(
([i, j]

(1)
n , [i, j]

(2)
n )
)w
n=0

, where w is the smallest

number such that max
{
[i, j]

(1)
w , [i, j]

(2)
w

}
is a 2-power. Now, set mn = 2υ(xn), for xn =

max
{
[i, j]

(1)
n , [i, j]

(2)
n

}
, n ∈ {0, . . . , w}. Finally, for all n ⩽ w, let

αn = max
{
0 , [i, j](1)n + [i, j](2)n −mn

}
and(2.5)

βn =
n∑
u=0

(−1)umu .(2.6)
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Theorem 3. For all i, j ∈ N,

Vi ⊗ Vj ≃
w⊕
n=0

αnVβn .

It may be noted that while the numbers in are, for simplicity of presentation, recursively
defined, they may all be read off from the binary expansion of the number i in a non-
recursive manner.

Example 4. Consider the case i = 20 and j = 51. We have

i0 = 20, i1 = 32− i0 = 12, i2 = 16− i1 = 4,

and

j0 = 51, j1 = 64− j0 = 13, j2 = 16− j1 = 3, j3 = 4− j2 = 1.

Now we can define all sequences needed for the application of Theorem 3. First, the
sequence [i, j] consists of pairs (ia, jb), formed by applying the equation (2.4) above:

[i, j]0 = (20, 51), [i, j]1 = (20, 13), [i, j]2 = (12, 13), [i, j]3 = (12, 3), [i, j]4 = (4, 3);

mn is the smallest 2-power greater than or equal to the two components of [i, j]n:

m0 = 64, m1 = 32, m2 = 16, m3 = 16, m4 = 4;

αn = [i, j]
(1)
n + [i, j]

(2)
n −mn if this number is positive, otherwise αn = 0:

α0 = 7, α1 = 1, α2 = 9, α3 = 0, α4 = 3;

βn is the alternating sum of the numbers m1, . . . ,mn:

β0 = 64, β1 = 32, β2 = 48, β3 = 32, β4 = 36.

With Theorem 3, we conclude that

V20 ⊗ V51 ≃ 7V64 ⊕ V32 ⊕ 9V48 ⊕ 3V36 .

3. Application: pseudoprojective modules of dihedral 2-groups

It turns out that Theorem 3 can be used to describe tensor products of a class of
modules of dihedral 2-groups. These are the so-called pseudoprojective modules, given as
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M(AlBl, 1) for some l ∈ N (see [3] for definition of the relevant notation). The pseudo-
projective modules are band modules, given by schemas in the following way:

k
Y
��?

???X
�����
�

k
Y

��

k
X
��

�
�

�
�

�� ��
k

��?
???

k
�����
�

k

We shall use Md to denote the pseudoprojective module of dimension d, in other words,
M(AlB

−1
l , 1) ≃M2l.

The pseudoprojective modules are precisely the kD2q-modules that are induced from
the maximal cyclic subgroup Hq �D2q:

Proposition 5. For each i ∈ {1, . . . , q}, the induced module Vi ↑
D2q

Hq
is isomorphic to M2i.

Applying Mackey’s tensor product theorem (see e.g. [2, Corollary 3.3.5(i)]),

M2i ⊗M2j ≃ 2 (Vi ⊗ Vj)↑D2q≃ 2

(
w⊕
n=0

αnVβn

)x
D2q

≃
w⊕
n=0

2αnM2βn .

Similarly, for V2i, V2j ∈ mod kC2q,

V2i ⊗ V2j ≃ Vi ↑
C2q

Cq
⊗Vj ↑

C2q

Cq
≃ 2

(
w⊕
n=0

αnVβn

)x
C2q

Cq

≃
w⊕
n=0

2αnV2βn .

It follows that the decompositions of tensor products V2i⊗V2j andM2i⊗M2j are governed
by the same formula. This proves the following result.

Corollary 6. For any even numbers i, j ∈ N, the decomposition formula

Mi ⊗Mj ≃
w⊕
n=0

αnVβn

holds, with the numbers αn and βn defined by Equations (2.5) and (2.6) respectively.
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QUOTIENTS OF EXACT CATEGORIES
BY CLUSTER TILTING SUBCATEGORIES AS MODULE

CATEGORIES

LAURENT DEMONET AND YU LIU

Abstract. We prove that some subquotient categories of exact categories are abelian.
This generalizes a result by Koenig-Zhu in the case of (algebraic) triangulated categories.
As a particular case, if an exact category B with enough projectives and injectives has a
cluster tilting subcategoryM, then B/[M] is abelian. More precisely, it is equivalent to
the category of finitely presented modules overM.

1. Introduction

Recently, cluster tilting theory (see for example [1, 3, 6]) permitted to construct abelian
categories from some triangulated categories. In this survey we sketch out the method we
introduced in [2] to generalize this observation to exact categories.

Recall that an exact category is Frobenius if it has enough projectives and injectives
and they coincide. From Happel [4, Theorem 2.6], the stable category of a Frobenius
category has a structure of a triangulated category. On the other hand, by Keller-Reiten
[7, Proposition 2.1], in the 2-Calabi-Yau case and then Koenig-Zhu [8, Theorem 3.3] in the
general case, one can pass from triangulated categories to abelian categories by factoring
out any cluster tilting subcategory. Combining these two results, we deduce that the
quotient of a Frobenius category by a cluster tilting subcategory is abelian. Thus, this
observation gives rise to a natural question: is the quotient of an exact category by a
cluster tilting subcategory abelian? As we will see, it turns out to be true.

This new result seems a priori less surprising than the one in triangulated categories
because these ones are intuitively further to abelian categories. Nevertheless, most tri-
angulated categories appearing in representation theory turn out to be in fact algebraic
(i.e. stable categories of Frobenius categories). In this respect, the case of exact categories
can be seen as a generalization of the result concerning triangulated categories, as well as
a more natural version.

2. Notations

Let B be a Krull-Schmidt exact category with enough projectives and injectives and
M be a full rigid subcategory of B (i.e. Ext1B(X,X) = 0 for any X ∈M).

Denote by P (resp. I) the subcategory of projective (resp. injective) objects in B.
For any object X, Y ∈ B and a full subcategory C of B, denote by [C](X, Y ) the set of
morphisms in HomB(X,Y ) which factor through objects of C. If P ⊆ C (resp. I ⊆ C),

The detailed version [2] of this paper has been submitted for publication.
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the (co-)stable category C (resp. C) of C is the quotient category C/[P] (resp. C/[I]), i.e.
the category which has the same objects than C and morphisms are defined as

HomC(X,Y ) := HomC(X, Y )/[P ](X, Y )

(resp. HomC(X,Y ) := HomC(X, Y )/[I](X, Y )).

Denote by ModC the category of contravariant additive functors from C to modk for any
category C where k is a field. Let modC be the full subcategory of ModC consisting of
objects A admitting an exact sequence:

HomC(−, C1)
β−→ HomC(−, C0)

α−→ A→ 0

where C0, C1 ∈ C.
Denote by ΩM the class of objects X ∈ B such that there exists a short exact sequence

0→M → I → X → 0

where M ∈M, and I is injective.
Denote by ML (resp. MR) the subcategory of objects X which admit short exact

sequences

0→X d0−→M0 d1−→M1→0 (resp. 0→M1
d1−→M0

d0−→ X→0)

with M0,M1,M0,M1 ∈ M. In this case, d0 (resp. d0) is a left (resp. right) M-
approximation of X.

3. Two quotient category: ML/[M] and MR/[ΩM]

3.1. Quotient category ofML/[M] by a rigid subcategoryM. In this subsection,
we assume that M is a rigid subcategory of B which contains P . Now we consider the
functor

H : ML → ModM
X 7→ Ext1B(−, X)|M

Let π :ML →ML/[M] be the projection functor. By definition of a rigid subcategory,
HX = 0 if X ∈ M. Hence, by the universal property of π, there exists a functor
F : ML/[M] → ModM such that Fπ = H. From the following lemma we can see
directly that F (X) ∈ modM:

Lemma 1. For any short exact sequence

0→ X
d0−→M0 d1−→M1 → 0

where M0,M1 ∈M, there is an exact sequence in ModM
HomM(−,M0)→ HomM(−,M1)→ FX → 0.

The functor F induces the equivalence we want:

Theorem 2. The functor F :ML/[M]→ modM is an equivalence of categories.

Moreover, we have the following corollary:

Corollary 3. IfM is rigid and contravariantly finite, thenML/[M] is abelian.
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3.2. Quotient category of MR by ΩM. In this subsection we assume that M is a
rigid subcategory of B which contains I.

We denote

K :MR → ModM
X 7→ HomB(−, X).

Let π′ :MR →MR/[ΩM] be the projection functor. By the universal property of π′,
there is a functor G :MR/[ΩM]→ ModM such that Gπ′ = K. From the lemma we can
see that GX ∈ modM:

Lemma 4. For every short exact sequence

0→M1
d1−→M0

d0−→ X → 0

where M1,M0 ∈M, there is an exact sequence

HomM(−,M1)→ HomM(−,M0)→ GX → 0.

The functor G also gives an equivalence:

Theorem 5. The functor G :MR/[ΩM]→ modM is an equivalence of categories.

If we denoteM⊥
= {X ∈MR | HomB(M, X) = 0}, we get the following corollary:

Corollary 6. We have ΩM =M⊥
.

4. Case of n-cluster tilting subcategories and AR translation

For a subcategory C of B, we define

⊥mC = {X ∈ B | ∀i ∈ {1, . . . ,m},ExtiB(X, C) = 0}
and C⊥m = {X ∈ B | ∀i ∈ {1, . . . ,m},ExtiB(C, X) = 0}.

Recall thatM is called n-cluster tilting, if it satisfies the following conditions:

(1) M is contravariantly finite and covariantly finite in B,
(2) M =M⊥n−1 ,
(3) M = ⊥n−1M.

The previous results concern categoriesML andMR which have not good properties
in general. From now on, we suppose thatM is n-cluster tilting for some integer n ≥ 2
(see [5, 6]). Thus, the properties ofML andMR becomes much clearer:

Proposition 7. The following equalities hold:

⊥n−2M =ML and M⊥n−2 =MR.

By this proposition, we obtain that both ML and MR are exact subcategories of B.
In particular we get

Corollary 8. IfM is 2-cluster tilting then B/[M] ≃ modM is abelian.
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Now, we assume that B has an AR translation τ : B → B with reciprocal τ−. Following
[5], we define (n− 1)-AR translations

τn−1 :
⊥n−2P → I⊥n−2 and τ−n−1 : I⊥n−2 → ⊥n−2P

by τn−1 = τΩn−2 and τ−n−1 = τΩ
n−2

(where Ω is the syzygy functor). In fact, the only
property we need for these functors is that, if X ∈ ⊥n−2P and Y ∈ I⊥n−2 , the following
functorial isomorphisms hold:

(1) Extn−1
B (X, Y ) ≃ DHomB(Y, τn−1X) ≃ DHomB(τ

−
n−1Y,X),

(2) ∀i ∈ {1, 2, ..., n− 2},
Extn−1−i

B (X,Y ) ≃ DExtiB(Y, τn−1X) ≃ DExtiB(τ
−
n−1Y,X)

where D = HomExtk(−, k). This is a weak version of [5, Theorem 1.5].

From this, we deduce easily that τn−1 induces an equivalence from ⊥n−2M to M⊥n−2

the inverse of which is τ−1
n−1 = τ−n−1.

Remark that

X ∈M⇔ ExtiB(X,M) = 0, ∀i ∈ {1, 2, ..., n− 1}

⇔
{

HomB(M, τn−1X) = 0
ExtiB(M, τn−1X) = 0 for all i ∈ {1, 2, ..., n− 2}

⇔ τn−1X ∈M⊥n−2 ∩M⊥
.

Moreover, asM⊥
= ΩM⊆M⊥n−2 , X ∈M⇔ τn−1X ∈M.

Now X ∈ P implies that Extn−1
B (X,B) = 0, then HomB(B, τn−1X) = 0, which means

τn−1X ∈ I. Dually X ∈ I implies that τ−1
n−1X ∈ P . Hence X ∈ P ⇔ τn−1X ∈ I. We get

the following proposition:

Proposition 9. The functor τn−1 induces an equivalence fromM to ΩM and an equiv-
alence from ⊥n−2M/[M] toM⊥n−2/[Ω/M].

Denote by Ω
−1

the inverse of Ω :M→ ΩM. Then we have

Corollary 10. The compositions τ−1
n−1 ◦Ω and Ω

−1 ◦ τn−1 induce mutually inverse equiv-

alences betweenM andM.

According to this corollary, we can define reciprocal equivalences:

(1) µ : ModM→ ModM, µ(C) = C ◦ τ−1
n−1 ◦ Ω,

(2) µ−1 : ModM→ ModM, µ−1(C ′) = C ′ ◦ Ω−1 ◦ τn−1.

Thus we have:

Proposition 11. The functors µ and µ−1 induce mutually inverse equivalences between
modM and modM.

Finally we give:
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Theorem 12. If B has an (n − 1)–AR translation τn−1, then we have a diagram which
is commutative up to the equivalence

⊥n−2M/[M]
F−−−→ modM

τn−1

y yµ
M⊥n−2/[ΩM] −−−→

G
modM.

By duality, if we denote by mod′M (resp. mod′M) the category of finitely copresented
modules overM (resp. M), we get the following commutative diagram:

⊥n−2M/[ΩM]
∼−−−→ mod′M

τn−1

y y≀

M⊥n−2/[M]
∼−−−→ mod′M

where ΩM the class of objects X ∈ B such that there exists a short exact sequence

0→ X → P →M → 0

with M ∈M and P projective.

5. Example

In this section, we explain an example coming directly from representation theory
(Auslander algebras).

Let Λ be the Auslander algebra of kA⃗3. That is kQ/R where Q is the following quiver

3

����
��

5

����
��

2

����
��

^^====

6 4

^^====
1

^^====

and the ideal of relations R is generated by the mesh relations symbolized by dashed
lines. Then, using the method introduced in [6, §1], one can compute a cluster tilting
subcategoryM of modΛ, and the quiver ofM is given in Figure 1.

We can also calculate ΩM easily since in this case

ΩM =M⊥
= {X ∈ modΛ | HomΛ(M, X) = 0}.

In this example, the quiver of modΛ/[M] is the following.
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The quiver ofM is the following.
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Figure 1. Quiver ofM

2
4

// 1
2

##HH
HHH

4

::ttttt
1

As expected, we obtain that modΛ/[M] ≃ modM. One can also calculate and check the

equivalence modΛ/[M⊥
] ≃ modM.
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WEAKLY SECTIONAL PATHS AND BYPASSES IN THE
AUSLANDER-REITEN QUIVER

TAKAHIKO FURUYA

Abstract. We show that if a weakly sectional path in the Auslander-Reiten quiver of
an artin algebra is a bypass, then it is precisely a sectional path.

1. 序 (準備)

本論文を通じて、K を可換アルティン環とし、AをK 上のアルティン多元環とする
([1])。modAで有限生成右A-加群の成す圏を表し、τ = DTrおよび τ− = TrDでmodA
におけるアウスランダー・ライテン移動を表す。また ΓAでAのアウスランダー・ライテ
ンクイバーを表す。
以降、任意の直既約加群 X (∈ modA)に対して、X を含む同型類を再び X で記す。

Ω = Xn → Xn−1 → · · · → X0 (n ≥ 1)を ΓAにおける道とする。このとき整数 i (1 ≤ i ≤
n − 1)がΩのフックであるとは、τXi−1 = Xi+1となるときを言う。また Ωが sectional
pathであるとは、Ω がフックを持たないとき、つまり、任意の j (1 ≤ j ≤ n − 1)に
対して τXj−1 ̸= Xj+1となるときを言う。さらに Ωが pre-sectional pathであるとは、i
(1 ≤ i ≤ n− 1) がフックならば τXi−1 = Xi+1であるときを言う ([7])。明らかに sectional
pathは pre-sectional pathである。
本論文の目的は、以下に述べる bypassの性質を調べる事である。

Definition 1 ([2, 3]). X → Y を ΓAにおける矢とし、n ≥ 2を整数とする。このとき ΓA
の道X = X0 → X1 → · · · → Xn = Y が矢X → Y の bypassであるとは、X1 ̸= Y かつ
Xn−1 ̸= Xであるときを言う。また、bypassが sectional pathであるとき、その bypassを
sectional bypassと呼ぶ。

Remark 2. bypassは [3]で最初に導入された道であるが、文献 [2]にある定義と [3]にある
定義はわずかに異なる。本論文では [2] における定義を採用している。

Remark 3. 以下の事が示されている:

(1) ΓAの oriented cycleを含まない成分における矢の bypassは sectional bypassであ
る ([3])。

(2) Aが有限表現型のとき、ΓAは sectional bypassを持たない ([3])。
(3) ΓAが sectional bypassを持つとき、ΓAの sectional bypassを持つ左または右安定
成分が存在する ([2])。

次に、sectionalではない bypassおよび sectional bypass の例をそれぞれ挙げておく:

Example 4. (1) Kを代数閉体とし、Γ を次のクイバーとする:

1a 88
b // 2

The detailed version of this paper will be submitted for publication elsewhere.
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I = ⟨a2⟩を道多元環KΓ のイデアルとする。A := KΓ/I と置く。そうすると A
は有限表現型であり、ΓAは oriented cycleを持つ次の translation クイバーである
([2, 3])。

P2

P1

τ−P2

τ−P1

τ−S1 τ−2S1

S1 τ−S1

τ−P1

??�����

β

��?
??

?? γ ??�����

α

��?
??

?? ??����� ��?
??

??

??����� ��?
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?? ??�����

δ

��?
??

??

�
�
�
�
�
�

�
�
�
�
�
�

このとき、道 αβγδは矢 τ−S1 → S1の sectionalではない bypassである。

(2) Kを代数閉体とし、n ≥ 2を整数とする。Γ を次の Ãn型のクイバーとする:

1

2

3 4 · · · n− 1

n

n+ 1

__???

??���

//

!!C
CC

}}{{
{

//

A := KΓ とする。そうすると、ΓAの前入射成分は次のような左安定成分となる。
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��?
???����?

????�����?
????�����?

??
_ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _

この成分には、無限に sectional bypassが存在している。例えば道 n + 1 → n →
· · · → 2→ 1は矢 n+ 1→ 1 の sectional bypassである。

上記のRemark 3で述べたように、すでに sectional bypassに関するいくつかの事実が
示されている。ここでは、bypassが sectional pathの一般化であるweakly sectional path
([4])である場合を考察する。

2. Weakly sectional bypass

主結果を述べる前に、weakly sectional pathの定義を述べておく。ΓAの矢X → Y に
対して、その付値を (dXY , d

′
XY )で表す。（つまり、dXY は Y に対する右概分裂写像の定

義域を直既分解したときに現れるXの個数、d′XY はXに対する左概分裂写像の値域を直
既分解したときに現れる Y の個数。）ΓAの道Ω = Xn → Xn−1 → · · · → X0 (n ≥ 1)に対
して、集合 JΩを

JΩ := {1 ≤ j ≤ n− 1 | jはΩのフックで、 dXj+1Xj
= 1 を満たす }
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で定める。明らかに、Ωが pre-sectional pathになる必要十分条件は JΩ = ∅ である。

Definition 5 ([6]). nを正の整数とし、Ω = Xn → Xn−1 → · · · → X0を ΓAの道とする。
Ωがweakly sectional pathとは、あるmodA における直既約加群の集合 {Mj}j∈JΩ が存
在して、次の条件が成立するときを言う。

(1) j − 2 ̸∈ JΩである任意の j ∈ JΩに対して、Xj ⊕Mj ⊕ τXj−2は Xj−1の右概分裂
写像の定義域における直和因子。(ここで 1 ∈ JΩ のとき、τX−1をmodAにおけ
る直既約加群とする。)

(2) j − 2 ∈ JΩである任意の j ∈ JΩに対して、Xj ⊕Mj ⊕ τXj−2 ⊕ τMj−2はXj−1の
右概分裂写像の定義域における直和因子。

(3) j − 2 ∈ JΩである任意の 0 ≤ j ≤ nに対して、Xj ⊕ τXj−2 ⊕ τMj−2はXj−1の右
概分裂写像の定義域における直和因子。

Remark 6. (1) 明らかに pre-sectional pathはweakly sectional pathである。
(2) [4, 6]において、weakly sectional pathの性質がいくつか述べられているが、特に
任意のweakly sectional pathは oriented cycleではないことが示されている。

(3) [4, 6]では無限の長さのweakly sectional pathが定義されている。また、上記の定
義における集合 {Mj}j∈JΩ をΩの supportと呼んでいる。

本論文の主結果は次の通りである:

Theorem 7 ([5]). weakly sectional pathが bypassのとき、それは sectional pathである。
(すなわち weakly sectional bypassは sectional pathである。)

pre-sectional pathはweakly sectional pathなので、直ちに次を得る:

Corollary 8. pre-sectional pathが bypassのとき、それは sectional pathである。
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SKEW REES RINGS WHICH ARE MAXIMAL ORDERS

M.R. HELMI, H. MARUBAYASHI AND A. UEDA

ABSTRACT. Let R be a Noetherian prime Goldie ring,σ be an automorphism ofR andX be
an invertible ideal ofR. In this paper, we define the(σ ;X)−maximal order and show that a
skew Rees ringR[Xt;σ ] is a maximal order if and only ifR is a(σ ;X)−maximal order, which
is proved by using the complete description ofv−ideals ofR[Xt;σ ]. We give some examples of
(σ ;X)−maximal orders which are not maximal orders (event notσ−maximal orders) and also
of σ−maximal orders but not(σ ;X)−maximal orders.

1. INTRODUCTION

Throughout this paper,R is a Noetherian prime ring with quotient ringQ (in another word,
R is a Noetherian order in a simple Artinian ringQ), σ is an automorphism ofR andX is an
invertible ideal ofR.

Put
S= R[Xt,σ ] = R⊕Xt⊕X2t2⊕ ....⊕Xntn⊕ ...

which is a subset of the skew polynomial ringR[t,σ ] in an indeterminatet. If S is a ring, then
it is called askew Rees ringassociated toX. In this case,SandR[t;σ ] have the same quotient
ring Q(S) = Q(R[t;σ ]) which is a simple Artinian ring.

The aim of this paper is to obtain a necessary and sufficient conditions forS to be a maximal
order and to describe the structure ofv−ideals ofS (Theorem 9 and Proposition 11). As appli-
cations, we give a necessary and sufficient conditions forS to be a generalized Asano ring and
a unique factorization ring in the sense of [1], respectively (Corollary 12). These are done by
using a complete description ofv−ideals inQ(S).

Furthermore we give some examples of rings which are(σ ;X)−maximal orders but not
maximal orders (even notσ−maximal orders). This meansS is a maximal order butR[t;σ ]
is not a maximal order. We also give examples of rings which areσ−maximal orders but not
(σ ;X)−maximal orders.

Generalized Rees rings were studied in[8] and [15] underPI conditions and in the book
[16], they summarized them from torsion theoretical view points underPI conditions. Recently
Akalan proved in[2] that if R is generalized Asano ring withPI conditions, then so isS, which
motivates us to study skew Rees rings. Note we do not assume in this paper thatR satisfiesPI
conditions.

In [2] Akalan defined generalized Dedekind prime ringR. It turns out thatR is a generalized
Dedekind ring if and only if it is a maximal order and anyv−ideal is invertible. In this paper,
we say thatR is ageneralized Asano ringif it is a generalized Dedekind ring in the sense of[2],
because one-sidedv−ideals are not necessarily projective.

We refer the readers to the books[12] or [13] for order theory.

The detailed version of this paper will be submitted for publication elsewhere.
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2. (σ ;X)−MAXIMAL ORDERS

First we introduce some notation. For any (fractional) rightR−idealI and leftR−idealJ, let

(R : I)l = {q∈Q | qI ⊆ R} and (R : J)r = {q∈Q | Jq⊆ R}

which is a left (right)R−ideal, respectively and

Iv = (R : (R : I)l )r and vJ = (R : (R : J)r)l ,

which is a right (left)R−ideal containingI(J). I(J) is called aright (left) v−ideal if Iv = I
(vJ = J). In caseI is a two-sidedR−ideal, it is said to be av−ideal if Iv = I = vI , and if I ⊆ R,
we just sayI is av−ideal of R. An R−idealA is said to bev−invertible if v((R : A)lA) = R=
(A(R : A)r)v. We start with the following elementary lemma, which is frequently used in the
paper.

Lemma 1. Let A be an R−ideal and I be a right R−ideal.

(1) If A is v−invertible, then Or(A) = R= Ol (A) and (R : A)l = A−1 = (R : A)r , where
A−1 = {q∈Q | AqA⊆ A}.

(2) (IAv)v = (IA)v. If A is v−invertible, then(IvAv)v = (IA)v.

The following proposition is one of the crucial properties which shows a relation between
ideals ofRand ofS.

Proposition 2. (1) S= R[Xt;σ ] is a ring if and only ifσ(X) = X. In this case, S is also
Noetherian.

(2) Supposeσ(X) = X.
(i) Leta be an deal of R. Then

a[Xt;σ ] = a⊕aXt⊕aX2t2⊕ ...⊕aXntn⊕ ...

is an ideal of S if and only if Xσ(a) = aX.
(ii) Leta be an R−ideal in Q with Xσ(a) = aX. Thena[Xt;σ ] is an S−ideal in Q(S).

In the remainder of this paper, we assume thatS= R[Xt;σ ] is a ring and putT = Q[t;σ ], the
skew polynomial ring oveṙQ. Note thatT is a principal ideal ring ([3, Corollary 6.2.2] or [12,
Corollary 2.3.7]) and we use this property to studyS−ideal.

Lemma 3. Let I be a right S−ideal and J be a left S−ideal. Then

(1) (T : IT )l = T(S: I)l and(T : TJ)r = (S: J)rT.
(2) (IT )v = IvT and v(TJ) = TvJ.
(3) If I ′ is a right ideal of T , then I′ = (I ′ ∩S)T. If I ′ is an essential right ideal, then

(I ′∩S)v = I ′∩S.

It is very important to investigate prime v-idealsP of Sand there are two case whetherP∩R
is (0) or not. In caseP∩R= (0), we have the following by using Lemma 3.

Lemma 4. Let T= Q[t;σ ]. There is a(1−1)−correspondence between

Spec0(S) = {P : prime ideal of S| P∩R= (0)} and Spec(T)

via P 7−→ PT, P′ 7−→ P′∩S. In particular, P is a v−ideal.

–40–



To express the caseP∩R ̸= (0), we need some preliminaries. Leta be a rightR−ideal.
Thena[Xt;σ ] = a⊕aXt⊕ ...⊕aXntn⊕ ... is a rightS−ideal. Similarly for any leftR−idealb,
Sb= b⊕ tXb⊕ ...⊕ tnXnb⊕ ... is a leftS−ideal.

Lemma 5. Leta be a right R−ideal andb be a left R−ideal. Then

(S: a[Xt;σ ])l = S(R : a)l and (S: Sb)r = (R : b)rS

In particular, (a[Xt;σ ])v = av[Xt;σ ] andv(Sb) = Svb.

It is well known thatσ is naturally extended to an automorphism ofQ(R[t;σ ]) by σ( f (t)) =
t f (t)t−1 for any f (t) ∈ R[t;σ ]. Note thatσ induces an automorphism ofS. Let a be an ideal of
R. We showed in Proposition 2 thata[Xt;σ ] is an ideal ofS if and only if Xσ(a) = aX which
is crucial property forS to be a maximal order. In general, a subsetI of Q(S) is said to be
(σ ;X)−invariant if Xσ(I) = IX .

R is said to be a(σ ;X)−maximal orderif Ol (a) = R= Or(a) for any (σ ;X)−invariant
ideal ofR. If R is a (σ ;X)−maximal order, then it is proved thatOl (a) = R= Or(a) for any
(σ ;X)−invariantR−ideala. Hence(R : a)l = a−1 = (R : a)r where a−1 = {q∈Q | aqa⊆ a}
andav = a−1−1 = va follows.

Let Dσ ,X(R) be the set of all(σ ;X)−invariantv−ideals. For anya,b ∈ Dσ ,X(R), we define
a◦b= (ab)v. Then we have the following whose proof is similar to one in the maximal orders
([12, (2.1.2)]).

Proposition 6. Let R be a(σ ;X)−maximal order in Q. Then Dσ ,X(R) is an Abelian group
generated by maximal(σ ;X)−invariant v−ideals of R.

The following lemmas show how to obtain prime ideals ofS from ideals ofR and how to
connect ideals ofSwith ideals ofR.

Lemma 7. Suppose R is a(σ ;X)−maximal order in Q. Letp be a maximal(σ ;X)−invariant
v−ideal of R. Then P= p[Xt;σ ] is a prime ideal and it is a v−ideal.

Lemma 8. Suppose R is a(σ ;X)−maximal order in Q. Let A be an ideal of S with A= Av and
a= A∩R ̸= (0). Then

(1) A anda are (σ ;X)−invariant.
(2) A= a[Xt;σ ] and is v−invertible.

Theorem is proved by mainly using Lemmas 3 and 8.

Theorem 9. Let R be a Noetherian prime ring with its quotient ring Q,σ be an automorphism
of R and S= R[Xt;σ ] be a skew Rees ring associated to X, where X is an invertible ideal with
σ(X) = X. Then R is a(σ ;X)−maximal order if and only if S= R[Xt;σ ] is a maximal order in
Q(S).

3. APPLICATIONS, EXAMPLES AND CONJECTURES

As applications of Theorem 9, we give a necessary and sufficient conditions forS to be a
generalized Asano ring and a unique factorization ring (a UFR). Furthermore we give Noether-
ian prime rings which are(σ ;X)−maximal orders (but not maximal orders) and(σ ;X)−maximal
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orders (but notσ−maximal orders) where an orderR is called aσ−maximal orderif for any
ideala with σ(a) = a, Ol (a) = R= Or(a).

If R is a(σ ;X)−maximal order, thenSis a maximal order and soD(S), the set of allv−ideals
in Q(S), is an Abelian group generated by primev−ideals ofS (see[12, Theorem 2.1.2]).
Note that any maximalv−ideal of S is a primev−ideal and the converse is also true. The
set of principalS−ideals inQ(S) is a subgroupP(S) of D(S). The factor groupD(S)/P(S) is
called theclass groupof Sand denoted byC(S). Similarly Pσ ,X(R), the set of(σ ;X)−invariant
principal R−ideals inQ is a subgroup ofDσ ,X(R) andCσ ,X(R) = Dσ ,X(R)/Pσ ,X(R) is called
the(σ ;X)−class groupof R.

First we describe the structure ofv−ideals inQ(S) as follows (this is proved by using Lemma
8 and [12, (2.3.11)]):

Proposition 10. Suppose R is a(σ ;X)−maximal order and let A be a v−ideal in Q(S). Then
A= tnwa[Xt;σ ] for somea ∈ Dσ ,X(R), w∈ Z(Q(T)) the center of Q(T) and n is an integer.

The statement (1) of Proposition 11 follows from Lemmas 3 and 8. To prove the second
statement, consider the mappingϕ : Dσ ,X(R)→ D(S) given byϕ(a) = a[Xt;σ ] for any a ∈
Dσ ,X(R).

Proposition 11. Suppose R is a(σ ;X)−maximal order. Then

(1) D(S)∼= Dσ ,X(R)⊕D(T).
(2) C(S)∼=Cσ ,X(R).

An orderR is called ageneralized Asano ring( a G-Asano ring) if it is a maximal order and
everyv− ideal of R is invertible. SimilarlyR is called ageneralized(σ ;X)−Asano ring (a
G− (σ ;X)−Asano ring)if it is a (σ ;X)−maximal order and every(σ ;X)−invariantv−ideals
of R is invertible. If R is aG− (σ ;X)−Asano ring, thenS is aG−Asano ring by Proposition
10. The converse is also true which is proved by using Lemma 5.

In [1], they defined a non-commutative unique factorization ring (a UFR). It turns out that an
order is a UFR if and only if it is a maximal order and everyv−ideal is principal. We can define,
in an obvious way, the concept of a(σ ;X)−UFR and it follows from Proposition 11 thatR is a
(σ ;X)−UFR if and only ifCσ ,X(R) = (0). Hence we have

Corollary 12. (1) R is a G− (σ ;X)−Asano ring if and only if S= R[Xt;σ ] is a G−Asano
ring.

(2) R is a(σ ;X)−UFR if and only if S is a UFR.

Now we give some examples of(σ ;X)−maximal orders but not maximal orders (even not
σ−maximal orders). We also give examples ofσ−maximal orders but not(σ ;X)−maximal
orders. The first example is a trivial case.

Example1. Any Noetherian maximal orderR is a (σ ;X)−maximal order and aσ−maximal
order. HenceSandR[t;σ ] are maximal orders (Theorem 9 and [12, Theorem 2.3.19]).

Let Rbe an HNP ring satisfying the following conditions :
(a) There is a cyclem1,m2, ...,mn (n≥ 2) such thatp=m1∩m2∩ ...∩mn is principal, say

p= aR= Rafor somea∈ p.
(b) Any maximal ideal different frommi(1≤ i ≤ n) is invertible.
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See[1] for examples of HNP rings satisfying conditions (a) and (b). Define an automorphism
σ of Rby σ(r) = ara−1 for r ∈ R. Then it follows from[1] that

(1) σ(m1) =m2, ...,σ(mn) =m1 and
(2) σ(n) = n for all maximal idealsn with n ̸=mi (1≤ i ≤ n).

Example2. SupposeR is an HNP ring with the conditions (a) and (b).

(1) PutX = ne1
1 ...nek

k , wheren j are maximal ideals different frommi (1≤ i ≤ n). ThenR is a
(σ ;X)−maximal order which is not a maximal order (in fact, it is aG− (σ ;X)−Asano
ring as well as aσ−G−Asano ring), but it is aσ−G−Asano ring. HenceSandR[t;σ ]
areG−Asano rings.

(2) PutX = p. Then
(i) If n= 2, thenR is not a(σ ;X)−maximal order and soS is not a maximal order.
(ii) If n≥ 3, thenR is a(σ ;X)−maximal order and soS is a maximal order (in fact, it

is aG−Asano ring).

As in Example 2, putX = p. Then sinceσ(mi) = XmiX−1, we haveXσ−1(mi) = miX and
soR is not a(σ−1;X)−maximal order. Hence we have

Remark 1 Under the same notation and assumptions as in Example 2(2), S1 = R[Xt;σ−1] is
not a maximal order andR[t;σ−1] is a maximal order.

Next we give examples of rings which are(σ ;X)−maximal orders but notσ−maximal or-
ders.

Let k be a field with automorphismσ and letK =

(
k k

k k

)
, the ring of 2×2 matrices over

k. Then we can extendσ to an automorphism ofK by σ(q) =

(
σ(a) σ(b)

σ(c) σ(d)

)
, whereq =(

a b

c d

)
. Let U = K[x;σ ] andI = eK+xU, wheree=

(
1 0

0 0

)
. ThenI is aσ−invariant

maximal right ideal ofU with UI = U . We considerR= {u∈U | uI ⊆ I}, the idealizer ofI .
By [13, Theorem 5.5.10], R is an HNP ring andI is an idempotent maximal ideal ofR. We
note thatR= K(1−e)+eK+xU. Rhas another idempotent maximal idealJ = K(1−e)+xU,
which is aσ−invariant maximal left ideal ofU with JU =U . PutX = I ∩J = eK(1−e)+xU.
SinceOr(I) = U = Ol (J) andOr(J) = x−1(eK(1−e))+R= Ol (I), {I ,J} is a cycle andX is
an invertible ideal ofR by [5, Proposition 2.5].

Example3. Under the same notation and assumptions,

(1) R is not aσ−maximal order andR[t;σ ] is not a maximal order.
(2) R is a(σ ;X)−maximal order andS is a maximal order (in fact,S is aG−Asano ring).

Furthermore
(i) If σ is of infinite order, thenXSandXtSare only primev−ideals ofS.
(ii) If σ is of finite order, sayn, then there are infinite number of primev−ideals ofS.
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Remark 2 There exist some examples of maximal orders which are notG−Asano rings ([2,
Example 3.4] and[11, Example]).

Remark 3 In Examples 2 and 3, the rings are all HNP rings. However, by using examples in
[10] we can provide(σ ;X)−maximal orders which are neither HNP rings nor maximal orders.
We will show them in detail in the forth-coming paper.

Finally we introduce a conjecture concerning skew Rees rings.

Problem Let S= R[Xt;σ ,δ ] be a subset of an Ore extensionR[t;σ ,δ ], whereδ is a left σ -
derivation ofR. Then what is a necessary and sufficient condition forS to be a maximal order
or a generalized Asano ring?
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ON TORIC RINGS ARISING FROM CYCLIC POLYTOPES

AKIHIRO HIGASHITANI

Abstract. Let d and n be positive integers with n ≥ d + 1 and P ⊂ Rd an integral
cyclic polytope of dimension d with n vertices. For a field K, let K[P] = K[Z≥0AP ]
denote its associated semigroup K-algebra, where AP = {(1, α) ∈ Rd+1 : α ∈ P}∩Zd+1.
In this draft, we study when K[P] is normal or very ample. Moreover, we also consider
the problem when K[P] is Cohen–Macaulay by discussing Serre’s condition (R1) and we
give a complete characterization when K[P] is Gorenstein. In addition, we investigate
the normality of the other semigroup K-algebra K[Q] arising from an integral cyclic
polytope, where Q is a semigroup generated only with its vertices.

1. Introduction

This draft is based on a joint work with Takayuki Hibi, Lukas Katthän and Ryota
Okazaki.

The cyclic polytope is one of the most distinguished polytopes and played the essential
role in the classical theory of convex polytopes. Let d and n be positive integers with
n ≥ d + 1 and τ1, . . . , τn real numbers with τ1 < · · · < τn. We write Cd(τ1, . . . , τn) ⊂
Rd for the convex hull of {(τi, τ 2i , . . . , τ di ) ∈ Rd : i = 1, . . . , n}. The convex polytope
Cd(τ1, . . . , τn) ⊂ Rd is called a cyclic polytope of dimension d with n vertices. In particular,
we say that it is an integral cyclic polytope if τ1, . . . , τn are all integers. A cyclic polytope
is a simplicial polytope and its combinatorial type is independent of a choice of τ1, . . . , τn.
Moreover, it is well known that a cyclic polytope is a convex polytope which attains the
upper bound in the Upper Bound Theorem.

In this draft, we focus on integral cyclic polytopes and discuss some properties on toric
rings arising from integral cyclic polytopes.

In general, for an integral convex polytope P , let P∗ ⊂ RN+1 be the convex hull of
{(1, α) ∈ RN+1 : α ∈ P} and AP = P∗ ∩ ZN+1. Then Z≥0AP is an affine semigroup. Let
K be a field. Then we set

K[P] := K[Z≥0AP ],

i.e., K[P ] is an affine semigroup K-algebra associated with P , and we call it a toric ring
arising from P .

For an integral convex polytope P ⊂ RN , we say that P (K[P ] or R≥0AP) is normal if
it satisfies

R≥0AP ∩ ZAP = Z≥0AP .

The detailed version of this paper will be submitted for publication elsewhere.

–46–



We say that P (K[P ] or R≥0AP) is very ample if the set

(R≥0AP ∩ ZAP) \ Z≥0AP

is finite. Thus, normal integral convex polytopes are always very ample.
Let, as before, d and n be positive integers with n ≥ d + 1. Given integers τ1, . . . , τn

with τ1 < · · · < τn, one of our goals is to classify the integers τ1, . . . , τn with τ1 < · · · < τn
for which Cd(τ1, . . . , τn) is normal. Even though to find such a complete classification
seems to be difficult, many fascinating problems arise in the natural way. Our first main
result is that if τi+1 − τi ≥ d2 − 1 for 1 ≤ i < n, then Cd(τ1, . . . , τn) is normal. Moreover,
it is also shown that if d ≥ 4 and τ3 − τ2 = 1 or τn−1 − τn−2 = 1, then Cd(τ1, . . . , τn) is
non-very ample.

Let P be an integral cyclic polytope. We will also consider the Cohen–Macaulayness
and the Gorensteinness of the toric ring K[P ]. By proving that K[P ] always satisfies
Serre’s condition (R1), it follows that K[P ] is Cohen–Macaulay if and only if K[P ] is
normal. Thus the characterization of Cohen–Macaulayness of integral cyclic polytopes is
nothing but that of normality. Moreover, it turns out that K[P ] is Gorenstein if and only
if one has d = 2, n = 3 and (τ2 − τ1, τ3 − τ2) = (2, 1) or (1, 2).

In addition, we also define another toric rings arising from integral cyclic polytopes.
Let

Q := Qd(τ1, . . . , τn) := Z≥0{(1, τi, τ 2i , . . . , τ di ) ∈ Zd+1 : i = 1, . . . , n}.
Then we writeK[Q] for the toric ring associated with the configuration Q. In other words,
K[Q] is a toric ring arising from the matrix

1 1 · · · 1
τ1 τ2 · · · τn
...

...
...

