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Let p < q be primes and we set

f :=
qp − 1

q − 1
and t :=

pq − 1

p− 1
.

Feit and Thompson [5] conjectured that f never divides t. If it would be proved, the proof
of their odd order theorem [6] would be greatly simplified (see [1] and [7]).
The inequality f < t may be trivial but here we confirm this as follows: It is easy for

p = 2 from 2q > q + 2 by q ≥ 3. Noting
x

log x
is strict increasing for x ≥ 3, we have

q

log q
>

p

log p
and hence pq > qp by q > p ≥ 3. Thus we have

pq − 1

p− 1
>

pq − 1

q − 1
>

qp − 1

q − 1
for q > p ≥ 3.

If q ≡ 1 mod p, in particular p = 2, then f never divides t. In fact, fℓ = t implies a
contradiction as follows:

1 ≡ t = fℓ = (qp−1 + · · ·+ 1)ℓ ≡ pℓ ≡ 0 mod p.

Contrary to the simple proof, this is important and fundamental in our discussions and it
shall be freely used without previous notices. In this paper, small Latin letters represent

integers in case no proviso and we use very often the notation s
p
= t in stead of s ≡ t mod p.

1. Common prime divisors of f and t

Using computer and Proposition 1,(2), Stephans [15] found that f and t have a
greatest common (prime) divisor 112643 = 2pq + 1 for primes p = 17 and q = 3313. This
example is so far of the only one with a common divisor (f, t) > 1. In case p = 2, (f, t) = 1.
In fact, if r is a common prime divisor of f = q + 1 and t = 2q − 1, then r is odd and
q is the order of 2 mod r. Hence r ≡ 1 mod q by Fermat little theorem. This implies a
contradiction r ≦ q + 1 < r since r is odd.

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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The next Proposition 1 follows in the range of rational integers.

Proposition 1 ([15], [4] and [11]). Assume r is a common prime divisor of f and t. Then
we have

(1) p is the order of q mod r and q is the order of p mod r
(2) r ≡ 1 mod 2pq.
(3) If p ≡ 3 mod 4 or q ≡ 3 mod 4, then r ≡ 1 mod 4.
(4) If p ≡ 3 mod 4 and q ≡ 1 mod 4, then f never divides t.

Proof. (1): It follows from the assumption that qp ≡ 1 mod r and pq ≡ 1 mod r. If
q ≡ 1 mod r, then 0 ≡ f = qp−1 + · · · + 1 ≡ p mod r and so r = p, which implies a
contradiction 0 ≡ t ≡ 1 mod p. Similarly, we have p ̸≡ 1 mod r.
(2): Since p is odd, f and r are odd. Thus (2) follows from (1) and Fermat little theorem.
(3): Let λp be the Legendre symbol by p. Since λr(p) = 1 by pq ≡ 1 mod r and λp(r) = 1

by (2), the quadratic reciprocity 1 = λr(p)λp(r) = (−1)
p−1
2

r−1
2 = (−1)

r−1
2 shows our result

for p and similarly for q.
(4): Using (3), we have a contradiction 1 ≡ f = qp−1 + · · ·+ q + 1 ≡ p ≡ 3 mod 4. 2

2. Results using Eisenstein reciprocity law

We set ζ = e
2πi
p for odd prime p and η := ζc(ζ − q) where c(q − 1)

p
= 1. Then η is

primary prime (see [9, p.206]) and f =
∏

σ∈G ησ = N(η) where G is the Galois group of
Q(ζ) over Q.
We consider an integer g :=

∑p−1
a=1 λp(a)q

a for the Gauss sum g(λp) =
∑p−1

a=1 λp(a)ζ
a
p where

λp(a) is the Legendre symbol by p. Then we have g
η
= g(λp). More strongly, g2

f
= (−1)

p−1
2 p

by a computation using qp ≡ 1 mod f as that of g(λp)
2. The next is easy from the definition

of p-th power residue symbol (see [9, p.205]).

Lemma 2. Let χA be the p-th power residue symbol by an integral ideal A ̸∋ p of Q(ζ).

(a) χA(−1) = 1.
(b) χα(β) = 1 where α, β are real and non unit elements in Q(ζ).

(c) χA(ζ) = ζ
N(A)−1

p .

Proof. (a): It follows from χA(−1) = χA((−1)p) = χA(−1)p = 1.

