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Abstract. The aim of this note is to study the relationship between the global di-
mension and the Loewy length of serial algebras that have finite global dimension. To
compute global dimension, we define the associative quiver of an admissible sequence
(a1, · · · , an) of a serial algebra A. This note concludes the following result. For positive
integer k with k < n/2, if the Loewy length L(A) of A is minimal positive integer which
greater than n/k, then the global dimension is less than or equal to 2n− 2k − 1 .
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Let A be a finite dimensional basic connected serial algebra over an algebraically closed
field, and n is the number of the non isomorphic simple left modules of A. If the global
dimension gl.dimA of A is finite, then gl.dimA ≤ 2n − 2 and the Loewy length L(A) of
A is less than or equal to 2n − 1[3]. In this note we consider the relationship L(A) and
gl.dimA.

1. Notation

The quiver of A is one of the following.

1 //2 // · · · //n 1 //2 // · · · //nhh

The algebra A whose quiver is the first one called chain type and the other called cyclic
type. Let Pi, Si (1 ≤ i ≤ n) be the indecomposable left projective module and the
simple left module of A corresponding to the vertex i. Then Pi+1 is a projective cover
of radPi for i = 1, 2, · · · , n − 1, and P1 is a projective cover of radPn in case of cyclic
type. The sequence of positive integers (a1, · · · , an) where ai = L(Pi) (1 ≤ i ≤ n) is
called the admissible sequence of A and has the property that ai+1 ≥ ai − 1 ≥ 1 for all
i = 1, 2, · · · , n− 1 and a1 ≥ an − 1. Conversely, for any sequence (a1, · · · , an) of positive
integers with this property, there is a serial algebra with this sequence as its admissible
sequence.

Now, let A be a serial algebra with admissible sequence (a1, · · · , an). Then Pi has
unique composition series of following shape. Where i is the corresponding simple module
of vertex i, and [k] denotes the least positive residue of k modulo n for any positive integer
k.

Pi =


i

[i+ 1]
...

[i+ ai − 1]


The detailed version of this paper will be submitted for publication elsewhere.
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2. Regular points of admissible sequence

In the paper [3], Gustafson introduced the notion of f -regular points and computed the
global dimension of serial rings.

Definition 1. The function f on {1, 2, · · · , n} for admissible sequence (a1, · · · , an) is
defined by f(i) = [i + ai]. The point i ∈ {1, · · · , n} is f -regular if f t(i) = i for some
positive integer t.

Since fn−1(i) is f -regular for any i , the set of f -regular points is not empty.

Definition 2. For i ∈ {1, · · · , n} , the distance h(i) of i from f -regular points defined
by h(i) = 0 for f -regular point i, and h(i) = t if f t−1(i) is not f -regular but f t(i) is
f -regular for positive integer t. The maximal distance d from f -regular points defined by
d = max{h(i)|i = 1, · · · , n}.

The minimal projective resolution of Si is following.

· · · → Pf2(i+1) → Pf2(i) → Pf(i+1) → Pf(i) → Pi+1 → Pi → Si → 0

If the projective dimension proj.dimSi of Si is finite, then its left end is one of the following
shape.

0 → Pfk(i) → Pfk−1(i+1) → · · ·
0 → Pfk(i+1) → Pfk(i) → · · ·

So fk+1(i) = fk(i + 1) or fk+1(i) = fk+1(i + 1) and this is f -regular. It follows that
proj.dimSi ≤ 2d. Then we have following lemma.

Lemma 3 (Gustafson). Let d be the maximal distance from f -regular points,
then gl.dimA ≤ 2d.

3. Associative quiver

We define the associative quiver QA of A by {1, · · · , n} is set of vertices and an arrow
i to j if f(i) = j. An associative quiver is a disjoint union of left serial quivers which are
defined below.

Definition 4. A quiver called left serial if it has unique oriented cycle and when removing
all arrows of this cycle, the remaining is a disjoint union of trees with unique sink which
is a vertex of the cycle.
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It follows that a vertex i is f -regular if and only if i belongs to the cycle of the associative
quiver. We call “f -regular vertex” instead of “f -regular point” when we treat the point
as the vertex of the associative quiver.

Example 5. Let A be a serial algebra with admissible sequence (3, 3, 3, 2, 2). Its inde-
composable left projective modules are following.1

2
3

2
3
4

3
4
5

(
4
5

)(
5
1

)
The associative quiver of A is following. The vertices 1, 4, 2 and 5 are f -regular.

3 //1 &&4ff 2 &&5ff

An associative quiver is a disjoint union of left serial quivers. But if gl.dimA < ∞, it is
only one component. For, if gl.dimA < ∞, any morphism between indecomposable pro-
jective modules that corresponding to f -regular vertices is an isomorphism or 0. Because
if there is a non isomorphic and non zero morphism g : Pi → Pj, then its cokernel K has
infinite chain of projective resolution.

· · · → Pf2(i) → Pf2(j) → Pf(i) → Pf(j) → Pi → Pj → K → 0

If there exist two distinct cycles in the associative quiver, then it follows that there exist
a non isomorphic and non zero morphism between the corresponding indecomposable
projective modules on these cycles.

Proposition 6. If gl.dimA < ∞, then QA is left serial (only one component).