...
τ d1 τ d2 · · · τ dn

 ,(1.1)

which is nothing but the Vandermonde matrix. We will show that if d ≥ 2 and n = d+2,
then K[Q] is not normal.

2. Normal cyclic polytopes and non-very ample cyclic polytopes

The first main result of this draft is the following

Theorem 1 ([5, Theorem 2.1 and Theorem 3.1]). Let d and n be positive integers with
n ≥ d+ 1 and Cd(τ1, . . . , τn) an integral cyclic polytope, where τ1 < · · · < τn.
(a) For each 1 ≤ i ≤ n− 1, if

τi+1 − τi ≥ d2 − 1,

then Cd(τ1, . . . , τn) is normal.
(b) Let d ≥ 4. If

either τ3 − τ2 = 1 or τn−1 − τn−2 = 1

is satisfied, then Cd(τ1, . . . , τn) is not very ample.
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Remark 2. Since each lattice length of an edge conv({(τi, τ 2i , . . . , τ di ), (τj, τ 2j , . . . , τ dj )}) of P
coincides with τj−τi, where i < j, it follows immediately from [4, Theorem 1.3 (b)] that P
is normal if τi+1−τi ≥ d(d+1) for 1 ≤ i ≤ n−1. Thus, our constraint τi+1−τi ≥ d2−1 on
integral cyclic polytopes is better than a general case, but this bound is still very rough.
For example, C3(0, 1, 2, 3) is normal, while we have τ2 − τ1 = τ3 − τ2 = τ4 − τ3 = 1 < 8.
Similarly, C4(0, 1, 3, 5, 6) is also normal, although one has τ2 − τ1 = τ5 − τ4 = 1 and
τ3 − τ2 = τ4 − τ3 = 2.

On the case where d = 2, it is well known that there exists a unimodular triangulation
for every integral convex polytope of dimension 2. Therefore, integral convex polytopes
of dimension 2 are always normal.

On the case where d = 3 and d = 4, exhaustive computational experiences lead us to
give the following

Conjecture 3. (a) All cyclic polytopes of dimension 3 are normal.
(b) A cyclic polytope of dimension 4 is normal if and only if we have

τ3 − τ2 ≥ 2 and τn−1 − τn−2 ≥ 2.

3. Cohen–Macaulay toric rings and Gorenstein toric rings arising from
cyclic polytopes

Recall that a Noetherian ring R is said to satisfy (Sn) if

depthRp ≥ min{n, dimRp}

for all p ∈ Spec(R), and satisfy (Rn) if Rp is a regular local ring for all p ∈ Spec(R) with
dimRp ≤ n. The conditions (Sn) and (Rn) are called Serre’s conditions.

The well-known criterion for normality of a Noetherian ring, Serre’s Criterion (cf. [2,
Theorem 2.2.22]), says that a Noetherian ring is normal if and only if it satisfies (R1) and
(S2).

By using the combinatorial criterion of (R1), which can be found in [1, Exercises 4.15
and 4.16], we can show

Proposition 4. Let P be an integral cyclic polytope. Then K[P] always satisfies the
condition (R1).

As a consequence of this proposition, we obtain

Theorem 5. Let P be an integral cyclic polytope and K[P ] its toric ring. Then the
following conditions are equivalent:

(1) K[P ] is normal;
(2) K[P ] is Cohen–Macaulay;
(3) K[P ] satisfies the condition (S2).
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Remark 6. One can also prove that an integral cyclic polytope is normal if and only if
it is seminormal. See [1, p. 66] for the definition and basic properties of seminormality.
We use the notation from that book. Now, assume that P is not normal. Then there
exists a point m in R≥0AP ∩ ZAP which is not contained in Z≥0AP . This point m lies
in the interior of a unique face F of Z≥0AP . But using the same construction as above,
we can show that Z(Z≥0AP ∩F) = Zd+1 ∩H, where H is the linear subspace spanned by
F . Thus m ∈ Z(Z≥0AP ∩ F) is an exceptional point, and therefore (Z≥0AP ∩ F)∗ is not
normal. Hence, P is not seminormal.

Moreover, we also obtain a complete characterization when K[P ] is Gorenstein as fol-
lows.

Theorem 7. Let P be an integral cyclic polytope and K[P ] its toric ring. Then K[P ] is
Gorenstein if and only if

d = 2, n = 3, (τ2 − τ1, τ3 − τ2) = (1, 2) or (2, 1)

is satisfied.

4. The semigroup ring associated only with vertices of a cyclic polytope

Let Q denote the afiine semigroup Qd(τ1, . . . , τn) arising from the matrix (1.1). Let
S = K[x1, . . . , xn] be the polynomial ring over a field K and K[Q] an affine semigroup

K-algebra generated by the monomials {t0tτi1 · · · t
τdi
d : i = 1, . . . , n}, which is a subring of

the Laurent polynomial ring K[t0, t
±
1 , . . . , t

±
d ]. Let IQ be the kernel of the surjective ring

homomorphism S → K[Q] which sends each xi to t0t
τi
1 · · · t

τdi
d . The ideal IQ is just the

toric ideal associated with the matrix (1.1). In particular, it is homogeneous with respect
to the usual Z-grading on S.

When n = d + 1, since the matrix (1.1) is nonsingular, K[Q] is regular. In particular,
it is normal. When d = 1, the matrix (1.1) can be transformed into(

1 1 · · · 1
0 τ2 − τ1 · · · τn − τ1

)
.

Since IQ is preserved even if we divide a common divisor of (τ2 − τ1), . . . , (τn − τ1) out
of the second row, we may assume the greatest common divisor of τ2 − τ1, . . . , τn − τ1 is
equal to 1. The ideal IQ is a defining ideal of a projective monomial curve in Pn−1, and it
is well known (cf. [3]) that the corresponding curve is normal if and only if it is a rational
normal curve of degree n − 1, that is, τi − τ1 = i − 1 for all i with 2 ≤ i ≤ n (after the
above transformation and re-setting each τi − τ1). Consequently, in the case d = 1, the
ring K[Q] is normal if and only if τ2 − τ1 = τ3 − τ2 = · · · = τn − τn−1. Hence we assume
that d ≥ 2 and n ≥ d+ 1.

Theorem 8. Let Q be as above.
(a) If d ≥ 2 and n = d+ 2, then K[Q] is not normal.

(b) When n ≥ d + 3, if
∏d

k=1(τd+1 − τk) ∤
∏d

k=1(τs − τk) for some s with d + 2 ≤ s ≤ n,
then K[Q] is not normal.
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Remark 9. When n = d + 2, since IQ is principal, K[Q] is Gorenstein. Hence, it is also
Cohen–Macaulay.

Conjecture 10. Let K[Q] be as above. Then
(a) K[Q] is never normal if d ≥ 2 and d ≥ n+ 3;
(b) K[Q] is never Cohen–Macaulay if d ≥ 2 and d ≥ n+ 3.
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CONSTRUCTIONS OF AUSLANDER-GORENSTEIN LOCAL RINGS

MITSUO HOSHINO, NORITSUGU KAMEYAMA AND HIROTAKA KOGA

Abstract. Generalizing the notion of crossed product, we provide systematic con-
structions of Auslander-Gorenstein local rings starting from an arbitrary Auslander-
Gorenstein local ring.

1. Introduction

Auslander-Gorenstein rings (see Definition 2) appear in various areas of current re-
search. For instance, regular 3-dimensional algebras of type A in the sense of Artin and
Schelter, Weyl algebras over fields of characteristic zero, enveloping algebras of finite di-
mensional Lie algebras and Sklyanin algebras are Auslander-Gorenstein rings (see [2],
[3], [4] and [12], respectively). However, little is known about constructions of Auslander-
Gorenstein rings. It was shown in [7] that a left and right noetherian ring is an Auslander-
Gorenstein ring if it admits an Auslander-Gorenstein resolution over another Auslander-
Gorenstein ring. In this note, generalizing the notion of crossed product (see e.g. [8], [11]
and so on), we will provide systematic constructions of Auslander-Gorenstein local rings
starting from an arbitrary Auslander-Gorenstein local ring.

In order to provide the construction, we recall the notion of Frobenius extensions of
rings due to Nakayama and Tsuzuku [9, 10], which we modify as follows. A ring A is said
to be an extension of a ring R if A contains R as a subring, and the notation A/R is used
to denote that A is an extension ring of R. A ring extension A/R is said to be Frobenius
if the following conditions are satisfied: (F1) A ∈ Mod-R and A ∈ Mod-Rop are finitely
generated projective; and (F2) A ∼= HomR(A,R) in Mod-A and A ∼= HomRop(A,R)
in Mod-Aop (see [1]). If R is a noetherian ring, a Frobenius extension A/R is a typical
example of a noetherian ring A admitting Auslander-Gorenstein resolution over R, so that
if R is an Auslander-Gorenstein ring then so is A with inj dim A ≤ inj dim R, where the
equality holds whenever A/R is split, i.e., the inclusion R→ A is a split monomorphism
of R-R-bimodules (Proposition 7).

Generalizing the notion of crossed product, we will define new multiplications on the
ring of full matrices and the group ring of finite cyclic groups. Let n ≥ 2 be an integer
and set I(n) = {1, . . . , n}. We fix a cyclic permutation

π =

(
1 2 · · · n
n 1 · · · n− 1

)
of I(n). Then the law of composition I(n) × I(n) → I(n), (i, j) 7→ π−i(j) makes I(n) a
cyclic group. We denote by Ω(n) the set of mappings ω : I(n)× I(n)→ Z satisfying the

The detailed version of this paper will be submitted for publication elsewhere.
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following conditions: (W1) ω(i, i) = 0 for all i ∈ I(n); (W2) ω(i, j) + ω(j, k) ≥ ω(i, k) for
all i, j, k ∈ I(n); (W3) ω(i, j) + ω(j, i) ≥ 1 unless i = j; and (W4) ω(i, j) + ω(j, π(i)) =
ω(i, π(i)) for all i, j ∈ I(n). We fix ω ∈ Ω(n) and a ring R together with a pair (σ, c) of
σ ∈ Aut(R) and c ∈ R such that σ(c) = c and xc = cσ(x) for all x ∈ R. For instance, for
any ring R and any σ ∈ Aut(R), a skew power series ring R[[t;σ]] has such a pair (σ, t)
(Example 8).

Denote by Ω+(n) the subset of Ω(n) consisting of ω ∈ Ω(n) such that ω(1, i) = ω(i, n) =

0 for all i ∈ I(n). Set χ(i) =
∑i

k=1 ω(k, π(k)) for i ∈ I(n). Assume that ω ∈ Ω+(n) and
that σχ(n) = idR. Let A be a free right R-module with a basis {vi}i∈I(n) and define a

multiplication on A subject to the following axioms: (G1) vivj = vπ−j(i)c
ω(π−j(i),j) for

all i, j ∈ I(n); and (G2) xvi = viσ
−χ(i)(x) for all x ∈ R and i ∈ I(n). Then A is an

associative ring with 1 = vn and R is considered as a subring of A via the injective ring
homomorphism R → A, x 7→ vnx; A/R is a split Frobenius extension; A is commutative
if R is commutative and σχ(i) = idR for all i ∈ I(n); and A is local if R is local and
c ∈ rad(R) (Theorem 16).

2. Preliminaries

For a ring R we denote by rad(R) the Jacobson radical of R, by R× the set of units in R,
by Z(R) the center of R, by Aut(R) the group of ring automorphisms of R, for σ ∈ Aut(R)
by Rσ the subring of R consisting of all x ∈ R with σ(x) = x, and for n ≥ 2 by Mn(R) the
ring of n×n full matrices over R. We denote by Mod-R the category of right R-modules.
Left R-modules are considered as right Rop-modules, where Rop denotes the opposite ring
of R. In particular, we denote by inj dim R (resp., inj dim Rop) the injective dimension
of R as a right (resp., left) R-module and by HomR(−,−) (resp., HomRop(−,−)) the set
of homomorphisms in Mod-R (resp., Mod-Rop).
We start by recalling the notion of Auslander-Gorenstein rings.

Proposition 1 (Auslander). Let R be a left and right noetherian ring. Then for any
n ≥ 0 the following are equivalent.

(1) In a minimal injective resolution I• of R in Mod-R, flat dim I i ≤ i for all 0 ≤
i ≤ n.

(2) In a minimal injective resolution J• of R in Mod-Rop, flat dim J i ≤ i for all
0 ≤ i ≤ n.

(3) For any 1 ≤ i ≤ n + 1, any M ∈ mod-R and any submodule X of ExtiR(M,R) ∈
mod-Rop we have ExtjRop(X,R) = 0 for all 0 ≤ j < i.

(4) For any 1 ≤ i ≤ n+1, any X ∈ mod-Rop and any submoduleM of ExtiRop(X,R) ∈
mod-R we have ExtjR(M,R) = 0 for all 0 ≤ j < i.

Definition 2 ([4]). For a left and right noetherian ring R we say that R satisfies the
Auslander condition if it satisfies the equivalent conditions in Proposition 1 for all n ≥ 0,
and that R is an Auslander-Gorenstein ring if inj dim R = inj dim Rop < ∞ and if it
satisfies the Auslander condition.

Next, we recall the notion of Frobenius extensions of rings due to Nakayama and
Tsuzuku [9, 10] which we modify as follows (see [1, Section 1]).
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Definition 3 ([1]). A ring A is said to be an extension of a ring R if A contains a ring
R as a subring, and the notation A/R is used to denote that A is an extension of a ring
R. A ring extension A/R is said to be Frobenius if the following conditions are satisfied:

(F1) A ∈ Mod-R and A ∈ Mod-Rop are finitely generated projective; and
(F2) A ∼= HomR(A,R) in Mod-A and A ∼= HomRop(A,R) in Mod-Aop.

It should be noted that if A/R is a Frobenius extension then so is Aop/Rop. The next
proposition is well-known and easily verified.

Proposition 4. Let A/R be a ring extension with ϕ : A
∼→ HomR(A,R) in Mod-A. Then

the following hold.

(1) There exists a ring homomorphism θ : R → A such that xϕ(1) = ϕ(1)θ(x) for
all x ∈ R. In particular, ϕ is an isomorphism of R-A-bimodules if and only if
θ(x) = x for all x ∈ R.

(2) If A ∈ Mod-R is finitely generated projective then so is HomR(A,R) ∈ Mod-Rop

and A
∼→ HomRop(HomR(A,R), R), a 7→ (h 7→ h(a)), which is an isomorphism of

A-R-bimodules.
(3) If A ∈ Mod-R is finitely generated projective, and if ϕ is an isomorphism of R-

A-bimodules, then A ∈ Mod-Rop is finitely generated projective and we have an
isomorphism of A-R-bimodules ψ : A

∼→ HomRop(A,R) with ψ(a)(b) = ϕ(b)(a) for
all a, b ∈ A, so that A/R is a Frobenius extension.

Definition 5. Let A/R be a Frobenius extension with ϕ : A
∼→ HomR(A,R) in Mod-A

and θ : R → A a ring homomorphism such that xϕ(1) = ϕ(1)θ(x) for all x ∈ R. In
general, θ(R) ̸= R ([1]). Following [9, 10], we say that A/R is a Frobenius extension of
second kind if θ induces a ring automorphism of R and that A/R is a Frobenius extension
of first kind if θ(x) = x for all x ∈ R, i.e., ϕ is an isomorphism of R-A-bimodules.

Definition 6 ([1]). A ring extension A/R is said to be split if the inclusion R → A is a
split monomorphism of R-R-bimodules.

Proposition 7 ([1]). For any Frobenius extension A/R the following hold.

(1) If R is an Auslander-Gorenstein ring then so is A with inj dim A ≤ inj dim R.
(2) Assume that A/R is split. If A is an Auslander-Gorenstein ring then so is R with

inj dim R = inj dim A.

We end this section with recalling the notion of skew power series rings.

Example 8. Let R be a ring and σ ∈ Aut(R). Let R[t;σ] be a free right R-module with a
basis {tp}p≥0 and define a multiplication on R[t; σ] subject to the following axioms: (P1)
tptq = tp+q for all p, q ≥ 0; and (P2) xtp = tpσp(x) for all x ∈ R and p ≥ 0. Then R[t;σ] is
an associative ring with 1 = t0 and tp is the pth power of t = t1 for all p ≥ 2. We consider
R as a subring of R[t; σ] via the injective ring homomorphism R→ R[t;σ], x 7→ t0x.

Next, setting (tp) =
∑

q≥p t
qR for p ≥ 1, we have a descending chain of two-sided ideals

(t) ⊃ (t2) ⊃ · · · in R[t;σ] and set R[[t;σ]] = lim←− R[t; σ]/(tp). Namely, R[[t; σ]] is the
ring of formal power series and contains R[t;σ] as a subring. Also, every τ ∈ Aut(R)
with τσ = στ is extended to a ring automorphism of R[[t; σ]] such that

∑
p≥0 t

pxp 7→
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∑
p≥0 t

pτ(xp) which we denote again by τ . In particular, σ ∈ Aut(R[[t; σ]]) with σ(t) = t

and at = tσ(a) for all a ∈ R[[t;σ]].

3. Structure system

Throughout the rest of this note, we set I(n) = {1, . . . , n} with n ≥ 2 and fix a cyclic
permutation

π =

(
1 2 · · · n
n 1 · · · n− 1

)
of I(n). Then π−i(j) = π−j(i) for all i, j ∈ I(n) and the law of composition

I(n)× I(n)→ I(n), (i, j) 7→ π−i(j)

makes I(n) a cyclic group.
We denote by Ω(n) the set of mappings ω : I(n) × I(n) → Z satisfying the following

conditions:
(W1) ω(i, i) = 0 for all i ∈ I(n);
(W2) ω(i, j) + ω(j, k) ≥ ω(i, k) for all i, j, k ∈ I(n);
(W3) ω(i, j) + ω(j, i) ≥ 1 unless i = j; and
(W4) ω(i, j) + ω(j, π(i)) = ω(i, π(i)) for all i, j ∈ I(n).

Example 9. Let n = 4. Then, setting

(ω(i, j))1≤i,j≤4 =


0 4 4 3
1 0 2 −1
−1 3 0 −1
2 4 6 0

 ,

we have ω ∈ Ω(4).

Lemma 10. For any ω ∈ Ω(n) the following hold.

(1) ω(π(i), π(j)) = ω(i, j)− ω(i, π(i)) + ω(j, π(j)) for all i, j ∈ I(n).
(2) ω(1, i) = 0 for all i ∈ I(n) if and only if ω(i, n) = 0 for all i ∈ I(n).

We denote by Ω+(n) the subset of Ω(n) consisting of ω ∈ Ω(n) such that ω(1, i) =
ω(i, n) = 0 for all i ∈ I(n) (cf. Lemma 10(2)).

Example 11. Let n = 4. Then, setting

(ω(i, j))1≤i,j≤4 =


0 0 0 0
3 0 1 0
2 2 0 0
3 2 3 0

 ,

we have ω ∈ Ω+(4).

Lemma 12. For any ω ∈ Ω+(n) the following hold.

(1) ω(i, π(i)) = ω(i, 1) = ω(n, π(i)) ≥ 1 unless i = 1.
(2) ω(i, j) + ω(πj(i), k) = ω(i, π−j(k)) + ω(π−j(k), j) for all i, j, k ∈ I(n).
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We denote by X+(n) the set of mappings χ : I(n) → Z satisfying the following condi-
tions:

(X1) χ(1) < χ(2) < · · · < χ(n);
(X2) χ(i) + χ(n− i+ 1) = χ(n) for all i ∈ I(n); and
(X3) χ(j − i) ≤ χ(j)− χ(i) ≤ χ(j − i+ 1) for all i, j ∈ I(n) with i < j.

Remark 13. For any χ : I(n)→ Z satisfying the condition (X2) we have χ(1)+χ(n) = χ(n)
and hence χ(1) = 0.

Example 14. Let n = 4. Then, setting χ(1) = 0, χ(2) = 3, χ(3) = 5 and χ(4) = 8, we
have χ ∈ X(4).

Proposition 15. For any ω ∈ Ω+(n), setting χ(i) =
∑i

k=1 ω(k, π(k)) for i ∈ I(n), we
have χ ∈ X+(n) and

ω(i, j) =

{
χ(i)− χ(j) + χ(j − i+ 1) if i ≤ j,

χ(i)− χ(j)− χ(i− j) if i > j

for all i, j ∈ I(n), so that we have a bijection Ω+(n)
∼→ X+(n), ω 7→ χ.

4. Group rings

Throughout the rest of this note, we fix a ringR together with a pair (σ, c) of σ ∈ Aut(R)
and c ∈ R satisfying the following condition

(∗) σ(c) = c and xc = cσ(x) for all x ∈ R.
Note that if c ∈ R× then σ(x) = c−1xc for all x ∈ R, and that the condition (*) is satisfied
if either c = 0 and σ is arbitrary, or c ∈ Z(R) and σ = idR. We refer to Example 8 for a
non-trivial example. As usual, we require that c0 = 1 even if c = 0. We fix ω ∈ Ω+(n)

and, setting χ(i) =
∑i

k=1 ω(k, π(k)) for i ∈ I(n), assume that σχ(n) = idR.
Let A be a free right R-module with a basis {vi}i∈I(n) and define a multiplication on A

subject to the following axioms:
(G1) vivj = vπ−j(i)c

ω(π−j(i),j) for all i, j ∈ I(n); and
(G2) xvi = viσ

−χ(i)(x) for all x ∈ R and i ∈ I(n).
Denoting by {βi}i∈I(n) the dual basis of {vi}i∈I(n) for the free leftR-module HomR(A,R),

we have a =
∑

i∈I(n) viβi(a) for all a ∈ A. It is not difficult to see that for any a, b ∈ A
and i ∈ I(n) we have

βi(ab) =
∑
j∈I(n)

cω(i,j)σ−χ(j)(βπj(i)(a))βj(b).

Theorem 16. The following hold.

(1) A is an associative ring with 1 = vn and contains R as a subring via the injective
ring homomorphism R→ A, x 7→ vnx.

(2) A/R is a split Frobenius extension of first kind.
(3) vivj = vjvi for all i, j ∈ I(n). In particular, A is commutative if R is commutative

and σχ(i) = idR for all i ∈ I(n). Furthermore, for any i ∈ I(n) with i ̸= n we have
vi
r = cs for some 2 ≤ r ≤ n and s ≥ 1.
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(4) There exists an injective ring homomorphism

ρ : A→ Mn(R), a 7→ (cω(i,j)σ−χ(j)(βπj(i)(a)))i,j∈I(n)

such that a ∈ A× for all a ∈ A with ρ(a) ∈ Mn(R)
×.

(5) If c ∈ rad(R) then βn(a) ∈ R× for all a ∈ A× and R/rad(R)
∼→ A/rad(A)

canonically, so that if R is local then so is A.

Remark 17. Every τ ∈ Aut(R) with τσ = στ and τ(c) = c is extended to a ring au-
tomorphism of A such that

∑
i∈I(n) vixi 7→

∑
i∈I(n) viτ(xi) which we denote again by τ .

In particular, σ ∈ Aut(A) with σ(c) = c and ac = cσ(a) for all a ∈ A, so that for any
v ∈ Z(A)σ we can replace (R; σ, c) by (A; σ, vc) in the construction above.

In the following, we denote by R[ω;σ, c] the ring A constructed above.

Example 18. If χ(i) = (i− 1)p with p ≥ 1 for all i ∈ I(n) then
R[t;σp]/(tn − cp) ∼→ R[ω;σ, c], t 7→ vn−1,

where (tn − cp) = (tn − cp)R[t;σp].
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τ-TILTING THEORY

OSAMU IYAMA

Abstract. In this short note, we discuss background of τ -tilting theory which was
introduced in [2].

Brenner-Butler [5]によって導入された傾加群 (tilting module)の概念は, 今日では表現
論において欠かせないものとなっている. 傾加群は, 森田理論の基本概念である射影生成
元 (progenerator)の一般化であり, また, Rickardによる導来圏の森田理論 [14]における基
本概念である傾複体 (tilting complex)の特別な場合でもある. 今日では傾理論は, 群（有
限群, 代数群）の表現論や代数幾何学, ミラー対称性予想をはじめとして, 様々な数学で用
いられており, 環論の持つ普遍性を示す一例となっている.
傾加群に対して, 近年盛んに研究されている事柄の一つとして, 変異 (mutation)が挙げ

られる. 一般に変異とは, 特別な性質を持つ与えられた対象から, 同様の性質を持つ新し
い対象を構成する操作のことである. 例外列 (exceptional sequence)の変異 [7] と団傾対象
(cluster tilting object)の変異 [6, 10]の２種類が広く知られているが, いずれもある種の三
角圏の構造を解析するものであり, 特に後者は高次元Auslander-Reiten理論 [9]や団代数
(cluster algebra)の圏論化 [12]にも応用される重要なものである.
傾加群に対する同様の操作である傾変異 (tilting mutation)は, Riedtmann-Schofield [15],

Happel-Unger [8]らによって研究されてきた1. 傾変異とは「基本的傾加群が与えられたと
きに, 一つの直既約な直和因子を入れ替えことによって, 新たな基本的傾加群を得る」操作
であり, 傾変異理論とは, 加群圏の特徴的な部分（＝傾加群）を調べることによって, 加群
圏全体の構造を理解しようとするものである. クイバーの鏡映 (reflection)やAuslander-
Platzeck-Reiten傾加群, 有限群のモジュラー表現論における奥山, Rickardによる傾複体
などは, 全て傾変異の特別な場合である.
傾変異の注意点は,「直和因子の選び方によっては, 傾変異をすることが出来ない」点で

あり, これが他の変異操作と比較した場合に不十分な点である. これを解消するためには,
扱う対象の範囲を傾加群から少し広げることにより, 変異がいつでも可能となるようにす
ること（傾変異の「完備化」）が標準的であり, 以下の３種類が研究されている.

(a) 準傾複体 (silting complex)
(b) 団傾対象 (cluster tilting object)
(c) 台 τ 傾加群 (support τ -tilting module)

(a)は, 上で述べたRickardの傾複体を一般化した概念であり, 導来圏の対象となってい
る. 詳細は相原氏との共著 [3]を参照されたい. (a)の欠点は, 導来圏はもとの加群圏より
もはるかに巨大であるため, 加群圏の構造解析のためには, 大部分の準傾複体は不要とな
る点である. より加群圏に近い圏の中で変異を行える方が, 完備化と呼ばれるに相応しい.
上でも述べた (b)は, この点を改善したものである. 団傾対象は, 団圏 (cluster category)

と呼ばれる三角圏の対象であり, 団圏は加群圏を「少しだけ拡張して」構成されたもので

The detailed version of this paper has been submitted for publication elsewhere.
1彼らは変異という用語を用いていないのだが, 今日では変異と呼ぶ方が自然である.
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あるため, 導来圏よりもはるかに加群圏に近い. 反面, 団圏を構成するためにはDG多元
環が必要であるため, 取り扱いは必ずしも容易ではない. そのため, 傾変異のより扱いや
すい拡張を与えることは, 重要な課題であった.
[2]で導入された (c)は, これらの要望に答えるものである. 台 τ 傾加群は, 特別な加群

として定義されるものであり, 加群圏以外の圏を扱う必要が一切無い.
以下,簡単に定義を与える. Aを体K上の有限次元多元環とする. Auslander-Reiten移動

を τ で表わす. 有限生成A加群M が τ リジッド (τ -rigid)であるとは, HomA(M, τM) = 0
が成立することである. τ リジッド加群はAuslander-Smalø[4]によって, 80年代に研究さ
れた概念であるが, 不思議なことに今日までほとんど忘れられており, 特別な呼称さえ与
えられていなかった. 論文 [2]では, リジッド加群（Ext1A(M,M) = 0を満たす加群）の類
似物である点に着目して, τ リジッド加群という名称を導入した.
τ リジッド加群M が τ 傾加群 (τ -tilting module)であるとは, 等式 |M | = |A|が成立す

ることである. ここで |M |は, M の非同型な直既約直和因子の個数を表わす. 傾加群は τ
傾加群であるが, 一般に τ 傾加群は傾加群よりもはるかにたくさん存在する.
傾変異の完備化を与えるためには, 台 τ 傾加群の概念が必要となる. Aのある巾等元 e

に対する剰余環A/(e)上の τ 傾加群を, 台 τ 傾加群 (support τ -tilting module)と呼ぶ. 以
下, 台 τ 傾加群に関する諸性質を箇条書きする. 詳細は [2]を参照されたい.

• Bongartz完備化の存在.
• 台 τ 傾加群に関する, 変異の一意的可能性.
• 台 τ 傾加群に関する, 変異クイバーとHasseクイバーの一致.
• 台 τ 傾加群と, 関手的有限なねじれ部分圏の一対一対応.
• 台 τ 傾加群と, ２項準傾複体の一対一対応.
• Aが 2-Calabi-Yau三角圏 Cに付随する 2-Calabi-Yau傾斜多元環の場合, 台 τ 傾加
群と, Cの団傾対象の一対一対応.

台 τ 傾加群に関する最近の結果は, [1, 11, 13, 16]等を参照されたい.

最後に, Aがクイバー 1
a

2
b

3 と関係式 ab = 0で与えられる場合, 台 τ 傾加群
のHasseクイバーを図示する.

1
2

2
3 3 1

2
2
3 2 1

2 2

2
3 3 2

3 2 2

1
2 1 3 1

2 1

1 3 1

3 0
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CLUSTER-TILTED ALGEBRAS OF CANONICAL TYPE
AND QUIVERS WITH POTENTIAL

GUSTAVO JASSO

Abstract. Let cohX be the category of coherent sheaves over a weighted projective
line and CX the classical cluster category associated with cohX. It is known that the mor-
phism spaces in CX carry a natural Z/2Z-grading. Also, by results of Keller and Amiot,
it is known that in this setting cluster-tilted algebras are Jacobian algebras of graded
quivers with potential. We show that if T and T ′ are two cluster-tilting objects in CX
which are related by mutation, then the corresponding cluster-tilted algebras are related
by mutation of graded quivers with potential, thus enhancing Hübner’s description of
the quiver with relations of the corresponding tilted algebras.

Key Words: Cluster-tilted algebras, canonical algebras, quivers with potential,
weighted projective lines.

2010 Mathematics Subject Classification: Primary 16G20; Secondary 13F60.

1. Introduction

The category cohX of coherent sheaves over weighted projective lines was introduced
in [7] as a geometric tool to study the representation theory of the so-called canonical
algebras. It turns out that the category cohX is an abelian hereditary category, hence
it has associated cluster category CX in the sense of [4]. The category CX was studied in
more detail in [3], where it is shown that the category CX can be obtained from cohX
by a suitable enlargment of the morphism spaces. Moreover, both categories cohX and
CX are equivepped with a “mutation operation”, which acts on the isomorphism classes
of a distinguished class of objects: basic tilting sheaves in cohX and basic cluster-tilting
objects in CX. The aim of this notes is to describe the effect of this mutation operation on
the endomorphism algebras of these objects, c.f. Theorem 4. We do so by incorporating
the machinery of graded quivers with potential and their mutations introduced in [2]
following the ungraded version of [5]. We note that a description of the Gabriel quiver
of these endomorphism algebras was done in [8, Kor. 4.16] at the level of cohX. Thus,
Theorem 4 although a minor enhancement of loc. cit., provides a very convenient way
to keep track of the changes on the relations both at the level of CX and cohX. This is
illustrated by an example at the end of this notes.

In Section 2 we give a brief description of the category cohX, followed by a crash-course
on the theory of graded quivers with potential and their mutations. At the end of the
section we explain the connection between the topics discussed beforehand. In Section 3
we state the main theorem of this notes and give an example to illustrate the phenomenon
described.

An expanded version of this paper will be submitted for publication elsewhere.
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2. Preliminaries

In this section we collect the concepts and results that we need throughout this notes.

2.1. Coherent sheaves over weighted projective lines. Let k be an algebraically
closed field and choose a tuple λ = (λ1, . . . , λt) of pairwise disctinct points of P1

k. Also
choose a parameter sequence p = (p1, . . . , pt) of positive integers with pi > 2 for each
i ∈ {1, . . . , t}. We call the triple X = (P1

k,λ,p) a weighted projective line. The category
cohX of coherent sheaves over X is defined as follows: consider the rank 1 abelian gruop
with presentation

L = L(p) = 〈~x1, . . . , ~xt | p1~x1 = · · · = pt~xt =: ~c〉

and the L-graded algebra

S = S(p,λ) = k[x1, . . . , xt]/〈xpii − λ′ix
p2
2 − λ′′i x

p1
1 | i ∈ {3, . . . , t}〉

where deg xi = ~xi and λi = [λ′i : λ′′i ] ∈ P1
k for each i ∈ {1, . . . , t}. Note that the ideal

which defines S is generated by homogeneous polynomials of degree ~c. Then cohX is the
quotient of the category mod LS of finitely generated L-graded S-modules by it’s Serre
subcategoy mod L

0S of finite lenght L-graded S-modules. We refer the reader to [7] and
[11] for basic results and properties of the category cohX.

The category cohX enjoys several nice properties; it is an abelian, hereditary k-linear
category with finite dimensional Hom and Ext spaces. Given a sheaf E, shifting the
grading induces twisted sheaves E(~x) for each ~x ∈ L. In particular, twisting the grading
by the dualizing element ~ω :=

∑t
i=1(~c − ~xi) − 2~c gives the following version of Serre’s

duality :

Ext1
X(E,F ) ∼= DHomX(F,E(~ω))

for any E and F in cohX. This implies that cohX has almost-split sequences and that
the Auslander-Reiten translation is given by the auto-equivalence τE = E(~ω). The free
module S induces a structue sheaf in cohX which we denote by O. We recall that there
are two group homomorphisms

deg, rk : K0(X)→ Z

which, together with the function

slope =
deg

rk
: K0(X)→ Q ∪ {∞},

play an important role in the theory We refer the reader to [7] for precise definitions.

Definition 1. A sheaf T is called a tilting sheaf if Ext1
X(T, T ) = 0 and it is maximal with

this property or, equivalently, the number of pairwise non-isomorphic indecomposable
direct summands of T equals 2 +

∑t
i=1(pi − 1), the rank of the Grothendieck group of

cohX.

The connection between the category cohX and canonical algebras is explained by the
following proposition:

Proposition 2. [7, Prop. 4.1] Let T be the following vector bundle:
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O(~x1) · · · O((p1 − 1)~x1)

O(~x2) · · · O((p2 − 1)~x2)

O ... O(~c)

O(~xt) · · · O((pt − 1)~xt)

Then T is a titling bundle and EndX(T ) is the canonical algebra of parameter sequence
λ and weight sequence p. The tilting bundle T is called the canonical configuration in
cohX.

There is an involutive operation on the set of isomorphism classes of basic tilting sheaves
called mutation, c.f. [8, Def. 2.9]. Let T = T1 ⊕ · · · ⊕ Tn be a basic tilting sheaf and
k ∈ {1, . . . , n}. The mutation at k of T is the basic tilting sheaf µk(T ) = T ′k ⊕

⊕
i 6=k Ti

where T ′k = kerα⊕ cokerα∗ and

α :
⊕
i→k

Ti → Tk and α∗ : Tk →
⊕
k→j

Tj.

Note that α is a monomorphism (resp. epimorphism) if and only if α∗ is a monomorphism
(resp. epimorphism), c.f. [8, Prop. 2.6, Prop. 2.8].

2.2. Graded quivers with potential and their mutations. Quivers with potentials
and their Jacobian algebras where introduced in [5] as a tool to prove several of the
conjectures of [6] about cluster algebras in a rather general setting. Their graded counter
part, which is the one we are concerned with, was introduced in [2].

Let Q = (Q0, Q1) be a finite quiver without loops or two cycles and d : Q1 → Z/2Z
a degree function on the set of arrows of Q. Thus, the complete path algebra k̂Q has
a natural Z/2Z-grading. A potential is a (possibly infinite) linear combination of cyclic
paths in Q; we are only interested in potentials which are homogeneous as elements of

k̂Q. For a cyclic path a1 · · · ad in Q and a ∈ Q1, let

∂a(a1 · · · ad) =
∑
ai=a

ai+1 · · · ada1 · · · ai−i

and extend it by lineary to an arbitrary potential. The maps ∂a are called cyclic deriva-
tives.

Definition 3. A graded quiver with potential (graded QP for short) is a quadruple
(Q,W, d) where (Q, d) is a Z/2Z-graded finite quiver without loops and two cycles and W
is a homogeneous potential for Q. The graded Jacobian algebra of (Q,W, d) is the graded
algebra

Jac(Q,W, d) ∼=
k̂Q

∂(W )

where ∂(W ) is the closure in k̂Q of the ideal generated by the set {∂a(W ) | a ∈ Q̃1}.
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For each vertex of Q there is a pair of well defined involutive operations on the right
equivalence-classes of graded QPs, [5, Def. 4.2], called left and right mutations. They
differ of each other at the level of the grading only, and as their non-graded versions they
consist of a mutation step and a reduction step.

Let (Q,W, d) be graded QP with W homogeneous of degree r and k ∈ Q0. The non-
reduced left mutation at k of (Q,W, d) is the graded QP µ̃Lk (Q,W, d) = (Q′,W ′, d′) defined
as follows:

(1) The quivers Q and Q′ have the same vertex set.
(2) All arrows of Q which are not adjacent to k are also arrows of Q′ and of the same

degree.
(3) Each arrow a : i → k of Q is replaced in Q′ by an arrow a∗ : k → i of degree

d(a) + r.
(4) Each arrow b : k → j of Q is replaced in Q′ by an arrow b∗ : j → k of degree d(b).

(5) Each composition i
a−→ k

b−→ j in Q is replaced in Q′ by an arrow [ba] : i → j of
degree d(a) + d(b).

(6) The new potential is given by

W ′ = [W ] +
∑

i
a−→k

b−→j

[ba]a∗b∗

where [W ] is the potential obtained from W by replacing each composition i
a−→

k
b−→ j which appears in W with the corresponding arrow [ba] of Q′.

By [2, Thm. 4.6], there exist a graded QP (Q′red,W
′
red, d

′) which is right equivalent to
(Q′,W ′, d′), c.f. [5, Def. 4.2], and such that Q′ has neither loops or two cycles. The left
mutation at k of (Q′,W ′, d′) is then defined as

µLk (Q,W, d) := (Q′red,W
′
red, d

′).

Note that right equivalent quivers with potential have the same Jacobian algebras. The
right mutation at k µRk (Q,W, d) of (Q,W, d) is defined almost identically (reduction step
included), just by replacing (iii) and (iv) above by

(iii’) Each arrow a : i→ k of Q is replaced in Q′ by an arrow a∗ : k → i of degree d(a).
(iv’) Each arrow b : k → j of Q is replaced in Q′ by an arrow b∗ : j → k of degree

d(b) + r.

2.3. Graded QPs and cluster-tilted algebras of canonical type. Let C = CX be
the cluster-category of X, c.f. [4]. It follows from [3, Prop. 2.3] that C can be taken as
the category whose objects are precisely the objects of cohX, but whose morphism spaces
are given by

HomC(X, Y ) := HomX(X, Y )⊕ Ext1
X(X, τ−1Y ).

Moreover, isomorphism classes in cohX and CX, and tilting sheaves in cohX are precisely
the so-called cluster-tilting objects in C, i.e. objects T ∈ C such that HomC(T, T [1]) = 0
and such that if X ∈ C is such that HomC(T ⊕X, (T ⊕X)[1]) = 0 then X ∈ addT . For
a detailed study of the combinatorics of cluster-tilting objects we refer the reader to [4]
and [10] for their higher counterparts.
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We recall from [9] that if Λ is a finite dimensional algebra of finite global dimension n,
the n+ 1-preprojective algebra of Λ is the graded algebra

Πn+1(Λ) :=
∞⊕
i=0

ExtnΛ(DΛ,Λ).

Let T ∈ cohX be a basic tilting sheaf. The endomorphism algebra EndX(T ) has global
dimension less or equal than 2, thus, by [9, Thm. 6.11(a)], the 3-preprojective algebra of
Λ can be realized as a graded Jacobian algebra using the following simple construction:
Let Q be the Gabriel quiver of the basic algebra EndX(T ) so that

EndX(T ) ∼=
kQ

〈r1, . . . rs〉
where {r1, . . . , rs} is a set of minimal relations. Consider the quiver

Q̃ = Qq {r∗i : t(ri)→ s(ri) | ri : s(ri) 99K t(ri)},

i.e. Q̃ is obtained from Q by adding an arrow in the opposite direction for each relation
defining EndX(T ). Thus we can define a homogeneous potential W in Q̃ of degree 1 by

W :=
s∑
i=1

rir
∗
i ,

and there is an isomorphism of graded algebras

Jac(Q̃,W, d) ∼= Π3(EndX(T )) ∼= EndC(T ).

3. Mutations of cluster-tilting objects and graded QPs

In this section we describe the effect of mutation on the endomorphism algebra of a
cluster-tilting object in the cluster category CX using the machinery of graded quivers
with potential. We must mention that this was partially done by T. Hübner in [8, Kor.
4.16] who described the effect of mutation of a tilting sheaf on it’s endomorphism algebra.
Since both cluster categories and (graded) quivers with potential were not available at
that time and although Hübner’s description of the quiver was equivalent to the one that
we present, describing the relations would have beed rather complicated. Thus, even if
Theorem 4 is a minor refinement of loc. cit., it provides a simple algorithm to compute
the relations of both the endomorphism algebra of the mutated tilting sheaf and of it’s
associated cluster-tilted algebra.

