
　

ON HOCHSCHILD COHOMOLOGY OF A CLASS OF WEAKLY
SYMMETRIC ALGEBRAS WITH RADICAL CUBE ZERO

DAIKI OBARA, TAKAHIKO FURUYA

Abstract. This paper is based on my talk given at the Symposium on Ring Theory and
Representation Theory held at Shinsyu University, Japan, 7–9 September 2012. In this
paper, we provide an explicit minimal projective bimodule resolution for some weakly
symmetric algebras with radical cube zero. Then by using this resolution we compute
the dimension of its Hochschild cohomology groups and determine the Hochschild coho-
mology ring modulo nilpotence.

1. Introduction

We consider the bound quiver algebra A = kΓ/I where Γ is the quiver with m vertices
and 2m arrows as follows:

a1−→ a2−→ am−1−→
a0⟳

e0 e1 · · · em−1

am

⟲←−
a1

←−
a2

←−
am−1

for an integer m ≥ 3, and I is the ideal of kΓ generated by the following elements:

a1a1 − a20, a2m − am−1am−1, a1a0, amam−1,

aiai − ai−1ai−1, ajaj+1, al+1al,

for 2 ≤ i ≤ m− 1, 0 ≤ j ≤ m− 1 and 1 ≤ l ≤ m− 2. Then, the following elements form
a k-basis of A.

ei, aj, al, arar, a
2
m

for 0 ≤ i ≤ m−1, 0 ≤ j ≤ m and 1 ≤ l, r ≤ m−1. It is known that A is a Koszul weakly
symmetric algebra with radical cube zero.

We denote by Ae the enveloping algebra A ⊗k A
op of A, so that left Ae-modules

correspond to A-bimodules. The Hochschild cohomology ring is given by HH∗(A) =
Ext∗Ae(A,A) = ⊕n≥0Ext

n
Ae(A,A) with Yoneda product. It is well-known that HH∗(A)

is a graded commutative ring. Let N denote the ideal of HH∗(A) which is generated
by all homogeneous nilpotent elements. Then N is contained in every maximal ideal of
HH∗(A), so that the maximal ideals of HH∗(A) are in 1-1 correspondence with those in the
Hochschild cohomology ring modulo nilpotence HH∗(A)/N . In this paper, we describe
the ring structure of HH∗(A)/N .

In [8], Snashall and Solberg defined the support varieties for finitely generated modules
over a finite dimensional algebra by using the Hochschild cohomology ring modulo nilpo-
tence. Furthermore, in [2], Erdmann, Holloway, Snashall, Solberg and Taillefer introduced
some reasonable “finiteness conditions,” denoted by (Fg), for any finite dimensional alge-
bra, and they showed that if a finite dimensional algebra satisfies (Fg), then the support
varieties have a lot of analogous properties of support varieties for finite group algebras.

The detailed version of this paper has been submitted for publication elsewhere.
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Recently, in [3], Erdman and Solberg gave necessary and sufficient conditions for any
Koszul algebra to satisfy (Fg). Consequently, they showed that A satisfies (Fg). So the
Hochschild cohomology ring of A is finitely generated as an algebra. On the other hand,
in the case where m = 2 and char k ̸= 2, A is precisely the principal block of the tame
Hecke algebra Hq(S5) for q = −1. In this case, a k-basis of the Hochschild cohomology
groups of A was described by Schroll and Snashall in [7]. They proved independently that
A satisfies (Fg), and gave some properties of the support varieties for modules over A.

In this paper, we provide an explicit minimal projective bimodule resolution of A for
m ≥ 3, and then determine the ring structure of the Hochschild cohomology ring modulo
nilpotence HH∗(A)/N .

The contents of this paper are organized as follows. In Section 2, we determine sets Gn
(n ≥ 0), introduced in [6], for the right A-module A/radA. Then, using Gn, we construct
a minimal projective resolution (P•, ∂•) of A as an Ae-module (Theorem 1). In Section
3, we first determine the dimension of the Hochschild cohomology groups for m ≥ 3
(Theorem 4), and then we give an explicit k-basis of the Hochschild cohomology groups
(Propositions 2, 3) and determine the Hochschild cohomology ring modulo nilpotence
(Theorem 6).