4. Serial algebra of chain type

Let A be a serial algebra of chain type with admissible sequence (a1, · · · , an). It is well
known that L(A) ≤ n and gl.dimA ≤ n− 1. Next theorem is generalization of this.

Theorem 7. Suppose that A is a serial algebra of chain type with admissible sequence
(a1, · · · , an) and l = L(A).
Then gl.dimA ≤ n− l + 1.

The inequality of global dimension of above theorem is sharp.

Example 8. LetA be a serial algebra with admissible sequence (l, l−1, · · · , 3, 2, 2, · · · , 2, 1).
gl.dimA = n− l + 1. Indeed, proj.dimSl−2 = n− l + 1 and this is the maximal.

0 → Pn → Pn−1 → · · · → Pl−2 → Sl−2 → 0

5. Serial algebra of cyclic type

Let A be a serial algebra of cyclic type with admissible sequence (a1, · · · , an). If
gl.dimA < ∞, then L(A) ≤ 2n−1[3]. It is well known that if L(A) = 2 then gl.dimA = ∞.
So, fixed l (2 < l < 2n), we calculate upper bound of gl.dimA.

Definition 9. For 1 ≤ i ≤ n− 1, the vertex i is called a step vertex if ai+1 = ai − 1 and
vertex n is called a step vertex if a1 = an − 1.
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If i is a step vertex, then the associative quiver contains following graph as subquiver.

i

##F
FF

FF
FF

FF

f(i)

i+ 1

;;xxxxxxxx

We don’t avoid the case i = f(i) and i+ 1 = f(i).

Lemma 10. If QA has r f -regular vertices and s step vertices and if gl.dimA < ∞, then
the maximal distance d from f -regular vertices is less than or equal to n− r − s+ 1.

Example 11. Let A be a serial algebra with admissible sequence (4, 4, 4, 4, 3, 2, 2). The
associative quiver is following. 1 and 5 are f -regular and 4 and 5 are step vertices.
d = h(3) = 4 = 7− 2− 2 + 1 and gl.dimA = proj.dimS2 = 7 ≤ 8 = 2 · d = 2 · 4.

3 // 7 // 2 // 6 // 1
((
5hh

4

@@�������

If QA has only one step point, then d is maximal among the algebras which have fixed
r regular points. In this case QA is following shape. There are r points that belong to
the cycle and d is n− r. Lemma 3 shows that gl.dimA ≤ 2n− 2r. In case of n < l < 2n,
this bound is sharp. But the case l ≤ n is not.
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For any positive real number x, let ⌈x⌉ be the minimum positive integer that greater
than x.

Theorem 12. Let A be a a serial algebra of cyclic type with admissible sequence (a1, · · · , an)
which has finite global dimension and l = L(A).

(1) If n < l < 2n, then gl.dimA ≤ 4n− 2l.
(2) If l = n, then gl.dimA ≤ 2n− 3.
(3) For any positive integer k with n ≥ 2k + 3 and ⌈ n

k+1
⌉ < ⌈n

k
⌉,

if ⌈ n
k+1

⌉ ≤ l < ⌈n
k
⌉, then gl.dimA ≤ 2n− 2k − 3.

These inequality of global dimension are sharp.

Example 13. For positive integer t (1 ≤ t < n), let A be a serial algebra with admissible
sequence (n+ t, n+ t− 1, · · · , n+ 1, n+ 1, · · · , n+ 1, n).
This is the case (1) of the theorem which the equality holds. h(i) = n − t (1 ≤ i ≤
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t), h(t + j) = n − t − j (1 ≤ j ≤ n − t − 1), and h(n) = 0. So d = n − t, and
gl.dimA = 2n− 2t. QA is following.

1
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FF

FF
FF

FF

2 // t+ 1 // t+ 2 // · · · // n− 1 // n ff

. . .
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Above example is generalization of Gustafson’s example.

Example 14 (Gustafson). In example 13, the case of t = 1 is following.
Let A be a serial algebra with admissible sequence (n+ 1, n+ 1, · · · , n+ 1, n).
gl.dimA = 2n− 2. QA is following.

1 //2 // · · · //n− 1 //n cc

Example 15. Let A be a serial algebra with admissible sequence (n, n−1, · · · , n−1, n−1).
This is the case (2) of the theorem which the equality holds. gl.dimA = 2n − 3. QA is
following.

n //n− 1 //· · · //2 //1 cc

In the case (3) of the theorem, the equality of gl.dimA holds when QA has k+1 regular
vertices and one step vertex. In this case d = n−k−1, and gl.dimA = 2d−1 = 2n−2k−3.

Example 16. Let A be a serial algebra with admissible sequence (3, 3, 3, 3, 2, 2). In this
case, n = 6, l = ⌈6

2
⌉ = 3 < ⌈6

1
⌉, k = 1, and gl.dimA = 7 = 2 · 6− 2 · 1− 3. QA is following.

3 //6 //2 //5 //1 &&4ff

Example 17. Let A be a serial algebra with admissible sequence
(4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3). In this case, n = 14, l = ⌈14

4
⌉ = 4 < ⌈14

3
⌉, k = 3, and

gl.dimA = 19 = 2 · 14− 2 · 3− 3. QA is following.
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