Theorem 4. Let X be an arbitrary weighted projective line and T =
⊕n

i=1 Ti a basic tilting

sheaf over X such that EndC(T ) ∼= Jac(Q̃,W, d), c.f. Section 2.3. Let k ∈ {1, . . . , n} and
suppose that Tk is a formal sink of T . Then there is an isomorphism of graded algebras

EndC(µk(T )) ∼= Jac(µRk (Q̃,W, d)).

Analogously, if Tk is a formal source of T , then there is an isomorphism of graded algebras

EndC(µk(T )) ∼= Jac(µLk (Q̃,W, d)).

We end this notes with an example illustrating Theorem 4, c.f. [3, Sec. 3].
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Example 5. Let p = (3, 3, 3) so that

L = 〈~x, ~y, ~z | 3~x = 3~y = 3~z =: ~c〉

(we do not need to worry about λ in this particular case). Consider the canonical config-
uration T of cohX, c.f. Proposition 2. Then Λ = EndX(T ) is given by the quiver

O(~c)

O(2~x)O(~x)

O

O(~z) O(2~z)

O(~y) O(2~y)

x3

x2

x1

y3

y2

y1

z3

z2

z1

subject to the relation x3 + y3 + z3 = 0. As explained in Section 2.3, the cluster-tilted
algebra EndC(T ) ∼= Π3(Λ) is given by the Jacobian algebra of the graded quiver

O(~c)

O(2~x)O(~x)

O

O(~z) O(2~z)

O(~y) O(2~y)

x3

x2

x1

y3

y2

y1

z3

z2

z1

ξ

with potential

W = (x3 + y3 + z3)ξ

where the only arrow of degree 1 is colored gray. It is easy to see that O is a formal
source of T since a relation in EndX(T ) begins at O, c.f. [8, Kor. 3.5]. Then the algebra
EndC(µOT ) is given by the Jacobian algebra of the graded quiver
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O(~c)

O(2~x)O(~x)

O′

O(~z) O(2~z)

O(~y) O(2~y)

x3

x2

y3

y2

z3

z2

x∗1

y∗1

z∗1

ξ∗

[xξ]

[yξ]

[zξ]

with potential

W ′ = x2[xξ] + y2[yξ] + z2[zξ] + [xξ]ξ∗x∗1 + [yξ]ξ∗y∗1 + [zξ]ξ∗z∗1 .

Note that we use the left mutation of graded quivers with potential. As explained in
Section 2.3, by taking the degree zero part of EndX(µOT ) we obtain that EndX(µOT ) is
isomorphic to the algebra given by the quiver

O(~c)

O(2~x)O(~x)

O′

O(~z) O(2~z)

O(~y) O(2~y)

x3

x2

y3

y2

z3

z2

x∗1

y∗1

z∗1

ξ∗

subject to the relations

x2 + ξ∗x∗1 = 0

y2 + ξ∗y∗1 = 0

z2 + ξ∗z∗1 = 0.
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CLASSIFYING SERRE SUBCATEGORIES VIA ATOM SPECTRUM

RYO KANDA

Abstract. We introduce the atom spectrum of an abelian category as a topological
space consisting of all the equivalence classes of monoform objects. In terms of the
atom spectrum, we give a classification of Serre subcategories of an arbitrary noetherian
abelian category.

Key Words: Serre subcategory, Atom spectrum, Monoform object.

2010 Mathematics Subject Classification: Primary 18E10; Secondary 18E15, 16D90,
13C60.

1. Introduction

Classification of subcategories has been studied by a number of authors, for example,
[2], [3], [4], [7], and [1]. Subcategories themselves are interesting objects. Moreover we
expect that the structure of subcategories reflects some important properties of the whole
category.

Throughout this report, we fix an abelian category A. First of all, we recall the defini-
tion of a Serre subcategory.

Definition 1. A full subcategory X of A is called a Serre subcategory if it is closed under
subobjects, quotient objects, and extensions.

Remark 2. This condition is equivalent to that for any short exact sequence

0→ L→M → N → 0

in A, M belongs to X if and only if L and N belong to X .

A prototype of classifications of subcategories is the following theorem shown by Gabriel
[2]. For a ring R, denote by ModR the category of all the R-modules and by modR the
category of finitely generated R-modules. We say that a subset Φ of SpecR is closed
under specialization if for any p, q ∈ SpecR, p ⊂ q and p ∈ Φ imply q ∈ Φ.

Theorem 3 (Gabriel [2]). Let R be a commutative noetherian ring. Then we have the
following bijection

{Serre subcategories of modR} → {Φ ⊂ SpecR | Φ is closed under specialization}
X 7→

∪
M∈X

SuppM.

In this report, we generalize this theorem to any abelian category with some noetherian
property.

The detailed version of this paper has been submitted for publication elsewhere.
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2. Monoform objects

The key notion of this report is that of monoform objects. We recall the definition of
them.

Definition 4. A nonzero object H in A is called monoform if for any nonzero subobject
L of H, there does not exist a nonzero subobject of H which is isomorphic to a subobject
of H/L.

The following theorem states an important relationship between monoform objects and
Serre subcategories.

Theorem 5. Let M be an object in A. M is monoform if and only if M does not belong
to the smallest Serre subcategory containing all the objects of the form M/N where N is
a nonzero subobject of M .

Proposition 6. Let H be a monoform object in A. Then the following hold.

(1) Any nonzero subobject of H is also monoform.
(2) H is uniform, that is, for any nonzero subobjects L1 and L2 of H, L1 ∩ L2 ̸= 0.

Definition 7. For monoform objects H and H ′ in A, we say that H is atom-equivalent
to H ′ if there exists a nonzero subobject of H which is isomorphic to a subobject of H ′.

Remark 8. In fact, the relation of atom equivalence is an equivalence relation between
monoform objects in A since any monoform object is uniform.

Now we define the notion of atoms, which was originally introduced by Storrer [6] in
the case of module categories.

Definition 9. Denote by ASpecA the quotient set (or quotient class) of the set of mono-
form objects in A by atom equivalence. We call it the atom spectrum of A. Elements of
ASpecA are called atoms in A. The equivalence class of a monoform object H in A is
denoted by H.

In section 4, we see that there exists a bijection between ASpec (ModR) and SpecR.
Hence the atom spectrum is a generalization of the prime spectrum in the commutative
ring theory.

Definition 10. Let M be an object in A.
(1) Define the atom support of M by

ASuppM = {H ∈ ASpecA | H is a subquotient of M}.
(2) Define the set of associated atoms of M by

AAssM = {H ∈ ASpecA | H is a subobject of M}.
The following proposition is a generalization of a proposition which is well-known in

the commutative ring theory.

Proposition 11. Let 0 → L → M → N → 0 be a short exact sequence in A. Then the
following hold.

(1) ASuppM = ASuppL ∪ ASuppN .
(2) AAssL ⊂ AAssM ⊂ AAssL ∪ AAssN .
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3. Main theorem

In order to generalize Gabriel’s theorem (Theorem 3), we need to consider a general-
ized condition of “closed under specialization”. This condition is given by the following
topology.

Definition 12. Define a topology on ASpecA as follows: we say that a subset (or sub-
class) Φ of ASpecA is open if for any α, there exists H ∈ α such that ASuppH ⊂ Φ.

Proposition 13. Open subsets of ASpecA define a topology on ASpecA which has an
open basis {ASuppM | M ∈ A}.

We recall the definition of noetherian abelian categories.

Definition 14. (1) An object M in A is called noetherian if for any ascending chain
L0 ⊂ L1 ⊂ · · · of subobjects of M , there exists n ≥ 0 such that Ln = Ln+1 = · · · .

(2) An abelian category A is called noetherian if it is skeletally small (that is, the
class of isomorphism classes forms a set), and any object in A is noetherian.

Remark 15. The skeletally smallness is just a set-theoretical assumption. It A ensures
that ASpecA is a set. We do not need to assume it if we allow ASpecA to be a proper
class.

Theorem 16 ([5]). Let A be a noetherian abelian category. Then there exists a bijection

{Serre subcategories of A} → {open subsets of ASpecA}
X 7→

∪
M∈X

ASuppX .

The inverse map is given by Φ 7→ {M ∈ A | ASuppM ⊂ Φ}.

4. In the case of module categories

In the case of module categories, the atom spectrum is described in terms of one-sided
ideals.

Proposition 17. Let R be a ring. Then any atom in ModR is represented by a monoform
object of the form R/p, where p is a right ideal of R. Moreover if R is right noetherian,
then ASpec (modR) is homeomorphic to ASpec (ModR).

Proposition 18. Let R be a commutative ring. Then the following hold.

(1) For any ideal a of R, R/a is monoform in ModR if and only if a is a prime ideal
of R.

(2) For any prime ideals p and q of R, R/p is atom-equivalent to R/q if and only

if p = q. Therefore the correspondence p 7→ R/p gives a bijection SpecR →
ASpec (ModR).

(3) For any R-module M , ASuppM = SuppM , and AAssM = AssM .
(4) For any subset Φ of SpecR, Φ is open in the sense of ASpec (ModR) if and only

if Φ is closed under specialization.

Remark 19. In the case where R is noetherian, we can formulate these claims by using
ASpec (modR) instead of ASpec (ModR). Then new claims which we obtain also hold.
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In the case of artinian rings, monoformness is stated in terms of composition factors.

Proposition 20. Let R be a right artinian ring. Then a finitely generated R-module M is
monoform if and only if it has simple socle S such that there exists no other composition
factor of M which is isomorphic to S.

Proposition 21. Let R be a right artinian ring and {S1, . . . , Sn} be a maximal set of
pairwise nonisomorphic simple modules. Then ASpecR = {S1, . . . , Sn} with the discrete
topology.

Example 22. Let R be the ring of lower triangular matrices over a field K, that is,

R =

[
K 0
K K

]
.

Then all the right ideals of R are

0,

[
0 0
K 0

]
, pa = K

[
1 0
a 0

]
(a ∈ K),m1 =

[
0 0
K K

]
,m2 =

[
K 0
K 0

]
, R.

All the comonoform right ideals of R are

pa(a ∈ K),m1,m2.

Since

R

pa
∼=
[
K K

]
,
R

m1

∼=
[
K 0

]
,
R

m2

∼=
[
K K

][
K 0

] ,
we have p̃a = m̃1 ̸= m̃2. Therefore all the Serre subcategories of modR are {zero objects},
⟨R/m1⟩Serre, ⟨R/m2⟩Serre, and modR, where ⟨R/mi⟩Serre is the smallest Serre subcategory
containing R/mi.
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[2] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448.
[3] I. Herzog, The Ziegler spectrum of a locally coherent Grothendieck category, Proc. London Math. Soc.

(3) 74 (1997), no. 3, 503–558.
[4] H. Krause, The spectrum of a locally coherent category, J. Pure Appl. Algebra 114 (1997), no. 3,

259–271.
[5] R. Kanda, Classifying Serre subcategories via atom spectrum, Adv. Math. 231 (2012), no. 3–4, 1572–

1588.
[6] H. H. Storrer, On Goldman’s primary decomposition, Lectures on rings and modules (Tulane Univ.

Ring and Operator Theory Year, 1970–1971, Vol. I), pp. 617–661, Lecture Notes in Math., Vol. 246,
Springer, Berlin, 1972.

[7] R. Takahashi, Classifying subcategories of modules over a commutative Noetherian ring, J. Lond.
Math. Soc. (2) 78 (2008), no. 3, 767–782.

–72–



Graduate School of Mathematics
Nagoya University
Furo-cho, Chikusa-ku, Nagoya-shi, Aichi-ken, 464-8602, Japan

E-mail address: kanda.ryo@a.mbox.nagoya-u.ac.jp

–73–



QUIVER VARIETIES AND QUANTUM CLUSTER ALGEBRAS

YOSHIYUKI KIMURA

Abstract. Inspired by a previous work [Nak11] of Nakajima, we consider a class of
(equivariant) perverse sheaves on acyclic graded quiver varieties and study the Fourier-
Sato-Deligne transform from representation theoretical point of view. In particular, we
get a monoidal categorification of quantum cluster algebra with specific coefficient. As
a corollary, the strong positivity conjecture is verified. This is based on a talk in the
45th Symposium on Ring Theory and Representation Theory in Shinshu University and
a preprint [KQ12].

1. Introduction

Cluster algebras were invented by Fomin and Zelevinsky in [FZ02] with an aim to pro-
vide concrete and combinatorial formalism for the study of Lusztig’s dual canonical basis
and total positivity. They are commutative algebras generated by certain combinatori-
ally defined generators (the cluster variables). The quantum deformations were defined
in[BZ05]. Fomin and Zelevinsky stated their original motivation as follows:

“We conjecture that the above examples can be extensively generalized:
for any simply-connected connected semisimple group G, the coordinate
rings C[G] and C[G/N ], as well as coordinate rings of many other inter-
esting varieties related to G, have a natural structure of a cluster algebra.
This structure should serve as an algebraic framework for the study of
dual canonical bases in these coordinate rings and their q-deformations. In
particular, we conjecture that all monomials in the variables of any given
cluster (the cluster monomials) belong to this dual canonical basis.”

However, despite the many successful applications of (quantum) cluster algebras to other
areas (cf. the introductory survey by Keller [Kel12] and Geiss, Leclerc and Schröer
[GLS12]), the link between (quantum) cluster monomials and the dual canonical basis
of quantum groups remains largely elusive.

Also, the following positivity conjecture has attracted a lot of interest since the invention
of cluster algebras.

Conjecture 1 (Laurent positivity conjecture). With respect to any given seed, each clus-
ter variable expands into a Laurent polynomial with non-negative integer coefficients.

This conjecture has been proved for cluster algebras arising from surfaces by Musiker,
Schiffler, and Williams [MSW11], for cluster algebras containing a bipartite seed by Naka-
jima [Nak11], and the quantized version for quantum cluster algebras with respect to an
acyclic initial seed by [Qin12a]. Recently, Efimov [Efi11]obtained further partial results

The detailed version of this paper [KQ12] has been submitted for publication elsewhere.
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on this conjecture for quantum cluster algebras containing an acyclic seed using mixed
Hodge modules.

In [HL10], Hernandez and Leclerc proposed monoidal categorification of cluster algebra.

Definition 2 (monoidal categorification). Let A be a cluster algebra (of geometric type).
Let C be a monoidal abelian category. We say that C is a monoidal categorification of
A if the Grothendieck ring K0(C) of C is isomorphic to A as ring and the basis of K0(C)
which consists of simple objects of C includes the set of cluster monomials1.

The existence of monoidal categorification of cluster algebra yields the following conse-
quence on cluster algebras (with geometric coefficients).

Conjecture 3 (strong positivity conjecture). Let A be a cluster algebra (with geometric
coefficients ZP). Then there exists a Z-basis B of A which contains the set of cluster
monomials and has non-negative structure constants.

In [HL10] they gave a conjecture on the monoidal categorification of T -system cluster
algebra (with level ℓ) using the tensor subcategory Cℓ of finite dimensional representations
of (untwisted) quantum affine algebras and proved ℓ = 1 case for An and D4.In [Nak04,
Nak11], Nakajima studied finite dimensional representation of quantum affine algebra via
perverse sheaves on graded quiver varieties and gave a proof of ℓ = 1 case for bipartite
quiver.

In [KQ12, Qin12b], we studied graded quiver varieties which are associated with acyclic
quiver and generalized the Nakajima’s proof for ℓ = 1 cases using the Nakayama functor
on quiver representations.

Acknowledgement

The author thanks the organizers of the workshop for giving me an opportunity to talk
in the workshop. He is grateful to Hiraku Nakajima for his valuable comments and his
sincere encouragement on this topic. He is also grateful to Fan Qin for his collaboration
and useful discussions.

2. Quantum cluster algebras

2.1. Quantum cluster algebras. We briefly recall the definition of (quantum) cluster
algebras. For more details, see [KQ12]. A quiver Q = (Q0, Q1) is an oriented graph
where Q0 is a set of vertices and Q1 a set of arrows. For each arrow α, we denote its
outgoing vertex by out(h) and its incoming vertex by in(h). For a quiver Q, we associate
doubled quiver H by adding opposite arrows Q1 := {α : in(α) → out(α) | α ∈ Q1}.
We say (Q0, Q1) as opposite quiver. Sometimes we also denote Q0 and Q1 by I and Ω
respectively. We say that Q is p-acyclic if Q does not contain oriented cycles whose length
are less than p and is acyclic if Q does not contain any oriented cycles. For 2-acyclic quiver
Q (with frozen vertices), we can define cluster algebra A(Q) (with geometric coefficients).

1We remark that the correspondence between the set of isomorphism class of prime real simple objects
in C and the set of cluster variables is required in [HL10]. Under the monoidal categorification, the
correspondence can be shown in [GLS11c, Corollary 8.6]
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Berenstein and Zelevinsky[BZ05] have introduced a quantum analogue of cluster algebra
with geometric coefficients using quantum torus.

Let v be a formal parameter and we consider a ring Z[v±1] or Q[v±1]. Let m ≥ n be
be two positive integers. Let Λ be an m ×m skew-symmetric integer matrix and B̃ an
m×n integer matrix. The upper n×n submatrix of B̃, denoted by B, is called principal
part of B̃.

Definition 4. The pair (Λ, B̃) is called compatible if we have Λ(−B̃) =

[
D
0

]
for some

n× n diagonal matrix D whose diagonal entries are strictly positive integers. It is called
a unitary compatible pair if moreover D is the identity matrix 1n. The matrix Λ is called

the Λ-matrix of (Λ, B̃) and the matrix B̃ is called the B-matrix of (Λ, B̃).

We write Λ(g, h) for gtΛh, g, h ∈ Zm, where gt is the transpose of g ∈ Zm as matrix.

Definition 5. The quantum torus T = T (Λ) over Z[v±] is the Laurent polynomial ring
Z[v±1][x±1

1 , ..., x±1
m ], endowed with the following twisted product ∗ such that we have

xgxh = vΛ(g,h)xg+h

for any g, h ∈ Zm. Here for any g = (gi) ∈ Zm, xg denote the monomial
∏

1≤i≤m x
gi
i .

For ϵ ∈ {±1}, we define m×m-matrix Eϵ = (eij) and n×n-matrix Fϵ = (fij) as follows.

eij =


δij if j ̸= k

−1 if i = j = k

max(0,−ϵbik) if i ̸= k, j = k,

fij =


δij if i ̸= k

−1 if i = j = k

max(0, ϵbkj) if i = k, j ̸= k.

Fix a compatible pair (Λ, B̃) and the quantum torus T = T (Λ). Since quantum torus
is a Ore domain, we can consider its fraction skew-field F and T can be considered as a
subalgebra of F .

Definition 6. (1)A quantum seed is a tuple (Λ, B̃, (xi)1≤i≤m) where {xi}1≤i≤m ⊂ F and

(Λ, B̃) a compatible pair.

(2) For a quantum seed and 1 ≤ k ≤ n, we define quantum seed mutation µk(Λ, B̃, (xi)1≤i≤m) =

(Λ′, B̃′, (x′i)1≤i≤m) as follows.

Λ′ = Eϵ(B)tΛEϵ(B),

B̃′ = Eϵ(B)tB̃Fϵ(B),

x′i =

{
xi if i ̸= k

x′k if i = k,
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where x′k is defined in the following equation.

xkx
′
k = vΛ(ek,

∑
1≤i≤m[bik]+ei)

∏
1≤i≤m

x
[bik]+
i + vΛ(ek,

∑
1≤i≤m[−bik]+ei)

∏
1≤i≤m

x
[−bik]+
i .

(3) Let Tn be the regular n-tree with distinct colors {1, · · · , n} at each vertices. Quan-
tum cluster pattern is an assigment of quantum seed from Tn such that we have

(Λ(t′), B̃(t′), (xi(t
′))1≤i≤m) = µk(Λ(t), B̃(t), (xi(t))1≤i≤m)

for each edge t− t′ which is colored by k.
(4) For a quantum cluster pattern, we set Xq =

∪
t{xi(t)}1≤i≤m and call by the set

of quantum cluster variables. The quantum cluster algebra Aq is the Z[v±1]-subalgebra
which is generated by Xq.

Quantum Laurent phenomena say that Aq is a subalgebra of the quantum torus T (cf.
[BZ05]). For a quiver whose principal part is acyclic, it is known that quantum Laurent
expansion at initial seed can be written as a generating function the Serre polynomial
of the quiver Grassmannian associated with the correponding cluster tilting object. For
more details, see [Qin12a]. For a Hodge-theoretic interpretation of quantum Laurent
phoenomena, see [Efi11].

3. Quiver varieties

3.1. Definition. For a quiver Q, we consider a repetition quiver Q̂ as follows:

Q̂0 = Q0 × (1 + 2Z)

Q̂1 = {(α, n) : (out(α), n)→ ()}α∈Q1,n∈Z ∪ {σ(α, n) : (in(α), n)→ (out(α), n− 2)}

For an acyclic quiver Q, we consider a repetition quiver Γ̂ = (Γ̂0, Γ̂1) with Γ̂0 =

Q0 × Z which contains Q̂ as a fullsubquiver on Q0 × (1 + 2Z). We also add new ar-
rows {σ(α, n) : (in(α), 2n + 1) → (out(α), 2n − 1)}α∈Q1,n∈Z and {a(i, n) : (i, 2n + 1) →
(i, 2n)}i∈Q0,n∈Z ∪ {b(i, n) : (i, 2n) → (i, 2n − 1)}i∈Q0,n∈Z. Let R be a mesh category sup-
ported only on Q0 × (1 + 2Z) and S be a fullsubcategory of R supported on Q0 × 2Z.

We consider a finite dimensional Γ̂0-graded vector space V ⊕W where V is the Q̂0-
component and W is the Q0 × 2Z-component.

Let RepV⊕W (R) be a variety of representations of R-module whose dimension vector
is V ⊕W . A point (B,α, β) ∈ RepV⊕W (R) is said to be stable (resp. costable) if the
following condition holds:

If a Q̂0-graded subspace V ′ of V is B-invariant and contained in Ker(β) (resp. contains
Im(α)), then V ′ = 0 (resp. V ′ = V ).

We denote by RepV⊕W (R)st the (possibly empty) set of stable points.

Definition 7 (graded quiver varieties). (1) The set-theoretical quotient M(V,W ) =
RepV⊕W (R)st/GV of the set of stable points with respect to the group action defined by
base change of the product of general linear groups GV is called smooth graded quiver
variety.

(2) The affine algebraic-geometric quotient M0(V,W ) = RepV⊕W (R)//GV is called
affine graded quiver variety.
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The smooth graded quiver variety can be defined as a homogenous spectrum of semi GV

invariants of RepV⊕W (R) with respect to a character χ : GV → Gm. So there is a natural
(GW -equivariant) projective morphism π :M(V,W ) → M0(V,W ) by general theory of
geometric invariant theory. SinceM0(V,W ) parametrizes semisimple representations, we
can consider its union along all V . We denote it by M0(W ). The following gives a
“description” of M0(W ) and is due to Leclerc-Plamondon [LP12] based on a result by
Lusztig.

Theorem 8. We have a natural GW -equivariant isomorphism Φ0 :M0(W ) ≃ RepW (S).

Let PW be the set of isomorphism class of (GW -equivariant) simple perverse sheaves on
M0(W ) which appear in π!CM(V,W ) for some shifts and V and QW be the fullsubcategory
of Db(M0(W )) which is generated by PW by shifts and direct sums. Let KW be the
quantum Grothendieck group of QW which is defined by shifts and direct sum and has a
structure of Z[v±1]-module.

We have a natural stratification on M0(W ) and the classification of PW in terms of
the stratification.

Let Mreg
0 (V,W ) be the (possible empty) open subsets of M0(V,W ) which consists

of closed GV -orbits whose stablizer is trivial and the dimension vector (V,W ) is called
dominant if W − CQ(z)V ≥ 0, where CQ(z) is the quantum Cartan matrix defined by

CQ(z)ij = #
{
h ∈ Ω

∣∣∣out(h)=iin(h)=j

}
z −

{
h ∈ Ω

∣∣∣out(h)=jin(h)=i

}
z−1,

where z : ZΓ̂0 → ZΓ̂0 is the shift defined by (zW )i(n) = Wi(n− 1) .

Theorem 9. (1)M0(V,W ) is not empty if and only if (V,W ) is dominant. If (V,W ) is
dominant,M(V,W ) is connected.

(2)M0(W ) =
⊔
Mreg

0 (V,W )
(3) PW = {ICW (V ) | (V,W ) is dominant}, where ICW (V ) := IC(M0(V,W ),C) is

the intersection cohomology complex associated with the stratumMreg
0 (V,W ).

3.2. Quantum Grothendieck ring. Let 0 ⊂ W 2 ⊂ W be a S0-graded subspace and
W 1 = W/W 2 and fix a splitting W ≃ W 1 ⊕W 2. Let λ : Gm → GW be the 1-parameter
subgroup defined by λ(t) = idW 1 ⊕ tidW 2 . Then Gm acts on M(V,W ) and M0(W ).
Let T0(W 1,W 2) be the closed subvariety of M0(W ) which consists of points such that
limt→0 t · [B,α, β] exists. Then we have the following diagram:

M0(W
1)×M0(W

2) T0(W 1,W 2)κ0
oo

ι0

//M0(W ) ,

where κ0 : T0(W 1,W 2) →M0(W
1) ×M0(W

2) be the morphism defined by taking limit

limt→0 t · [B,α, β] and ι0 : T0(W 1,W 2) ↪→ M0(W ) be the closed embedding. Let R̃es :=
(κ0)!ι

∗
0 : D

b(M0(W )) → Db(M0(W
1) ×M0(W

2)) be the restriction functor defined by

the above morphism. It can be shown that R̃es(QW ) ⊂ QW 1⊠QW 2 . Using the restriction
functor (with some shifts), we get the following definition of quantum Grothendieck ring.

Definition 10. Let Rv be the subring of
∏

W HomZ[v±1](KW ,Z[v±1]) which consists the
Z[v±1]-linear module homomorphisms satisfy

⟨fW , ICW (V )⟩ = ⟨fW−CQ(z)V , ICW−CQ(z)V (0)⟩
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for arbitrary dominant (V,W ).

Let {LW (V )} be the dual basis of {IC(M(V,W ))} and L = {LW} be the basis of Rv

which is determined by {LW (0)}. It is known that L has positive structure constants and
there is a embedding R into quantum torus using the generating function with respect to
the pairing with {πW (V )}, where πW (V ) = π!CM(V,W )[dimM(V,W )].

We consider the support condition (∗)ℓ on W =
⊕

(i,n)∈S0
Wi(n):

Wi(n) = 0 unless n ∈ {0, 2, · · · , 2ℓ}.
Let Rv,ℓ be the Z[v±1]-subalgebra which satisfies the support condition (∗)ℓ and Rℓ be
the specialization at v = 1. It can be shown that L |v=1 ∩Rℓ gives a basis of Rℓ.

3.3. T -system quiver. For an acyclic quiver Q = (Q0, Q1) and non-negative integer
ℓ, we consider the following ice quiver TQ,ℓ. Let (TQ,ℓ)0 be the set Q0 × {0, 1, · · · , ℓ}
and (TQ,ℓ)1 = {(α, k) : (out(α), k) → (in(α), k)}α∈Q1,0≤k≤ℓ−1 ∪ {σ(α, k) : (in(α), k) →
(out(α), k−1)}α∈Q1,1≤k≤ℓ∪{ti,k : (i, k)→ (i, k+1)}i∈Q0,0≤k≤ℓ−1. We call TQ,ℓ by T -system
quiver with level ℓ and we set (TQ,ℓ)

fr
0 = Q0 × {ℓ}.

It is a special case of the quivers in [BFZ05] and [GLS11b, GLS11a] which are associated
with the ℓ+1 power cℓ+1

Q of the acyclic Coxeter element cQ and the corresponding unipotent

subgroup N(cℓ+1
Q ).

Conjecture 11. There is a ring isomorphism Φ: A(TQ,ℓ) ≃ Rℓ and the image of the
cluster monomials is contained in the basis L |v=1 ∩Rℓ.

We remark that the subring Rℓ is an analogue of K0(Cℓ), where Cℓ is the tensor subcat-
egory in [HL10] and there is a natural quantum analogue between the quantum cluster
algebra [GLS11a] and the (twisted) quantum Grothendieck ring. This should yields the
quantization conjecture in [Kim12].

4. Level 1 case

We prove the above conjecture holds in ℓ = 1 case.

4.1. Description of quiver varieties. We consider the ℓ = 1 case. LetW =
⊕

(i,n)∈S0
Wi(n)

be S0-graded vector space such that Wi(n) = 0 unless n ∈ {0, 2}. Since the full subquiver
of S on Q0 × {0, 2} does not contain oriented cycles and the mesh relations, RepW (S) is
an affine space. Let Si be a simple module of Q, Ii be an injective envelop of Si and Pi
be the projective cover of Si.

Proposition 12. For W = W (0)⊕W (2) be S0-graded vector space such that Wi(n) = 0
unless n ∈ {0, 2}. We set PW (2) =

⊕
i∈Q0

Wi(2)⊗Pi and IW (0) =
⊕

i∈Q0
Wi(0)⊗Ii. Then

we have an isomorphism:

Φ0 :M0(W ) ≃ EW := HomQ(P
W (2), IW (0)).

We also assume Q̂0-graded vector space V satisfies Vi(n) = 0 unless n ∈ {1}. Let

F(V,W ) be the quiver Grassmann of IW (0) with dimension vector V (1). Let F̃(V,W ) be
the variety of pairs (z, S) with z ∈ HomQ(P

W (2), IW (0)) and S ∈ F(V,W ) which satisfy

Im(z) ⊂ S. Let π : F̃(V,W )→ EW be the first projection.
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Proposition 13. We have a GW -equivariant isomorphism Φ: M(V,W ) ≃ F̃(V,W )
which satisfies the following commutative diagram:

M(V,W )

π

��

Φ // F̃(V,W )

π

��
M0(W )

Φ0

// EW

.

4.2. Fourier-Deligne-Sato transform. Since F̃(V,W ) is a vector subbundle over F(V,W )

of the trivial bundle EW × F(V,W ), we consider its annihilator bundle F̃⊥(V,W ) ⊂
E∗

W ×F(V,W ). By the Nakayama duality, we have E∗
W ≃ HomQ(I

W (0), IW (2)) and

F̃⊥(V,W ) = {(z∗, S) ∈ E∗
W ×F(V,W )|S ⊂ Ker(z∗)} .

Let π⊥ : F̃⊥(V,W )→ E∗
W be the first projection. Then the fiber (π⊥)−1(z∗) is the quiver

Grassmannian of Ker(z∗) with dimension vector V (1). Let Ψ: Db(EW ) ≃ Db(E∗
W ) be the

Fourier-Deligne-Sato transform and LW be the subset of PW which consists the Fourier
transform Ψ(ICW (V )) has entire support E∗

W . We note that ICW (0) ∈ LW .
We consider the following alternating sum of LW :

LW =
∑

ICW (V )∈LW

(−1)dimM(V,W )rankΨ(ICW (V ))LW−CQ(z),

where rankΨ(ICW (V )) is the generic rank of Ψ(ICW (V )). It can be shown that LW yields
the quantum cluster character in [Qin12a].

Let AW = AutQ(I
W (0)) × AutQ(I

W (2)) be the automorphism group. We have natu-
ral projection of groups AW → GW . By construction π⊥ is equivariant with respect to
the AW -action, so the simple perverse sheaves which can be obtained by π⊥ are AW -
equivariant perverse sheaves. By considering AW -action, we get the following characteri-
zation.

Theorem 14. If E∗
W has an open AW -orbit, we have LW = {ICW (0)}.

The sufficient condition for which E∗
W contains an open AW -orbit can be characterized

by the canonical decomposition of injective presentation by Derksen-Fei[DF09]. In par-
ticular, it can be shown that the set of quantum cluster monomials is contained in the
“dual canonical basis” {LW}. So we get the proof of the conjecture for ℓ = 1 case.
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CYCLOTOMIC KLR ALGEBRAS OF CYCLIC QUIVERS

MASAHIDE KONISHI

Abstract. For cyclic quiver, cyclotomic KLR algebras are defined by fixing α and Γ,
two weights on vertices. We fix α and Γ in a special (but essential) case, and then show
that there are systematic changes of structures.

1. Introduction

Khovanov-Lauda-Rouquier algebra (KLR algebra for short) is defined by Khovanov and
Lauda, and independently Rouquier in 2008. Generators and Relations are obtained from
a quiver Γ and a weight α on its vertices. We can regard generators as concatenation of
such diagrams :

i1 i2 i3 i4
,
•

i1 i2 i3 i4
,
i1 i2 i3 i4

.

An another weight Λ on vertices of Γ defines a cyclotomic ideal. We call a quotient of
the KLR algebra by the cyclotomic ideal a cyclotomic KLR algebra. After here, we fix
quiver Γ as its vertices are {0, 1, 2, · · · , n− 1}, and its arrows are from i to i + 1 (also

n− 1 to 0), and set α =
∑

i:vertex

αi, Λ = Λ0.

Our aim is to describe changes of structures of cyclotomic KLR algebras for n.

2. Preliminaries

After here, K is a field and In is a set consisting all of permutations of (0, 1, · · · , n−1).

Definition 1. A KLR algebra HΓ,α is an algebra obtained by following generators and
relations.

• generators: {e(i)|i ∈ In} ∪ {y1, · · · , yn} ∪ {ψ1, · · · , ψn−1}
• relations:
e(i)e(j) = δi,j,∑
i∈Seq(α)

e(i) = 1,

yke(i) = e(i)yk,
ψke(i) = e(sk · i)ψk,
ykyl = ylyk,
ψkyl = ylψk (l ̸= k, k + 1),
ψkψl = ψlψk (|k − l| > 1),
ψkyk+1e(i) = ykψke(i),

The detailed version of this paper will be submitted for publication elsewhere.
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yk+1ψke(i) = ψkyke(i),

ψ2
ke(i) =


e(i) (ik ̸↔ ik+1)

(yk+1 − yk)e(i) (ik → ik+1)
(yk − yk+1)e(i) (ik ← ik+1)

(yk+1 − yk)(yk − yk+1)e(i) (ik ↔ ik+1)

,

ψkψk+1ψke(i) = ψk+1ψkψk+1e(i).

The three generators are respectively coresponding to the three diagrams in section 1.
A multiplication of two generators are obtained as a concatenation of two diagrams (but
if the colors of connecting part are different, it becomes 0). Each relations are also given
by following diagrams :

•
•

i j i j

=
, •

•

i j i j

=
,

• • • • •• • • ••
i j i j i j i j i j i j i j i j i j

= − − − −
, , ,

(i ̸= j ± 1) (i = j + 1) (i = j − 1) (n = 2)

i j k i j k

=
.

A cyclotomic ideal and a cyclotomic KLR algebra are defined from Λ as follows.

Definition 2. Generators of cyclotomic ideal are as follows :

{y1e(i)|i ∈ In, i1 = 0} ∪ {e(i)|i ∈ In, i1 ̸= 0}.
Denote Hn for corresponding cyclotomic KLR algebra, a quotient of HΓ,α by the ideal.

3. Properties

In this section, we describe four properties of Hn. We need some representation theo-
retical facts written in next section for proof.

Theorem 3. The number of i ∈ In satisfying e(i) ̸= 0 is exactly 2n−2. Moreover, the set
consisting all of such e(i)s is complete set of primitive orthogonal idempotents.

Proof. Fix n. We show there are at most 2n−2 is satisfying e(i) ̸= 0 by constructing i
from i1 to ib avoiding e(i) = 0. The rest part is proved in next section.

In the case of n = 2, there is only (0, 1).
In the case of n > 2, at first i1 must be 0 from the definition of the cyclotomic ideal.

Next, i2 must be 1 or n− 1 which are neighborhood of 0 in the quiver. If not, we obtain

e((0, i2, · · · )) = ψ2
1e((0, i2, · · · ))

= ψ1e((i2, 0, · · · ))ψ1

= 0.
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We can write this equation by using diagrams as follows :

0 i2

0 = · · ·

0 i2

= · · ·
.

We must keep taking one of the two neighborhoods for ik(2 < k < n − 1). If not,
e(i) = 0 from following equation :

0 i2 ik−1 ik

0 = · · · · · ·

0 i2 ik−1 ik

= · · · · · ·

0 i2 ik−1 ik

= · · · · · ·

0 i2 ik−1 ik

= · · · · · ·
.

At last, we can set the rest number for in. Then we can obtain 2n−2 is constructed by
using above method. □
Proposition 4. Let e(i) ̸= 0 in Hn. Then these properties hold :

(a) yke(i) = 0 (1 ≤ k < n),
(b) y2ne(i) = 0,
(c) yne(i) ̸= 0.

Proof. (c) will be proved in next section.
In the case of n = 2, (a) is by definition, (b) follows by expanding ψe(0, 1)ψ.
In the case of n > 2, we prove (a) by induction for k.
For k = 1, yke(i) = 0 from definition.
We show yke(i) = 0 for k < n. By Thm.3, there is unique 1 ≤ l < k such that ik and

il are neighborhoods. Using yle(i) = 0 by assumption of induction, we obtain yke(i) = 0
from following equation :

0 i2 il ik

0 = · · · · · · · · ·

0 i2 il ik

= · · · · · · · · ·

•

0 i2 il ik

= · · · · · · · · · •

0 i2 il ik

− · · · · · · · · ·

•

0 i2 il ik

= · · · · · · · · ·

•

0 i2 il ik

= · · · · · · · · ·
.

We assume il → ik in this equation, but if il ← ik the difference is only signs. Therefore
(a) follows.

In the same way, since yke(i) = 0 for k < n and there are two neighborhoods il,im
(1 ≤ l < m < n) of in, we obtain y2ne(i) = 0 as follows :

0 il im in

0 = · · · · · · · · ·

0 il im in

= · · · · · · · · ·
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•

0 il im in

= · · · · · · · · · •

0 il im in

− · · · · · · · · ·

•

0 il im in

= · · · · · · · · ·

•
•

0 il im in

= · · · · · · · · ·
•

•

0 il im in

− · · · · · · · · ·

••
0 il im in

= − · · · · · · · · ·
.

Also we assume there il → in → im, but the difference with the case il ← in ← im is
only signs. Therefore (b) follows. □

For Hn, set two subsets Ien, I
1
n of In as follows :

Ien = {i ∈ In|e(i) ̸= 0}
I1n = {i ∈ Ien|i2 = 1}

And set an idempotent e of Hn as follows :

e =
∑
i∈I1n

e(i)

At last, set two maps ˆ: Ien−1(α)→ I1n(α),¯: I
1
n(α)→ Ien−1(α) as follows :

î = (0, 1, i2 + 1, · · · , in−1 + 1) for i = (0, i2, · · · , in−1),

ī = (0, i3 − 1, · · · , in − 1) for i = (0, 1, i3, · · · , in).
In other word,ˆincrements ik except i1 and inserts 1 at second,¯decrements ik except i1
and remove i2. Both maps are bijection and inversion of the other.

Proposition 5. For each n > 2, an isomorphism of algebras

Hn−1
∼ // eHne

is obtained as follows :

e(i) 7→ e(̂i) , yn−1 7→ yn , ψk 7→ ψk+1 .

Proof. For e(i), e(i) = 0 and e(̂i) = 0 are equivalent. For yk, what we check is only
yn−1 ∈ Hn−1 and yn ∈ Hn by Prop.4. It is easy to check each relations is preserved.
Since elements in eHne can be presented without ψ1, we can make the inversion map
eHne→ Hn−1 as follows :

e(i) 7→ e(̄i) , yn 7→ yn−1 , ψk 7→ ψk−1 .

□
Proposition 6. For each Hn, the two indecomposable projective modules corresponding
to two primitive idempotents e(i) and e(j) are isomorphic if and only if in = jn.

In particular, the isomorphic class of indecomposable projective modules has (n − 1)
elements.
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4. Appendix : Representation Theoretical Facts

Using isomorphism given in [BK], each Hn is replaced by well-known object in repre-
sentation theory. Using the facts in it, we complete the proofs of previous section.

Theorem 7 (Brundan-Kleshchev,Rouquier).

(a)
⊕
|α|=n

HΓ,α,Λ
∼= HΛ

q (n)

The right side is Ariki-Koike algebra determined by Λ and n, q = n
√
1 ∈ C.

(b) HCn , α,Λ is a block. That is, an indecomposable two-sided ideal.

We set Λ = Λ0. In this case, Ariki-Koike algebra is Hecke algebra Hq(Sr) of type A.
The following theorem holds. For notations in the theorem, see Mathas([4] p.50 Ex.18).

Theorem 8 (Dipper-James). Let λ be a partition of r.
There exists Hq(Sr)-module Sλ with following properties :
Let n be minimum integer satisfying 1 + q + q2 + · · ·+ qn−1 = 0.