Throughout this paper, for any arrow a in Γ , we denote the origin of a by o(a) and the
terminus by t(a). We write ⊗k as ⊗ for simplicity,

2. A projective bimodule resolution

In this section, we give an explicit minimal projective bimodule resolution

(P•, ∂•) : · · · ∂4−→ P3
∂3−→ P2

∂2−→ P1
∂1−→ P0

∂0−→ A→ 0

of A = kΓ/I for m ≥ 3 by using the argument in [5].
Let B = kQ/I ′ with a finite quiver Q and an admissible ideal I ′ in kQ. In [6], Green,

Solberg and Zacharia introduced the following subsets Gn (n ≥ 0) of kQ, and used the
subsets to give a minimal projective resolution of the right B-module B/radB.

Let G0 the set of all vertices of Q, G1 the set of all arrows of Q and G2 a minimal set
of generators of I. In [6], the authors proved that for each n ≥ 3 there is a subset Gn of
kQ satisfying the following two conditions:

(a) Each of the elements x of Gn is a uniform element satisfying

x =
∑

y∈Gn−1

yry =
∑

z∈Gn−2

zsz for unique ry, sz ∈ kQ.

(b) There is a minimal projective B-resolution of B/radB

(R•, δ•) : · · · δ4−→ R3
δ3−→ R2

δ2−→ R1
δ1−→ R0

δ0−→ B/J → 0,

satisfying the following conditions:
(i) For each j ≥ 0, Rj =

⊕
x∈Gj t(x)B.

(ii) For each j ≥ 1, the differential δj : Rj → Rj−1 is defined by

t(x)λ 7−→
∑

y∈Gj−1

ryt(x)λ for x ∈ Gj and λ ∈ B,

where ry are elements in the expression (a).
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In [5], Green, Hartman, Marcos and Solberg used the subsets Gn (n ≥ 0) of kQ to give
a minimal projective bimodule resolution for any finite dimensional Koszul algebra. This
set also appears in the papers [3], [7] and [9] in constructing minimal projective bimodule
resolutions.

In order to give sets Gn (n ≥ 0) for A = kΓ/I, we first define the following quiver ∆
and morphisms of quivers ϕi = (ϕi

0, ϕ
i
1) : ∆→ Γ for i = 0, 1, . . . ,m− 1.

Let ∆ be the following locally finite quiver with vertices (x, y) and arrows b(x,y) :
(x, y)→ (x+ 1, y) and c(x,y) : (x, y)→ (x, y + 1) for integers x, y ≥ 0 as follows:

...
...

...

c(0,2)

x c(1,2)

x c(2,2)

x
(0, 2)

b(0,2)−−−→ (1, 2)
b(1,2)−−−→ (2, 2)

b(2,2)−−−→ · · ·

c(0,1)

x c(1,1)

x c(2,1)

x
(0, 1)

b(0,1)−−−→ (1, 1)
b(1,1)−−−→ (2, 1)

b(2,1)−−−→ · · ·

c(0,0)

x c(1,0)

x c(2,0)

x
(0, 0)

b(0,0)−−−→ (1, 0)
b(1,0)−−−→ (2, 0)

b(2,0)−−−→ · · ·

For any integer z, let Q(z) be the quotient and z the remainder when we divide z by m.
Then we have 0 ≤ z ≤ m− 1. We denote the sets of vertices of ∆ and Γ by ∆0 and Γ0,
respectively. Also, we denote the sets of arrows of ∆ and Γ by ∆1 and Γ1, respectively.
For each i = 0, 1, . . . ,m− 1, we define the maps ϕi

0 : ∆0 → Γ0 and ϕi
1 : ∆1 → Γ1 by

(1) For (x, y) ∈ ∆0

ϕi
0(x, y) :=

{
ex−y+i if Q(x− y + i) ∈ 2Z,
em−1−x−y+i if Q(x− y + i) /∈ 2Z.

(2) For b(x,y), c(x,y) ∈ ∆1

ϕi
1(b

(x,y)) :=

{
ax−y+i+1 if Q(x− y + i) ∈ 2Z,
am−1−x−y+i if Q(x− y + i) /∈ 2Z,

ϕi
1(c

(x,y)) :=

{
ax−y+i if Q(x− y + i) ∈ 2Z,
am−x−y+i if Q(x− y + i) /∈ 2Z.

where we put a0 := a0 for our convenience.