(b): χα(β) is real by χα(β) = χᾱ(β̄) = χα(β), where ¯ is a complex conjugate. 1 is the
only real root of xp = 1 for odd p.
(c): If a ≡ 1 and b ≡ 1 mod p, then it follows from (a− 1)(b− 1) ≡ 0 mod p2 that

ab− 1

p
≡ a− 1

p
+

b− 1

p
mod p.

Thus if χB(ζ) = ζ
N(B)−1

p and χC(ζ) = ζ
N(C)−1

p , then χBC(ζ) = ζ
N(BC)−1

p by N(BC) =
N(B)N(C). In case A is prime, (c) is clear by A ̸⊃ (p) = (1− ζ)p−1 and in general case,
it follows from the above. 2
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The Eisenstein reciprocity law (see [9, p.207]) is used freely in this section.

Theorem 3 (Eisenstein). χα(b) = χb(α) for a primary α ∈ Q(ζ) and b ∈ Z such that
p, α and b are relatively prime to each other.

For p = 3, we have the next results.

Proposition 4. Assume p = 3 and f divides t.

(1) f = q2 + q + 1 is prime.
(2) χη(g) = 1.

(3) f
4
= 1.

(4) q ≡ −1 mod 72.

Proof. (1) : If f is composite, then we have a contradiction (q + 1)2 < f = q2 + q + 1
using Proposition 1,(2) (see [4] and [11]).
(2): Since χη(−1) = 1 by Lemma 2,(a) and χη(3)

q = χη(3
q) = 1, we have the next by

q ≡ −1 mod 3.

χη(g)
2 = χη(g(λ3)

2) = χη(−1)χη(3) = 1.

(3): Since g2
f
= −3 and λf (3) = λf (3)

q = λf (3
q) = 1, we have

1 = λf (g
2) = λf (−1)λf (3) = (−1)

f−1
2 (see [4] and [11]).

(4): f = q2+q+1 is prime by (1) and (3, f) = 1 by Proposition 1, (2). Thus (f, g) = 1 since

g2
f
= −3 and so using the quadratic reciprocity on Jacobi symbols and g = q−q2

f
= 2q+1,

we have the next from q
12
= −1 by (3) that

λf (g) = λf (2q + 1) = (−1)
q2(q+1)

2 λ2q+1(f)

= λ2q+1(4f) = λ2q+1((2q + 1)2 + 3)

= λ2q+1(3) = (−1)qλ3(2q + 1) = −λ3(−1)

= 1.

Thus g ≡ a2 mod f for some a ∈ Z and (a, f) = 1. Hence −3 ≡ g2 ≡ a4 mod f and

1 ≡ af−1 ≡ (−3)
f−1
4 = (−3q)

q+1
4 ≡ (−1)

q+1
4 mod f.

Therefore q ≡ −1 mod 8 (see [4], [3], [8] and [16] in this order ).
Using cubic reciprocity or Eisenstein reciprocity law and Lemma 2, we have the next by
(2).

1 = χη(g)
2 = χη(2q + 1)2 = χ2q+1(η)

2

= χ2q+1(ω)
2 · χ2q+1((ω + 1/2)2)

= ω2((2q+1)2−1)/3 · χ2q+1(−3/4) = ω2((2q+1)2−1)/3

where ω = e
2πi
3 . Hence 8q(q + 1) ≡ 0 mod 9 (see [12]). 2

For p = 5, we have new results.

Proposition 5. If p = 5 and f divides t, then q
25
= −1 or q

25
= 2 or q

25
= 1/2.
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Proof. It follows from g = q(q − 1)2(q + 1) that

1 = χη(g)
2(q−1) = {χη(q)χη(q − 1)2χη(q + 1)}2(q−1)

and using freely Eisenstein reciprocity law (Theorem 3) and Lemma 2, the equations (2.1),
(2.2), (2.3) follow from each computation in the last of the proof.

χη(q)
2(q−1) = ζ2q·

q4−1
5(2.1)

χη(q − 1)4(q−1) = ζ2(q+1)· (q−1)4−1
5(2.2)

χη(q + 1)2(q−1) =

{
1 if q

5
= −1

ζ(q+1)· (q+1)4−1
5 if q

5

̸= −1
(2.3)

In case q
5
= −1, since values are 1 in (2.2) and (2.3), we obtain 2q(q4 − 1)

25
= 0 by the

power of ζ in (2.1) and so q
25
= −1 by 2q(q − 1)(q2 + 1)

5

̸= 0 using q
5
= −1.