(a) If λ is n-regular (the same number doesn’t continue n times), then top of Sλ is
uniquely determined. In this case, we denote Dλ for topSλ.

(b)
{
Dλ | λ : n-regular

}
is complete list of simple Hq(Sr)-modules.

The following lemma holds in general.

Lemma 9. Let P λ a indecomposable projective module corresponding to Dλ.
As a left module,

Hq(Sr) ∼=
⊕
λ

(dimDλ)P λ

The following property holds in this time [5].

Theorem 10. As an element of Grothendieck group,

•
[
D(n)

]
=
[
S(n)

]
•
[
D(n−k,1k)

]
= −

[
D(n−k+1,1k−1)

]
+
[
S(n−k,1k)

]
By using hook length formula, the following property holds.

Proposition 11.

dimS(n−k,1k) =

(
n− 1

k

)
Proof. The Young diagram corresponding to (n− k, 1k) is as follows :

n n− k − 1· · · 2 1

k

· · ·
1

dimS(n−k,1k) =
n!

n · k!(n− k − 1)!

=
(n− 1)!

((n− 1)− k)!k!

=

(
n− 1

k

)
□
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By using Thm.10 and Prop.11, the following property holds.

Proposition 12. For 0 ≤ k ≤ n− 1, denote λk = (n− k, 1k).
n−1∑
k=0

dimDλk = 2n−2

Proof. Since dimDλk = −dimDλk−1 + dimSλk ,
we obtain dimDλk + dimDλk−1 = dimSλk =

(
n−1
k

)
.

Therefore if n is odd,
n−1∑
k=0

dimDλk = 1 +

(
n− 1

2

)
+

(
n− 1

4

)
+ · · ·+

(
n− 1

n− 1

)
= 2n−2

if even,
n−1∑
k=0

dimDλk =

(
n− 1

1

)
+

(
n− 1

3

)
+ · · ·+

(
n− 1

n− 1

)
= 2n−2

□
Therefore we obtain the following corollary.

Corollary 13. Every 2n−2 e(i)s obtained in Thm.3 is primitive idempotent.

The folloing preperty holds.

Proposition 14. If e(i) ̸= 0 then yne(i) ̸= 0.

Proof. There are no elements except for yne(i) in e(i)Hne(i) such that linearly independent
to e(i). On the other hand, since there are no indecomposable simple projective modules
by Thm.10, dim(End(e(i)Hn)) ≥ 2. Hence yne(i) ̸= 0 from End(e(i)Hn) ∼= e(i)Hne(i).

□
About Prop.6, if part follows from [1] and only if part follows from the fact ;

Hn is Morita equivalent to Brauer tree algebra of An type.
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GOLDIE EXTENDING MODULES

YOSUKE KURATOMI

Abstract. Let R be a ring. A right R-module M is said to be Goldie extending (u-
Goldie extending) if, for any (uniform) submodule X of M , there exist an essential
submodule Y of X and a direct summand N of M such that Y is essential in N . A
Goldie extending module is introduced by Akalan-Birkenmeier-Tercan [1]. Note that
Goldie extending modules are dual to H-supplemented modules (cf. [7]).

In this paper, we show some characterizations of Goldie extending and consider gen-
eralizations of relative injectivity. And we apply them to the study of the open prob-
lems “When is a direct sum of Goldie extending (uniform) modules Goldie extending
?” and “Is the property Goldie extending inherited by direct summands ?” in Akalan-
Birkenmeier-Tercan [1].

Key Words: (Goldie) extending modules, Internal exchange property.

2000 Mathematics Subject Classification: Primary 16D50; Secondary 16D70.

1. Introduction

Throughout this paper R is a ring with identity and all modules considered are unitary
right R-modules. A submodule X of a module M is said to be essential in M or an
essential submodule of M , if X ∩Y ̸= 0 for any non-zero submodule Y of M and we write
X ⊆e M in this case. Y is called a closed in M or a closed submodule of M if Y has no
proper essential extensions inside M . Let A ⊆ B ⊆M . B is said to be closure of A in M
if B is closed in M and A ⊆e B. K <⊕ N means that K is a direct summand of N .

Let M = M1 ⊕M2 and let φ : M1 → M2 be a homomorphism. Put ⟨M1
φ→ M2⟩ =

{m1 − φ(m1) | m1 ∈M1}. Then this is a submodule of M which is called the graph with

respect to M1
φ→M2. Note that M =M1 ⊕M2 = ⟨M1

φ→M2⟩ ⊕M2.
Let {Mi | i ∈ I} be a family of modules. The direct sum decomposition M = ⊕IMi is

said to be exchangeable if, for any direct summand X of M , there exists Mi ⊆Mi (i ∈ I)
such that M = X ⊕ (⊕IMi). A module M is said to have the (finite) internal exchange
property if, any (finite) direct sum decomposition M = ⊕IMi is exchangeable.

A module M is said to be extending (u-extending) if, for any (uniform) submodule
X of M , there exists a direct summand N of M such that X is essential in N . An
indecomposable extending module is called uniform. A module M is said to be semi-
continuous if M is extending with the finite internal exchange property. A module M is
said to be quasi-continuous if M is extending with the following condition (C3):

(C3) If A and B are direct summands of M such that A∩B = 0, then A⊕B is a direct
summand of M .

The detailed version of this paper will be submitted for publication elsewhere.
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A module M is said to be G-extending or Goldie extending (u-G-extending or u-Goldie
extending) if, for any (uniform) submodule X of M , there exist an essential submodule Y
of X and a direct summand N of M such that Y is essential in N . A module M is said
to be G+-extending if any direct summand of M is G-extending (cf. [1]). Let {Mi | i ∈ I}
be a family of modules and put M = ⊕IMi. Then M is said to be (u-)G-extending for
the decomposition M = ⊕IMi if, for any (uniform) submodule X of M , there exist an
essential submodule Y of X, a direct summand N ofM and a submoduleM ′

i ofMi (i ∈ I)
such that M = N ⊕ (⊕IM ′

i) and Y is essential in N .
We see that the following implications hold:
quasi-continuous ⇒ semi-continuous ⇒ extending ⇒ G+-extending.
In general, the converse is not ture. For example, Z/2Z⊕Z/4Z is semi-continuous but

not quasi-continuous. Z⊕ Z is extending but not semi-continuous. And Z/2Z⊕ Z/8Z is
G+-extending but not extending.

A module A is said to be B-ejective if, for any submodule X of B and any homomor-
phism f : X → A, there exist an essential submodule X ′ of X and a homomorphism
g : B → A such that g|X′ = f |X′ (cf. [1]).

For undefined terminologies, the reader is referred to [2], [3], [7] and [9].

2. G-extending modules and generalizations of relative injectivities

Firstly, we show a connection between extending modules and G-extending modules.

Proposition 1. Let M be a module and consider the following conditions:

(1) M is G-extending and B is essentially A-injective for any decomposition M =
A⊕B,

(2) M is extending.

Then (1)⇒ (2) holds. In particular, if M has the finite internal exchange property, then
the converse holds.

Proposition 2. Let A and B be modules. Then A is B-injective if and only if A is
B-ejective and essentially B-injective.

Let M be a module with the decomposition M = A⊕ B. If M is G-extending for the
decomposition M = A⊕B, then A is G-extending. Thus we obtain the following:

Theorem 3. Let M be a module with the finite internal exchange property. Then M is
G+-extending if and only if M is G-extending.

A module A is said to be weakly (weakly mono-)B-ojective if, for any submodule X of B
and any homomorphism (monomorphism) f : X → A, there exist an essential submodule
X ′ of X, decompositions A = A1⊕A2, B = B1⊕B2, a homomorphism (monomorphism)
g1 : B1 → A1 and a monomorphism g2 : A2 → B2 satisfying the following condition (∗):

(∗) For any x′ ∈ X ′, we express x′ and f(x′) in B = B1 ⊕ B2 and A = A1 ⊕ A2 as
x′ = b1 + b2 and f(x′) = a1 + a2, respectively. Then g1(b1) = a1 and g2(a2) = b2 (cf. [4],
[6]). Now we consider some properties of weakly ojectivities.

Proposition 4. Let A be a module and let B be a extending module with the finite internal
exchange property. Then
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(1) If A is weakly B-ojective, then A is weakly B′-ojective for any B′ <⊕ B.
(2) If A is weakly B-ojective, then A is weakly mono-B-ojective.

By a quite similar proof of [8, Theorem 2.1], we get the following:

Proposition 5. Let A be an extending module with the finite internal exchange property
and let B be a G+-extending module. If A is weakly B-ojective, then A′ is weakly B-
ojective for any A′ <⊕ A.

Theorem 6. Let M1 and M2 be G+-extending modules and put M = M1 ⊕M2. If M ′
1

is weakly mono-M ′
2-ojective for any M ′

i <⊕ Mi (i = 1, 2), then M is G-extending for the
decomposition M =M1 ⊕M2.

The following is a main result in this section:

Theorem 7. Let M1 and M2 be G-extending modules with the finite internal exchange
property and put M =M1 ⊕M2. Then the following conditions are equivalent:

(1) M is G-extending for M =M1 ⊕M2,
(2) N =M ′

1 ⊕M ′
2 is G-extending for N =M ′

1 ⊕M ′
2, for any M ′

i <⊕ Mi (i = 1, 2),
(3) M ′

1 is weakly M ′
2-ojective for any M ′

i <⊕ Mi (i = 1, 2).

Let A and B be modules and let f : A→ B be a monomorphism. f is called a proper
monomorphism if f is not an isomorphism. If there exists a proper monomorphism from

A to B, we write A ≺ B or A
f
≺ B. If there is no proper monomorphism from A to B,

we write A ⊀ B. By Theorem 7, we obtain the following:

Theorem 8. Let M1 and M2 be G+-extending and put M = M1 ⊕ M2. Suppose that
M ⊀M . Then the following conditions are equivalent:

(1) M is G+-extending and the decomposition M =M1 ⊕M2 is exchangeable,
(2) M is G+-extending for M =M1 ⊕M2,
(3) M ′

1 is weakly mono-M ′
2-ojective for any M ′

i <⊕ Mi (i = 1, 2).

3. Direct sums of uniform modules

In this section, we consider the problem “When is a direct sum of uniform modules
(G-)extending ?”. Firstly we show the following:

Proposition 9. Let {Ui | i ∈ I} be a family of uniform modules and put M = ⊕IUi.
Then the following conditions are equivalent:

(1) M is u-G-extending for M = ⊕IUi,
(2) For any J ⊆ I, N = ⊕JUj is u-G-extending for N = ⊕JUj,
(3) Ui is weakly mono-Uj-ojective for any i ̸= j.

The following theorem is obtained by a quite similar proof of [5, Theorem 2.3].

Theorem 10. (cf. [5, Theorem 2.3]) Let {Ui | i ∈ I} be a family of uniform modules and
put M = ⊕IUi. We consider the following condition:

(1) Ui is weakly mono-Uj-ojective for any i ̸= j ∈ I,
(2) There is no infinite sequence f1, f2, f3, f4, · · · of proper monomorphisms fk :

Uik → Uik+1
with all ik ∈ I distinct.
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If M satisfies the conditions (a) and (b), then M is G-extending for M = ⊕IUi.

Let {Ui | i ∈ I} be a family of uniform modules and put M = ⊕IUi. If M is G-
extending for M = ⊕IUi and Ui is essentially Uj-injective (i ̸= j), then the condition (b)
in Theorem 10 holds. Thus we obtain the following result:

Theorem 11. Let {Ui | i ∈ I} be a family of uniform modules and put M = ⊕IUi. Then
the following conditions are equivalent:

(1) M is extending with the (finite) internal exchange property,
(2) M is extending and the decomposition M = ⊕IUi is exchangeable,
(3) (a) M is u-extending for the decomposition M = ⊕IUi,

(b) M satisfies the condition (b) in Theorem 10,
(4) (a) M is G-extending for the decomposition M = ⊕IUi,

(b) Ui is essentially Uj-injective for any i ̸= j,
(c) (A′

2) holds for all Ui and {Uj | i ̸= j ∈ I},
(5) (a) M is u-G-extending for the decomposition M = ⊕IUi,

(b) Ui is essentially Uj-injective for any i ̸= j,
(c) (A′

2) holds for all Ui and {Uj | i ̸= j ∈ I},
(d) M satisfies the condition (b) in Theorem 10,

(6) (a) Ui is essentially Uj-injective and weakly mono-Uj-ojective for any i ̸= j,
(b) (A′

2) holds for all Ui and {Uj | i ̸= j ∈ I},
(c) M satisfies the condition (b) in Theorem 10.

References

[1] E. Akalan, G. F. Birkenmeier and A. Tercan, Goldie Extending Modules, Comm. Algebra 37 (2009)
663–683.

[2] Y. Baba and K. Oshiro, Classical Artinian Rings and Related Topics, (World Scientific Publishing
Co. Pte. Ltd., 2009).

[3] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes
in Mathematics Series 313 (Longman, Harlow/New York, 1994).

[4] K. Hanada, Y. Kuratomi and K. Oshiro, On direct sums of extending modules and internal exchange
property, J. Algebra 250 (2002) 115–133.

[5] J. Kado, Y. Kuratomi and K. Oshiro, CS-property of direct sums of uniform modules, International
Symposium on Ring Theory, Trends in Math. (2001) 149–159.
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REALIZING CLUSTER CATEGORIES OF DYNKIN TYPE An AS
STABLE CATEGORIES OF LATTICES

XUEYU LUO

Abstract. Cluster tilting objects of the cluster category C of Dynkin type An−3 are
known to be indexed by triangulations of a regular polygon P with n vertices. Given a
triangulation of P , we associate a quiver with potential with frozen vertices such that
the frozen part of the associated Jacobian algebra has the structure of a K�x�-order
denoted as Λn. Then we show that C is equivalent to the stable category of the category
of Λn-lattices.

Let n ≥ 3 be an integer, K be a field and R = K�x� be the formal power series ring in
one variable over K.

1. The Order

Definition 1. Let Λ be an R-order, i.e. an R-algebra which is a finitely generated free
R-module. A left Λ-module L is called a Λ-lattice if it is finitely generated free as an
R-module. We denote by CM(Λ) the category of Λ-lattices.

The order we use to study cluster categories of type An−3 is Λn:

Λn =

⎡
⎢⎢⎢⎢⎢⎢⎣

R R R · · · R (x−1)
(x) R R · · · R R
(x2) (x) R · · · R R
...

...
...

. . .
...

...
(x2) (x2) (x2) · · · R R
(x2) (x2) (x2) · · · (x) R

⎤
⎥⎥⎥⎥⎥⎥⎦
n×n

.

The detailed version of this paper will be submitted for publication elsewhere.
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The category CM(Λn) has Auslander-Reiten sequences. We draw the Auslander-Reiten
quiver of Λn for n even: it is similar for n odd.

L1,1,n−2 Ln
2
,1,n

2
−1

L2,n−2,0 L1,2,n−3 Ln
2
−1,2,n

2
−1 Ln

2
,2,n

2
−2

L3,n−3,0 Ln
2
−1,3,n

2
−2

Ln
2
,3,n

2
−3 L2,n−3,1

Ln
2
,2,n

2
−2 Ln

2
+1,2,n

2
−3 L1,n−2,1 L2,n−2,0

Ln
2
+1,1,n

2
−2 L1,n−1,0

where

Lm1,m2,m3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R
.
.
.
R
(x)
..
.

(x)
(x2)
.
..

(x2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with R appearing m1 times, (x) appearing m2 times and (x2) appearing m3 times.
This is a Mobius strip, both the first and last row of which consist of n

2
projective-

injective Λn-lattices, with n− 3 τ -orbits between them.

2. The Jacobian Algebra

Let Q be a finite quiver. The complete path algebra K̂Q is the completion of the path
algebra with respect to the J -adic topology for J the ideal generated by all arrows of
Q. A quiver with potential (QP for short) is a finite quiver with a linear combination of
cycles of the quiver.
Quivers of triangulations of surfaces are defined in [2] and [3] before. And QPs arising

from such triangulations are defined in [4]. We extend their definitions in the case of
regular polygons.
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Let us fix a postive integer n ≥ 3 and a triangulation � of a regular polygon with n
vertices (n-gon for short).

Definition 2. The quiver Q� of the triangulation � is the quiver the vertices of which
are the (internal and external) edges of the triangulation. Whenever two edges a and b
share a joint vertex, the quiver Q� contains a normal arrow a → b if a is a predecessor
of b with respect to clockwise orientation inside a triangle at the joint vertex of a and b.
Moreover, for every vertex of the polygon with at least one internal incident edge in the
triangulation, there is a dashed arrow a ��� b where a and b are its two incident external
edges, a being a predecessor of b with respect to clockwise orientation.

In the following we denote Q = Q�. A cycle in Q is called a cyclic triangle if it consists
of three normal arrows, and a minimal cycle in Q is called a big cycle if it contains exactly
one dashed arrow.

Definition 3. We define the set of frozen vertices F of Q as the subset of Q0 consisting of
the n external edges of the n-gon, and the potential as

W =
∑

cyclic triangles−
∑

big cycles.

According to [1], the associated Jacobian algebra is defined by

P(Q,W,F ) = K̂Q/J (W,F ),

where J (W,F ) is the closure

J (W,F ) = 〈∂aW | a ∈ Q1, s(a) /∈ F or e(a) /∈ F 〉
with respect to the JK̂Q-adic topology and s(a) (resp. e(a)) is the starting vertex (resp.

ending vertex) of the arrow a. Notice that cyclic derivatives associated with arrows
between frozen vertices are excluded.

Example 4. We illustrate the construction of Q� and W when � is a triangulation of a
square:

ac

b 4

1

2

3
g

h

e
d

f

5

In this case W = abc+ def − beg − dch, F = {1, 2, 3, 4} and

J (W,F ) = 〈ca− eg, ab− hd, fd− gb, ef − ch〉.
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Remark 5. Since each arrow which is not between frozen vertices is shared by a big
cycle and a cyclic triangle, it follows that all relations in P(Q,W,F ) are commutativity
relations.

3. A basis

Let � be a triangulation of the n-gon, (Q,W,F ) be the associated QP with frozen
vertices and P(Q,W,F ) be its Jacobian algebra.
Let i ∈ Q0. We consider all minimal cycles C1

i , . . . , C
k
i passing through i. It is easy to

check that in general there are only three cases:
1: i is one of the internal edges of the triangulation, the only case is the following:

� �

� �

i

C1
i

C2
i

C3
i

C4
i

Ci := C1
i = C2

i = C3
i = C4

i holds in P(Q,W,F ).

2: i is an external edge with four adjacent edges,

C2
i

· · ·

C1
i

C3
i

· · ·

i

Ci := C1
i = C2

i = C3
i holds in P(Q,W,F ).

3: i is an external edge with three adjacent edges,

C1
i

C2
i

· · ·

i
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Ci := C1
i = C2

i holds in P(Q,W,F ).

By a countable basis of a complete topological vector space, we mean a linearly inde-

pendent set of elements which spans a dense vector subspace. It is known that K̂Q has a
countable basis PQ which is the set of all paths on Q. We say that two paths w1 and w2

are equivalent (w1 ∼ w2) if w1 = w2 in P(Q,W,F ). This gives an equivalence relation on
PQ and PQ/ ∼ is a countable basis of the Jacoabian algebra P(Q,W,F ).
Consider the element C :=

∑
i∈Q0

Ci in the associated Jacobian algebra P(Q,W,F ),

then C is in the center of P(Q,W,F ).

Definition 6. For any vertices i, j ∈ Q0, a path w from i to j is called C-free if there is
no path w′ from i to j satisfying w ∼ w′C.

Considering all the C-free paths, we have the following proposition.

Proposition 7. For any vertices i, j ∈ Q0,

(1) there exists a unique C-free path w0 from i to j up to ∼.
(2) {w0, w0C,w0C

2, w0C
3, . . .} is a countable basis of eiP(Q,W,F )ej.

The Jacobian algebra P(Q,W,F ) is an R-algebra through x 	→ C. According to this
proposition, it is an R-order whose set of generators consists of C-free paths.

4. Main Results

Let � be a triangulation of the n-gon (n ≥ 3), (Q,W,F ) be the associated QP with
frozen vertices and P(Q,W,F ) be its Jacobian algebra. Let Λn be the order defined in
Section 1.

Theorem 8. The cluster category CAn−3 of type An−3 is equivalent to the stable category
of the category CM(Λn) of Λn-lattices.

Theorem 9. Let eF be the sum of the idempotents at frozen vertices. Then

(1) eFP(Q,W,F )eF is isomorphic to Λn as an R-order.
(2) the Λn-module eFP(Q,W,F ) is a cluster tilting object of CM(Λn), i.e. a Λn-lattice

X satisfies Ext1(eFP(Q,W,F ), X) = 0 precisely when it is a direct summand of
direct sum of finite copies of eFP(Q,W,F ).

(3) EndΛn(eFP(Q,W,F )) is isomorphic to P(Q,W,F ) as an R-order.

Example 10. The Jacobian algebra associated with the following triangulation of the
pentagon:

12

3

4

5
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is isomorphic to the following R-order:

P(Q,W,F ) ∼=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R R R R (x−1) R R
(x) R R R R R R
(x2) (x) R R R (x) (x)
(x2) (x2) (x) R R (x) (x)
(x2) (x2) (x2) (x) R (x2) (x)
(x) (x) R R R R R
(x) (x) (x) R R (x) R

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

It is clear that eFP(Q,W,F )eF ∼= Λ5 holds in this case. The Auslander-Reiten quiver of
Λ5 is the following:

⎡
⎢⎢⎢⎢⎣

R
(x)
(x2)
(x2)
(x2)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
R
(x)
(x2)
(x2)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
R
R
(x)
(x2)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
(x)
(x)
(x2)
(x2)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
R
(x)
(x)
(x2)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
R
R
(x)
(x)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
R
R
(x)
(x)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
(x)
(x)
(x)
(x2)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
R
(x)
(x)
(x)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
R
R
R
(x)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
(x)
(x)
(x)
(x)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

R
(x)
(x2)
(x2)
(x2)

⎤
⎥⎥⎥⎥⎦

As a Λ5-module, eFP(Q,W,F ) is isomorphic to

⎡
⎢⎣

R
(x)
(x2)
(x2)

(x2)

⎤
⎥⎦⊕

⎡
⎢⎣

R
R
(x)
(x2)

(x2)

⎤
⎥⎦⊕

⎡
⎢⎣

R
R
R
(x)

(x2)

⎤
⎥⎦⊕

⎡
⎢⎣

R
R
R
R

(x)

⎤
⎥⎦⊕

⎡
⎢⎣

R
(x)
(x)
(x)

(x)

⎤
⎥⎦⊕

⎡
⎢⎣

R
R
(x)
(x)

(x)

⎤
⎥⎦⊕

⎡
⎢⎣

R
R
(x)
(x)

(x2)

⎤
⎥⎦

which is cluster tilting in CM(Λ5). As expected, its summands correspond bijectively to
the (internal and external) edges of the triangulation, or equivalently to the vertices of
the corresponding quiver.
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The stable category CM(Λ5) is equivalent to CA2 and has a cluster tilting object⎡
⎢⎣

R

R
(x)
(x)
(x)

⎤
⎥⎦⊕

⎡
⎢⎣

R

R
(x)
(x)
(x2)

⎤
⎥⎦.
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CHARACTERIZATION OF GORENSTEIN STRONGLY KOSZUL HIBI
RINGS BY F-INVARIANTS

KAZUNORI MATSUDA

Abstract. Hibi rings are a kind of graded toric ring on a finite distributive lattice
D = J(P ), where P is a partially ordered set. In this article, we compute diagonal F -
thresholds and F -pure thresholds of Hibi rings and give a characterization of Hibi rings
which satisfy the equality between these invariants in terms of its trivialness in the sense
of Herzog-Hibi-Restuccia.

1. Introduction

This is a partially joint work with T. Chiba.
Firstly, we recall the definition of Hibi rings(see[Hib]).
Let P = {p1, p2, . . . , pN} be a finite partially ordered set(poset for short), and letJ(P )

be the set of all poset ideals of P , where a poset ideal of P is a subset I of P such that if
x ∈ I, y ∈ P and y ≤ x then y ∈ I.

A chain X of P is a totally ordered subset of P . The length of a chain X of P is #X−1,
where #X is the cardinality of X. The rank of P , denoted by rankP , is the maximum of
the lengths of chains in P . A poset is called pure if its all maximal chains have the same
length. For x, y ∈ P , we say that y covers x, denoted by x ⋖ y, if x < y and there is no
z ∈ P such that x < z < y.

Definition 1. ([Hib]) Let the notation be as above. Let φ be the following map:

φ : J(P ) −→ k[T,X1, . . . , XN ], I 7−→ T
∏
pi∈I

Xi

Then the Hibi ring R(P ) is defined as follows:

R(P ) = k[φ(I) | I ∈ J(P )].

Remark 2. (1) ([Hib]) Hibi rings are graded toric rings.
(2) dimR(P ) = #P + 1.
(3) ([Hib]) R(P ) is Gorenstein if and only if P is pure.

Finally, we define rank∗P and rank∗P for a poset P in order to state our main theorem.
A sequence C = (q1, . . . , qt) is called a path of P if C satisfies the following conditions:

(1) q1, . . . , qt are distinct elements of P ,
(2) q1 is a minimal element of P and qt−1 ⋖ qt,
(3) qi ⋖ qi+1 or qi+1 ⋖ qi.

The detailed version of this paper will be submitted for publication elsewhere.
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In short, we regard the Hasse diagram of P as a graph, and consider paths on it. In
particular, if qt is a maximal element of P , then we call C maximal path. For a path
C = (q1, . . . , qt), we denote C = q1 → qt.

For a path C = (q1, . . . , qt), qi is said to be a locally maximal element of C if qi−1 ⋖ qi
and qi+1⋖qi, and a locally minimal element of C if qi⋖qi−1 and qi⋖qi+1. For convenience,
we consider that q1 is a locally minimal element and qt is a locally maximal element of C.

For a path C = (q1, . . . , qt), if q1 ≤ · · · ≤ qt then we call C an ascending chain and
if q1 ≥ · · · ≥ qt then we call C a descending chain. We denote a ascending chain by a
symbol A and a descending chain by a symbol D. For a ascending chain A = (q1, . . . , qt),
we put t(A) = qt and < A >= {q ∈ P | q ≤ t(A)}. Since < A > is a poset ideal of P
generated by A, we note that < A >∈ J(P ).

Let C = (q1, . . . , qt) be a path and V (C) the vertices of C. We now introduce the
notion of the decomposition of C. We decompose V (C) as follows:

V (C) = V (A1)
⨿

V (D1)
⨿

V (A2)
⨿
· · ·
⨿

V (Dn−1)
⨿

V (An)

such that

V (A1) = {q1, . . . , qa(1)},
V (D1) = {q′1, . . . , q′d(1)},
V (A2) = {qa(1)+1, . . . , qa(2)},

··
·

V (Dn−1) = {q′d(n−2)+1, . . . , q
′
d(n−1)},

V (An) = {qa(n−1)+1, . . . , qa(n) = qt},
where {qa(1), . . . , qa(n)} is the set of locally maximal elements and {q1, q′d(1), . . . , q′d(n−1)}
is the set of locally minimal elements of C. Then Ai are ascending chains and Dj are
descending chains. This decomposition is denoted by C = A1+D1+A2+ · · ·+Dn−1+An.

For a path C = (q1, . . . , qt), we define the upper length by

length∗C = #{(qi, qi+1) ∈ E(C) | qi ⋖ qi+1},
where E(C) is the set of edges of C.

Example 3. (1) If C is a chain, then length∗C = lengthC.
(2) Consider the following path C:

����������������1

��������
2 ��������OOOOOOOOO ��������OOOOOOOOO

��������
3

��������
4

Then length∗C = 4.
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Next, we introduce the condition (*).

Definition 4. For a path C = (q1, . . . , qt), we say that C satisfies a condition (*) if C
satisfies the following conditions: for all qr which is locally maximal element or locally
minimal element of C, qs′ ̸≤ qs for all s

′ > r and r > s.

Example 5. Consider the following poset P :

q1 ��������q2 ��������q3 ��������
q4��������OOOOOOOOO

q5��������OOOOOOOOO

q6��������ooooooooo

Then, C1 = (q1, q2, q5, q6) satisfies the condition (*), but C2 = (q1, q2, q3, q4, q5, q6) does
not satisfy the condition (*) because q2 ≥ q5.

Remark 6. (1) For a path C = (q1, . . . , qt) such that C satisfies a condition (*) and qt is a
locally maximal element, we can extend C to a path C̃ = (q1, . . . , qt, . . . , qt′) such that C̃
is a maximal path which satisfies a condition (*). Indeed, if qt is not a maximal element of
P , then there exists qt+1 such that qt⋖qt+1. We decompose C = A1+D1+. . .+Dn−1+An.
If qt+1 ∈ < Ai > for some i, then so is qt. This means that C does not satisfy a condition
(*), a contradiction. Hence a path C ′ = (q1, . . . , qt, qt+1) also satisfies a condition (*).
Therefore, by repeating this operation, we can extend C to a path C̃ = (q1, . . . , qt, . . . , qt′)
such that C̃ is a maximal path which satisfies a condition (*).

(2) Let C = (q1, . . . , qt) be a path of P . If C is a unique path such that its starting
point is q1 and its end point is qt, then C satisfies a condition (*). Indeed, if C does
not so, there exists a locally maximal(or minimal) element qr such that qs′ ≤ qs for some
s < r < s′. Then, C ′ = (q1, . . . , qs, qs′ , . . . , qt) is also a path, but this is a contradiction.

Now, we can define the upper rank rank∗P and the lower rank rank∗P for a poset P .

Definition 7. For a poset P , we define

rank∗P = max{length∗C | C is a maximal path which satisfies a condition(∗)},
rank∗P = min{length∗C | C is a maximal path which satisfies a condition(∗)}.

We call rank∗P upper rank and rank∗P lower rank of P . We note that #P−1 ≥ rank∗P ≥
rankP ≥ rank∗P .

Example 8. Consider the following poset P :

q1 ��������q2 ��������q3 ��������
q5��������
q4��������OOOOOOOOO

q6��������
Then, the following paths satisfy the condition (*):
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q1 ��������q2 ��������q3 ��������
q1 ��������q2 ��������

q4��������OOOOOOOOO

q5�������� q6��������
q2 ��������q3 ��������

q4��������OOOOOOOOO q4 ��������q5 ��������q6 ��������
Hence we have rank∗P = 3 and rank∗P = rankP = 2.

2. Diagonal F-thresholds of Hibi rings

In this section, we recall the definition and several basic results of F -threshold and give
a formula of the F -thresholds of Hibi rings.

2.1. Definition and basic properties. Let R be a Noetherian ring of characteristic
p > 0 with dimR = d ≥ 1. Let m be a maximal ideal of R. Suppose that a and J are
m-primary ideals of R such that a ⊆

√
J and a ∩R◦ ̸= ∅, where R◦ is the set of elements

of R that are not contained in any minimal prime ideal of R.

Definition 9 (see [HMTW]). Let R, a, J be as above. For each nonnegative integer e,
put νJa (p

e) = max{r ∈ N | ar ̸⊆ J [pe]}, where J [pe] = (ap
e | a ∈ J). Then we define

cJ(a) = lim
e→∞

νJa (p
e)

pe

if it exists, and call it the F -threshold of the pair (R, a) with respect to J . Moreover, we
call ca(a) the diagonal F -threshold of R with respect to a.

About basic properties and examples of F -thresholds, see [HMTW]. In this section, we
summarize basic properties of the diagonal F -thresholds cm(m).

Example 10. (1) Let (R,m) be a regular local ring of positive characteristic. Then
cm(m) = dimR.

(2) Let k[X1, . . . , Xd]
(r) be the r-th Veronese subring of a polynomial ring S = k[X1, . . . , Xd].

Put m = (X1, . . . , Xd)
rR. Then cm(m) = r+d−1

r
.

(3) ([MOY, Corollary 2.4]) If (R,m) is a local ring with dimR = 1, then cm(m) = 1.

Example 11. ([MOY, Theorem 2]) Let S = k[X1, . . . , Xm, Y1, . . . , Yn] be a polynomial
ring over k in m + n variables, and put n = (X1, . . . , Xm, Y1, . . . , Yn)S. Take a binomial
f = Xa1

1 · · ·Xam
m − Y

b1
1 · · ·Y bn

n ∈ S, where a1 ≥ · · · ≥ am, b1 ≥ · · · ≥ bn. Let R = Sn/(f)
be a binomial hypersurface local ring with the unique maximal ideal m. Then

cm(m) = m+ n− 2 +
max{a1 + b1 −min{

∑m
i=1 ai,

∑n
j=1 bj}, 0}

max{a1, b1}
.

In [CM], we gave a formula of cm(m) of Hibi rings.

Theorem 12 (see [CM]). Let P be a finite poset, and R = R(P ) the Hibi ring made from
P . Let m = R+ be the graded maximal ideal of R. Then

cm(m) = rank∗P + 2.
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3. F -pure thresholds of Hibi rings

In this section, we recall the definition of the F -pure threshold and give a formula of
the F -pure thresholds of Hibi rings. This formula is given by Chiba.

The F -pure threshold, which was introduced by [TW], is an invariant of an ideal of
an F -finite F -pure ring. F -pure threshold can be calculated by computing generalized
test ideals (see [HY]), and [Bl] showed how to compute generalized test ideals in the case
of toric rings and its monomial ideals. Since Hibi rings are toric rings, we can compute
F -pure thresholds of the homogeneous maximal ideal of arbitrary Hibi rings, and will be
described in terms of poset.

Definition 13 (see [TW]). Let R be an F -finite F -pure ring of characteristic p > 0, a
a nonzero ideal of R, and t a non-negative real number. The pair (R, at) is said to be
F -pure if for all large q = pe, there exists an element d ∈ a⌈t(q−1)⌉ such that the map
R −→ R1/q (1 7→ d1/q) splits as an R-linear map. Then the F -pure threshold fpt(a) is
defined as follows:

fpt(a) = sup{t ∈ R≥0 | (R, at) is F -pure}.

Hara and Yoshida [HY] introduced the generalized test ideal τ(at) (t is a non negative
real number). Then fpt(a) can be calculated as the minimum jumping number of τ(ac),
that is,

fpt(a) = sup{t ∈ R≥0 | τ(at) = R}.

Chiba gave a formula of fpt(m) of Hibi ring R = R(P ).

Theorem 14 (see [CM]). Let P be a finite poset, and R = R(P ) the Hibi ring made from
P . Let m = R+ be the graded maximal ideal of R. Then

fpt(m) = rank∗P + 2.

4. −a(R) of Hibi rings and Characterization of Hibi rings which satisfy
cm(m) = −a(R) = fpt(m)

The first main theorem of this article is the following:

Theorem 15 (see [CM], [BH]). Let P be a poset, and R = R(P ) the Hibi ring made from
P . Let m = R+ the unique graded maximal ideal of R. Then

cm(m) = rank∗P + 2,

−a(R) = rankP + 2,

fpt(m) = rank∗P + 2,

where a(R) is a-invariant of R(see [GW]). In particular, cm(m) ≥ −a(R) ≥ fpt(m).

In this section, we give a characterization of Hibi rings which satisfy cm(m) = −a(R) =
fpt(m), that is, we consider the following question:

Question: When does cm(m) = −a(R) = fpt(m) hold for Hibi rings?
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Hirose, Watanabe and Yoshida [HWY] showed that for any homogeneous affine toric
ring R with the unique graded maximal ideal m, R is Gorenstein if and only if fpt(m) =
−a(R). Hence we need to study Hibi rings which satisfy cm(m) = −a(R).

Let P1, P2 be posets and let R1 = R(P1), R2 = R(P2) be Hibi rings made from P1,
P2 respectively. In order to give an answer of the above question, we observe the tensor
products and Segre products of R1 and R2(see [Hib], [HeHiR]).

Firstly, we define some notions.

Definition 16. A ring R is trivial if R can be made by the following operations：starting
from polynomial rings, repeated applications of tensor products and Segre products.

Definition 17. (see [HeHiR]) A poset P is simple if there is no element of P which is
comparable with any other element of P .

Tensor Products:
Let P be a not simple poset. Then there exists p ∈ P such that p is comparable with

any other element of P . Put P1 = {q ∈ P | q < p} and P2 = {q ∈ P | q > p}. Then
R(P ) ≃ R1 ⊗R2

holds. Moreover, it is easy to see that

rank∗P = rank∗P1 + rank∗P2 + 2,

rankP = rankP1 + rankP2 + 2,

rank∗P = rank∗P1 + rank∗P2 + 2.

Hence we have
rank∗P = rankP = rank∗P

⇕

rank∗P1 = rankP1 = rank∗P1 and rank∗P2 = rankP2 = rank∗P2.

Segre Products:
Let P be a not connected (that is, its Hasse diagram is not connected) poset. Then

there exist two non-empty subposets P1 and P2 of P such that the elements of P1 and P2

are incomparable. Then
R(P ) ≃ R1#R2

holds. Moreover, it is easy to see that

rank∗P = max{rank∗P1, rank
∗P2},

rankP = max{rankP1, rankP2},
rank∗P = min{rank∗P1, rank∗P2}.

Hence we have

rank∗P1 = rankP1 and rank∗P2 = rankP2 ⇒ rank∗P = rankP

and
rankP = rank∗P ⇒ rankP1 = rank∗P1 and rankP2 = rank∗P2
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holds. If P is pure, then the converses of the above assertion are also true, that is

rank∗P = rankP = rank∗P

⇕

rank∗P1 = rankP1 = rank∗P1 and rank∗P2 = rankP2 = rank∗P2

holds since rankP = rankP1 = rankP2.
By using these observation, we prove the following proposition.

Proposition 18. Let P be a finite poset, and R = R(P ) the Hibi ring made from P . Let
m = R+ be the graded maximal ideal of R. Then if R is trivial, then rank∗P = rankP ,
that is, cm(m) = −a(R). Moreover, if P is pure, the converse is also true.

Proof. The first assertion is clear from the above observation and the fact that cm(m) =
−a(R) if R is a polynomial ring.

We prove that the converse is true if P is pure. Assume that R is not trivial. From the
above observation, we may assume that P is simple and connected.

Firstly, we refer the following lemma.

Lemma 19. ([HeHiR, Lemma 3.5]) Every simple and connected poset P possesses a
saturated ascending chain A = c1 → cm (m ≥ 2) together with a, b ∈ P satisfying the
following condition：(i) cm ⋗ b; (ii) a⋗ c1; (iii) c1 ̸≤ b; (iv) a ̸≤ cm.

Hence, it is enough to show that rank∗P > rankP under the situation as in Lemma 3.5.
We consider three paths C1 = pmin → pmax, C2 = pmin → qmax and C3 = qmin → qmax as

the following:

c1 ��������a ��������

pmax ��������

pmin �������� qmin��������

b�������� cm��������
qmax��������

hhhh
hhhh

hhhh

hhhhhhhhhhhh

s2 +m− 2

m− 1

s1

s1 +m− 2

s2

We put length(pmin → c1) = s1 and length(cm → qmax) = s2. Since P is pure,

rankP = lengthC1 = lengthC2 = lengthC3 = s1 + s2 +m− 1.

–105–



Hence we have

length(a→ pmax) = s2 +m− 2, length(qmin → b) = s1 +m− 2.

Let C = qmin → cm → c1 → pmax be a path. Then it is easy to show that C satisfies a
condition (*). Moreover,

length∗C = (s2 +m− 1) + (s1 +m− 1)

= s1 + s2 + 2m− 2

> s1 + s2 +m− 1

= rankP

since m ≥ 2. Therefore we have rank∗P > rankP . □

In [HeHiR], Herzog, Hibi and Restuccia introduced the notion of strongly Koszulness
for homogeneous k-algebra, and they proved that a Hibi ring is strongly Koszul if and
only if it is trivial(see [HeHiR, Theorem 3.2]). Moreover, from [HWY], we can see that
for any Hibi ring R = R(P ) with the unique graded maximal ideal m, rankP = rank∗P if
and only if P is pure. Therefore, we get the following theorem:

Theorem 20 (see [CM], [HeHiR]). Let P be a finite poset, and R = R(P ) the Hibi ring
made from P . Let m = R+ be the graded maximal ideal of R. The the following assertions
are equivalent:

(1) R is trivial and Gorenstein.
(2) R is strongly Koszul and Gorenstein.
(3) R satisfies cm(m) = −a(R) = fpt(m).
(4) P satisfies rank∗P = rankP = rank∗P .
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DERIVED GABRIEL TOPOLOGY, LOCALIZATION AND
COMPLETION OF DG-ALGEBRAS

HIROYUKI MINAMOTO

Abstract. Gabriel topology is a special class of linear topology on rings, which plays
an important role in the theory of localization of (not necessary commutative) rings [].
Several evidences have suggested that there should be a corresponding notion for dg-
algebras. In my talk I introduced a notion of Gabriel topology on dg-algebras, derived
Gabriel topology, and showed its basic properties.

In the same way as the definition of derived Gabriel topology on a dg-algebra, we gave
the definition of topological dg-modules over a dg-algebra equipped with derived Gabriel
topology. An important example of topology on dg-modules is the finite topology on the
bi-dual module M⊛⊛ of a dg-module M by another dg-module J .