Then, for all i = 0, 1, . . . ,m− 1 and arrows b(x,y) and c(x,y) in ∆, we have

o(ϕi
1(b

(x,y))) = o(ϕi
1(c

(x,y))) = ϕi
0(x, y),

t(ϕi
1(b

(x,y))) = ϕi
0(x+ 1, y),

t(ϕi
1(c

(x,y))) = ϕi
0(x, y + 1).

–139–



Thus ϕi
1 is a morphism of quivers. Note that ϕi

1 naturally induces the map between the
set of paths of ∆ and that of Γ as follows:

ϕi
1(p1 · · · pr) = ϕi

1(p1) · · ·ϕi
1(pr),

for a path p1 · · · pr(r ≥ 1) of ∆ where pj is an arrow for 1 ≤ j ≤ r.
Now, we can define the sets Gn (n ≥ 0) for A in the similar way in [9]. For integers

n ≥ 0, x, y ≥ 0 with x+ y = n and i = 0, 1, . . . ,m− 1, we define the element gnx,y,i in kΓ
by

gnx,y,i :=
∑
p

(−1)spϕi
1(p),

where

• p ranges over all paths in ∆ starting at (0, 0) and ending with (x, y); and
• sp is an integer determined as follows: If we write p = p1p2 . . . pn with pj arrows
in ∆ for 1 ≤ j ≤ n, then sp =

∑
pj=c(x

′,y′) j where x′ and y′ are positive integers

with x′ + y′ = j − 1.

For each n ≥ 0, we put

Gn := {gnx,n−x,i| 0 ≤ x ≤ n and 0 ≤ i ≤ m− 1}.

Then, for n = 0, 1, 2, Gn can be described as follows:

G0 = {e0, e1, . . . , em−1},
G1 = {a1, . . . , , am,−a0 − a1,−a2, . . . ,−am−1},
G2 =
{−ϕi

1(c
(0,0)c(0,1)), ϕi

1(b
(0,0)c(1,0))− ϕi

1(c
(0,0)b(0,1)), ϕi

1(b
(0,0)b(1,0)) | 0 ≤ i ≤ m− 1}

= {−a0a1,−a1a0,−aiai−1, a1a1 − a20, aj+1aj+1 − ajaj, a2m − am−1am−1,

al+1al+2, amam−1 | 2 ≤ i ≤ m− 1, 1 ≤ j ≤ m− 2 and 0 ≤ l ≤ m− 2}.

And it is easily seen that Gn satisfies the conditions (a) and (b) for m ≥ 3 in the beginning
of this section.

Now, for any integer n ≥ 0, we define a left Ae-module

Pn :=
⨿
g∈Gn

Ao(g)⊗ t(g)A.

Using the argument of [5], we have the following minimal projective resolution of A.

Theorem 1. [4, Theorem 2.3] The following sequence is a minimal projective resolution
of the left Ae-module A.

(P•, ∂•) : · · · → Pn
∂n−→ Pn−1 → · · · → P1

∂1−→ P0
π−→ A→ 0,

where π is the multiplication map and left Ae-homomorphisms ∂n are defined by
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(1) In the case where i = 0,

∂n(o(g
n
x,n−x,0)⊗ t(gnx,n−x,0)) =

(−1)no(gn−1
0,n−1,0)⊗ ϕ0

1(c
(0,n−1))

+

{
ϕ0
1(c

(0,0))⊗ t(gn−1
n−1,0,0) if n ≡ 0, 1(mod 4),

−ϕ0
1(c

(0,0))⊗ t(gn−1
n−1,0,0) if n ≡ 2, 3(mod 4),

if x = 0,

o(gn−1
x−1,n−x,0)⊗ ϕ0

1(b
(x−1,n−x)) + (−1)no(gn−1

x,n−1−x,0)⊗ ϕ0
1(c

(x,n−1−x))

+(−1)xϕ0
1(b

(0,0))⊗ t(gn−1
x−1,n−x,1)

+

{
(−1)xϕ0

1(c
(0,0))⊗ t(gn−1

n−1−x,x,0) if n ≡ 0, 1(mod 4),

−(−1)xϕ0
1(c

(0,0))⊗ t(gn−1
n−1−x,x,0) if n ≡ 2, 3(mod 4),

if 1 ≤ x ≤ n− 1,

o(gn−1
n−1,0,0)⊗ ϕ0

1(b
(n−1,0)) + (−1)nϕ0

1(b
(0,0))⊗ t(gn−1

n−1,0,1) if x = n.