In case q
5

̸= −1, considering the power of ζ,

2q(q4 − 1) + 2(q + 1)((q − 1)4 − 1) + (q + 1)((q + 1)4 − 1)
25
= 0.

It follows from the above and q(q + 1)
5

̸= 0 that

5q3 − 6q2 − 5q − 6
25
= 0.

This has solutions q
25
= 2 or q

25
= 1/2.

The computation of (2.1).

χη(q)
2(q−1) = χq(η)

2(q−1) = χq(ζ
c+1)2(q−1) = ζ2q·

q4−1
5 .

The computation of (2.2).

χη(q − 1)4(q−1) = χq−1(η)
4(q−1)

= χq−1(ζ
c)4(q−1)χq−1(ζ − 1)4(q−1)

= χq−1(ζ
4)χq−1(ζ − 1)4(q−1)

= χq−1(ζ
2(q+1))χq−1(ζ − 2 + ζ−1)2(q−1)

= ζ2(q+1)· (q−1)4−1
5 .

The computation of (2.3). In case q
5
= −1, setting s by q + 1 = 5es and (s, 5) = 1, we

have

χη(q + 1)2(q−1) = χs(η)
2(q−1)

= χs(ζ
c)2(q−1)χs(ζ + 1)2(q−1)

= χs(ζ
2)χs(ζ + 1)2(q−1)

= χs(ζ)
q+1χs(ζ + 2 + ζ−1)q−1 = 1.
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In case q
5

̸= −1,

χη(q + 1)2(q−1) = χq+1(ζ
c)2(q−1)χq+1(ζ + 1)2(q−1)

= χq+1(ζ
2)χq+1(ζ + 1)2(q−1)

= χq+1(ζ
q+1)χq+1(ζ + 2 + ζ−1)(q−1)

= ζ(q+1)· (q+1)4−1
5 . 2

3. Common index divisors

Let F = Q(µ) be a number field of dimension m over Q and let DF be the integer ring

of F. We set ∆(α1, α2, · · · , αm) := |α(ℓ)
k | where α

(ℓ)
k (0 ≦ ℓ ≦ m − 1) are conjugates of

αk ∈ F (1 ≦ k ≦ m).
For an integral basis η1, η2, · · · , ηm of DF , d(F ) := ∆(η1, η2, · · · , ηm)2 is called the dis-
criminant of F. For α ∈ F, d(α) := ∆(1, α, α2, · · · , αm−1)2 is also called the discriminant
of α. It is easy to see d(α) = I(α)2d(F ) where I(α) ∈ Z.
A prime number p is called a common index divisor of F if p divides I(γ) for all γ ∈ DF .

Example 6. (1) (Dedekind) :
h(x) = x3 + x2 − 2x + 8 is irreducible over Q. Let α be a root. Then d(α) = −22 ·
503, d(Q(α)) = −503, I(α) = 2, and 2 is a common index divisor of Q(α). The Galois
group of h(x) is the symmetric group S3 of degree 3.
(2) (Stephans): Both 17 and 3313 are common index divisors in some subfields of Q(ζr)

where r = 112643 and ζr = e
2πi
r .

In general, n > p for a prime p if and only if there exists a number field K of degree
n such that a prime p is a common index divisor of K (see [17] for ’if’ part and [2] for
’only if’ part).

4. Reviews from Ireland and Rosen [9]

Using the same notations in section 1, we note that (f, p − 1) = 1. In fact, if ℓ is a

prime common divisor of f and p − 1, then qp
ℓ
= 1 and ℓ < p. We obtain p is the order

of q mod ℓ since q
ℓ
= 1 implies a contradiction 0

ℓ
= f = qp−1 + · · ·+ q + 1

ℓ
= p

ℓ
= 1. Thus

ℓ
p
= 1 contradicts to ℓ < p. Hence f | t if and only if pq

f
= 1.

From this, we remember the next well known assertion. In the text books on the elemen-
tary number theory, we can usually see that for an odd prime r and a divisor n of r − 1,
an equation xn r

= a is solvable if and only if a
r−1
n

r
= 1. This assertion is just the Euler’s

criterion for n = 2 and the existence of primitive roots is essential in this proof.
In this section, we shall observe [9, p.197, Corollary] is a generalization of this and an
improvement of [13, Theorem] by Artin map (see [14]).