We show that a derived bi-duality dg-module is quasi-isomorphic to the homotopy
limit of a certain tautological functor. This is a simple observation, which seems to be
true in wider context. From the view point of derived Gabriel topology, this is a derived
version of results of J. Lambek about localization and completion of ordinary rings.
However the important point is that we can obtain a simple formula for the bi-duality
modules only when we come to the derived world from the abelian world.

We give applications. 1. we give a generalization and an intuitive proof of Efimov-
Dwyer-Greenlees-Iyenger Theorem which asserts that the completion of commutative
ring satisfying some conditions is obtained as a derived bi-commutator. (We can also
prove Koszul duality for dg-algebras with Adams grading satisfying mild conditions.)
2. We prove that every smashing localization of dg-category is obtained as a derived
bi-commutator of some pure injective module. This is a derived version of the classical
results in localization theory of ordinary rings.

These applications show that our formula together with the viewpoint that a derived
bi-commutator is a completion in some sense, provide us a fundamental understanding
of a derived bi-duality module.

Key Words: Derived bi-duality, homotopy limit, dg-algebras, completion, localiza-
tion, Koszul duality, Lambek Theorem.

1. Introduction

The following situation and its variants are ubiquitous in Algebras and Representation
theory:

Let R be a ring, J an R-module and E := EndR(J)
op the opposite ring of the endo-

morphism ring of J over R. Then we have the duality

(−)∗ := HomR(−, J) : ModR⇄ (ModE)op : HomE(−, J) =: (−)∗

and the unite map ϵM :M →M∗∗ is given by the evaluation map:

ϵM(m) : HomR(M,J)→ J, f 7→ f(m) for m ∈M.

The detailed version of this paper will has been submitted for publication elsewhere.
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The bi-dual R∗∗ of R is called the bi-commutator (or the double centralizer) and denoted
by BicR(J). The following is more popular expression (or the usual definition) of the
bi-commutator

BicR(J) := EndE(J)
op.

The bi-commutator has a ring structure and the evaluation map ϵR : R→ BicR(J) become
a ring homomorphism. In particular, the case where the canonical algebra homomorphism
R→ BicR(J) become an isomorphism, the module J is said to have the double centralizer
property. Dualities together with evaluation maps, bi-commutators and double centralizer
properties are one of the central topics in Algebras and Representation theory. (See e.g.
[5, 8, 10, 11, 17, 26])

Recently the concern with the derived bi-commutators (or the derived double centraliz-
ers) has been growing:

Let R a ring (or more generally dg-algebra) J an (dg-)R-module and E := REndR(J)op
the opposite dg-algebra of the endomorphism dg-algebra of J . Then the derived bi-
commutator is defined by

BicR(J) := REndE(J)
op.

There also exists a canonical algebra homomorphism R → BicR(J). In particular, the
case where the canonical algebra homomorphism R → BicR(J) become an isomorphism,
the module J is said to have the derived double centralizer property. Derived double
centralizer property for special modules has been extensively studied as a part of Koszul
duality. (See e.g. [12, 22].)

In [2, Section 4.16], Dwyer-Greenlees-Iyenger call a pair (R, J) dc-complete, in the case
where J has derived double centralizer property. They proved the following surprising
and impressive theorem, which we will refer as completion theorem.

Theorem 1 ([2],[3]). Let R be a commutative Noetherian ring and a an ideal such that

the residue ring R/a is of finite global dimension. We denote by R̂ the a-adic completion.
Then we have a quasi-isomorphism

R̂ ≃ BicR(R/a)

where BicR(R/a) is the derived bi-commutator of R/a over R.

From the view point of Derived-Categorical Algebraic Geometry (DCAG), all important
procedure in Algebraic Geometry should have derived-categorical interpretation. In [7]
Kontsevich claimed that formal completion for a scheme is obtained as a derived bi-
commutator. Following this idea, Efimov [3] introduced the derived bi-commutator of
subcategory ⌋J ⊂ D(R) and proved a scheme version of completion theorem. Since formal
completion plays an important role in Algebraic Geometry, completion theorem and its
scheme version are expected to become important in DCAG. Therefore it is desirable to
obtain better understanding of this theorem.

In the proof of completion theorem, Grothedieck vanishing theorem for local cohomol-
ogy is used. Since it is special theorem for commutative Noetherian rings, it is preferable
to obtain more categorical proof. Recently Porta, Shaul and Yekutieli [21] generalized
completion theorem for a commutative ring R and a weakly proregular ideal a based on
their work [20] about the derived functors of the completion functors and the torsion
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functors. However it is still remain unclear that to what extent we can obtain a transcen-
dental outcome by a homological operation with finite input. In this paper we establish a
simple description of the derived bi-commutator, which enable us to give a more intuitive
proof of completion theorem. Actually the description is given by a certain tautological
homotopy limit, and hence seems to state that every derived bi-commutator is completion
in some sense. (We can make this precise by introducing the notion of derived Gabriel
topology.)

For this purpose, we study derived bi-duality:

(−)⊛ := RHomR(−, J) : D(R)⇄ D(E)op : RHomE(−, J) =: (−)⊛.
For a special class of modules J , derived bi-duality is already studied in the context of
Gorenstein dg-algebras [4, 6, 13]. We consider general dg-modules J and establish a simple
description of the derived bi-dual module M⊛⊛ via a certain tautological homotopy limit.
This is the main result of this paper. As an application other than completion theorem,
we discuss smashing localization of dg-categories.

As mentioned above, derived bi-dualities, derived bi-commutator and derived double
centralizer property are expected to play prominent roles in Algebras, Representation
theory, Derived-Categorical Algebraic Geometry. Our main theorem together with the
view point that derived bi-commutators are completion in some sense, would have many
applications. Moreover since the main theorem is proved in a formal argument, the
same formula should hold in more wider context. Bi-duality is a basic operation which
is ubiquitous in mathematics. So it can be expect that our main theorem become an
indispensable tool in many area of mathematics.

Below we give an outline, in which the readers see that if we omit homotopy theoretical
details, things become very simple. However, we will see that it is inevitable to work with
homotopy theory.

2. Derived bi-duality via homotopy limit

Let A be a dg-algebra and J a dg A-module. We denote E := (REndA(J))
op be the

opposite dg-algebra of the endomorphism dg-algebra. Then J has a natural dg E-module
structure. We obtain the dualities

(−)⊛ := RHomA(−, J) : D(A)⇄ D(E)op : RHomE(−, J) =: (−)⊛.
There are natural transformations ϵ : 1D(A) → (−)⊛⊛ induced from evaluation morphisms.

We denote by ⟨J⟩ the smallest thick subcategory containing J . Namely ⟨J⟩ is the full
triangulated subcategory of D(A) consisting those objects which constructed from J by
taking cones, shifts, and direct summands finitely many times.

LetM be a dg A-module. We denote by ⟨J⟩M/ the under category. Namely, the objects
of ⟨J⟩M/ are morphisms k : M → K with K ∈ ⟨J⟩ and the morphisms from k : M → K
to ℓ : M → L are the morphisms ψ : K → L in ⟨J⟩ such that ℓ = ψ ◦ k. This category
⟨J⟩M/ comes naturally equipped with the co-domain functor Γ : ⟨J⟩M/ → D(A) which
sends an object k :M → K to its co-domain K.

Γ : ⟨J⟩M/ → D(A), [k :M → K] 7→ K.

The following simple formula is the main theorem.
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Theorem 2. We have the following quasi-isomorphism

M⊛⊛ ≃ holim
⟨J⟩M/

Γ

Remark 3. In the above Theorem 2, Theorem 4 and Corollary 5, we omit homotopy
theoretical details. For the rigorous statements see [14].

To explain an idea of a proof, we give the following heuristic arguments. First we claim
that if K belongs to ⟨J⟩, then the evaluation map ϵK : K → K⊛⊛ is an isomorphism.
Indeed the case K = J is clear. Since the bi-dual (−)⊛⊛ is an exact functor, we can check
the claim for general K ∈ ⟨J⟩.

It follows from the above claim that every morphism k :M → K with K ∈ ⟨J⟩ factors
though ϵM :M →M⊛⊛.

M

k
��

ϵM // M⊛⊛

k⊛⊛
��

K K⊛⊛
ϵ−1
K

∼=
oo

It seems that the derived bi-dual module M⊛⊛ satisfies one of the two conditions of the
limit of the family M → K of morphisms. In the following way, we can catch a glimpse
of the other condition that we can reach from K ∈ ⟨J⟩ to M⊛⊛:

It is well-known that a dg-module is obtained as a filtered homotopy colimit perfect
modules. Hence the dg E-module M⊛ is quasi-isomorphic to the homotopy colimit of
some family {Pλ}Λ of perfect E-modules.

(2.1) M⊛ ≃ hocolim
Λ

Pλ

Applying the dual functor (−)⊛ to this quasi-isomorphism, we obtain the following (quasi-
)isomorphisms

M⊛⊛ ≃ (hocolim
Λ

Pλ)
⊛ ≃ holim

Λ
(P⊛λ ).

It is clear that E⊛ ≃ J . Therefore, since Pλ is a perfect E-module, the dual P⊛λ belongs
to ⟨J⟩. This shows that we can reach from K ∈ ⟨J⟩ to M⊛⊛. Actually the following
Theorem 4 which is a version of the quasi-isomorphism (2.1) is a key of the proof of the
main theorem.

Theorem 4. Let X be a dg E-module. We denote by Perf E the category of perfect E-
modules. Then the over category (Perf E)/X comes naturally equipped with the domain
functor

Υ : Perf E → D(E), [p : P → X] 7→ P.

Then the canonical morphism
hocolim
(Perf E)/X

Υ→ X

is a quasi-isomorphism.

Since the bi-dual A⊛⊛ of A is naturally isomorphic to the derived bi-commutator
BicA(J),

A⊛⊛ = RHomE(RHomA(A, J), J) ∼= RHomE(J, J) = BicA(J)
in particular, we have the following corollary.
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Corollary 5.

BicA(J) ≃ holim
⟨J⟩A/

Γ.

These theorem and corollary provide us a fundamental understanding of derived bi-
duality functors.

3. Completion via derived bi-commutator

As the first application, we generalize the completion theorem and give an intuitive
proof.

Let R be a ring and a a two-sided ideal. An (right) R-module M is called a-torsion
if for any m ∈ M there exists n ∈ Z≥1 such that man = 0. We denote by a-tor the
full subcategory of ModR consisting of a-torsion modules. We denote by Da-tor(R) the
full subcategory of D(R) consisting of complexes with a-torsion cohomology groups. We
denote by D(a-tor) the full subcategory of D(R) consisting of complexes each term of
which is a-torsion module.

Theorem 6. Assume that the canonical inclusion functor D(a-tor) → Da-tor(R) gives

an equivalence and that R/an belongs to ⟨R/a⟩ for n ≥ 0. We denote by R̂ the a-adic
completion. Then we have a quasi-isomorphism

BicR(R/a) ≃ R̂.

“Proof ”.
Assumption. In this “Proof” we assume that holim = lim. We identify quasi-isomorphisms
with isomorphisms.

We denote by I the (non-full) subcategory of ⟨R/a⟩R/ which consists of objects πn :
R→ R/an for n ≥ 1 and of morphisms πm → πn induced from the canonical projections
φm,n : R/am → R/an for m ≥ n. In other words, I is the image of the functor (Z≥1)

op →
D(A) which sends an object n to πn and a morphism m → n to πm → πn where we
consider the ordered set Z≥1 as a category in the standard way. Therefore we have

lim
I

Γ|I ∼= lim
n→∞

R/an ∼= R̂.

Thanks to Corollary 5 the problem is reduced to show that limI Γ|I ∼= lim⟨R/a⟩R/
Γ. There-

fore it is enough to prove that I is a left cofinal subcategory of ⟨R/a⟩R/. Namely only we
have to show that the over category I/k is non-empty and connected for each k ∈ ⟨R/a⟩R/.

Let k : R → K be an object of ⟨R/a⟩R/. It is clear that ⟨R/a⟩ contained in Da-tor(R).

Since we assume that D(a-tor) ∼→ Da-tor(R), K belongs to D(a-tor). It follows that K is
(quasi-)isomorphic to a complex each term of which is an a-torsion modules. Therefore a
morphism k : R→ K canonically factors through some cyclic a-torsion module R/an.

R

πn

��

k

""E
EE

EE
EE

EE

R/an
ψ

// K
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In other words, there exists a morphism ψ : πn → k in ⟨R/a⟩R/. This proves the non-
emptiness of I/k. Since the factorization k = ψ ◦ πn is canonical, we see that I/k is
connected. This shows that I is left co-final in ⟨R/a⟩R/ and completes the “proof”. “□”

In [21] Porta, Shaul and Yekutieli generalized completion theorem (Theorem 1) by using
a compact generator of Da-tor(R).

Theorem 7 ([21, Theorem 4.2]). Let R be a commutative ring and a a weakly pro-regular
ideal. Let K be a compact generator of Da-tor(R). Then we have the following quasi-
isomorphism of dg-algebras under R.

BicR(K) ≃ R̂.

By our method, we give a generalization of this theorem.

Theorem 8. Let R be a ring and a an two-sided ideal such that the canonical functor
D(a-tor) → Da-tor(R) gives an equivalence. Let K be a compact generator of Da-tor(R).
Then we have a quasi-isomorphism

BicR(K) ≃ R̂.

It is proved by [20, Corollary 3.31] that if a ring R is commutative and an ideal a is
weakly pro-regular, then the canonical functor D(a-tor)→ Da-tor(R) gives an equivalence.
Therefore Theorem 8 implies Theorem 7.

Remark 9. The conditions on Theorem 6 and Theorem 8 are not practical. The reason
why we put these artificial conditions is not to obtain generality but to clarify to what
extent the derived bi-commutator gives the completion.

The condition that the canonical functor cana : D(a-tor) → Da-tor(R) gives an equiv-
alence is satisfied if the subcategory a-tor is closed under taking injective hull. This
condition is satisfied if a right ideal a has the Artin-Rees property. In particular, in the
case where a ring R is commutative Noetherian, for any ideal a the functor cana is an
equivalence. As we mentioned before, if a ring R is commutative and an ideal a is weakly
pro-regular, then the canonical functor cana is an equivalence. It should be noted that
if R is commutative Noetherian, any ideal a is weakly pro-regular (See [1, 20, 23]). It
is showed in [20, Example 3.35] that a weakly pro-regular ideal in non-Noetherian ring
naturally appears.

The following question arises: find a necessary and sufficient condition on rings R and
ideals a such that the canonical functor cana is an equivalence.

4. Smashing localization via derived bi-commutator

First we recall the following classical fact.

Theorem 10 ([10, Corollary 3.4.1], [17, Theorem 7.1]). Let f : R → S be a (right)
Gabriel localization of a ring R, that is, f is an epimorphism in the category of rings and
S is left flat over R. Let J be a co-generator of the torsion theory which corresponds to
the Gabriel localization f . If we take a product J ′ := Jκ of copies of J over large enough
cardinal κ, then we have an isomorphism

BicR(J
′) ∼= S.
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In this section we prove a derived version. A morphisms f : A → B of dg-algebras
is called smashing localization (or homological epimorphism) if the restriction functor
f∗ : D(B) → D(A) is fully faithful. Recall that a ring homomorphism R → S is an
epimorphism in the category of rings if and only if the restriction functor f∗ : ModS →
ModR is fully faithful. Therefore smashing localization can be considered as a dg-version
of epimorphisms of rings.

Theorem 11. Let A → B be a smashing localization of dg-algebras and J be a pure
injective co-generator of D(B). Then we have a quasi-isomorphism over A

BicA(f∗J ′) ≃ B.
where J ′ = JΠκ is a large enough product of J .

The notion of pure injective co-generator which is introduced by Krause [9] is a dg-
version of injective co-generator for the module category ModR of an ordinary ring R.

Remark 12. Nicolás and Saorin [18] proved that for any smashing localization F : D(A)→
S, there exists a subcategory I ⊂ D(A) such that the functor Lι∗I : D(A)→ D(BicA(I))
induced from the canonical morphism ιI : A → BicA(I) is equivalent to F .

In our way of the proof, an essential point is the following theorem.

Theorem 13. Let J a pure injective co-generator of D(A) and M a dg A-module. If we
take a product J ′ = JΠκ of copies of J over large enough cardinal κ, then the evaluation
morphism is a quasi-isomorphism

ϵM :M
∼→M⊛⊛

where the bi-dual is taken over J ′.

From the view point that a derived bi-commutator is a completion, we can give an
intuitive proof of Theorem 13 by using Theorem 2. (In the case where A is an ordinary
ring and M is a module, the same results is already proved by Shamir [24] in a different
way. ) In the rest of this subsection, we use the same assumption with that of “Proof” of
Theorem 6.

For the sake of simplicity we deal with the case where A is an ordinary ring, M is
an A-module and J is an injective co-generator of ModA. Then the module M has an
injective resolution by the products of J

0→M → JΠκ0 → JΠκ1 → JΠκ2 → · · · .
We can reduce the problem to the following theorem by setting κ := sup{κi | i ∈ Z}.

Theorem 14. Let M
∼−→ J• be an injective resolution of M .

(4.1) 0→M → J0 → J1 → J2 → · · · .
Assume that J i is a direct summand of J . Then the evaluation map ϵM :M →M⊛⊛ is a
quasi-isomorphism.

We denote by In the totalization of the n-th truncated resolution.

In := tot[J0 → J1 → · · · → Jn].
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Then by assumption the complex In belongs to the thick subcategory ⟨J⟩ generated by
J . Therefore the canonical morphism πn :M → In belongs to the under category ⟨J⟩M/.
Moreover we have a canonical morphism φn+1,n : In+1 → In for n ≥ 0 which is compatible
with πn.

M

πn

��

πn−1

&&LL
LLL

LLL
LLL

LL

· · ·
φn+1,n

// In
φn,n−1

// In−1

φn−1,n−2
// · · · .

Note that since the limit limn→∞ In is the totalization of the injective resolution (4.1),
the morphisms {πn} induces a (quasi-)isomorphism M → limn→∞ In. We will see that
the family {πn :M → In}n≥0 is an “approximation” for the morphisms k :M → K with
K ∈ ⟨J⟩.

We denote by I the subcategory of ⟨J⟩M/ consisting of objects πn : M → In and of
morphisms ϕm,n : πm → πn so that I is isomorphic to (Z≥0)

op. Then it is clear that

lim
I

Γ|I ∼= lim
n→∞

In ≃M.

Therefore by “Theorem” 2 it is enough to prove that the subcategory I ⊂ ⟨J⟩M/ is left
co-final. Namely for each k ∈ ⟨J⟩M/ the over category I/k is non-empty and connected.

We recall the following elementary fact from Homological algebra: Let M ′ be another
A-module and M

∼−→ J ′• an injective resolution. Assume that an A-homomorphism
f :M →M ′ is given. Then (1) there exists a morphism ψ : J• → J ′• of complexes which
completes the commutative diagram

M

f
��

// J•

ψ
��

M ′ // J ′•.

(2) This morphism ψ is not uniquely determined. (3) However it is uniquely determined
up to homotopy.

Using the same methods of the proof of (1), we can check that I/k is non-empty. By
the same reason with (2), the category I/k is not connected. However in the same way of
the proof of (3), we can verify that I/k is “homotopically connected”. We explain detail
in the special case where the co-domain K of k :M → K is an injective module:

Since the canonical morphism π0 : M → I0 = J0 is injective, there exists an extension
ψ : I0 → K of π0. This shows that I/k ̸= ∅. However there is no canonical choice of an
extension. Moreover since the degree 0-part of the canonical morphism φn,0 : In → I0 is
the identity map 1J0 : J0 → J0, two extensions ψ and ψ′ are not connected to each other
in I/k, unless ψ = ψ′. Nevertheless we can see that for any pair (ψ, ψ′) of extensions,
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there exists a homotopy commutative diagram

π1

φ1,0

��

φ1,0

// π0

ψ
��

π0

ψ′
// k.

Hence the objects ψ and ψ′ of I/k is homotopically connected to each other in I/k. This
shows that it is inevitable to work with homotopy theory.

5. Koszul duality for Adams graded dg-algebras
(a part of joint work with A. Takahashi)

The following theorem will be proved and applied in [16].

Theorem 15. Let A := A0 ⊕ A1 ⊕ A2 ⊕ · · · be an N-Adams graded dg-algebra. If the
A0-modules An satisfies a mild condition. Then we have a quasi-isomorphism

BicA(A/A≥1) ≃ A

The proof is given in the same way of the proof of Theorem 6. Here we consider the
Adams grading as a “linear topology” on A. The condition is that A is “complete” with
respect to this topology.

6. From the view point of Derived Gabriel topology

Gabriel topology is a special class of linear topology on rings, which plays an important
role in the theory of localization of rings [25]. The notion of derived Gabriel topology,
which is a derived version of Gabriel topology, is introduced in [15]. From the view point
of derived Gabriel topology, Theorem 2 says that the derived bi-dual M⊛⊛ equipped with
“the finite topology” is the “J-adic completion” ofM . In this sense Theorem 2 is inspired
by the following results of J. Lambek.

Theorem 16 ([10, Theorem 4.2],(See also [11, Theorem 3.7])). Let R be a ring and J an
injective R-module. For an R-moduleM , we denote by Q(M) the module of quotients with
respect to J . Assume that every torsionfree factor module of Q(M) is J-divisible. Then
the (ordinary) bi-duality HomEndR(J)(HomR(M,J), J) equipped with the finite topology is
the J-adic completion of Q(M).

Recently many results in ring theory have been becoming to have their derived analogue
([19, 27]). However it can be said that the statements of these derived versions are parallel
to that of the original versions. Contrary to this, our derived version of Lambek theorem
is definitely improved from the original version. The assumptions and conditions in the
original version is removed in the derived version. So the point is that we can obtain a
simple formula for the bi-duality modules only when we come to the derived world from
the abelian world.

At the first sight, three theorems below concerning on derived bi-dualities

• Completion theorem
• Localization theorem

–116–



• Koszul duality

seem to be theorems of different kind. However in the present paper we will see that
these are consequences of a simple formula, which is the main theorem 2. From the view
point of derived Gabriel topology, these theorems are consequences of completeness of
each algebras with respect to appropriate topologies.
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SELFINJECTIVE ALGEBRAS AND QUIVERS WITH POTENTIALS

YUYA MIZUNO

Abstract. We study silting mutations (Okuyama-Rickard complexes) for selfinjective
algebras given by quivers with potential (QPs). We show that silting mutation is com-
patible with QP mutation. As an application, we get a family of derived equivalences of
Jacobian algebras.

1. Introduction

Derived categories are nowadays considered as an essential tool in the study of many
areas of mathematics. In the representation theory of algebras, derived equivalences of
algebras have been one of the central themes and extensively investigated. It is well-
known that endomorphism algebras of tilting complexes are derived equivalent to the
original algebra [20]. Therefore it is an important problem to give concrete methods to
calculate endomorphism algebras of tilting complexes. In this note, we focus on one of
the fundamental tilting complexes over selfinjective algebras, known as Okuyama-Rickard
complexes, which play an important role in the study of Broué’s abelian defect group
conjecture. From a categorical viewpoint, they are nowadays interpreted as a special case
of silting mutation [3]. We provide a method to determine the quivers with relations of
the endomorphism algebras of Okuyama-Rickard complexes when selfinjective algebras
are given by quivers with potential (QPs for short).

The notion of QPs was introduced by [7], which plays a significant role in the study of
cluster algebras (we refer to [13]). Recently it has been discovered that mutations of QPs
(Definition 2) give rise to derived equivalences [5, 15, 18, 22]. The aim of this note is to
give a similar (but different) type of derived equivalences by comparing QP mutation and
silting mutation (Definition 4).

Conventions. Let K be an algebraically closed field and D := HomK(−, K). All mod-
ules are left modules. For a finite dimensional algebra Λ, we denote by modΛ the category
of finitely generated Λ-modules and by addM the subcategory of modΛ consisting of di-
rect summands of finite direct sums of copies of M ∈ modΛ. The composition fg means
first f , then g. For a quiver Q, we denote by Q0 vertices and Q1 arrows of Q and by
a : s(a)→ e(a) the start and end vertices of an arrow or path a.

2. Preliminaries

2.1. Quivers with potential. We recall the definition of quivers with potential. We
follow [7].

The detailed version of this paper will be submitted for publication elsewhere.
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• Let Q be a finite connected quiver without loops. We denote by KQi the K-vector
space with basis consisting of paths of length i in Q, and by KQi,cyc the subspace of KQi

spanned by all cycles. We denote the complete path algebra by

K̂Q =
∏
i≥0

KQi

and by JK̂Q the Jacobson radical of K̂Q. A quiver with potential (QP) is a pair (Q,W )

consisting of a finite connected quiver Q without loops and an elementW ∈
∏

i≥2KQi,cyc,

called a potential. For each arrow a in Q, the cyclic derivative ∂a : K̂Qcyc → K̂Q is
defined as the continuous linear map satisfying ∂a(a1 · · · ad) =

∑
ai=a

ai+1 · · · ada1 · · · ai−1

for a cycle a1 · · · ad. For a QP (Q,W ), we define the Jacobian algebra by

P(Q,W ) = K̂Q/J (W ),

where J (W ) = ⟨∂aW | a ∈ Q1⟩ is the closure of the ideal generated by ∂aW with respect
to the JK̂Q-adic topology.

• A QP (Q,W ) is called trivial if W is a linear combination of cycles of length 2

and P(Q,W ) is isomorphic to the semisimple algebra K̂Q0. It is called reduced if W ∈∏
i≥3KQi,cyc.
Following [9], we use this terminology.

Definition 1. We call a QP (Q,W ) selfinjective if P(Q,W ) is a finite dimensional self-
injective algebra.

Next we recall the definition of mutation of QPs.

Definition 2. For each vertex k in Q not lying on a 2-cycle, we define a new QP
µ̃k(Q,W ) := (Q′,W ′) as follows.

(a) Q′ is a quiver obtained from Q by the following changes.
• Replace each arrow a : k → v in Q by a new arrow a∗ : v → k.
• Replace each arrow b : u→ k in Q by a new arrow b∗ : k → u.

• For each pair of arrows u
b→ k

a→ v, add a new arrow [ba] : u→ v
(b) W ′ = [W ] + ∆ is defined as follows.

• [W ] is obtained from the potential W by replacing all compositions ba by the

new arrows [ba] for each pair of arrows u
b→ k

a→ v.

• ∆ =
∑
a,b∈Q1

e(b)=k=s(a)

[ba]a∗b∗.

Then mutation µk(Q,W ) is defined as a reduced part of µ̃k(Q,W ) (we refer to [7]).

2.2. Silting mutation. The notion of silting objects was introduced by [14], which is
a generalization of tilting objects. Recently its theory has been rapidly developed and
many connections have been discovered, for example [6, 3, 8, 16]. In this subsection, we
briefly recall their definitions and properties.

Now let Λ be a finite dimensional algebra and T := Kb(projΛ) be the homotopy category
of bounded complexes of finitely generated projective Λ-modules.

–120–



Definition 3. Let T be an object of T . We call T silting (respectively, tilting) if
HomT (T, T [i]) = 0 for any positive integer i > 0 (for any integer i ̸= 0) and satisfies
T = thickT , where thickT denote by the smallest thick subcategory of T containing T .

We call a morphism f : X → Y left minimal if any morphism g : Y → Y satisfying
fg = f is an isomorphism. For an object M ∈ T , we call a morphism f : X → M ′

left (addM)-approximation of X if M ′ belongs to addM and HomT (f,M
′′) is surjective

for any object M ′′ in addM . Dually we define a right minimal morphism and a right
(addM)-approximation.

Definition 4. Let T be a basic silting object in T and take an arbitrary decomposition
T = X ⊕M . We take a minimal left (addM)-approximation f : X → M ′ of X and a
triangle

X
f // M ′ // Y // X[1].

We put µX(T ) := Y ⊕M and call it a left silting mutation of T with respect to X.
Dually we define a right silting mutation.

We recall an important result of silting mutation.

Theorem 5. [3, Theorem 2.31] Any mutation of a silting object is again a silting object.

Next we give some notations for our setting.
Let Q be a finite connected quiver and Λ := KQ/(R) be a finite dimensional algebra.

We denote by {ek | k ∈ Q0} a complete set of primitive orthogonal idempotents of Λ.
Take a set of vertices I := {k1, . . . , kn} ⊂ Q0 and we denote by eI := ek1 + · · · + ekn and
µI(Λ) := µΛeI (Λ). We remark that an Okuyama-Rickard complex is nothing but a silting
object of T [3, Theorem 2.50].

By Theorem 5, µI(Λ) is always a silting object of T , but it is not necessarily a tilting
object. However, for selfinjective algebras, it is a tilting object if it satisfies a condition
given by Nakayama permutations.

Definition 6. Let Λ be a selfinjective algebra above. Then there exists a permutation
σ : Q0 → Q0 satisfying D(ekΛ) ∼= Λeσ(k) for any k ∈ Q0, where ν := DHomΛ(−,Λ) :
mod Λ→ mod Λ is the Nakayama functor. We call σ the Nakayama permutation of Λ.

Note that ΛeI ∼= ν(ΛeI) if and only if I = σI. The following result is useful. We refer
to [1, 3] for the proof.

Proposition 7. Let Λ be a selfinjective algebra above. Then µI(Λ) is a tilting object in
T if and only if I = σI.

3. Main results

For a set of vertices I := {k1, . . . , kn} ⊂ Q0, we assume the following conditions.

(a1) Any vertex in I is not contained in 2-cycles in Q.
(a2) There are no arrows between vertices in I.
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In this case, since the mutation is independent of the choice of order of mutations, we
can define the successive mutation

µI(Q,W ) := µk1 ◦ · · · ◦ µkn(Q,W ).

Then our main result is the following.

Theorem 8. Let (Q,W ) be a selfinjective QP and Λ := P(Q,W ). Let I be a set of vertices
of Q0 satisfying the conditions (a1) and (a2). Then we have a K-algebra isomorphism

EndKb(projΛ)(µI(Λ)) ∼= P(µI(Q,W )).

We will give the proof in the next section. Combining with Theorem 7, we have the
following result.

Corollary 9. Let I be a set of vertices of Q0 satisfying σI = I and the conditions (a1)
and (a2). Then P(Q,W ) and P(µI(Q,W )) are derived equivalent.

Proof. By Theorem 7, µI(Λ) is a tilting object of T . Then Λ and EndKb(projΛ)(µI(Λ)) are
derive equivalent [20] and the result follows from Theorem 8 □

Moreover, since selfinjectivity is preserved by derived equivalence [4], we have the fol-
lowing result, which is given in [9, Theorem 4.2].

Corollary 10. Let I be a set of vertices of Q0 satisfying σI = I and the conditions (a1)
and (a2). Then µI(Q,W ) is a selfinjective QP.

We note that the Nakayama permutation of µI(Q,W ) is again given by the same
permutation [9, Proposition 4.4.(b)]. By this corollary, we can apply Corollary 9 to new
QPs repeatedly and, consequently, obtain a lot of derived equivalences.

Example 11. Let (Q,W ) be the QP given as follows

1
a1
�����
�

2
a2
����
��

6

a6^^====

3 a3 // 4 a4 // 5,

a5^^====

W = a1a2a3a4a5a6.

Then (Q,W ) is a selfinjective QP with a Nakayama permutation (153)(264). Let Λ :=
P(Q,W ) and T := Kb(projΛ) and take a silting object in T

µ1(Λ) =


−1

Λe1
a1−→

0

Λe2
⊕

Λ(1− e1).

Then by Theorem 8, we have an isomorphism

EndT (µ1(Λ)) ∼= P(µ1(Q,W )),

where µ1(Q,W ) is the QP given as follows
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1 a∗6
��=

===

2

a∗1 @@����

a2
����
��

6
[a6a1]

oo

3 a3 // 4 a4 // 5,

a5^^<<<<

[a6a1]a
∗
1a

∗
6 + [a6a1]a2a3a4a5.

Next we consider the σ-orbit of the vertex 1 and let I = {1, 3, 5}. Then we have a
tilting object

µI(Λ) =


−1

Λe1 ⊕ Λe3 ⊕ Λe5

(
a1 0 0
0 a3 0
0 0 a5

)
−→

0

Λe2 ⊕ Λe4 ⊕ Λe6
⊕

Λ(1− eI).

Then we have an isomorphism

EndT (µI(Λ)) ∼= P(µI(Q,W )),

where µI(Q,W ) is the QP given as follows

1
a∗6

��=
==

==

2

a∗1
@@�����

[a2a3]
<<

��<<

6
a∗5

��>
>>

>>
[a6a1]oo

3

a∗2
AA�����

4a∗3oo
[a4a5]��

AA��

5,a∗4oo

[a6a1]a
∗
1a

∗
6 + [a2a3]a

∗
3a

∗
2 + [a4a5]a

∗
5a

∗
4 + [a6a1][a2a3][a4a5].

We note that, although P(µI(Q,W )) is selfinjective and derived equivalent to P(Q,W ),
P(µ1(Q,W )) is neither selfinjective nor derived equivalent to P(Q,W ).

Example 12. Let (Q,W ) be the QP given as follows

1 2 3

4 5 6

7 8 9,

//
OO

oo

��
OO

oo

��

//
OO

��
// oo

where the potential is the sum of each small squares. Then (Q,W ) is a selfinjective
QP with a Nakayama permutation (19)(28)(37)(46)(5). For σ-orbits I1 := {1, 9} and
I3 := {3, 7}, we have selfinjective QPs µI1(Q,W ) and µI3 ◦ µI1(Q,W ) and their Jacobian
algebras are derived equivalent to P(Q,W ).

1 2 3

4µI1 (Q,W )
−→ 5 6

7 8 9,

oo

��

oo
??���� ��

OO

oo

��

//
OO
����
��

OO

// //

1 2 3

4µI3◦µI1 (Q,W )
−→ 5 6

7 8 9.

oo

��

//
??���� �� ��

oo
OO

//
OO
����
��

OO

oo //

__????

��?
??

?
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Example 13. Let (Q,W ) be the QP associated with tubular algebra of type (2, 2, 2, 2)

1
a

yyttt
ttt

ttt
b
��

����
c
88

��8
8

d

%%KK
KKK

KKK
K

2

a′ %%KK
KKK

KKK
K 3

b′
88

��88

4

c′
��

����

5,

d′yysss
sss

sss
W = aa′e+ bb′e+ cc′e+ aa′f + λbb′f + dd′f, λ ∈ K \ {0, 1}.

6

e

OO

f

OO

Then (Q,W ) is a selfinjective QP [9] and the Nakayama permutation is the identity.
Thus mutation of the QP at any vertex admits a derived equivalence in this case. For
example, µ2(Q,W ) is the following QP with λ′ = λ

λ−1

1

b
��

����
c
88

��8
8

d

%%KK
KKK

KKK
K

2

a
99sssssssss

3

b′
88

��88

4

c′
��

����

5,

d′yysss
sss

sss
bb′e+ cc′e+ dd′e+ λ′bb′a′a+ dd′a′a.

6
a′

eeKKKKKKKKK

e

OO

Thus µ2(Q,W ) is a selfinjective QP and P(µ2(Q,W )) is derived equivalent to P(Q,W ).

Example 14. Let (Q,W ) be the QP given as follows

•

• •

• • •

• •

• • • •,

EE��� ��2
22

oo
FF��� ��2
22 FF��� ��2

22

oo oo

FF��� ��2
22 EE��� ��2

22

oo oo

where the potential is the sums of each small triangles. Then (Q,W ) is a selfinjective
QP and one can easily get a lot of derived equivalence classes of algebras by the same
procedures. See [9, Figure 4] for one of the concrete description. We refer to [12], which
enables one to compute quiver mutations immediately.
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POWER RESIDUES
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Let p < q be primes and we set

f :=
qp − 1

q − 1
and t :=

pq − 1

p− 1
.

Feit and Thompson [5] conjectured that f never divides t. If it would be proved, the proof
of their odd order theorem [6] would be greatly simplified (see [1] and [7]).
The inequality f < t may be trivial but here we confirm this as follows: It is easy for

p = 2 from 2q > q + 2 by q ≥ 3. Noting
x

log x
is strict increasing for x ≥ 3, we have

q

log q
>

p

log p
and hence pq > qp by q > p ≥ 3. Thus we have

pq − 1

p− 1
>
pq − 1

q − 1
>
qp − 1

q − 1
for q > p ≥ 3.

If q ≡ 1 mod p, in particular p = 2, then f never divides t. In fact, fℓ = t implies a
contradiction as follows:

1 ≡ t = fℓ = (qp−1 + · · ·+ 1)ℓ ≡ pℓ ≡ 0 mod p.

Contrary to the simple proof, this is important and fundamental in our discussions and it
shall be freely used without previous notices. In this paper, small Latin letters represent

integers in case no proviso and we use very often the notation s
p
= t in stead of s ≡ t mod p.

1. Common prime divisors of f and t

Using computer and Proposition 1,(2), Stephans [15] found that f and t have a
greatest common (prime) divisor 112643 = 2pq + 1 for primes p = 17 and q = 3313. This
example is so far of the only one with a common divisor (f, t) > 1. In case p = 2, (f, t) = 1.
In fact, if r is a common prime divisor of f = q + 1 and t = 2q − 1, then r is odd and
q is the order of 2 mod r. Hence r ≡ 1 mod q by Fermat little theorem. This implies a
contradiction r ≦ q + 1 < r since r is odd.

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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The next Proposition 1 follows in the range of rational integers.

Proposition 1 ([15], [4] and [11]). Assume r is a common prime divisor of f and t. Then
we have

(1) p is the order of q mod r and q is the order of p mod r
(2) r ≡ 1 mod 2pq.
(3) If p ≡ 3 mod 4 or q ≡ 3 mod 4, then r ≡ 1 mod 4.
(4) If p ≡ 3 mod 4 and q ≡ 1 mod 4, then f never divides t.

Proof. (1): It follows from the assumption that qp ≡ 1 mod r and pq ≡ 1 mod r. If
q ≡ 1 mod r, then 0 ≡ f = qp−1 + · · · + 1 ≡ p mod r and so r = p, which implies a
contradiction 0 ≡ t ≡ 1 mod p. Similarly, we have p ̸≡ 1 mod r.
(2): Since p is odd, f and r are odd. Thus (2) follows from (1) and Fermat little theorem.
(3): Let λp be the Legendre symbol by p. Since λr(p) = 1 by pq ≡ 1 mod r and λp(r) = 1

by (2), the quadratic reciprocity 1 = λr(p)λp(r) = (−1) p−1
2

r−1
2 = (−1) r−1

2 shows our result
for p and similarly for q.
(4): Using (3), we have a contradiction 1 ≡ f = qp−1 + · · ·+ q + 1 ≡ p ≡ 3 mod 4. 2

2. Results using Eisenstein reciprocity law

We set ζ = e
2πi
p for odd prime p and η := ζc(ζ − q) where c(q − 1)

p
= 1. Then η is

primary prime (see [9, p.206]) and f =
∏

σ∈G η
σ = N(η) where G is the Galois group of

Q(ζ) over Q.
We consider an integer g :=

∑p−1
a=1 λp(a)q

a for the Gauss sum g(λp) =
∑p−1

a=1 λp(a)ζ
a
p where

λp(a) is the Legendre symbol by p. Then we have g
η
= g(λp).More strongly, g2

f
= (−1) p−1

2 p
by a computation using qp ≡ 1 mod f as that of g(λp)

2. The next is easy from the definition
of p-th power residue symbol (see [9, p.205]).

Lemma 2. Let χA be the p-th power residue symbol by an integral ideal A ̸∋ p of Q(ζ).

(a) χA(−1) = 1.
(b) χα(β) = 1 where α, β are real and non unit elements in Q(ζ).

(c) χA(ζ) = ζ
N(A)−1

p .

Proof. (a): It follows from χA(−1) = χA((−1)p) = χA(−1)p = 1.

(b): χα(β) is real by χα(β) = χᾱ(β̄) = χα(β), where ¯ is a complex conjugate. 1 is the
only real root of xp = 1 for odd p.
(c): If a ≡ 1 and b ≡ 1 mod p, then it follows from (a− 1)(b− 1) ≡ 0 mod p2 that

ab− 1

p
≡ a− 1

p
+
b− 1

p
mod p.

Thus if χB(ζ) = ζ
N(B)−1

p and χC(ζ) = ζ
N(C)−1

p , then χBC(ζ) = ζ
N(BC)−1

p by N(BC) =
N(B)N(C). In case A is prime, (c) is clear by A ̸⊃ (p) = (1− ζ)p−1 and in general case,
it follows from the above. 2
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The Eisenstein reciprocity law (see [9, p.207]) is used freely in this section.

Theorem 3 (Eisenstein). χα(b) = χb(α) for a primary α ∈ Q(ζ) and b ∈ Z such that
p, α and b are relatively prime to each other.

For p = 3, we have the next results.

Proposition 4. Assume p = 3 and f divides t.

(1) f = q2 + q + 1 is prime.
(2) χη(g) = 1.