(2) In the case where 1 ≤ i ≤ m− 2,

∂n(o(g
n
x,n−x,i)⊗ t(gnx,n−x,i)) =

(−1)no(gn−1
0,n−1,i)⊗ ϕi

1(c
(0,n−1)) + ϕi

1(c
(0,0))⊗ t(gn−1

0,n−1,i−1) if x = 0,

o(gn−1
x−1,n−x,i)⊗ ϕi

1(b
(x−1,n−x)) + (−1)no(gn−1

x,n−1−x,i)⊗ ϕi
1(c

(x,n−1−x))

+(−1)xϕi
1(b

(0,0))⊗ t(gn−1
x−1,n−x,i+1)

+(−1)xϕi
1(c

(0,0))⊗ t(gn−1
x,n−1−x,i−1) if 1 ≤ x ≤ n− 1,

o(gn−1
n−1,0,i)⊗ ϕi

1(b
(n−1,0)) + (−1)nϕi

1(b
(0,0))⊗ t(gn−1

n−1,0,i+1) if x = n.

(3) In the case where i = m− 1,

∂n(o(g
n
x,n−x,m−1)⊗ t(gnx,n−x,m−1)) =

(−1)no(gn−1
0,n−1,m−1)⊗ ϕm−1

1 (c(0,n−1)) + ϕm−1
1 (c(0,0))⊗ t(gn−1

0,n−1,m−2)

if x = 0,

o(gn−1
x−1,n−x,m−1)⊗ ϕm−1

1 (b(x−1,n−x))

+(−1)no(gn−1
x,n−1−x,m−1)⊗ ϕm−1

1 (c(x,n−1−x))

+

{
(−1)xϕm−1

1 (b(0,0))⊗ t(gn−1
n−x,x−1,m−1) if n ≡ 0, 1(mod 4),

−(−1)xϕm−1
1 (b(0,0))⊗ t(gn−1

n−x,x−1,m−1) if n ≡ 2, 3(mod 4),

+(−1)xϕm−1
1 (c(0,0))⊗ t(gn−1

x,n−1−x,m−2),

if 1 ≤ x ≤ n− 1,

o(gn−1
n−1,0,m−1)⊗ ϕm−1

1 (b(n−1,0))

+

{
(−1)nϕm−1

1 (b(0,0))⊗ t(gn−1
0,n−1,m−1) if n ≡ 0, 1(mod 4),

−(−1)nϕm−1
1 (b(0,0))⊗ t(gn−1

0,n−1,m−1) if n ≡ 2, 3(mod 4),

if x = n.
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3. Hochschild cohomology of A

In this section, we give a k-basis of the Hochschild cohomology groups of A and deter-
mine the ring structure of the Hochschild cohomology ring modulo nilpotence by using
the minimal projective Ae-resolution given in Theorem 1.

By setting P ∗
n := HomAe(Pn, A) and ∂

∗
n = HomAe(∂n, A) for n ≥ 0, we get the following

complex.

(P ∗
• , ∂

∗
•) : 0→ P ∗

0

∂∗
1−→ P ∗

1

∂∗
2−→ · · ·

∂∗
n−1−→ P ∗

n−1

∂∗
n−→ P ∗

n

∂∗
n+1−→ · · · .

Then, for n ≥ 0, the n-th Hochschild cohomology group HHn(A) of A is given by
HHn(A):= ExtnAe(A,A) = Ker ∂∗n+1/Im ∂∗n.

In the rest of the paper, for an integer n ≥ 0, we set p := Q(n) and t := n, that is, p
and t are unique integers such that n = pm+ t with p ≥ 0 and 0 ≤ t ≤ m− 1.

Using the complex (P ∗
• , ∂

∗
•), we compute a k-basis of HHn(A) for n ≥ 0. Now we

consider the case where m is even. In the case where m is odd, we have the similar
results.