(3) f
4
= 1.

(4) q ≡ −1 mod 72.

Proof. (1) : If f is composite, then we have a contradiction (q + 1)2 < f = q2 + q + 1
using Proposition 1,(2) (see [4] and [11]).
(2): Since χη(−1) = 1 by Lemma 2,(a) and χη(3)

q = χη(3
q) = 1, we have the next by

q ≡ −1 mod 3.

χη(g)
2 = χη(g(λ3)

2) = χη(−1)χη(3) = 1.

(3): Since g2
f
= −3 and λf (3) = λf (3)

q = λf (3
q) = 1, we have

1 = λf (g
2) = λf (−1)λf (3) = (−1)

f−1
2 (see [4] and [11]).

(4): f = q2+q+1 is prime by (1) and (3, f) = 1 by Proposition 1, (2). Thus (f, g) = 1 since

g2
f
= −3 and so using the quadratic reciprocity on Jacobi symbols and g = q−q2 f

= 2q+1,

we have the next from q
12
= −1 by (3) that

λf (g) = λf (2q + 1) = (−1)
q2(q+1)

2 λ2q+1(f)

= λ2q+1(4f) = λ2q+1((2q + 1)2 + 3)

= λ2q+1(3) = (−1)qλ3(2q + 1) = −λ3(−1)
= 1.

Thus g ≡ a2 mod f for some a ∈ Z and (a, f) = 1. Hence −3 ≡ g2 ≡ a4 mod f and

1 ≡ af−1 ≡ (−3)
f−1
4 = (−3q)

q+1
4 ≡ (−1)

q+1
4 mod f.

Therefore q ≡ −1 mod 8 (see [4], [3], [8] and [16] in this order ).
Using cubic reciprocity or Eisenstein reciprocity law and Lemma 2, we have the next by
(2).

1 = χη(g)
2 = χη(2q + 1)2 = χ2q+1(η)

2

= χ2q+1(ω)
2 · χ2q+1((ω + 1/2)2)

= ω2((2q+1)2−1)/3 · χ2q+1(−3/4) = ω2((2q+1)2−1)/3

where ω = e
2πi
3 . Hence 8q(q + 1) ≡ 0 mod 9 (see [12]). 2

For p = 5, we have new results.

Proposition 5. If p = 5 and f divides t, then q
25
= −1 or q

25
= 2 or q

25
= 1/2.
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Proof. It follows from g = q(q − 1)2(q + 1) that

1 = χη(g)
2(q−1) = {χη(q)χη(q − 1)2χη(q + 1)}2(q−1)

and using freely Eisenstein reciprocity law (Theorem 3) and Lemma 2, the equations (2.1),
(2.2), (2.3) follow from each computation in the last of the proof.

χη(q)
2(q−1) = ζ2q·

q4−1
5(2.1)

χη(q − 1)4(q−1) = ζ2(q+1)· (q−1)4−1
5(2.2)

χη(q + 1)2(q−1) =

{
1 if q

5
= −1

ζ(q+1)· (q+1)4−1
5 if q

5

̸= −1
(2.3)

In case q
5
= −1, since values are 1 in (2.2) and (2.3), we obtain 2q(q4 − 1)

25
= 0 by the

power of ζ in (2.1) and so q
25
= −1 by 2q(q − 1)(q2 + 1)

5

̸= 0 using q
5
= −1.

In case q
5

̸= −1, considering the power of ζ,

2q(q4 − 1) + 2(q + 1)((q − 1)4 − 1) + (q + 1)((q + 1)4 − 1)
25
= 0.

It follows from the above and q(q + 1)
5

̸= 0 that

5q3 − 6q2 − 5q − 6
25
= 0.

This has solutions q
25
= 2 or q

25
= 1/2.

The computation of (2.1).

χη(q)
2(q−1) = χq(η)

2(q−1) = χq(ζ
c+1)2(q−1) = ζ2q·

q4−1
5 .

The computation of (2.2).

χη(q − 1)4(q−1) = χq−1(η)
4(q−1)

= χq−1(ζ
c)4(q−1)χq−1(ζ − 1)4(q−1)

= χq−1(ζ
4)χq−1(ζ − 1)4(q−1)

= χq−1(ζ
2(q+1))χq−1(ζ − 2 + ζ−1)2(q−1)

= ζ2(q+1)· (q−1)4−1
5 .

The computation of (2.3). In case q
5
= −1, setting s by q + 1 = 5es and (s, 5) = 1, we

have

χη(q + 1)2(q−1) = χs(η)
2(q−1)

= χs(ζ
c)2(q−1)χs(ζ + 1)2(q−1)

= χs(ζ
2)χs(ζ + 1)2(q−1)

= χs(ζ)
q+1χs(ζ + 2 + ζ−1)q−1 = 1.
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In case q
5

̸= −1,
χη(q + 1)2(q−1) = χq+1(ζ

c)2(q−1)χq+1(ζ + 1)2(q−1)

= χq+1(ζ
2)χq+1(ζ + 1)2(q−1)

= χq+1(ζ
q+1)χq+1(ζ + 2 + ζ−1)(q−1)

= ζ(q+1)· (q+1)4−1
5 . 2

3. Common index divisors

Let F = Q(µ) be a number field of dimension m over Q and let DF be the integer ring

of F. We set ∆(α1, α2, · · · , αm) := |α(ℓ)
k | where α

(ℓ)
k (0 ≦ ℓ ≦ m − 1) are conjugates of

αk ∈ F (1 ≦ k ≦ m).
For an integral basis η1, η2, · · · , ηm of DF , d(F ) := ∆(η1, η2, · · · , ηm)2 is called the dis-
criminant of F. For α ∈ F, d(α) := ∆(1, α, α2, · · · , αm−1)2 is also called the discriminant
of α. It is easy to see d(α) = I(α)2d(F ) where I(α) ∈ Z.
A prime number p is called a common index divisor of F if p divides I(γ) for all γ ∈ DF .

Example 6. (1) (Dedekind) :
h(x) = x3 + x2 − 2x + 8 is irreducible over Q. Let α be a root. Then d(α) = −22 ·
503, d(Q(α)) = −503, I(α) = 2, and 2 is a common index divisor of Q(α). The Galois
group of h(x) is the symmetric group S3 of degree 3.
(2) (Stephans): Both 17 and 3313 are common index divisors in some subfields of Q(ζr)

where r = 112643 and ζr = e
2πi
r .

In general, n > p for a prime p if and only if there exists a number field K of degree
n such that a prime p is a common index divisor of K (see [17] for ’if’ part and [2] for
’only if’ part).

4. Reviews from Ireland and Rosen [9]

Using the same notations in section 1, we note that (f, p − 1) = 1. In fact, if ℓ is a

prime common divisor of f and p − 1, then qp
ℓ
= 1 and ℓ < p. We obtain p is the order

of q mod ℓ since q
ℓ
= 1 implies a contradiction 0

ℓ
= f = qp−1 + · · ·+ q + 1

ℓ
= p

ℓ
= 1. Thus

ℓ
p
= 1 contradicts to ℓ < p. Hence f | t if and only if pq

f
= 1.

From this, we remember the next well known assertion. In the text books on the elemen-
tary number theory, we can usually see that for an odd prime r and a divisor n of r − 1,
an equation xn

r
= a is solvable if and only if a

r−1
n

r
= 1. This assertion is just the Euler’s

criterion for n = 2 and the existence of primitive roots is essential in this proof.
In this section, we shall observe [9, p.197, Corollary] is a generalization of this and an
improvement of [13, Theorem] by Artin map (see [14]).

Considering in general an
m
= 1, we may assume without loss generality n is the order of

a mod m and a is a prime by Dirichlet theorem, since there exist infinite many prime
numbers p with p

m
= a because a and m are relatively prime. Thus we consider here the

congruence pn
m
= 1 where p is a prime and n is the order of p mod m.

–130–



This section is almost all rewrite of [9, p.196-197] with a slight improvement. Here we

set p is prime, D is the integer ring of K = Q(ζm) where ζm = e
2πi
m , and P is a prime

ideal of D containing p.

The following Lemma is essential in this section. Lemma 7 and Corollary 8 were stated
in [9, p.196].

Lemma 7. If p does not divide m, then D ≡ Z[ζm] mod p.

Proof. We set ζ = ζm Since {1, ζ, . . . , ζφ(m)−1} is a basis of K over Q, we obtain
D ∋ α =

∑
rkζ

k where rk ∈ Q. Thus Tr(αζℓ) =
∑
rkTr(ζ

kζℓ), where Tr is the trace from
K to Q. Solving this linear equations about rk, we have drk ∈ Z, namely, dD ⊂ Z[ζ]
where d = |Tr(ζkζℓ)| is the discriminant of a cyclotomic polynomial Φm(x) of order m.

If d
p
= 0, then Φm(x) has a multiple root α in D/P and hence Φm(α) = 0 and Φ′

m(α) =
0. Substituting α in the differential mxm−1 = Φm(x)

′g(x) + Φm(x)g(x)
′ of xm − 1 =

Φm(x)g(x), we have mα
m−1 = 0 and α = 0 by the condition, which yields a contradiction

0 = Φm(α) = Φm(0) = ±1. Thus we have d
p

̸= 0 and D ≡ Z[ζ] mod p. 2

It is easy to see for (a,m) = 1, σa : ζm → ζam are automorphisms of K and G = {σa | 1 ≦
a < m, (a,m) = 1} is the Galois group of K over Q.

Corollary 8. (1) ασp
p
= αp for α ∈ D.

(2) P σp = P.
(3) p is unramified in D.

Proof. We set ζ = ζm. There exists β ∈ D with α = pβ +
∑
akζ

k by Lemma 7.
(1) follows from

ασp = pβσp +
∑
k

akζ
pk p

=
∑
k

apkζ
pk p

= αp.

(2): For µ ∈ P, µσp
p
= µp

P
= 0 and so µσp ∈ P. This implies P σp ⊂ P and hence

P σ−1
p = P σn−1

p ⊂ P where n is the order of σp.
(3): Let P be a prime ideal with p ∈ P 2 and let ν ∈ P but ν ̸∈ P 2. Then for the order n

of σp, ν = νσ
n
p

p
= νp

n P 2

= 0 by (1) and pn ≧ 2. Hence we have a contradiction ν ∈ P 2 from
p ∈ P 2. 2

The next Lemma 9,(1) is restated of [9, p.182].

Lemma 9. (1) G is transitive on the set Ω of distinct prime ideals of D containing p.
(2) p|GP | is the order of D/P , namely, |GP | is a degree of P where GP is the stabilizer of
P.

Proof. (1): Assume there exists Q ∈ Ω with Q ̸= P σ for all σ ∈ G. Then there exists an
element α satisfying α ≡ 0 mod Q and α ≡ 1 mod P σ for all σ ∈ G. N(α) :=

∏
σ∈G α

σ ∈
Z ∩Q = pZ ⊂ P and so a contradiction ατ ∈ P for some τ, namely α ∈ P τ−1

.
(2): We set d is the degree of P and c = |Ω|. Then d = |GP | follows from cd = φ(m) =
|G| = |G : GP ||GP | = c|GP | since p is unramified by Corollary 8,(3).

–131–



We set L is the fixed subfield of K by σp. The next is just [9, p.197, Corollary] and
contains [13, Theorem] which follows from Artin map (see [14, p.96]).

Theorem 10. GP = ⟨σp⟩.

Proof. We set that n is the order of σp, d = |GP | and ⟨ν⟩ = (D/P )×. Then n is
divisor of d since ⟨σp⟩ ⊂ GP by Corollary 8,(2). On the other hand pd − 1 is the
order of ν by lemma 9,(2) and so pd − 1 is a divisor of pn − 1 since ν = νσ

n
p =

νp
n
by Corollary 8,(1) and hence νp

n−1 = 1. It is false for n < d and so n = d. 2

Theorem 10 is an extension of the next familiar theorem in elementary number theory.
If r is prime and n is a divisor of r − 1, then pn

r
= 1 if and only if p

r
= x

r−1
n is solvable.

In fact, Assume pn
r
= 1. Then we may assume n is the order of σp and ⟨σp⟩ = ⟨σ

r−1
n

c ⟩ since
the subgroup of order n is unique in the cyclic ⟨σc⟩ where c is a primitive root of r. Hence

p
r
= x

r−1
n is solvable by σp = σ

(r−1)
n

k
c for some k. The other side is trivial.

Let DM be the integer ring of a subfield M of K and Let PM be prime ideal of DM

containing p.

Corollary 11. D/P = Fp|GP | and DM/PM = Fp for any subfield M of L.

Proof. First assertion is clear from Theorem 10. Second assertion follows from

αp
p
= ασp = α for α ∈ DM and so αp

PM= α. 2

We note that D/P = Fp if and only if p splits completely in D by Corollary 8,(3).
The next is an extension of [13, Theorem].

Corollary 12. Assume pn
m
= 1 and set s = [L : Q]. Then in case s > p, p is a common

index divisor of L and in case p = s, hθ(x)
p

̸= xp − x has a multiple root in Fp = DL/PL
where L = Q(θ) and hθ(x) is the minimal polynomial of θ over Q.

Proof. If there exists an element of µ ∈ DL such that p does not divide I(µ) ∈ Z
where d(µ) = I(µ)2d(L) for the discriminants d(µ) and d(L) of µ and L, respectively.
Noting that p does not divide d(L) by Dedekind’s theorem on discriminant (see [14, p.88,

Remark 2.15]) since p is unramified in K and so in L, we have d(µ)
p

̸= 0 and so the
minimal polynomial gµ(x) of µ over Q has distinct roots in Fp. Thus s = deg gµ(x) ≦ p.

In particular case s = p, gµ(x)
p
= xp − x. 2

We prove again Proposition 1,(3) (see [11] and [13]).

Corollary 13. If r is a common prime divisor of f and t, then p ≡ 1 mod 4 or r ≡
1 mod 4.

Proof. We setm = r and consider Guss sum g(λ) =
∑r−1

k=1 λ(k)ζ
k
r where λ is a quadratic

character by r and ζr = e
2πi
r . It is well known that g(λ)2 = (−1) r−1

2 r
p
= (−1) r−1

2 and
g(λ) = θ − θ1 = 2θ + 1 by θ + θ1 = −1 where θ =

∑
λ(a)=1 ζ

a
r and θ1 =

∑
λ(b)=−1 ζ

b
r .

M = Q(θ) = Q(g) is a quadratic subfield of L by r
2pq
= 1 (see Proposition 1,(2)).
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Since θ
PM= b for b ∈ Z by Corollary 11,

(−1)
r−1
2

p−1
2

p
= g(λ)p−1 = (2θ + 1)p−1 PM= (2b+ 1)p−1 p

= 1.

Noting 2b+ 1
p

̸= 0 by above equations except the last equivalence, we can complete these
from Fermat little theorem. 2

We prove again the part q
9
= −1 of Proposition 4,(4) (see [12] and [13]).

Corollary 14. If f divides t for a prime p = 3, then q
9
= −1.

Proof. The assumption implies q
3
= −1 and f = q2 + q + 1 is prime by Proposition 4.

Let c be a primitive root of f and set ζ = e
2πi
f . Then σ : ζ → ζc is a generator of the

Galois group G of K = Q(ζ) over Q, let L3 be the correspond subfield to H = ⟨σ3⟩. and
let G =

∪2
s=0Hσ

s be a coset decomposition by H. We set also θ =
∑

τ∈H ζ
τ and θs = θσ

s

for s = 0, 1, 2. We can see [L3 : Q] = 3 and L3 = Q(θ) by [14, p.61, Theorem 2.6].
Let g = g(χ) be a cubic Gauss sum for the cubic residue character χ by a primary prime

divisor η = ω(ω − q) of f = ηη̄ in Z[ω], where ω = e
2πi
3 . Namely, we set gs = g(χs) =∑f−1

t=0 χ
s(t)ζt which are rewritten as follow

gs =
2∑
t=0

f−4
3∑

k=0

χs(c3k+t)ζc
3k+t

=
2∑
t=0

χ(c)st(
∑
τ∈H

ζτ )σ
t

=
2∑
t=0

ωstθt.

These equations are also solved about θs as 3θs =
∑2

t=0 ω̄
stgt. We can set the minimal

polynomial hθ = x3 + x2 + a2x+ a3 of θ over Z by
∑2

s=0 θs = −1.
We shall show a3

3
= −a2. Noting [9, p.92, Proposition 8.2.2] and θ̄s = θs since the complex

conjugate ¯ is the element of order 2 in H,

f = |g(χ)|2 = g(χ)g(χ) = θ20 + θ21 + θ22 + (ω + ω2)a2 = 1− 3a2.

Hence we have

a2 = (1− f)/3 = −q · (q + 1)/3
3
= (q + 1)/3.

It follows from equations 3θs =
∑2

t=0 ω̄
stgt that

−33a3 = (3θ0)(3θ1)(3θ2) =
2∏
s=0

(
2∑
t=0

ω̄stgt) = g30 + g31 + g32 − 3g0g1g2.

Using Stickelberger relation g31 = fη ([9, p.115, Corollary]), we can see the next from
g0 = −1, g2 = ḡ1 and η + η̄ = q − 1.

−a3 = (−1 + f(η + η̄) + 3f)/33 = ((q + 1)/3)3
3
= (q + 1)/3

3
= a2.

Thus we have a3
3
= −a2.

Since hθ ̸= x3− x has a multiple root b in F3 by Corollary 12, we have h′θ(b)
3
= 0, namely,

b
3
= a2, where h

′
θ(x) is a derivative of hθ(x). Thus 0

3
= hθ(a2)

3
= a2 − a22 + a3

3
= −a22 and

0
3
= a2

3
= (q + 1)/3. 2
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Example 15. If m has a primitive root, namely, m = 2, 4, re and 2re where r is odd
primes (see [9, p.44]), then G is cyclic and Ls is the unique subfield with [Ls : Q] = s.
Thus we have next results from Corollary 12.

(1) If ℓr−1 r2
= 1 for primes ℓ, r with ℓ < r, then ℓ is a common index divisor of a subfield

Lr of Q(ζr2).

(2) If pq
r
= 1 for primes p, r with qq′ = r−1 and p < q′, then p is a common index divisor

of a subfield Lq′ of Q(ζr) (see [13, Theorem]).

Question. If f divides t, then is f square free ?
This question follows from the next observations: If f divides t, then we can see pq ≡ 1
and qp ≡ 1 mod f. Thus if f is divided by a prime square r2, we have pr−1 ≡ 1, qr−1 ≡
1 mod r2 by r ≡ 1 mod 2pq (see Proposition 1,(2)). It is well known from computation
by using computer that there are rare primes r satisfying ar−1 ≡ 1 mod r2 for a fixed
a > 1. Further, in this case p ̸≡ q mod r for fixed numbers p, q.

5. Integral normal basis

Let K be a Galois extension over Q with the Galois group G and let D be the integer
ring of K. If there exists an element µ ∈ D such that D =

∑
σ∈G µ

σZ, then we call
{µσ | σ ∈ G} a normal basis and µ a normal basis element.
Here we set Dm is the integer ring of the cyclotomic field K = Q(ζm) with the Galois

group G, where ζm = e
2πi
m . We set also Dθ is the integer ring of a proper subfield Q(θ) of

K and Gα is the stabilizer of α ∈ K. In the text book [14, p.73-74], it was proved that
the integer rings of subfields in Q(ζr) for a prime r have normal bases and this plays an
important role in [13]. Moreover, the integer rings of quadratic fields Q(

√
n) have normal

bases if and only if n ≡ 1 mod 4.

In the last of this paper, we shall show the following. It seems to be closely rated to the
above Question.

Proposition 16. Dm has a normal basis if and only if m is square free.

Proof. Assume m is square free. In case m is a prime, Dm has a normal basis by
[14, p.74, Remark 2.10] and so our result holds by the method in the proof of [10, p.68,
Proposition 17 and p.75, Theorem 4].
Conversely, we assume Dm has a normal basis andm is divided by the square r2 of a prime
r. Then using [14, p.74, Theorem 2.12], we may assumem = r2 andDθ with [Q(θ) : Q] = r
has a normal basis element µ. Thus we can show that Dr2 =

∑
ρ∈ Gω

µρDω where ω = ζrr2 .

In fact, [Q(ω) : Q] = r− 1 yields G = Gθ×Gω and K = Q(θ) ·Q(ω) = Q(θ)[ω] = Q[θ, ω].
Noting d = ±1 if α/d is an algebraic integer for an algebraic integer α and d ∈ Z with
(α, d) = 1, we obtain

Dr2 = DθDω = (
∑

ν∈G/Gθ

µνZ)Dω =
∑
ρ∈Gω

µρDω
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Since Dr2 has a basis {1, ζ, . . . , ζℓ−1} with ζ = ζr2 and ℓ = r2 − r by Dr2 = Z[ζ] (see
[10, p.75, Theorem 3] ), we have

µ =
ℓ−1∑
k=0

akζ
k =

r−1∑
t=0

r−2∑
s=0

ars+tζ
rs+t =

r−1∑
t=0

αtζ
t where αt =

r−2∑
s=0

ars+tω
s ∈ Dω.

We set τ = σb with b = cr−1 where c is a primitive root for r2. Noting Gω = ⟨τ⟩ is the
Galois group of Q(ζ) over Q(ω), we can see from this equation that

µτ
s

=
r−1∑
k=0

αkζ
kτs =

r−1∑
k=0

αkω
k bs−1

r ζk.

This is equivalent to

(µ, µτ , µτ
2

, . . . , µτ
r−1

) = (1, ζ, . . . , ζr−1)A, where A := (αkω
k bs−1

r )k,s.

The next calculation implies a contradiction such that a unit |A| is contained in rDω.
Since r is the order of b = cr−1 mod r2, we have for r > k > 0,

k
bs − 1

r
≡ k

bt − 1

r
mod r, i.e., bs ≡ bt mod r2 if and only if s ≡ t mod r.

Thus for any k > 0, we obtain

r−1∑
s=0

ωk
bs−1

r =
r−1∑
t=0

ωt =
ωr − 1

ω − 1
= 0.

This equation shows that we can change the first column of |A| is equal to (rα0, 0, · · · , 0)t
and so we have a contradiction such that a unit |A| is contained in rDω. 2

We confirm Proposition 16 for r = 2 and Kronecker-Weber theorem for quadratic fields
(see [10, p.210, Corollary 3] or [14, p.133]).

Confirmation. The quadratic field Q(
√
n) with the discriminant d is a subfield of Q(ζd).

In fact, ℓ represent primes and we set s = #{ℓ | ℓ ≡ −1 mod 4, ℓ|n}. Using g2ℓ = (−1) ℓ−1
2 ℓ

in any case, where gℓ is a quadratic Gauss sum by ℓ, we can see our assertion.
In case n ≡ 1 mod 4, noting s is even,

Q(
√
n) ⊂

∏
ℓ|n

Q(ζℓ) = Q(ζn).

In case n ≡ −1 mod 4, noting s is odd and Q(
√
−1) = Q(ζ4),

Q(
√
n) ⊂ Q(ζ4)

∏
ℓ|n

Q(ζℓ) = Q(ζ4n).

In case n ≡ 2 mod 4, we set n = 2n0 where n0 is odd. Noting the above two cases and
Q(
√
2) ⊂ Q(ζ8) by ζ8 + ζ−1

8 =
√
2,

Q(
√
n) ⊂ Q(

√
2)Q(

√
n0) ⊂ Q(ζ8)

∏
ℓ|n0

Q(ζℓ) = Q(ζ4n).
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ON HOCHSCHILD COHOMOLOGY OF A CLASS OF WEAKLY
SYMMETRIC ALGEBRAS WITH RADICAL CUBE ZERO

DAIKI OBARA, TAKAHIKO FURUYA

Abstract. This paper is based on my talk given at the Symposium on Ring Theory and
Representation Theory held at Shinsyu University, Japan, 7–9 September 2012. In this
paper, we provide an explicit minimal projective bimodule resolution for some weakly
symmetric algebras with radical cube zero. Then by using this resolution we compute
the dimension of its Hochschild cohomology groups and determine the Hochschild coho-
mology ring modulo nilpotence.

1. Introduction

We consider the bound quiver algebra A = kΓ/I where Γ is the quiver with m vertices
and 2m arrows as follows:

a1−→ a2−→ am−1−→
a0⟳

e0 e1 · · · em−1

am

⟲←−
a1

←−
a2

←−
am−1

for an integer m ≥ 3, and I is the ideal of kΓ generated by the following elements:

a1a1 − a20, a2m − am−1am−1, a1a0, amam−1,

aiai − ai−1ai−1, ajaj+1, al+1al,

for 2 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 1 and 1 ≤ l ≤ m− 2. Then, the following elements form
a k-basis of A.

ei, aj, al, arar, a
2
m

for 0 ≤ i ≤ m−1, 0 ≤ j ≤ m and 1 ≤ l, r ≤ m−1. It is known that A is a Koszul weakly
symmetric algebra with radical cube zero.

We denote by Ae the enveloping algebra A ⊗k Aop of A, so that left Ae-modules
correspond to A-bimodules. The Hochschild cohomology ring is given by HH∗(A) =
Ext∗Ae(A,A) = ⊕n≥0Ext

n
Ae(A,A) with Yoneda product. It is well-known that HH∗(A)

is a graded commutative ring. Let N denote the ideal of HH∗(A) which is generated
by all homogeneous nilpotent elements. Then N is contained in every maximal ideal of
HH∗(A), so that the maximal ideals of HH∗(A) are in 1-1 correspondence with those in the
Hochschild cohomology ring modulo nilpotence HH∗(A)/N . In this paper, we describe
the ring structure of HH∗(A)/N .

In [8], Snashall and Solberg defined the support varieties for finitely generated modules
over a finite dimensional algebra by using the Hochschild cohomology ring modulo nilpo-
tence. Furthermore, in [2], Erdmann, Holloway, Snashall, Solberg and Taillefer introduced
some reasonable “finiteness conditions,” denoted by (Fg), for any finite dimensional alge-
bra, and they showed that if a finite dimensional algebra satisfies (Fg), then the support
varieties have a lot of analogous properties of support varieties for finite group algebras.

The detailed version of this paper has been submitted for publication elsewhere.
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Recently, in [3], Erdman and Solberg gave necessary and sufficient conditions for any
Koszul algebra to satisfy (Fg). Consequently, they showed that A satisfies (Fg). So the
Hochschild cohomology ring of A is finitely generated as an algebra. On the other hand,
in the case where m = 2 and char k ̸= 2, A is precisely the principal block of the tame
Hecke algebra Hq(S5) for q = −1. In this case, a k-basis of the Hochschild cohomology
groups of A was described by Schroll and Snashall in [7]. They proved independently that
A satisfies (Fg), and gave some properties of the support varieties for modules over A.

In this paper, we provide an explicit minimal projective bimodule resolution of A for
m ≥ 3, and then determine the ring structure of the Hochschild cohomology ring modulo
nilpotence HH∗(A)/N .

The contents of this paper are organized as follows. In Section 2, we determine sets Gn
(n ≥ 0), introduced in [6], for the right A-module A/radA. Then, using Gn, we construct
a minimal projective resolution (P•, ∂•) of A as an Ae-module (Theorem 1). In Section
3, we first determine the dimension of the Hochschild cohomology groups for m ≥ 3
(Theorem 4), and then we give an explicit k-basis of the Hochschild cohomology groups
(Propositions 2, 3) and determine the Hochschild cohomology ring modulo nilpotence
(Theorem 6).

Throughout this paper, for any arrow a in Γ , we denote the origin of a by o(a) and the
terminus by t(a). We write ⊗k as ⊗ for simplicity,

2. A projective bimodule resolution

In this section, we give an explicit minimal projective bimodule resolution

(P•, ∂•) : · · · ∂4−→ P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→ A→ 0

of A = kΓ/I for m ≥ 3 by using the argument in [5].
Let B = kQ/I ′ with a finite quiver Q and an admissible ideal I ′ in kQ. In [6], Green,

Solberg and Zacharia introduced the following subsets Gn (n ≥ 0) of kQ, and used the
subsets to give a minimal projective resolution of the right B-module B/radB.

Let G0 the set of all vertices of Q, G1 the set of all arrows of Q and G2 a minimal set
of generators of I. In [6], the authors proved that for each n ≥ 3 there is a subset Gn of
kQ satisfying the following two conditions:

(a) Each of the elements x of Gn is a uniform element satisfying

x =
∑

y∈Gn−1

yry =
∑

z∈Gn−2

zsz for unique ry, sz ∈ kQ.

(b) There is a minimal projective B-resolution of B/radB

(R•, δ•) : · · · δ4−→ R3
δ3−→ R2

δ2−→ R1
δ1−→ R0

δ0−→ B/J → 0,

satisfying the following conditions:
(i) For each j ≥ 0, Rj =

⊕
x∈Gj t(x)B.

(ii) For each j ≥ 1, the differential δj : Rj → Rj−1 is defined by

t(x)λ 7−→
∑

y∈Gj−1

ryt(x)λ for x ∈ Gj and λ ∈ B,

where ry are elements in the expression (a).
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In [5], Green, Hartman, Marcos and Solberg used the subsets Gn (n ≥ 0) of kQ to give
a minimal projective bimodule resolution for any finite dimensional Koszul algebra. This
set also appears in the papers [3], [7] and [9] in constructing minimal projective bimodule
resolutions.

In order to give sets Gn (n ≥ 0) for A = kΓ/I, we first define the following quiver ∆
and morphisms of quivers ϕi = (ϕi0, ϕ

i
1) : ∆→ Γ for i = 0, 1, . . . ,m− 1.

Let ∆ be the following locally finite quiver with vertices (x, y) and arrows b(x,y) :
(x, y)→ (x+ 1, y) and c(x,y) : (x, y)→ (x, y + 1) for integers x, y ≥ 0 as follows:

...
...

...

c(0,2)

x c(1,2)

x c(2,2)

x
(0, 2)

b(0,2)−−−→ (1, 2)
b(1,2)−−−→ (2, 2)

b(2,2)−−−→ · · ·

c(0,1)

x c(1,1)

x c(2,1)

x
(0, 1)

b(0,1)−−−→ (1, 1)
b(1,1)−−−→ (2, 1)

b(2,1)−−−→ · · ·

c(0,0)

x c(1,0)

x c(2,0)

x
(0, 0)

b(0,0)−−−→ (1, 0)
b(1,0)−−−→ (2, 0)

b(2,0)−−−→ · · ·

For any integer z, let Q(z) be the quotient and z the remainder when we divide z by m.
Then we have 0 ≤ z ≤ m− 1. We denote the sets of vertices of ∆ and Γ by ∆0 and Γ0,
respectively. Also, we denote the sets of arrows of ∆ and Γ by ∆1 and Γ1, respectively.
For each i = 0, 1, . . . ,m− 1, we define the maps ϕi0 : ∆0 → Γ0 and ϕi1 : ∆1 → Γ1 by

(1) For (x, y) ∈ ∆0

ϕi0(x, y) :=

{
ex−y+i if Q(x− y + i) ∈ 2Z,
em−1−x−y+i if Q(x− y + i) /∈ 2Z.

(2) For b(x,y), c(x,y) ∈ ∆1

ϕi1(b
(x,y)) :=

{
ax−y+i+1 if Q(x− y + i) ∈ 2Z,
am−1−x−y+i if Q(x− y + i) /∈ 2Z,

ϕi1(c
(x,y)) :=

{
ax−y+i if Q(x− y + i) ∈ 2Z,
am−x−y+i if Q(x− y + i) /∈ 2Z.

where we put a0 := a0 for our convenience.

Then, for all i = 0, 1, . . . ,m− 1 and arrows b(x,y) and c(x,y) in ∆, we have

o(ϕi1(b
(x,y))) = o(ϕi1(c

(x,y))) = ϕi0(x, y),

t(ϕi1(b
(x,y))) = ϕi0(x+ 1, y),

t(ϕi1(c
(x,y))) = ϕi0(x, y + 1).
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Thus ϕi1 is a morphism of quivers. Note that ϕi1 naturally induces the map between the
set of paths of ∆ and that of Γ as follows:

ϕi1(p1 · · · pr) = ϕi1(p1) · · ·ϕi1(pr),

for a path p1 · · · pr(r ≥ 1) of ∆ where pj is an arrow for 1 ≤ j ≤ r.
Now, we can define the sets Gn (n ≥ 0) for A in the similar way in [9]. For integers

n ≥ 0, x, y ≥ 0 with x+ y = n and i = 0, 1, . . . ,m− 1, we define the element gnx,y,i in kΓ
by

gnx,y,i :=
∑
p

(−1)spϕi1(p),

where

• p ranges over all paths in ∆ starting at (0, 0) and ending with (x, y); and
• sp is an integer determined as follows: If we write p = p1p2 . . . pn with pj arrows
in ∆ for 1 ≤ j ≤ n, then sp =

∑
pj=c(x

′,y′) j where x′ and y′ are positive integers

with x′ + y′ = j − 1.

For each n ≥ 0, we put

Gn := {gnx,n−x,i| 0 ≤ x ≤ n and 0 ≤ i ≤ m− 1}.

Then, for n = 0, 1, 2, Gn can be described as follows:

G0 = {e0, e1, . . . , em−1},
G1 = {a1, . . . , , am,−a0 − a1,−a2, . . . ,−am−1},
G2 =
{−ϕi1(c(0,0)c(0,1)), ϕi1(b(0,0)c(1,0))− ϕi1(c(0,0)b(0,1)), ϕi1(b(0,0)b(1,0)) | 0 ≤ i ≤ m− 1}
= {−a0a1,−a1a0,−aiai−1, a1a1 − a20, aj+1aj+1 − ajaj, a2m − am−1am−1,

al+1al+2, amam−1 | 2 ≤ i ≤ m− 1, 1 ≤ j ≤ m− 2 and 0 ≤ l ≤ m− 2}.

And it is easily seen that Gn satisfies the conditions (a) and (b) for m ≥ 3 in the beginning
of this section.

Now, for any integer n ≥ 0, we define a left Ae-module

Pn :=
⨿
g∈Gn

Ao(g)⊗ t(g)A.

Using the argument of [5], we have the following minimal projective resolution of A.

Theorem 1. [4, Theorem 2.3] The following sequence is a minimal projective resolution
of the left Ae-module A.

(P•, ∂•) : · · · → Pn
∂n−→ Pn−1 → · · · → P1

∂1−→ P0
π−→ A→ 0,

where π is the multiplication map and left Ae-homomorphisms ∂n are defined by
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(1) In the case where i = 0,

∂n(o(g
n
x,n−x,0)⊗ t(gnx,n−x,0)) =

(−1)no(gn−1
0,n−1,0)⊗ ϕ0

1(c
(0,n−1))

+

{
ϕ0
1(c

(0,0))⊗ t(gn−1
n−1,0,0) if n ≡ 0, 1(mod 4),

−ϕ0
1(c

(0,0))⊗ t(gn−1
n−1,0,0) if n ≡ 2, 3(mod 4),

if x = 0,

o(gn−1
x−1,n−x,0)⊗ ϕ0

1(b
(x−1,n−x)) + (−1)no(gn−1

x,n−1−x,0)⊗ ϕ0
1(c

(x,n−1−x))

+(−1)xϕ0
1(b

(0,0))⊗ t(gn−1
x−1,n−x,1)

+

{
(−1)xϕ0

1(c
(0,0))⊗ t(gn−1

n−1−x,x,0) if n ≡ 0, 1(mod 4),

−(−1)xϕ0
1(c

(0,0))⊗ t(gn−1
n−1−x,x,0) if n ≡ 2, 3(mod 4),

if 1 ≤ x ≤ n− 1,

o(gn−1
n−1,0,0)⊗ ϕ0

1(b
(n−1,0)) + (−1)nϕ0

1(b
(0,0))⊗ t(gn−1

n−1,0,1) if x = n.

(2) In the case where 1 ≤ i ≤ m− 2,

∂n(o(g
n
x,n−x,i)⊗ t(gnx,n−x,i)) =

(−1)no(gn−1
0,n−1,i)⊗ ϕi1(c(0,n−1)) + ϕi1(c

(0,0))⊗ t(gn−1
0,n−1,i−1) if x = 0,

o(gn−1
x−1,n−x,i)⊗ ϕi1(b(x−1,n−x)) + (−1)no(gn−1

x,n−1−x,i)⊗ ϕi1(c(x,n−1−x))

+(−1)xϕi1(b(0,0))⊗ t(gn−1
x−1,n−x,i+1)

+(−1)xϕi1(c(0,0))⊗ t(gn−1
x,n−1−x,i−1) if 1 ≤ x ≤ n− 1,

o(gn−1
n−1,0,i)⊗ ϕi1(b(n−1,0)) + (−1)nϕi1(b(0,0))⊗ t(gn−1

n−1,0,i+1) if x = n.

(3) In the case where i = m− 1,

∂n(o(g
n
x,n−x,m−1)⊗ t(gnx,n−x,m−1)) =

(−1)no(gn−1
0,n−1,m−1)⊗ ϕm−1

1 (c(0,n−1)) + ϕm−1
1 (c(0,0))⊗ t(gn−1

0,n−1,m−2)

if x = 0,

o(gn−1
x−1,n−x,m−1)⊗ ϕm−1

1 (b(x−1,n−x))

+(−1)no(gn−1
x,n−1−x,m−1)⊗ ϕm−1

1 (c(x,n−1−x))

+

{
(−1)xϕm−1

1 (b(0,0))⊗ t(gn−1
n−x,x−1,m−1) if n ≡ 0, 1(mod 4),

−(−1)xϕm−1
1 (b(0,0))⊗ t(gn−1

n−x,x−1,m−1) if n ≡ 2, 3(mod 4),

+(−1)xϕm−1
1 (c(0,0))⊗ t(gn−1

x,n−1−x,m−2),

if 1 ≤ x ≤ n− 1,

o(gn−1
n−1,0,m−1)⊗ ϕm−1

1 (b(n−1,0))

+

{
(−1)nϕm−1

1 (b(0,0))⊗ t(gn−1
0,n−1,m−1) if n ≡ 0, 1(mod 4),

−(−1)nϕm−1
1 (b(0,0))⊗ t(gn−1

0,n−1,m−1) if n ≡ 2, 3(mod 4),

if x = n.

–141–



3. Hochschild cohomology of A

In this section, we give a k-basis of the Hochschild cohomology groups of A and deter-
mine the ring structure of the Hochschild cohomology ring modulo nilpotence by using
the minimal projective Ae-resolution given in Theorem 1.

By setting P ∗
n := HomAe(Pn, A) and ∂

∗
n = HomAe(∂n, A) for n ≥ 0, we get the following

complex.

(P ∗
• , ∂

∗
•) : 0→ P ∗

0

∂∗1−→ P ∗
1

∂∗2−→ · · ·
∂∗n−1−→ P ∗

n−1

∂∗n−→ P ∗
n

∂∗n+1−→ · · · .

Then, for n ≥ 0, the n-th Hochschild cohomology group HHn(A) of A is given by
HHn(A):= ExtnAe(A,A) = Ker ∂∗n+1/Im ∂∗n.

In the rest of the paper, for an integer n ≥ 0, we set p := Q(n) and t := n, that is, p
and t are unique integers such that n = pm+ t with p ≥ 0 and 0 ≤ t ≤ m− 1.

Using the complex (P ∗
• , ∂

∗
•), we compute a k-basis of HHn(A) for n ≥ 0. Now we

consider the case where m is even. In the case where m is odd, we have the similar
results.

Proposition 2. [4, Proposition 3.7] Suppose that m ≥ 3. Then the following elements
form a k-basis of the center Z(A) = HH0(A) = Ker ∂∗1 of A.

m−1∑
i=0

ei, a0, am, ajaj for 1 ≤ j ≤ m.

Proposition 3. [4, Proposition 3.8] Suppose m ≥ 3 and m is even. For each n = pm+t ≥
1, the following elements form a k-basis of HHpm+t(A).

(1) In the case where p and t are even, we have a k-basis of HHpm+t(A) as follows:
(a) If x1 = (p− α)m+ t/2, x2 = αm+ t/2,

χn,α :


ei ⊗ ϕi0(x1, n− x1) 7→

{
ei if i is even,

(−1)t/2ei if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
ei if i is even,

(−1)t/2ei if i is odd,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ p/2.
(b) If x = pm/2 + t/2, πn,1 : e0 ⊗ ϕ0

0(x, n− x) 7→ a0.
(c) If x = pm/2 + t/2, πn,2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.
(d) If x = (p− α)m+ t/2,

Fn,α : e0 ⊗ ϕ0
0(x, n− x) 7→ a1a1 for 0 ≤ α ≤ p/2− 1.

(e) If x = pm/2 + t/2, char k = 2, Fn,p/2 : e0 ⊗ ϕ0
0(x, n− x) 7→ a1a1.

(2) In the case where p is even and t is odd, we have a k-basis of HHpm+t(A) as follows:

–142–



(a) If x1 = (p− α)m+ (t− 1)/2 and x2 = αm+ (t− 1)/2,

µn,α :


ei ⊗ ϕi0(x1, n− x1) 7→

{
ai if i is even,

(−1)(t−1)/2ai if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
ai if i is even(̸= 0),

(−1)(t−1)/2ai if i is odd,

em−1 ⊗ ϕm−1
0 (x2 + 1, n− x2 − 1) 7→ (−1)(t+1)/2am,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ p/2− 1.
(b) If x = pm/2 + (t− 1)/2 and char k ̸= 2,

µn,p/2 :


ei ⊗ ϕi0(x, n− x) 7→

{
ai if i is even,

(−1)(t−1)/2ai if i is odd,

ei ⊗ ϕi0(x+ 1, n− 1− x) 7→

{
−ai+1 if i is even,

(−1)(t+1)/2ai+1 if i is odd,

for 0 ≤ i ≤ m− 1.
(c) If x = pm/2 + (t− 1)/2 and char k = 2, µn,p/2 : e0 ⊗ ϕ0

0(x, n− x) 7→ a0.
(d) If x = pm/2 + (t+ 1)/2 and char k = 2,

µ′
n,p/2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.

(e) If x = (p− α)m+ (t− 1)/2,

νn,α :

{
e0 ⊗ ϕ0

0(x+ 1, n− 1− x) 7→ a1,

e1 ⊗ ϕ1
0(x, n− x) 7→ (−1)(t−1)/2a1,

for 0 ≤ α ≤ p/2− 1.
(f) If x = pm/2 + (t− 1)/2, En,1 : e0 ⊗ ϕ0

0(x, n− x) 7→ a1a1.
(g) If x = pm/2 + (t+ 1)/2, En,2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ a2m.
(3) In the case where p is odd and t is even, we have a k-basis of HHpm+t(A) as follows:

(a) If x1 = (p− α− 1)m+ (m+ t)/2 and x2 = αm+ (m+ t)/2,

χn,α :


ei ⊗ ϕi0(x1, n− x1) 7→

{
ei if i is even,

(−1)(m+t)/2ei if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
ei if i is even,

(−1)(m+t)/2ei if i is odd,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ (p− 1)/2.
(b) If x = (p− 1)m/2 + (m+ t)/2, πn,1 : e0 ⊗ ϕ0

0(x, n− x) 7→ a0.
(c) If x = (p− 1)m/2 + (m+ t)/2, πn,2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.
(d) If x = (p− α− 1)m+ (m+ t)/2,

Fn,α : e0 ⊗ ϕ0
0(x, n− x) 7→ a1a1 for 0 ≤ α ≤ (p− 1)/2− 1.

(e) If x = (p− 1)m/2 + (m+ t)/2 and char k = 2,
Fn,(p−1)/2 : e0 ⊗ ϕ0

0(x, n− x) 7→ a1a1.
(4) In the case where p and t are odd, we have a k-basis of HHpm+t(A) as follows:
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(a) If x1 = (p− α− 1)m+ (m+ t− 1)/2 and x2 = αm+ (m+ t− 1)/2,

µn,α :


ei ⊗ ϕi0(x1, n− x1) 7→

{
ai if i is even,

(−1)(m+t−1)/2ai if i is odd,

ei ⊗ ϕi0(x2, n− x2) 7→

{
ai if i is even(̸= 0),

(−1)(m+t−1)/2ai if i is odd,

em−1 ⊗ ϕm−1
0 (x2 + 1, n− x2 − 1) 7→ (−1)(m+t+1)/2am,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ (p− 1)/2− 1.
(b) If x = (p− 1)m/2 + (m+ t− 1)/2 and char k ̸= 2,

µn,(p−1)/2 :


ei ⊗ ϕi0(x, n− x) 7→

{
ai if i is even,

(−1)(m+t−1)/2ai if i is odd,

ei ⊗ ϕi0(x+ 1, n− 1− x) 7→{
−ai+1 if i is even,

(−1)(m+t+1)/2ai+1 if i is odd,

for 0 ≤ i ≤ m− 1.
(c) If x = (p− 1)m/2 + (m+ t− 1)/2 and char k = 2,

µn,(p−1)/2 : e0 ⊗ ϕ0
0(x, n− x) 7→ a0.

(d) If x = (p− 1)m/2 + (m+ t+ 1)/2 and char k = 2,
µ′
n,(p−1)/2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.

(e) If x1 = pm+m− 1, x2 = 0, t = m− 1,

ψn :

{
ei ⊗ ϕi0(pm+m− 1, 0) 7→ (−1)iai,
ei ⊗ ϕi0(0, pm+m− 1) 7→ (−1)i+1ai+1,

for 0 ≤ i ≤ m− 1.
(f) If x = (p− α− 1)m+ (m+ t− 1)/2,

νn,α :

{
e0 ⊗ ϕ0

0(x+ 1, n− 1− x) 7→ a1,

e1 ⊗ ϕ1
0(x, n− x) 7→ (−1)(m+t−1)/2a1,

for 0 ≤ α ≤ (p− 1)/2− 1.
(g) If x = (p− 1)m/2 + (m+ t− 1)/2, En,1 : e0 ⊗ ϕ0

0(x, n− x) 7→ a1a1.
(h) If x = (p− 1)m/2 + (m+ t+ 1)/2, En,2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ a2m.

By Propositions 2 and 3, we have the dimension of HHn(A).

Theorem 4. [4, Theorem 3.5] In the case m ≥ 3, we have dimkHH
0(A) = m + 3 and,

for pm+ t ≥ 1,

dimkHH
pm+t(A) = p+



3 if p is even and char k ̸= 2,

2 if p is odd, t ̸= m− 1 and char k ̸= 2,

3 if p is odd, t = m− 1 and char k ̸= 2,

4 if p is even and char k = 2,

3 if p is odd, t ̸= m− 1 and char k = 2,

4 if p is odd, t = m− 1 and char k = 2.
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Remark 5. In the case m = 2, by Theorem 4, we have the dimension of the Hochschild
cohomology groups of A given in [7].

By corresponding Yoneda product of the basis elements of HH∗(A) given in Propositions
2 and 3, we have the generators of HH∗(A) and the following results.

Theorem 6. In the case where m is even with m ≥ 3, and char k ̸= 2, The Hochschild
cohomology ring modulo nilpotence HH∗(A)/N of A is isomorphic to the polynomial ring
of two variables k[χ2,0, χ2m,0].
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[10] A. Skowroński and J. Washbüsch, Representation-finite biserial algebras, J. Reine Angew. Math. 345

(1983), 172–181.

Department of Mathematics
Tokyo University of Science
1-3 Kagurazaka, Sinjuku-ku, Tokyo 162-8601 JAPAN

E-mail address: d obara@rs.tus.ac.jp

Department of Mathematics
Tokyo University of Science
1-3 Kagurazaka, Sinjuku-ku, Tokyo 162-8601 JAPAN

E-mail address: furuya@ma.tus.ac.jp

–145–



A GENERALIZATION OF GOLDIE TORSION THEORY

YASUHIKO TAKEHANA

Abstract. Throughout this paper R is a ring with a unit element, every right R-module
is unital and Mod-R is the category of right R-modules. Let C be a subclass of Mod-
R. A torsion theory for C is a pair of (T ,F) of classes of objects of C such that (i)
HomR(T, F ) = 0 for all T ∈ T , F ∈ F . (ii) If HomR(M,F ) = 0 for all F ∈ F , then
M ∈ T . (iii) If HomR(T,N) = 0 for all T ∈ T , then N ∈ F . Let B be a subclass of
Mod-R, F = {M ∈ Mod-R|HomR(B,M) = 0 for any B ∈ B} and T = {M ∈ Mod-
R|HomR(M,P ) = 0 for any P ∈ T }. Then (T ,F) is called to be a torsion theory
generated by B. If B is the class of all modules M/N such that N is essential in M,
a torsion theory generated by B is called the Goldie torsion theory. In this paper we
generalize Goldie torsion theory by using left exact radical σ and study the dualization
of this.

1. Introduction

For a subclass E of Mod-R and for a short exact sequence 0 → A → B → C → 0, it
is said that E is closed under taking extensions if A,C ∈ E then B ∈ E . It is well known
that if B is closed under taking factor modules, direct sums and extensions then (B,F) is
a torsion theory. A torsion theory cogenerated by a subclass of Mod-R is defined dually,
as follows. Let B be a subclass of Mod-R, T = {M ∈ Mod-R|HomR(M ,B) = 0 for any
B ∈ B} and F = {M ∈ Mod-R|HomR(P,M) = 0 for any P ∈ T }. Then (T ,F) is called
to be a torsion theory cogenerated by B. It is well known that B is closed under taking
submodules, direct products and extensions then (T ,B) is a torsion theory. A torsion
theory (T ,F) is called to be hereditary if T is closed under taking submodules. It is well
known that (T ,F) is hereditary if and only if F is closed under taking injective hulls.

A subfunctor of the identity functor of Mod-R is called a preradical. For preradical σ,
Tσ := {M ∈ Mod-R|σ(M) = M} is the class of σ-torsion right R-modules, and Fσ :=
{M ∈ Mod-R|σ(M) = 0} is the class of σ-torsion free right R-modules. A preradical t is
called to be idempotent(a radical) if t(t(M)) = t(M)(t(M/t(M)) = 0). It is well known
that (Tσ,Fσ) is a torsion theory for an idempotent radical σ. For a torsion theory (T ,F)
and a module M we put t(M) =

∑
N(N ∈ T )(or equivalently t(M) = ∩N(M/N ∈ F)),

then T = Tt, and F = Ft, and t is called an associated idempotent radical for (T ,F).
A preradical t is called to be left exact if t(N) = N ∩ t(M) holds for any module M

and its submodule N . For a preradical σ and a module M and its submodule N , N is
called to be σ-dense submodule of M if M/N ∈ Tσ. For a preradical σ, t is called σ-left
exact preradical if t(N) = N ∩ t(M) holds for any module M and its σ-dense submodule
N . If N is an essential and σ-dense submodule of M , then N is called to be a σ-essential
submodule of M(M is a σ-essential extension of N). For an idempotent radical σ a

The final version of this paper will be submitted for publication elsewhere.
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module M is called to be σ-injective if the functor HomR( ,M) preserves the exactness
for any exact sequence 0→ A→ B → C → 0 with C ∈ Tσ.

We denote E(M) the injective hull of a moduleM . For an idempotent radical σ, Eσ(M)
is called the σ-injective hull of a module M , where Eσ(M) is defined by Eσ(M)/M :=
σ(E(M)/M). Then even if σ is not left exact, Eσ(M) is σ-injective and a σ-essential
extension of M , is a maximal σ-essential extension of M and is a minimal σ-injective
extension of M .

2. σ-hereditary torsion theories and σ-stable torsion theories

Let σ be an idempotent radical. We call a torsion theory (Tt,Ft) σ-hereditary if Tt is
closed under taking σ-dense submodules. A σ-hereditary torsion theory is characterized
in [1], as follows. A torsion theory (Tt,Ft) is σ-hereditary if and only if t is σ-left exact,
moreover if σ is left exact then (Tt,Ft) is σ-hereditary if and only if F is closed under taking
σ-injective hulls. A torsion theory (T ,F) is called to be stable if T is closed under taking
injective hulls. For a preradical σ, we call a torsion theory (T ,F) σ-stable if T is closed
under taking σ-injective hulls. σ-stable torsion theory is characterized in [3] as follows. A
torsion theory (Tt,Ft) is σ-stable if and only if for any σ-injective module E, t(E) is also
σ-injective(if and only if, for any module M it holds that Eσ(t(M)) ⊆ t(Eσ(M))).

It is well known that a torsion theory generated by a class of Mod-R closed under taking
submodules and quotient modules is hereditary. We generalize this as follows.

Proposition 1. Let σ be a left exact radical and B a class of modules closed under taking
σ-dense submodules and quotient modules. Then a torsion theory generated by B is σ-
hereditary.

Proof. Let (T ,F) be a torsion theory generated by B. We show that F is closed under
taking σ-injective hulls. Let M ∈ F . We will show that Eσ(M) ∈ F . Suppose that
Eσ(M) /∈ F , then there exists some B ∈ B such that HomR(B, Eσ(M)) ̸= 0, and so there
exists 0 ̸= f : B → Eσ(M), and so f(B) ̸= 0. As M is essential in Eσ(M), it follows
that M ∩ f(B) ̸= 0. Since B is closed under taking factor modules, f(B) ∈ B. Since
f(B)/(M ∩ f(B)) ∼= (M + f(B))/M ⊆ Eσ(M)/M ∈ Tσ, M ∩ f(B) is a σ-dense in f(B).
Thus by the assumption of B it follows thatM ∩f(B) ∈ B. SinceM ∈ F , M ∩f(B) ∈ F .
Thus M ∩ f(B) ∈ B ∩ F ⊆ T ∩ F = {0}. This is a contradiction to M ∩ f(B) ̸= 0, and
so Eσ(M) ∈ F . □
Proposition 2. Let E be a σ-injective module, B =: {M |HomR(M,E) = 0} and F =:
{M ∈ Mod-R|HomR(B,M) = 0 for any B ∈ B}. Then (B,F) is a σ-hereditary torsion
theory.

Proof. It is easily verified that B is closed under taking quotient modules, direct sums
and extensions. Then (B,F) is a torsion theory. We only show that B is closed under
taking σ-dense submodules. Let M ∈ B and N be a σ-dense submodule of M . Suppose
that N /∈ B, then there exists a nonzero f ∈ HomR(N,E). By the σ-injectivity of E, f
extends f ′ ∈ HomR(M,E), but this is a contradiction to the fact that M ∈ B. □
Proposition 3. Let σ be a preradical and E be a σ-torsionfree module. We put T = {M ∈
Mod-R|HomR(M,E) = 0} and F = {M ∈ Mod-R|HomR(T,M) = 0 for any T ∈ T }.
Then (T ,F) is σ-stable torsion theory.
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Proof. Since σ is a preradical, Tσ is closed under taking factor modules and Fσ is closed
under taking submodules. Since it is easily verified that T is closed under taking factor
modules, direct sums and extensions, it holds that (T ,F) is a torsion theory. We only show
that T is closed under taking σ-injective hulls. Suppose that M ∈ T and Eσ(M) /∈ T .
Then it holds that HomR(M,E) = 0 and HomR(Eσ(M), E) ̸= 0. Thus there exists f ∈
HomR(Eσ(M), E) such that Im f ̸= 0. Since f |M ∈ HomR(M,E) = 0, it folows that
ker f ⊇ M . Since Tσ ∋ Eσ(M)/M ↠ Eσ(M)/ ker f ∼= Im f ⊆ E ∈ Fσ. This is a
contradiction to the fact that Im f ̸= 0. Thus it follows that Eσ(M) ∈ T . □

3. A generalization of Goldie torsion theory

A torsion theory(T ,F) generated by {M/N |N is essential in M} is called to be Goldie
torsion theory. Goldie torsion theory is hereditary and stable. Let Z(M) denote the sin-
gular submodule of a module M . For a module M , Z2(M) is defined by Z2(M)/Z(M) :=
Z(M/Z(M)). It is well known that T = TZ2 and F = FZ2 .

For a left exact radical σ we call a torsion theory generated by {M/N |N is σ-essential
in M} σ-Goldie torsion theory.

Theorem 4. For a left exact radical σ, σ-Goldie torsion theory is hereditary and σ-stable.

Proof. Let B be {M/N |N is an σ-essential submodule of a module M}. It is easily
verified that B is closed under taking submodules and factor modules. A torsion the-
ory (T ,F) generated by B is hereditary by Proposition 1(σ = 1). We show that T is
closed under taking σ-injective hulls. Let M be in T . Suppose that Eσ(M) /∈ T . Then
there exists a module F in F such that HomR(Eσ(M), F ) ̸= 0. Since Eσ(M)/M ∈ B,
HomR(Eσ(M)/M,F ) = 0. SinceM ∈ T and F ∈ F , HomR(M,F ) = 0. Then there exists
a short exact sequence 0 → HomR(Eσ(M)/M,F ) → HomR(Eσ(M), F ) → HomR(M,F ).
This is a contradiction, and so it follows that Eσ(M) ∈ T . □

For a module M , we denote Zσ(M) := {m ∈M |mI = 0 for some σ-essential right ideal
I of R}. If m ∈ Zσ(M), there exists some σ-essential right ideal I of R such that mI = 0,
and then (0 : m) ⊇ I. Since mR ∼= R/(0 : m) ↞ R/I ∈ Tσ ∩ TZ , mR ∈ Tσ ∩ TZ , and
so mR ⊆ σ(M) ∩ Z(M). Thus Zσ(M) ⊆

∑
mR(m∈Zσ(M)) ⊆ Z(M) ∩ σ(M). Zσ(M) ⊆

Z(M) ∩ σ(M). Since Z and σ are left exact, σ(Z(M)) = Z(M) ∩ σ(M) = Z(σ(M)),
and so Zσ(M) ⊆ Z(σ(M)) = σ(Z(M)). Conversely if m ∈ Z(σ(M)) = σ(Z(M)), then
R/(0 : m) ∼= mR ∈ TZ ∩ Tσ, and so (0 : m) is σ-essential in R. Thus m ∈ Zσ(M), and so
Z(σ(M)) = σ(Z(M)) ⊆ Zσ(M). Therefore Zσ(M) = Z(σ(M)) = σ(Z(M)).

For a preradical r and a module M , put r1(M) := r(M). If β is not a limit ordinal,
rβ(M)/rβ−1(M) := r(M/rβ−1(M)). If β is a limit ordinal, rβ(M) :=

∑
β>α

rα(M). This

gives rise to an increasing sequence of preradicals. We put r(M) =
∑
β

rβ(M), then r is

a smallest radical larger than r. If r is idempotent, then r is also idempotent. Thus for
an idempotent preradical r, a torsion theory (T ,F) generated by Tr is given that T = T r
and F = Fr.

We define (Zσ)2(M) by (Zσ)2(M)/Zσ(M) := Zσ(M/Zσ(M)).

Lemma 5. Let σ be a radical and σ(M) ⊇ N for a module M and its submodule N .
Then it holds that σ(M/N) = σ(M)/N .

–148–



Theorem 6. For a left exact radical σ, it holds that Z2σ = (Zσ)2 = Zσ.

Proof. By Lemma 5, σ(M/Z(σ(M))) = σ(M)/Z(σ(M)).
Thus (Zσ)2(M)/Zσ(M) = Zσ(M/Zσ(M)) = Z{σ(M/Z(σ(M)))}
= Z(σ(M)/Z(σ(M))) = Z2(σ(M))/Z(σ(M)). Thus Z2σ = (Zσ)2. Since Z2 and σ are

left exact radicals, (Zσ)2 is a left exact radical. Since Zσ is the smallest radical containing
Zσ, (Zσ)2 ⊇ Zσ. By construction of Zσ, it holds that (Zσ)2 ⊆ Zσ, and so (Zσ)2 = Zσ, as
desired. □

Let G be a Goldie torsion functor. The followings are well known. (1) G(M) = M
if and only if Z(M) is essential in M . (2) G(M) = 0 if and only if Z(M) = 0. (3) If
Z(R) = 0, then G = Z. We can generalize this as follows.

Corollary 7. Let Gσ be a σ-Goldie torsion functor. Then the following facts hold.

(1) Gσ(M) =M if and only if σ(M) =M and Z(M) is essential in M .
(2) Gσ(M) = 0 if and only if Z(σ(M)) = 0.
(3) If Z(σ(R)) = 0, then Gσ = Zσ

4. σ-costable torsion theory and σ-cohereditary torsion theory

From now on, assume that R be a right perfect ring. A right R-module M is called
σ-projective if the functor HomR(M, ) preserves the exactness for any exact sequence
0→ A→ B → C → 0 with A ∈ Fσ. For an idempotent radical σ, a short exact sequence

[0 → Kσ(M) → Pσ(M)
πσ
M→ M → 0] is called σ-projective cover of a module M when

Pσ(M) is σ-projective, Kσ(M) is σ-torsion free and Kσ(M) is small in Pσ(M). Since R is
a right perfect ring and σ is an idempotent radical, σ-projective cover of a module always
exists. A torsion theory (T ,F) is called costable if F is closed under taking projective
covers. We generalize this in [4]. We call a torsion theory (T ,F) σ-costable if F is closed
under taking σ-projective covers.

Proposition 8. Let E be a module such that for any module X and any f ∈ HomR(E,X),
f(E) is σ-torsionfree and not small in X. We denote F = {M |HomR(E,M) = 0} and
T = {M |HomR(M,F ) = 0 for any F ∈ F}. Then (T ,F) is a σ-costable torsion theory.

Proof. Let M be in F . Then HomR(E,M) = 0. Suppose that Pσ(M) /∈ F . Then
HomR(E,Pσ(M)) ̸= 0. Thus there exists an f ∈ HomR(E,Pσ(M)) such that f(E) ̸= 0.
Since πσMf ∈ HomR(E,M) = 0, f(E) ⊆ Kσ(M) is small in Pσ(M). Thus f(E) is σ-
torsionfree and small in Pσ(M). This is a contradiction. Thus F is closed under taking
σ-projective covers. □

Next we state the dual of Proposition 1. A preradical σ is called epi-preserving if
σ (M/N) = (σ(M) + N)/N holds for any module M and any submodule N of M . If
σ is an epipreserving idempotent radical, Fσ is closed under taking factor modules and
then (T ,F) is called cohereditary. We say that a subclass C of Mod-R is closed under
taking σ-factor modules if : if M ∈ C and N is a σ-torsionfree submodule of M then
M/N ∈ C. We call a torsion theory (T ,F) σ-cohereditary if F is closed under taking
σ-factor modules.
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Proposition 9. Let σ be an epi-preserving idempotent radical. Let B be a class of modules
closed under taking σ-factor modules and submodules. Then the torsion theory cogenerated
by B is σ-cohereditary.

Proof. Let (T , F) be a torsion theory cogenerated by B. We show that T is closed
under taking σ-projective covers. Let M ∈ T . We show that Pσ(M) ∈ T . Suppose that
Pσ(M) /∈ T . Then there existsB ∈ B such that HomR(Pσ(M),B) ̸= 0. Then there exists a
nonzero homomorphism α : Pσ(M) → B. B ∋ B ⊇ α(Pσ(M)) ⊇ α(Kσ(M)) ∈ Fσ. Since
B is closed under taking σ-factor modules and submodules, α(Pσ(M))/α(Kσ(M)) ∈ B.
Then α induces α̃ : M ≃ Pσ(M)/Kσ(M) ↠ α(Pσ(M))/α(Kσ(M)) ∈ B. Since M ∈ T ,
it follows that α(Pσ(M))/α(Kσ(M)) = 0, and so α(Pσ(M)) = α(Kσ(M)). Therefore it
follows that α−1{α(Pσ(M))} = α−1{α(Kσ(M))}, and so Pσ(M) = α−1(0)+Kσ(M). Since
Kσ(M) is small in Pσ(M), it follows that Pσ(M) = α−1(0). But this is a contradiction to
the fact that α ̸= 0. Thus Pσ(M) ∈ T . □

Proposition 10. Let P be a σ-projective module and B be {M |HomR(P,M) = 0}. Then
a torsion theory generated by B is σ-cohereditary.

Proof. It is easily verified that B is closed under taking submodules, direct products and
extensions. We only show that B is closed under taking σ-factor modules. LetM ∈ B and
N ∈ Fσ be a submodule of M . Suppose that M/N /∈ B, then there exists a nonzero f ∈
HomR(P,M/N). Then f extends f ′ ∈ HomR(P,M) such gf ′ = f , where g is a canonical
epimorphism from M to M/N . This is a contradiction to the fact that M ∈ B. Thus a
torsion theory (T ,B) generated by B is σ-cohereditary by Proposition 9. □

5. Dualization of σ-Goldie torsion theory

A module N is called small if N is a small submodule of some module. It is well known
that N is small if and only if N is small in E(M). Now we consider dualizations of
σ-Goldie torsion theory.

Theorem 11. Let σ be an epi-preserving idempotent radical. We denote B = {N ∈ Fσ|N
is small in some module M}(= {M ∈ Fσ|M is small in E(M)}). Then a torsion theory
(T ,F) cogenerated by B is cohereditary and σ-costable.

Proof. It is easily verified that B is closed under taking direct sums, factor modules and
submodules. Thus by Proposition 9(σ = 1), F is closed under taking factor modules,
and so (T ,F) is a cohereditary torsion theory. Next we show that F is closed under
taking σ-projective covers. Let M ∈ F . Suppose that Pσ(M) /∈ F , then there exists
a module X in T and HomR(X,Pσ(M)) ̸= 0. Consider the following exact sequence.
0→ HomR(X,Kσ(M))→ HomR(X,Pσ(M))→ HomR(X,M). Since X ∈ T and M ∈ F ,
HomR(X,M) = 0. Since Kσ(M) is σ-torsion free small submodule of Pσ(M), Kσ(M)
is in B. Thus HomR(X,Kσ(M)) = 0, and so HomR(X,Pσ(M)) = 0. But this is a
contradiction, and so it follows that Pσ(M) ∈ F . □

A module of B in Theorem 11 is a generalization of small module. Last we give another
extension of small modules. We call a module N a σ-small module if there exists a module
L and a small σ-dense submodule K of L such that N is isomorphic to K.
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Proposition 12. A module N is a σ-small module if and only if N is small in Eσ(N).

Proof. Let N be a σ-small module. Then there exists a module L and its σ-dense small
submodule K such that N ∼= K. Consider the following diagram.

N
h|N→ K ⊆◦ L↠ L/K ∈ Tσ

∩ ∩
Eσ(N) →

h
Eσ(K),

where h is an isomorphism and h|N is an isomorphism and an restriction of h to N . Then
there exists a g : L → Eσ(K) such that g|K = 1K . Then K = g(K) ⊆◦ g(L) ⊆ Eσ(K),
and so K is small in Eσ(K). Thus h−1(K) is small in h−1(Eσ(K)), and so N is small in
Eσ(N). The converse is clear. □
Proposition 13. Let B be the class of all σ-small modules. Then a torsion theory gen-
erated by B is a σ-hereditary torsion theory. A torsion theory cogenerated by B is a
cohereditary torsion theory.

Proof. It is easiy verified that B is closed under taking factor modules and σ-dense sub-
modules, then a torsion theory generated by B is a σ-hereditary torsion theory by Propo-
sition 1 and Proposition12. A torsion theory cogenerated by B is a cohereditary torsion
theory by Proposition 9. □
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ON THE RELATION OF THE UPPER BOUND OF GLOBAL
DIMENSION AND THE LENGTH OF SERIAL ALGEBRA WHICH

HAS FINITE GLOBAL DIMENSION

MORIO UEMATSU

Abstract. The aim of this note is to study the relationship between the global di-
mension and the Loewy length of serial algebras that have finite global dimension. To
compute global dimension, we define the associative quiver of an admissible sequence
(a1, · · · , an) of a serial algebra A. This note concludes the following result. For positive
integer k with k < n/2, if the Loewy length L(A) of A is minimal positive integer which
greater than n/k, then the global dimension is less than or equal to 2n− 2k − 1 .

Key Words: serial algebra, global dimension

Let A be a finite dimensional basic connected serial algebra over an algebraically closed
field, and n is the number of the non isomorphic simple left modules of A. If the global
dimension gl.dimA of A is finite, then gl.dimA ≤ 2n − 2 and the Loewy length L(A) of
A is less than or equal to 2n − 1[3]. In this note we consider the relationship L(A) and
gl.dimA.

1. Notation

The quiver of A is one of the following.

1 //2 // · · · //n 1 //2 // · · · //nhh

The algebra A whose quiver is the first one called chain type and the other called cyclic
type. Let Pi, Si (1 ≤ i ≤ n) be the indecomposable left projective module and the
simple left module of A corresponding to the vertex i. Then Pi+1 is a projective cover
of radPi for i = 1, 2, · · · , n − 1, and P1 is a projective cover of radPn in case of cyclic
type. The sequence of positive integers (a1, · · · , an) where ai = L(Pi) (1 ≤ i ≤ n) is
called the admissible sequence of A and has the property that ai+1 ≥ ai − 1 ≥ 1 for all
i = 1, 2, · · · , n− 1 and a1 ≥ an − 1. Conversely, for any sequence (a1, · · · , an) of positive
integers with this property, there is a serial algebra with this sequence as its admissible
sequence.

Now, let A be a serial algebra with admissible sequence (a1, · · · , an). Then Pi has
unique composition series of following shape. Where i is the corresponding simple module
of vertex i, and [k] denotes the least positive residue of k modulo n for any positive integer
k.

Pi =


i

[i+ 1]
...

[i+ ai − 1]


The detailed version of this paper will be submitted for publication elsewhere.

–152–



2. Regular points of admissible sequence

In the paper [3], Gustafson introduced the notion of f -regular points and computed the
global dimension of serial rings.

Definition 1. The function f on {1, 2, · · · , n} for admissible sequence (a1, · · · , an) is
defined by f(i) = [i + ai]. The point i ∈ {1, · · · , n} is f -regular if f t(i) = i for some
positive integer t.

Since fn−1(i) is f -regular for any i , the set of f -regular points is not empty.

Definition 2. For i ∈ {1, · · · , n} , the distance h(i) of i from f -regular points defined
by h(i) = 0 for f -regular point i, and h(i) = t if f t−1(i) is not f -regular but f t(i) is
f -regular for positive integer t. The maximal distance d from f -regular points defined by
d = max{h(i)|i = 1, · · · , n}.

The minimal projective resolution of Si is following.

· · · → Pf2(i+1) → Pf2(i) → Pf(i+1) → Pf(i) → Pi+1 → Pi → Si → 0

If the projective dimension proj.dimSi of Si is finite, then its left end is one of the following
shape.

0→ Pfk(i) → Pfk−1(i+1) → · · ·
0→ Pfk(i+1) → Pfk(i) → · · ·

So fk+1(i) = fk(i + 1) or fk+1(i) = fk+1(i + 1) and this is f -regular. It follows that
proj.dimSi ≤ 2d. Then we have following lemma.

Lemma 3 (Gustafson). Let d be the maximal distance from f -regular points,
then gl.dimA ≤ 2d.

3. Associative quiver

We define the associative quiver QA of A by {1, · · · , n} is set of vertices and an arrow
i to j if f(i) = j. An associative quiver is a disjoint union of left serial quivers which are
defined below.

Definition 4. A quiver called left serial if it has unique oriented cycle and when removing
all arrows of this cycle, the remaining is a disjoint union of trees with unique sink which
is a vertex of the cycle.

•

��
•

��

• // •

��

•oo •oo

• // •

��@
@@

@@
@@

•
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@@
@@

•
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•
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~~
~

•

??~~~~~~~
•

��~~
~~
~~
~

•oo •oo
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??~~~~~~~
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__@@@@@@@
•

__@@@@@@@
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It follows that a vertex i is f -regular if and only if i belongs to the cycle of the associative
quiver. We call “f -regular vertex” instead of “f -regular point” when we treat the point
as the vertex of the associative quiver.

Example 5. Let A be a serial algebra with admissible sequence (3, 3, 3, 2, 2). Its inde-
composable left projective modules are following.1

2
3

2
3
4

3
4
5

(4
5

)(
5
1

)
The associative quiver of A is following. The vertices 1, 4, 2 and 5 are f -regular.

3 //1 &&4ff 2 &&5ff

An associative quiver is a disjoint union of left serial quivers. But if gl.dimA <∞, it is
only one component. For, if gl.dimA < ∞, any morphism between indecomposable pro-
jective modules that corresponding to f -regular vertices is an isomorphism or 0. Because
if there is a non isomorphic and non zero morphism g : Pi → Pj, then its cokernel K has
infinite chain of projective resolution.

· · · → Pf2(i) → Pf2(j) → Pf(i) → Pf(j) → Pi → Pj → K → 0

If there exist two distinct cycles in the associative quiver, then it follows that there exist
a non isomorphic and non zero morphism between the corresponding indecomposable
projective modules on these cycles.

Proposition 6. If gl.dimA <∞, then QA is left serial (only one component).

4. Serial algebra of chain type

Let A be a serial algebra of chain type with admissible sequence (a1, · · · , an). It is well
known that L(A) ≤ n and gl.dimA ≤ n− 1. Next theorem is generalization of this.

Theorem 7. Suppose that A is a serial algebra of chain type with admissible sequence
(a1, · · · , an) and l = L(A).
Then gl.dimA ≤ n− l + 1.

The inequality of global dimension of above theorem is sharp.

Example 8. LetA be a serial algebra with admissible sequence (l, l−1, · · · , 3, 2, 2, · · · , 2, 1).
gl.dimA = n− l + 1. Indeed, proj.dimSl−2 = n− l + 1 and this is the maximal.

0→ Pn → Pn−1 → · · · → Pl−2 → Sl−2 → 0

5. Serial algebra of cyclic type

Let A be a serial algebra of cyclic type with admissible sequence (a1, · · · , an). If
gl.dimA <∞, then L(A) ≤ 2n−1[3]. It is well known that if L(A) = 2 then gl.dimA =∞.
So, fixed l (2 < l < 2n), we calculate upper bound of gl.dimA.

Definition 9. For 1 ≤ i ≤ n− 1, the vertex i is called a step vertex if ai+1 = ai − 1 and
vertex n is called a step vertex if a1 = an − 1.
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If i is a step vertex, then the associative quiver contains following graph as subquiver.

i

##F
FF

FF
FF

FF

f(i)

i+ 1

;;xxxxxxxx

We don’t avoid the case i = f(i) and i+ 1 = f(i).

Lemma 10. If QA has r f -regular vertices and s step vertices and if gl.dimA <∞, then
the maximal distance d from f -regular vertices is less than or equal to n− r − s+ 1.

Example 11. Let A be a serial algebra with admissible sequence (4, 4, 4, 4, 3, 2, 2). The
associative quiver is following. 1 and 5 are f -regular and 4 and 5 are step vertices.
d = h(3) = 4 = 7− 2− 2 + 1 and gl.dimA = proj.dimS2 = 7 ≤ 8 = 2 · d = 2 · 4.

3 // 7 // 2 // 6 // 1
((
5hh

4

@@�������

If QA has only one step point, then d is maximal among the algebras which have fixed
r regular points. In this case QA is following shape. There are r points that belong to
the cycle and d is n− r. Lemma 3 shows that gl.dimA ≤ 2n− 2r. In case of n < l < 2n,
this bound is sharp. But the case l ≤ n is not.

•

!!C
CC

CC
CC

C

• // • // . . . // •

=={{{{{{{{
•

}}{{
{{
{{
{{

· · ·

aaCCCCCCCC

For any positive real number x, let ⌈x⌉ be the minimum positive integer that greater
than x.

Theorem 12. Let A be a a serial algebra of cyclic type with admissible sequence (a1, · · · , an)
which has finite global dimension and l = L(A).

(1) If n < l < 2n, then gl.dimA ≤ 4n− 2l.
(2) If l = n, then gl.dimA ≤ 2n− 3.
(3) For any positive integer k with n ≥ 2k + 3 and ⌈ n

k+1
⌉ < ⌈n

k
⌉,

if ⌈ n
k+1
⌉ ≤ l < ⌈n

k
⌉, then gl.dimA ≤ 2n− 2k − 3.

These inequality of global dimension are sharp.

Example 13. For positive integer t (1 ≤ t < n), let A be a serial algebra with admissible
sequence (n+ t, n+ t− 1, · · · , n+ 1, n+ 1, · · · , n+ 1, n).
This is the case (1) of the theorem which the equality holds. h(i) = n − t (1 ≤ i ≤
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t), h(t + j) = n − t − j (1 ≤ j ≤ n − t − 1), and h(n) = 0. So d = n − t, and
gl.dimA = 2n− 2t. QA is following.

1

##F
FF

FF
FF

FF

2 // t+ 1 // t+ 2 // · · · // n− 1 // n ff

. . .

...zzz

==zzz

t

OO

Above example is generalization of Gustafson’s example.

Example 14 (Gustafson). In example 13, the case of t = 1 is following.
Let A be a serial algebra with admissible sequence (n+ 1, n+ 1, · · · , n+ 1, n).
gl.dimA = 2n− 2. QA is following.

1 //2 // · · · //n− 1 //n cc

Example 15. Let A be a serial algebra with admissible sequence (n, n−1, · · · , n−1, n−1).
This is the case (2) of the theorem which the equality holds. gl.dimA = 2n − 3. QA is
following.

n //n− 1 //· · · //2 //1 cc

In the case (3) of the theorem, the equality of gl.dimA holds when QA has k+1 regular
vertices and one step vertex. In this case d = n−k−1, and gl.dimA = 2d−1 = 2n−2k−3.

Example 16. Let A be a serial algebra with admissible sequence (3, 3, 3, 3, 2, 2). In this
case, n = 6, l = ⌈6

2
⌉ = 3 < ⌈6

1
⌉, k = 1, and gl.dimA = 7 = 2 · 6− 2 · 1− 3. QA is following.

3 //6 //2 //5 //1 &&4ff

Example 17. Let A be a serial algebra with admissible sequence
(4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3). In this case, n = 14, l = ⌈14

4
⌉ = 4 < ⌈14

3
⌉, k = 3, and

gl.dimA = 19 = 2 · 14− 2 · 3− 3. QA is following.

12

��@
@@

@@
@@

@

4 −→ 8 −→ 11 −→ 14 −→ 3 −→ 7 −→ 10 −→ 13 −→ 2 −→ 6 // 9

??~~~~~~~~
1

��~~
~~
~~
~~

5

__@@@@@@@@
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NONCOMMUTATIVE GRADED GORENSTEIN ISOLATED
SINGULARITIES

KENTA UEYAMA

Abstract. Gorenstein isolated singularities play an essential role in representation the-
ory of Cohen-Macaulay modules. In this article, we define a notion of noncommutative
graded isolated singularity and study AS-Gorenstein isolated singularities. For an AS-
Gorenstein algebra A of dimension d ≥ 2, we show that A is a graded isolated singularity
if and only if the stable category of graded maximal Cohen-Macaulay modules over A
has the Serre functor. Using this result, we also show the existence of cluster tilting
modules over certain fixed subalgebras of AS-regular algebras.

Key Words: graded isolated singularity, graded maximal Cohen-Macaulay module,
AS-Gorenstein algebra, Serre functor, cluster tilting.

2010 Mathematics Subject Classification: 16S38, 16W50, 16G50, 16E30.

1. Introduction

Throughout this paper, k is an algebraically closed field of characteristic 0. In repre-
sentation theory of orders, which generalize both finite dimensional algebras and Cohen-
Macaulay rings, studying the categories of Cohen-Macaulay modules is active (see [5] for
details). In particular, the following results play key roles in the theory (we present graded
versions due to [6, Corollary 2.5, Theorem 3.2, Theorem 4.2]).

Theorem 1. Let R be a noetherian commutative graded local Gorenstein ring of dimen-
sion d and of Gorenstein parameter ℓ. Assume that R is an isolated singularity. Then
the stable category of graded maximal Cohen-Macaulay modules has the Serre functor
(−ℓ)[d− 1].

Theorem 2. Let S = k[x1, . . . , xd] be a polynomial ring generated in degree 1, G a finite
subgroup of SLd(k), and S

G the fixed subring of S.

(1) Then the skew group algebra S ∗G is isomorphic to EndSG(S) as graded algebras.
(2) Assume that SG is an isolated singularity. Then S is a (d − 1)-cluster tilting

module in the categories of graded maximal Cohen-Macaulay modules over SG.

The proofs of these results rely on commutative ring theory. This paper tries to give a
noncommutative (not necessarily order) version of them.

One of the noncommutative analogues of polynomial rings (resp. Gorenstein local
rings) is AS-regular algebras (resp. AS-Gorenstein algebras). In this paper, we define
a notion of noncommutative graded isolated singularity by the smoothness of the non-
commutative projective scheme (see also [8]), and we focus on studying AS-Gorenstein

The detailed version of this paper will be submitted for publication elsewhere.
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isolated singularities. In particular, a noncommutative version of Theorem 1 will be given
in Theorem 7, and a partial generalization of Theorem 2 for some fixed subalgebras of
AS-regular algebras will be given in Theorem 11.

2. Preliminaries

Let A be a connected graded algebra and m =
⊕

i>0Ai the maximal homogeneous
two-sided ideal of A. The trivial A-module A/m is denoted by k. We denote by GrModA
the category of graded right A-modules with degree zero A-module homomorphisms,
and by grmodA the full subcategory consisting of finitely generated graded right A-
modules. The group of graded k-algebra automorphisms of A is denoted by GrAutA.
Let M be a graded right A-module. For an integer n ∈ Z, we define the truncation
M≥n :=

⊕
i≥nMi ∈ GrModA and the shiftM(n) ∈ GrModA byM(n)i :=Mn+i for i ∈ Z.

We write

ExtiA(M,N) =
⊕
n∈Z

ExtiGrModA(M,N(n)).

For a graded algebra automorphism σ ∈ GrAutA, we define a new graded right A-
module Mσ ∈ GrModA by Mσ = M as graded vector spaces with the new right action
m∗a = mσ(a) form ∈M and a ∈ A. We denote by (−)∗ = Homk(−, k) the graded Matlis
duality. IfM is locally finite, thenM∗∗ ∼= M as graded A-modules. We define the functor
Γm : GrModA→ GrModA by Γm(−) = limn→∞ HomA(A/A≥n,−). The derived functor of
Γm is denoted by RΓm(−), and its cohomologies are denoted by Hi

m(−) = hi(RΓm(−)).