Proposition 2. [4, Proposition 3.7] Suppose that m ≥ 3. Then the following elements
form a k-basis of the center Z(A) = HH0(A) = Ker ∂∗1 of A.

m−1∑
i=0

ei, a0, am, ajaj for 1 ≤ j ≤ m.

Proposition 3. [4, Proposition 3.8] Suppose m ≥ 3 and m is even. For each n = pm+t ≥
1, the following elements form a k-basis of HHpm+t(A).

(1) In the case where p and t are even, we have a k-basis of HHpm+t(A) as follows:
(a) If x1 = (p− α)m+ t/2, x2 = αm+ t/2,

χn,α :


ei ⊗ ϕi

0(x1, n− x1) 7→

{
ei if i is even,

(−1)t/2ei if i is odd,

ei ⊗ ϕi
0(x2, n− x2) 7→

{
ei if i is even,

(−1)t/2ei if i is odd,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ p/2.
(b) If x = pm/2 + t/2, πn,1 : e0 ⊗ ϕ0

0(x, n− x) 7→ a0.
(c) If x = pm/2 + t/2, πn,2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.
(d) If x = (p− α)m+ t/2,

Fn,α : e0 ⊗ ϕ0
0(x, n− x) 7→ a1a1 for 0 ≤ α ≤ p/2− 1.

(e) If x = pm/2 + t/2, char k = 2, Fn,p/2 : e0 ⊗ ϕ0
0(x, n− x) 7→ a1a1.

(2) In the case where p is even and t is odd, we have a k-basis of HHpm+t(A) as follows:

–142–



(a) If x1 = (p− α)m+ (t− 1)/2 and x2 = αm+ (t− 1)/2,

µn,α :


ei ⊗ ϕi

0(x1, n− x1) 7→

{
ai if i is even,

(−1)(t−1)/2ai if i is odd,

ei ⊗ ϕi
0(x2, n− x2) 7→

{
ai if i is even(̸= 0),

(−1)(t−1)/2ai if i is odd,

em−1 ⊗ ϕm−1
0 (x2 + 1, n− x2 − 1) 7→ (−1)(t+1)/2am,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ p/2− 1.
(b) If x = pm/2 + (t− 1)/2 and char k ̸= 2,

µn,p/2 :


ei ⊗ ϕi

0(x, n− x) 7→

{
ai if i is even,

(−1)(t−1)/2ai if i is odd,

ei ⊗ ϕi
0(x+ 1, n− 1− x) 7→

{
−ai+1 if i is even,

(−1)(t+1)/2ai+1 if i is odd,

for 0 ≤ i ≤ m− 1.
(c) If x = pm/2 + (t− 1)/2 and char k = 2, µn,p/2 : e0 ⊗ ϕ0

0(x, n− x) 7→ a0.
(d) If x = pm/2 + (t+ 1)/2 and char k = 2,

µ′
n,p/2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.

(e) If x = (p− α)m+ (t− 1)/2,

νn,α :

{
e0 ⊗ ϕ0

0(x+ 1, n− 1− x) 7→ a1,

e1 ⊗ ϕ1
0(x, n− x) 7→ (−1)(t−1)/2a1,

for 0 ≤ α ≤ p/2− 1.
(f) If x = pm/2 + (t− 1)/2, En,1 : e0 ⊗ ϕ0

0(x, n− x) 7→ a1a1.
(g) If x = pm/2 + (t+ 1)/2, En,2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ a2m.
(3) In the case where p is odd and t is even, we have a k-basis of HHpm+t(A) as follows:

(a) If x1 = (p− α− 1)m+ (m+ t)/2 and x2 = αm+ (m+ t)/2,

χn,α :


ei ⊗ ϕi

0(x1, n− x1) 7→

{
ei if i is even,

(−1)(m+t)/2ei if i is odd,

ei ⊗ ϕi
0(x2, n− x2) 7→

{
ei if i is even,

(−1)(m+t)/2ei if i is odd,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ (p− 1)/2.
(b) If x = (p− 1)m/2 + (m+ t)/2, πn,1 : e0 ⊗ ϕ0

0(x, n− x) 7→ a0.
(c) If x = (p− 1)m/2 + (m+ t)/2, πn,2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.
(d) If x = (p− α− 1)m+ (m+ t)/2,

Fn,α : e0 ⊗ ϕ0
0(x, n− x) 7→ a1a1 for 0 ≤ α ≤ (p− 1)/2− 1.