Definition 3. A connected graded algebra A is called a d-dimensional AS-Gorenstein
algebra (resp. AS-regular algebra) of Gorenstein parameter ℓ if

• A is noetherian,
• idAA = idAop A = d <∞ (resp. gldimA = d <∞) and

• ExtiA(k,A)
∼= ExtiAop(k,A) ∼=

{
k(ℓ) if i = d,

0 if i ̸= d.

If A is a d-dimensional AS-Gorenstein algebra of Gorenstein parameter ℓ, then i-th local
cohomology Hi

m(A) of A is zero for all i ̸= d. The graded A-A bimodule ωA := Hd
m(A)

∗

is called the canonical module of A. It is known that there exists a graded algebra
automorphism ν ∈ GrAutA such that ωA ∼= Aν(−ℓ) as graded A-A bimodules (cf. [7,
Theorem 1.2]). We call this graded algebra automorphism ν ∈ GrAutA the generalized
Nakayama automorphism of A.

We denote by torsA the full subcategory of grmodA consisting of finite dimensional
modules over k, and

tailsA := grmodA/torsA

the quotient category, which is called the noncommutative projective scheme associated to
A in [1]. If A is a commutative graded algebra finitely generated in degree 1 over k, then
tailsA is equivalent to the category of coherent sheaves on ProjA by Serre, justifying
the terminology. We usually denote by M ∈ tailsA the image of M ∈ grmodA. If
M,N ∈ grmodA, thenM ∼= N in tailsA if and only if M≥n ∼= N≥n in grmodA for some
n, explaining the word of “tails”.
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We define a notion of noncommutative graded isolated singularity by the smoothness
of the noncommutative projective scheme. Recall that the global dimension of tailsA is
defined by

gldim(tailsA) := sup{i | ExtitailsA(M,N ) ̸= 0 for someM,N ∈ tailsA}.

Definition 4. A noetherian connected graded algebra A is called a graded isolated sin-
gularity if tailsA has finite global dimension.

If A is a graded quotient of a polynomial ring generated in degree 1, then A is a graded
isolated singularity (in the above sense) if and only if A(p) is regular for any homogeneous
prime ideal p ̸= m, justifying the definition. It is easy to see that if A has finite global
dimension, then tailsA has finite global dimension, so A is a graded isolated singularity.
The purpose of this paper is to study AS-Gorenstein isolated singularities.

For the rest of this section, we recall that Jørgensen and Zhang [9] gave a noncom-
mutative graded version of Watanabe’s theorem. Let A be a graded algebra and let
σ ∈ GrAutA, M,N ∈ GrModA. A k-linear graded map f : M → N is called σ-linear
if f : M → Nσ is a graded A-module homomorphism. If A is AS-Gorenstein, then by
[9, Lemma 2.2], σ : A → A induces a σ-linear map Hd

m(σ) : Hd
m(A) → Hd

m(A). More-
over, there exists a constant c ∈ k× such that Hd

m(σ) : Hd
m(A) → Hd

m(A) is equal to
c(σ−1)∗ : A∗(ℓ) → A∗(ℓ). The constant c−1 is called the homological determinant of σ,
and we denote hdet σ = c−1 (see [9, Definition 2.3]).

Theorem 5. [9, Theorem 3.3] If A is AS-Gorenstein of dimension d, and G is a finite
subgroup of GrAutA such that hdet σ = 1 for all σ ∈ G, then the fixed subalgebra AG is
AS-Gorenstein of dimension d.

3. Serre Functors

Definition 6. Let C be a k-linear category such that dimk HomC(M,N ) < ∞ for all
M,N ∈ C. An autoequivalence S : C → C is called the Serre functor for C if we have a
functorial isomorphism

HomC(M,N ) ∼= HomC(N , S(M))∗

for allM,N ∈ C.

Note that the Serre functor is unique if it exists. Let A be an AS-Gorenstein alge-
bra of dimension d. We say that M ∈ grmodA is graded maximal Cohen-Macaulay if
ExtiA(M,A) = 0 for any i > 0. We denote by CMgr(A) the full subcategory of grmodA
consisting of graded maximal Cohen-Macaulay modules, and by CMgr(A) the stable cat-
egory of CMgr(A). Thus CMgr(A) has the same objects as CMgr(A) and the morphism set
is given by

HomCMgr(A)(M,N) = HomGrModA(M,N)/P (M,N)

for anyM,N ∈ CMgr(A), where P (M,N) consists of the degree zero A-module homomor-
phisms that factor through a projective module in GrModA. The syzygy gives a functor
Ω : CMgr(A) → CMgr(A). By [2], we see that CMgr(A) is a triangulated category with
respect to the translation functor M [−1] = ΩM .

We have the following main result in this section.
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Theorem 7. Let A be an AS-Gorenstein algebra of dimension d ≥ 2. Then the following
are equivalent.

(1) A is a graded isolated singularity.
(2) CMgr(A) has the Serre functor − ⊗A ωA[d − 1], that is, there exists a functorial

isomorphism

HomCMgr(A)(M,N) ∼= HomCMgr(A)(N,M ⊗A ωA[d− 1])∗

for any M,N ∈ CMgr(A).

In order to give an example of this result, we prepare a noncommutative graded version
of a classical result by Auslander. Let A be an AS-Gorenstein algebra. We call A CM-
representation-finite if there exist finitely many indecomposable graded maximal Cohen-
Macaulay modules X1, . . . , Xn so that, up to isomorphism, the indecomposable graded
maximal Cohen-Macaulay modules in grmodA are precisely the degree shifts Xi(s) for
1 ≤ i ≤ n and s ∈ Z.

Proposition 8. Let A be an AS-regular algebra of dimension 2, and let G be a finite
subgroup of GrAutA such that hdet σ = 1 for all σ ∈ G. Then AG is CM-representation-
finite. In fact, the indecomposable maximal Cohen-Macaulay modules over AG are pre-
cisely the indecomposable summands of A(s). Moreover, AG is an AS-Gorenstein isolated
singularity.

Example 9. Let

A = k⟨x, y⟩/(xy − αyx) 0 ̸= α ∈ k, deg x = deg y = 1.

Then A is an AS-regular algebra of dimension 2 and of Gorenstein parameter 2. We
define a graded algebra automorphism σ ∈ GrAutA by σ(x) = ξx, σ(y) = ξ2y where ξ is
a primitive 3-rd root of unity. One can check hdetσ = 1. Let G = ⟨σ⟩ ≤ GrAutA. Then
AG is AS-Gorenstein of dimension 2 and

HAG(t) =
1− t+ t2

(1− t)2(1 + t+ t2)
.

It follows from Proposition 8 that AG is CM-representation-finite and a graded isolated
singularity. But AG is not AS-regular because HAG(t)−1 ̸∈ Z[t]. Theorem 7 shows that
CMgr(AG) has the Serre functor.

4. n-cluster tilting modules

The notion of n-cluster tilting subcategories plays an important role from the viewpoint
of higher analogue of Auslander-Reiten theory [3], [4]. It can be regarded as a natural
generalization of the classical notion of CM-representation-finiteness.

Definition 10. Let A be a balanced Cohen-Macaulay algebra. A graded maximal Cohen-
Macaulay module X ∈ CMgr(A) is called an n-cluster tilting module if

addA{X(s) | s ∈ Z} = {M ∈ CMgr(A) | ExtiA(M,X) = 0 (0 < i < n)}
= {M ∈ CMgr(A) | ExtiA(X,M) = 0 (0 < i < n)}.
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Note that A is CM-representation-finite if and only if A has a 1-cluster tilting module.
In fact if A and AG are as in Proposition 8, then AG has a 1-cluster tilting module
A ∈ CMgr(AG).

Let A be a connected graded algebra and G a finite subgroup of GrAutA. Then the
skew group algebra A ∗G is an N-graded algebra defined by A ∗G =

⊕
i∈N(Ai ⊗k kG) as

a graded vector space with the multiplication

(a⊗ σ)(a′ ⊗ σ′) = aσ(a′)⊗ σσ′

for any a, a′ ∈ A and σ, σ′ ∈ G. We have the following main result in this section.

Theorem 11. Let A be a AS-regular domain of dimension d ≥ 2 and of Gorenstein
parameter ℓ generated in degree 1. Take r ∈ N+ such that r | ℓ. We define a graded
algebra automorphism σr of A by σr(a) = ξdeg aa where ξ is a primitive r-th root of unity,
and write G = ⟨σr⟩ for the finite cyclic subgroup of GrAut(A) generated by σr. Then

(1) the skew group algebra A ∗G is isomorphic to EndAG(A) as graded algebras.
(2) AG is a graded isolated singularity, and A ∈ CMgr(AG) is a (d− 1)-cluster tilting

module.

Moreover, it follows from the study of skew group algebras [10, Lemma 13] that
EndAG(A) in the above theorem is a generalized AS-regular algebra of dimension d (ie,
EndAG(A) has global dimension d and satisfies generalized Gorenstein condition).

Theorem 11 is a partial generalization of Theorem 2. Thanks to this result, we can
obtain examples of (d− 1)-cluster tilting modules over non-orders.

Example 12. Let

A = k⟨x, y⟩/(αxy2 + βyxy + αy2x+ γx3, αyx2 + βxyx+ αx2y + γy3), deg x = deg y = 1

where α, β, γ ∈ k are generic scalars. Then A is an AS-regular algebra of dimension 3 and
Gorenstein parameter 4. Let

G = ⟨σ4⟩ =
⟨(

ξ 0
0 ξ

)⟩
≤ GrAutA

where ξ is a primitive 4-th root of unity. Then AG is an AS-Gorenstein isolated singularity,
and A ∈ CMgr(AG) is a 2-cluster tilting module. Moreover, we see that EndAG(A) is a
generalized AS-regular algebra of dimension 3.
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Abstract. In this talk, we study Ulrich ideals and Ulrich modules with respect to
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本講演は, 講演者の他, 後藤四郎氏 (明治大学), 高橋亮氏 (名古屋大学), 大関一秀氏 (山
口大学)との共同研究の報告である ([4], [5]).

1. 背景

この講演を通じて, 特に断らない限り, (A,m, k) は可換なネーター局所整域とし, 単位
元 1A を持つとする. また, m は A のただ１つの極大イデアル, k = A/m を剰余体とす
る. d = dimA を A のクルル次元 (Krull dimension)を表すものとする.
さらに, 講演を通じて, M は有限生成 A 加群を表すものとし, ℓA(M) は M の長さ

(length), µA(M) = ℓA(M/mM)をM の極小生成系の個数 (minimal number of generators)
rankA(M) = dimQ(A)(M ⊗A Q(A)) を M の階数 (rank), eA(M) = e0m(M) を M の極大イ
デアルに関する重複度 (multiplicity)を表すものとする. ここで, Q(A) は A の商体を表
す. 一般に, A のm-準素イデアル I に対して, 十分大きな整数 n を取れば, ℓA(A/I

n+1) は
n についての多項式となり, 次のように表すことができる：

ℓA(A/I
n+1) = e0

(
n+ d

d

)
− e1

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)ded.

このとき, e0 = e(I) を I に関する重複度と言う. さらに, A が整域のときには,

e0I(M) = e(I) · rankA(M)

により, I に関する M の重複度が計算できる.
本講演の主役である極大 Cohen-Macaulay 加群 (以下, 極大 Cohen-Macaulay 加群と呼

ぶ) と Ulrich Cohen-Macaulay 加群の定義から始めよう.

The detailed version of this paper will be submitted for publication elsewhere.
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Definition 1. ExtiA(A/m,M) = 0 (0 ≤ ∀i < d = dimA) が成立するとき, M は極大
Cohen-Macaulay A 加群であるという。明確なときは, 極大 Cohen-Macaulay 加群と
呼ぶ。

極大 Cohen-Macaulay 加群について, 次の不等式は基本的である.

Lemma 2. M が極大 Cohen-Macaulay 加群ならば,

rankAM ≤ µA(M) ≤ eA(M)

が成り立つ.

Definition 3 (Brennan-Herzog-Ulrich [1]). M が極大 Cohen-Macaulay 加群で, 等号
µA(M) = eA(M) が成立するとき, M は Ulrich Cohen-Macaulay A 加群 であるとい
う. 以下では, Ulrich 加群と呼ぶ。

次に, special Cohen-Macaulay 加群の定義を思い出そう. その前に有理特異点について
少し説明しよう. (A,m, k) を２次元の完備局所整閉整域とし, 剰余体 k は標数 0 の代数
的閉体と仮定する. ある特異点解消 π : X → SpecA が存在して, H1(X,OX) = 0 が成り
立つとき, A は有理特異点であると言う.
有理特異点の代表的な例は商特異点である. 例えば, 次の環は代表的な例である.

k[[s4, st, y4]] ∼= k[[x, y, z]]/(x2 + y4 + z2).

k[[s4, s3t, s2t2, st3, t4]].

特に, ２次元の Gorenstein 有理特異点は, 有理二重点 (rational double point)とも呼ば
れ, 次のいずれかの方程式 f で定義される超曲面 A = k[[x, y, z]]/(f) であることが知ら
れている (cf. [9], [10]):

(An) z2 + x2 + yn+1 (n ≥ 1)
(Dn) z2 + x2y + yn−1 (n ≥ 4)
(E6) z2 + x3 + y4

(E7) z2 + x3 + xy3

(E8) z2 + x3 + y5.

さて, ２次元有理特異点上の special Cohen-Macaulay 加群の定義を与えておこう (注
意：より一般に定義されているが, ここでは有理特異点に限定する).

Definition 4. A を２次元の有理特異点とし, M を極大 Cohen-Macaulay 加群とする. こ
のとき, M が special Cohen-Macaulay A 加群であるとは, M∗ := HomA(M,A) ∼=
Syz1A(M) が成り立つことと定める. 明らかな場合は, special 加群と呼ぶ。

Wunram [14]は２次元巡回商特異点上のすべての special加群を分類した. また, Iyama-
Wemyss [7]はその結果を拡張し, ２次元の商特異点における special 加群を完全に分類し,
その Auslander-Reiten グラフを記述した.
先に与えた有理 (商)特異点の例に対して, 直既約な Ulrich 加群と special 加群を明確に

しておこう.

Example 5. A = k[[s4, st, t4]] ∼= k[[x, y, z]]/(x2 + y4 + z2) の極小な特異点解消の双対グ
ラフは E1 − E2 − E3 である. ここで, E2

1 = E2
2 = E2

3 = −2, E1E2 = E2E3 = 1, 及び
E1E3 = 0が成り立つ. McKay 対応により, 我々は Ei (i = 1, 2, 3) に対応する直既約な極
大Cohen-Macaulay加群 Mi を見出すことができる.
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生成系 階数 µA(M) e(M)
M0 A 1 1 2 free
M1 As+ At3 1 2 2 Ulrich, special
M2 As2 + At2 1 2 2 Ulrich, special
M3 As3 + At 1 2 2 Ulrich, special

Example 6. A = k[[s4, s3t, s2t2, st3, t4]] とおく. 極小特異点解消 π : X → SpecA の双対
グラフは, E1 のみである. ここで, E2

1 = −4 である.
Special McKay 対応 (cf. [14])により, E1 に対応する直既約な極大 Cohen-Macaulay A

加群 M1 が存在する.

生成系 階数 µA(M) e(M)

M0 A 1 1 4 free
M1 As+At 1 2 4 special
M2 As2 +Ast+At2 1 3 4
M3 As3 +As2t+Ast2 +At3 1 4 4 Ulrich

イデアル I に関する Ulrich 加群の概念と Ulrich イデアルの概念を定義しよう.

Definition 7. A を Cohen-Macaulay 局所整域とし, I を m準素イデアルとする. 極大
Cohen-Macaulay A 加群 M が ℓA(M/IM) = e0I(M) と, M/ が A/I 自由加群であること
をみたすとき, I に関する Ulrich Cohen-Macaulay A 加群,略して, I に関する Ulrich
加群であるという.

Definition 8. パラメーター系で生成されないイデアルが, I のある極小還元 (minimal
reduction) Q に対して I2 = QIbをみたし, I/I2 が A/I-自由加群ならば, Ulrich イデア
ルと言う.

Ulrich イデアルの代表的な例を与えておこう.

Example 9. (1) ([11])A が Cohen-Macaulay 局所整域で, 極小重複度 (minimal mul-
tiplicity)を持つとき, m は Ulrich イデアルになる.

(2) A = k[[x1, . . . , xn]]/(x
a1
1 + · · · + xann ) のとき, もし a1 = 2b が偶数ならば, Ib =

(xb1, x2, . . . , xn)は Ulrichイデアルになる. k[[x, y, z]]/(x3+y3+z3)も Ulrichイデア
ルを持つが,この形にはなっていない (後述未解決問題参照Watanabe-Yoshida:No.1).

Ulrich イデアル上の Ulrich 加群の理論は, 重複度 2 の超曲面の (極大イデアルに関す
る) Ulrich 加群の理論を拡張したものと考えることができる. その視点でみたとき, 次の
２つの結果はごく自然なものである ([1]参照).

Theorem 10. (A,m, k) を Cohen-Macaulay 局所整域とする. i ≥ d に対して, I が Ulrich
イデアルならば, SyziA(A/I) は I に関する Ulrich 加群である. d = dimA ≥ 1 のときは,
逆も正しい.

Theorem 11. M は I に関する Ulrich 加群と仮定する. このとき, M∨ = HomA(M,KA)
が Ulrich 加群であることと, A/I が Gorenstein であることとは同値である.

Gorenstein 局所環において, Ulrich イデアルは興味深い特徴付けを持つ. イデアル I が
good イデアルであるとは, I2 = QI をみたす極小還元 Q が存在して, I2 = QI であり,
2 · ℓA(A/I) = e0I(A) が成り立つときを言う.
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Proposition 12. A は Gorenstein 局所環とする. このとき, 次は同値である.

(1) I は Ulrich イデアルである.
(2) I is good イデアルで, かつ, A/I は Gorenstein である.
(3) I is µA(I) = d+ 1 をみたす good イデアルである.

本講演において焦点となっている２次元有理二重点において, good イデアルの概念は
次に述べるように幾何的な特徴付けを持つ.

Theorem 13 (Goto-Iai-Watanabe [3] ). (A,m, k) を２次元有理二重点とするとき, m-
準素イデアル I に対して, 次の条件は同値である :

(1) I は good イデアルである.
(2) I は整閉イデアルで, 極小特異点解消 π : X → SpecA 上で表現される. すなわち,

X 上の反ネフ因子 Z が存在して, IOX = OX(−Z)は可逆で, I = H0(X,OX(−Z))
が成り立つ.

代表的な例は極大イデアルである. ２次元有理特異点において, 極大イデアルは good
イデアルであるが, 実際, 極大イデアルは基本因子 Z0 =

∑
i niEi で表現される整閉イデ

アルである.

Example 14. A = k[[x, y, z]]/(x2 + y4 + z2) を (A3) 型の有理二重点とする. このとき,
基本因子は Z0 = E1 + E2 + E3 である. Z = a1E1 + a2E2 + a3E3 が反ネフ因子であるた
めの条件を計算してみよう. E2

1 = E2
2 = E2

3 = −2, E1E2 = E2E3 = 1 及び E1E3 = 0 を用
いて計算すると,  ZE1 = −2a1 + a2 ≤ 0

ZE2 = a1 − 2a2 + a3 ≤ 0
ZE3 = a2 − 2a3 ≤ 0

を得る. ゆえに, ベクトル [a1, a2, a3] と a1E1 + a2E2 + a3E3 を同一視するとき, 反ネフ因
子は [1, 1, 1], [1, 2, 1], [1, 2, 2], [1, 2, 3], [2, 2, 1] 及び [3, 2, 1] で張られる錘の格子点に対応
する. なお, 後で見るように最初の２つのべクトルが Ulrich イデアルに対応する.

次に, ２次元有理特異点上の special Cohen-Macaulay 加群の概念を一般化しよう. 以
下, しばらく A は２次元の有理特異点とする.

Definition 15. A を２次元の有理特異点, I を m-準素イデアルとする. 極大 Cohen-
Macaulay 加群 M が, special であり, M/IM が A/I 上自由であるとき, M は I に関し
て special Cohen-Macaulay 加群, 略して, I に関して special 加群であるという.

また, Ulrich イデアルに対応するものとして, special イデアルの概念を次のように定義
する.

Definition 16. m-準素イデアル I が good であり, さらに, I に関する special Cohen-
Macaulay 加群が少なくとも１つ存在するならば, special イデアルであると言う.

基本的な問題は,

Ulrich 加群 (Special) Cohen-Macaulay 加群及び Ulrich (special) イデアルを分類せよ.

である. 以下, ２次元有理二重点上の Ulrich 加群と Ulrich イデアルの分類定理を中心
に紹介しよう.
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2. ２次元有理二重点の Ulrich イデアルと Ulrich 加群

以下, この節では, A は２次元の有理二重点とし, π : X → SpecA をその極小特異点解
消とする. 最初に, 各有理二重点における Ulrich イデアルの分類方法を説明しよう.

Lemma 17. I が Ulrich イデアルであるための必要十分条件は, µ(I) = 3 であり, X 上
のある反ネフ因子 Z が存在して, I = H0(X,OX(−Z)) が good イデアルになることで
ある.

この補題を用いれば, 任意の Ulrich イデアルを決定することは難しくない. (A3) 型
の有理二重点 A = k[[x, y, z]]/(x2 + y4 + z2) の場合に説明しよう. まず, 基本因子は
Z0 = E1 + E2 + E3 である. また, Z = a1E1 + a2E2 + a3E3 を反ネフ因子とすれば,

ZE1 = −2a1 + a2 ≤ 0,

ZE2 = a1 − 2a2 + a3 ≤ 0,

ZE3 = a2 − 2a3 ≤ 0.

が成り立つことをすでにみた. 一方, µ(I) = 3 という条件は, ZZ0 = −2, すなわち,
(Z − Z0)Z0 = 0 は

Z0Ei ̸= 0 =⇒ ai = ni = 1

に翻訳される. この例では, Z0E1 = Z0E3 = −1, Z0E2 = 0 だから, a1 = a3 = 1 を得る.
このとき, 上の連立不等式から, a2 = 1 または a2 = 2 を得る. 言い換えると, Ulrich イデ
アルに対応する反ネフ因子は,

Z0 = E1 + E2 + E3, Z1 = E1 + 2E2 + E3

の２つである.

次に, Ulrich イデアルに関する Ulrich 加群を分類しよう. (その後, イデアル I に関す
る Ulrich 加群があれば, I は Ulrich イデアルであることを示すことで Ulrich 加群の完全
な分類が完成する. )
基本的な道具は次の定理である.

Theorem 18 (Kato’s Riemann Roch e.g. [13]). A を２次元有理特異点とする. I =
H0(X,OX(−Z)) を π : X → SpecA 上で表現される整閉イデアルとすると,

ℓA(A/I) = −
Z2 +KZ

2

が成り立つ. ここで, K は X 上の標準因子である. また, 極大 CM 加群 M に対して,

ℓA(M/IM) = rankAM · ℓA(A/I) + c(M̃)Z.

が成り立つ. ここで, M̃ = π∗M/torsion はM の引き戻しで定義される層であり, c(M̃)
はその第 1 Chern 類を表す.

Remark 19. A を２次元有理特異点とする. {Ei}ri=1 を極小特異点解消に現れる例外因子
全体とするとき, 標準因子 K =

∑r
i=1 kiEi は, 方程式

0 = pa(Ei) =
E2
i +KEi

2
+ 1 = 0 (i = 1, . . . , r)

で定まる.
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Theorem 20 (McKay correspndence). X を極小な特異点解消とし, {Ei} を例外因子
全体とする. このとき, 各 Ei に対して, 直既約な極大 Cohen-Macaulay 加群 Mi が同型
を除いて一意的に存在して, 次を満たす:

(1) c(M̃i)Ej = δij. (クロネッカーのデルタ )
(2) rankAMi = ni, ここに, Z0 =

∑
i niEi は基本因子を与える.

先に, Ulrich イデアルに対応する因子を決定した, (A3) 型の有理二重点

A = k[[x, y, z]]/(x2 + y4 + z2)

に対して, 各 Ulrich イデアルに関するUlrich 加群をすべて決定しよう. I に関する Ulrich
加群の直和や直和因子も同じ性質を持つから, 直既約なものに限って調べればよい.

• Z0 に対応する Ulrich 加群

Z0 = E1 + E2 + E3 に対応する good イデアルは極大イデアルである. M1, M2, M3 が
極大イデアル m に関する Ulrich 加群であることは既に確認している.

• Z1 に対応する Ulrich 加群

Z1 = E1+2E2+E3 に対応する Ulrich イデアル I = H0(X,OX(−Z1)) に関する Ulrich
加群を決定すれば十分である. なお, 以下の計算において I の生成系を具体的に決定する
必要性はないが, 具体的には, I = (x, y2, z) である. 実際, Kato の Riemann-Roch 定理か
ら, ℓA(A/I) = 2 であることが分かる. 一方, (x, y2, z) がこの条件をみたす Ulrich イデア
ルであることが定義により確認できるので, I = (x, y2, z) であることが結論される.

まず, Kato の Riemann-Roch 定理から,

ℓA(Mi/IMi) = ℓA(A/I) · rankAMi + c(M̃i)Z = ℓA(A/I) · ni + ai

を得る. 他方, I が good イデアルであることに注意すると,

e0I(Mi) = e(I) · rankA(Mi) = 2 · ℓA(A/I) · ni
を得る. ゆえに, もし Mi が I に関する Ulrich 加群ならば,

(∗) ai = ℓA(A/I) · ni = ℓA(A/I)

を得る。逆に, 条件 (*)が成り立てば, ℓA(Mi/IMi) = e0I(Mi) が成立する. また, Mi は (極
大イデアルに関する) Ulrich 加群だから,

µA(Mi) = e0m(Mi) = e(m) · rankA(Mi) = 2ni

であり,

µA(Mi)ℓA(A/I) = 2ni · ℓA(A/I) = ℓA(Mi/IMi)

が成り立つから, Mi/IMi は自由 A/I-加群である. 従って, Mi が I に関して Ulrich 加群

であるためには (*) が成り立てばよい. ℓA(A/I) =
−Z2

1

2
= 2 なので, この条件をみたす i

は i = 2 に限る. 言い換えると, M2 のみが I に関する Ulrich 加群である.

従って, m に関する Ulrich 加群は, M1, M2, M3 の有限直和であり, I = (x, y2, z) に関
する Ulrich 加群は, M2 の直和である.

以上の議論を次のように図示することができる.
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(A3) f = x2 + y4 + z2

Z0 =
1w 1 w 1w m = I0 = (x, y, z)

Z1 =
1g 2 w 1g I1 = (x, y2, z)

上記と同様の議論により, 与えられた有理二重点の Ulrich イデアルに関するUlrich イ
デアルを完全に決定することができる.

Ulrich 加群の分類を完成するには, Ulrich イデアル以外のイデアル I に関する Ulrich
加群を分類しなければならないが, 次の定理により, ２次元有理二重点の場合はその心配
はない.

Theorem 21. A を２次元の有理二重点とし, I を m-準素イデアルとする. このとき, 次
の条件は同値である.

(1) I に関する Ulrich 加群が存在する.
(2) I は Ulrich イデアルである.

以上により, ２次元有理二重点上のUlrich 加群を完全に分類できることが分かった. 以
下では, 先に述べた (A3) の場合を参考にして, 各有理二重点の場合の Ulrich イデアルと
それに関する Ulrich 加群の表 (一部省略)をあげておく.

Ulrich ideals in RDP of type (An) f = x2 + yn+1 + z2 (n = 2m)

Zk =
1g 2g · · · kg k + 1w · · · k + 1w kg · · · 2g 1g (k = 0, 1, · · · ,m− 1)

Ulrich ideals in RDP of type (Dn) f = x2y + yn−1 + z2 (n = 2m ≥ 4)

Zk =
1g 2g 3g · · · 2k + 2w · · · 2k + 2w��

@@

w
w
k + 1

k + 1︸ ︷︷ ︸
n− 2k − 3

(k = 0, 1, . . . ,m− 2)

Zm−1 =
1g 2g 3g · · · 2m− 3g 2m− 2g��

@@

g
w
m− 1

m

Zm =
1g 2g 3g · · · 2m− 3g 2m− 2g��

@@

w
g
m

m− 1

Zm+1 =
2w 2g 2g · · · 2g 2 g��

@@

g
g
1

1
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Ulrich ideals in RDP of type (E6) f = x3 + y4 + z2

Z0 =
1w 2w 3 w 2w 1w

2 w

Z1 =
2w 3g 4 g 3g 2w

2 g

Ulrich ideals in RDP of type (E7) f = x3 + xy3 + z2

Z0 =
2w 3w 4 w 3w 2w 1w

2 w

Z1 =
2g 4g 6 g 5g 4w 2w

3 g

Z2 =
2g 4g 6 g 5g 4g 3w

3 g

Ulrich ideals in RDP of type (E8) x
3 + y5 + z2

Z0 =
2w 4w 6 w 5w 4w 3w 2w

3 w

Z1 =
4w 7g 10g 8g 6g 4g 2g

5 g

一方, イデアル論的な計算により具体的な Ulrich イデアルを見つけ, 個数を比較するこ
とにより, 次の定理のようなUlrich イデアルの完全リストを得る.
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Theorem 22. ２次元有理二重点における Ulrich イデアルは次の表で与えられる :

(An) {(x, y, z), (x, y2, z), . . . , (x, ym, z)} if n = 2m;
{(x, y, z), (x, y2, z), . . . , (x, ym+1, z)} if n = 2m+ 1.

(Dn) {(x, y, z), (x, y2, z), . . . , (x, ym−1, z),
(x+

√
−1ym−1, ym, z), (x−

√
−1ym−1, ym, z),(x2, y, z)}

if n = 2m;
{(x, y, z), (x, y2, z), . . . , (x, ym, z), (x2, y, z)}
if n = 2m+ 1.

(E6) {(x, y, z), (x, y2, z)}.
(E7) {(x, y, z), (x, y2, z), (x, y3, z)}.
(E8) {(x, y, z), (x, y2, z)}.

3. 有理二重点上の Special Cohen-Macaulay 加群

有理二重点において, 「イデアル I に関する Ulrich Cohen-Macaulay 加群」は, 実は,
「M/IM が自由 A/I 加群である」ことに過ぎないことが分かる.

Theorem 23. A を２次元有理二重点とし, I をパラメーターイデアルでない, m 準素イ
デアルとする. このとき, 極大Cohen-Macaulay 加群 M に関して, 次の条件は同値である.

(1) M は I に関して, Ulrich 加群である.
(2) M は I に関して, special 加群である.
(3) M は自由加群を直和因子に持たず, M/IM は自由 A/I-加群である.

このとき, I は Ulrich イデアルで, M∗ = HomA(M,A) も I に関するUlrich 加群である.

4. non Gorenstein 有理特異点における Ulrich (special) イデアルの例

Example 24. G を g =

(
ε7

ε37

)
で定義された巡回群として, A = k[[s7, s4t, st2, t7]] =

k[[x, y]]G とおく.

このとき, 極小特異点解消の双対グラフは, E1−E2−E3 (ただし, E2
1 = −3, E2

2 = E2
3 =

−2)の形をしている.

Ma = (sitj | i + 3j ≡ a (mod 7)) (a = 0, 1, . . . , 6) とおくと, {Ma}6i=0 は A 上の直既
約な極大 Cohen-Macaulay 加群の全体であり, Ma が special (resp. Ulrich) になるのは,
a = 1, 2, 3 (resp. a = 4, 5, 6) の場合である.

一方, special cycles は Z0 = E1 +E2 +E3 と Z1 = E1 + 2E2 +E3 である. I0 = m に対
する直既約な special 加群は M1, M2 と M3 であるが, I1 = H0(X,OX(−Z1)) に対する直
既約な special 加群は M2 のみである.
一方, Ulrich イデアルは m のみであることが分かるが, 「Ulrich 加群」は完全に決め

られていない.
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最後に, 未解決問題をあげておく.

(1) どんな局所環が Ulrich イデアルを持つか? (Ulrich イデアルを持つ Gorenstein 整
域は完全交叉であるか?)

(2) 単純超曲面特異点上の Ulrich イデアルを分類せよ. (２次元から来るもので決まる
か?)

(3) ２次元単純楕円特異点上の Ulrich イデアルを分類せよ.
(4) ２次元 non Gorenstein 有理特異点上のあるイデアルに関する Ulrich 加群を完全
に分類せよ.
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ON SEPARABLE POLYNOMIALS IN SKEW POLYNOMIAL RINGS

SATOSHI YAMANAKA

Abstract. Let B be a ring with identity element 1 of prime characteristic p, D a
derivation of B, and B[X;D] the skew polynomial ring in which the multiplication is
given by αX = Xα +D(α) for any α ∈ B. We consider a condition for Xp −Xa− b ∈
B[X;D] to be a Galois polynomial.

1. Introduction

This is based on a joint work with S. Ikehata [17].
In [12, 13, 14], T. Nagahara has studied separable and Galois polynomials of degree 2

in skew polynomial rings. He got several interesting results. The pourpose of this paper is
to give a generalization of Nagahara’s result for polynomials of degree 2 to general prime
degree p.

Throughout this paper, B will mean a ring with identity element 1 and D a derivation
of B, that is, D is an additive endomorphism of B such that D(αβ) = D(α)β + αD(β)
for any α, β ∈ B. We assume that B is of prime characteristic p. Let B[X;D] be the
skew polynomial ring in which the multiplication is given by αX = Xα+D(α) (α ∈ B).

A ring extension A/B is called separable if the A-A-homomorphism of A ⊗B A onto
A defined by a ⊗ b → ab splits, and A/B is called Hirata separable if A ⊗B A is A-A-
isomorphic to a direct summand of a finite direct sum of copies of A. It is well known
that a Hirata separable extension is a separable extension.

Let f be a monic polynomial in B[X;D] such that fB[X;D] = B[X;D]f , then the
residue ring B[X;D]/fB[X;D] is a free ring extension of B. If B[X;D]/fB[X;D] is
a separable (resp. Hirata separable) extension of B, then f is called a separable (resp.
Hirata separable) polynomial in B[X;D]. These provide typical and essential examples
of separable and Hirata separable extensions. K. Kishimoto, T. Nagahara, Y. Miyashita,
G. Szeto, L. Xue, and S. Ikehata studied extensively separable polynomials in skew poly-
nomial rings. In [11], Y. Miyashita gave characterizations of separable and Hirata sep-
arable polynomials of general degree by the theory of (*)-positively filtered rings. He
gave a method to study polynomials of general degree in skew polynomial rings. Then in
[1, 2, 3, 4], Ikehata studied separable polynomials and Hirata separable plolynomials in
skew polynomial rings by making use of Miyashita’s method. Recently, the author and
Ikehata gave an alternative proof of Miyashita’s theorem in [16].

A ring extension A/B is called a G-Galois extension, provided that there exists a
finite group of G of automorphisms of A such that B = AG (the fix ring of G in A) and∑

i xiσ(yi) = δ1,σ for some finite number of elements xi, yi ∈ A. We call {xi, yi} aG-Galois
coordinate system for A/B. It is well known that a G-Galois extension is a separable

The detailed version of this paper will be submitted for publication elsewhere.
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extension. Let f be a monic polynomial in B[X;D] such that fB[X;D] = B[X;D]f , then
f is called a Galois polynomial in B[X;D] if B[X;D]/fB[X;D] is a G-Galois extension
over B for some finite group G.

We shall use the following conventions:
Z = the center of B.
U(Z) = the set of all invertible elements in Z.
BD = {α ∈ B | D(α) = 0}, ZD = {α ∈ Z | D(α) = 0}.
B[X;D](0) = the set of all monic polynomials g in B[X;D] such that gB[X;D] =

B[X;D]g.

2. Galois polynomials in B[X;D]

In [12, 13, 14], T. Nagahara has studied separable and Galois polynomials of degree 2
in skew polynomial rings. He proved the following

Proposition 1. ([12, Theorem 3.7]) Assume 2 = 0, and let f = X2 − Xa − b be in
B[X;D](0). Then f is a Galois polynomial in B[X;D] if and only if there exists an
element s in U(Z) such that D(s) + as = 1.

The purpose of this paper is to generalize the above result to the general prime degree.

We shall state some basic results which were already known. The following is easily
verified by a direct computation.

Lemma 2. ([1, Corollary 1.7]) Let f = Xp − Xa − b be in B[X;D]. Then f is in
B[X;D](0), that is, fB[X;D] = B[X;D]f , if and only if

(1) a ∈ ZD, and b ∈ BD.
(2) Dp(α)−D(α)a = αb− bα (α ∈ B).

Concerning Galois polynomials, the following Kishimoto’s result is fundamental.

Lemma 3. ([9, Theorem 1.1 and Corollary 1.7], [6, Lemma 2.3]) Let f = Xp −X − b be
in B[X;D](0). Then f is a Galois polynomial over B.

Proof. For convenience, we outline the proof. Let A = B[X;D]/fB[X;D] and x =
X + fB[X;D]. The mapping σ : A → A defined by σ(

∑
i x

idi) =
∑

i(x + 1)idi is a
B-automorphism of A of order p. Let G =< σ >. It is easy to see that AG = B. We put
here

aj = j−1σj(x) and bj = (−j−1)x (1 ≤ j ≤ p− 1).

Then the expansions of

Πp−1
j=1(aj + bj) = 1 and Πp−1

j=1(aj + σk(bj)) = 0 (1 ≤ j ≤ p− 1)

enable us to see the existence of a G-Galois coordinate system for A/B. Thus, A is a
G-Galois extension over B.
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In general, if we consider a polynomial f = Xp −Xa− b ∈ B[X;D](0) and a ̸= 1, it is
not easy to check whether f is a Galois polynomial or not.

Now, we shall generalize Nagahara’s theorem to general prime degree p case. In what
follows we fix the following.

Let f = Xp − Xa − b be in B[X;D](0). We put here A = B[X;D]/fB[X;D] and
x = X + fB[X;D].

First we shall state the following lemma.

Lemma 4.

Dp−1(sp−1) = −s−1(sD)p−1(s) for any element s in U(Z).

Then we can prove the following theorem which is a generalization of Nagahara’s the-
orem ([12, Theorem 3.7]).

Theorem 5. Let f = Xp − Xa − b be in B[X;D](0). If f is a Galois polynomial in
B[X;D] with a Galois group G =< σs > of order p, where σs(x) = x + s−1 with an
element s ∈ U(Z), then s−1(sD)p−1(s)+sp−1a = 1. Conversely, if there exists an element
s ∈ U(Z) such that s−1(sD)p−1(s) + sp−1a = 1 then f is a Galois polynomial in B[X;D]
with a Galois group G =< σs > of order p, where σs(x) = x+ s−1.

The proofs of Lemma 4 and Theorem 5 are written in the detailed version of this paper
which will be submitted for publication elsewhere. Theorem 5 is proved by making use
of the following two formulas : For any s ∈ Z,

(X + s)p = Xp + sp +Dp−1(s), and

(sD)p = spDp + (sD)p−1(s)D (the Hochschild′s formula).

Remark. In [12], T. Nagahara proved that if f = X2−Xa− b is a Galois polynomial
in B[X;D], then necessarily the order of the Galois group is 2. However, in general case
we do not prove yet that if f = Xp−Xa− b is a Galois polynomial in B[X;D], then the
order of the Galois group is p.

In virtue of Lemma 4, we obtain the following corollary as a direct consequence of
Theorem 5.

Corollary 6. Let f = Xp − Xa − b be in B[X;D](0). If there exists an element y ∈ Z
such that Dp−1(y)−ya = 1 and y = −sp−1 for some element s ∈ U(Z), then f is a Galois
polynomial in B[X;D] with a Galois group G =< σs > of oreder p, where σs(x) = x+s−1.
Conversely, if f is a Galois polynomial in B[X;D] with a Galois group G =< σs > of
order p, where σs(x) = x + s−1 with an element s ∈ U(Z), then Dp−1(y) − ya = 1 and
y = −sp−1.
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Corollary 7. Let f = Xp−Xa− b be in B[X;D](0). If there exists an invertible element
u ∈ ZD such that up−1 = a, then f is a Galois polynomial in B[X;D] with a Galois group
G =< σu−1 >, where σu−1(x) = x+ u.

Finally we shall state the following theorem which is proved in [17].

Theorem 8. Let f = Xp − Xa − b be in B[X;D](0). If there exists an element z ∈ Z
such that D(z) is invertible in Z, then f is a Hirata separable polynomial in B[X;D]. In
addition, if z is an invertible element in Z, then, f is a Galois polynomial in B[X;D]
with a Galois group G =< τ >, where τ(x) = x+D(z)z−1.

Lastly, as a direct consequence of Theorem 8, we obtain the following

Corollary 9. If B is a simple ring and D|Z ̸= 0, then f = Xp −Xa − b in B[X;D](0)
is always a Hirata separable and Galois polynomial in B[X;D].

Corollary 10. If B is a field and D ̸= 0, then f = Xp −Xa− b in B[X;D](0) is always
a Hirata separable and Galois polynomial in B[X;D].
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