(e) If x = (p− 1)m/2 + (m+ t)/2 and char k = 2,
Fn,(p−1)/2 : e0 ⊗ ϕ0

0(x, n− x) 7→ a1a1.
(4) In the case where p and t are odd, we have a k-basis of HHpm+t(A) as follows:
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(a) If x1 = (p− α− 1)m+ (m+ t− 1)/2 and x2 = αm+ (m+ t− 1)/2,

µn,α :


ei ⊗ ϕi

0(x1, n− x1) 7→

{
ai if i is even,

(−1)(m+t−1)/2ai if i is odd,

ei ⊗ ϕi
0(x2, n− x2) 7→

{
ai if i is even(̸= 0),

(−1)(m+t−1)/2ai if i is odd,

em−1 ⊗ ϕm−1
0 (x2 + 1, n− x2 − 1) 7→ (−1)(m+t+1)/2am,

for 0 ≤ i ≤ m− 1, 0 ≤ α ≤ (p− 1)/2− 1.
(b) If x = (p− 1)m/2 + (m+ t− 1)/2 and char k ̸= 2,

µn,(p−1)/2 :


ei ⊗ ϕi

0(x, n− x) 7→

{
ai if i is even,

(−1)(m+t−1)/2ai if i is odd,

ei ⊗ ϕi
0(x+ 1, n− 1− x) 7→{

−ai+1 if i is even,

(−1)(m+t+1)/2ai+1 if i is odd,

for 0 ≤ i ≤ m− 1.
(c) If x = (p− 1)m/2 + (m+ t− 1)/2 and char k = 2,

µn,(p−1)/2 : e0 ⊗ ϕ0
0(x, n− x) 7→ a0.

(d) If x = (p− 1)m/2 + (m+ t+ 1)/2 and char k = 2,
µ′
n,(p−1)/2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ am.

(e) If x1 = pm+m− 1, x2 = 0, t = m− 1,

ψn :

{
ei ⊗ ϕi

0(pm+m− 1, 0) 7→ (−1)iai,
ei ⊗ ϕi

0(0, pm+m− 1) 7→ (−1)i+1ai+1,

for 0 ≤ i ≤ m− 1.
(f) If x = (p− α− 1)m+ (m+ t− 1)/2,

νn,α :

{
e0 ⊗ ϕ0

0(x+ 1, n− 1− x) 7→ a1,

e1 ⊗ ϕ1
0(x, n− x) 7→ (−1)(m+t−1)/2a1,

for 0 ≤ α ≤ (p− 1)/2− 1.
(g) If x = (p− 1)m/2 + (m+ t− 1)/2, En,1 : e0 ⊗ ϕ0

0(x, n− x) 7→ a1a1.
(h) If x = (p− 1)m/2 + (m+ t+ 1)/2, En,2 : em−1 ⊗ ϕm−1

0 (x, n− x) 7→ a2m.

By Propositions 2 and 3, we have the dimension of HHn(A).

Theorem 4. [4, Theorem 3.5] In the case m ≥ 3, we have dimkHH
0(A) = m + 3 and,

for pm+ t ≥ 1,

dimkHH
pm+t(A) = p+



3 if p is even and char k ̸= 2,

2 if p is odd, t ̸= m− 1 and char k ̸= 2,

3 if p is odd, t = m− 1 and char k ̸= 2,

4 if p is even and char k = 2,

3 if p is odd, t ̸= m− 1 and char k = 2,

4 if p is odd, t = m− 1 and char k = 2.
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Remark 5. In the case m = 2, by Theorem 4, we have the dimension of the Hochschild
cohomology groups of A given in [7].

By corresponding Yoneda product of the basis elements of HH∗(A) given in Propositions
2 and 3, we have the generators of HH∗(A) and the following results.

Theorem 6. In the case where m is even with m ≥ 3, and char k ̸= 2, The Hochschild
cohomology ring modulo nilpotence HH∗(A)/N of A is isomorphic to the polynomial ring
of two variables k[χ2,0, χ2m,0].
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