Considering in general an
m
= 1, we may assume without loss generality n is the order of

a mod m and a is a prime by Dirichlet theorem, since there exist infinite many prime
numbers p with p

m
= a because a and m are relatively prime. Thus we consider here the

congruence pn
m
= 1 where p is a prime and n is the order of p mod m.
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This section is almost all rewrite of [9, p.196-197] with a slight improvement. Here we

set p is prime, D is the integer ring of K = Q(ζm) where ζm = e
2πi
m , and P is a prime

ideal of D containing p.

The following Lemma is essential in this section. Lemma 7 and Corollary 8 were stated
in [9, p.196].

Lemma 7. If p does not divide m, then D ≡ Z[ζm] mod p.

Proof. We set ζ = ζm Since {1, ζ, . . . , ζφ(m)−1} is a basis of K over Q, we obtain
D ∋ α =

∑
rkζ

k where rk ∈ Q. Thus Tr(αζℓ) =
∑

rkTr(ζ
kζℓ), where Tr is the trace from

K to Q. Solving this linear equations about rk, we have drk ∈ Z, namely, dD ⊂ Z[ζ]
where d = |Tr(ζkζℓ)| is the discriminant of a cyclotomic polynomial Φm(x) of order m.

If d
p
= 0, then Φm(x) has a multiple root α in D/P and hence Φm(α) = 0 and Φ′

m(α) =
0. Substituting α in the differential mxm−1 = Φm(x)

′g(x) + Φm(x)g(x)
′ of xm − 1 =

Φm(x)g(x), we have mαm−1 = 0 and α = 0 by the condition, which yields a contradiction

0 = Φm(α) = Φm(0) = ±1. Thus we have d
p

̸= 0 and D ≡ Z[ζ] mod p. 2

It is easy to see for (a,m) = 1, σa : ζm → ζam are automorphisms of K and G = {σa | 1 ≦
a < m, (a,m) = 1} is the Galois group of K over Q.

Corollary 8. (1) ασp
p
= αp for α ∈ D.

(2) P σp = P.
(3) p is unramified in D.

Proof. We set ζ = ζm. There exists β ∈ D with α = pβ +
∑

akζ
k by Lemma 7.

(1) follows from

ασp = pβσp +
∑
k

akζ
pk p

=
∑
k

apkζ
pk p

= αp.

(2): For µ ∈ P, µσp
p
= µp P

= 0 and so µσp ∈ P. This implies P σp ⊂ P and hence

P σ−1
p = P σn−1

p ⊂ P where n is the order of σp.
(3): Let P be a prime ideal with p ∈ P 2 and let ν ∈ P but ν ̸∈ P 2. Then for the order n

of σp, ν = νσn
p

p
= νpn P 2

= 0 by (1) and pn ≧ 2. Hence we have a contradiction ν ∈ P 2 from
p ∈ P 2. 2

The next Lemma 9,(1) is restated of [9, p.182].

Lemma 9. (1) G is transitive on the set Ω of distinct prime ideals of D containing p.
(2) p|GP | is the order of D/P , namely, |GP | is a degree of P where GP is the stabilizer of
P.

Proof. (1): Assume there exists Q ∈ Ω with Q ̸= P σ for all σ ∈ G. Then there exists an
element α satisfying α ≡ 0 mod Q and α ≡ 1 mod P σ for all σ ∈ G. N(α) :=

∏
σ∈G ασ ∈

Z ∩Q = pZ ⊂ P and so a contradiction ατ ∈ P for some τ, namely α ∈ P τ−1
.

(2): We set d is the degree of P and c = |Ω|. Then d = |GP | follows from cd = φ(m) =
|G| = |G : GP ||GP | = c|GP | since p is unramified by Corollary 8,(3).
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We set L is the fixed subfield of K by σp. The next is just [9, p.197, Corollary] and
contains [13, Theorem] which follows from Artin map (see [14, p.96]).

Theorem 10. GP = ⟨σp⟩.

Proof. We set that n is the order of σp, d = |GP | and ⟨ν⟩ = (D/P )×. Then n is
divisor of d since ⟨σp⟩ ⊂ GP by Corollary 8,(2). On the other hand pd − 1 is the
order of ν by lemma 9,(2) and so pd − 1 is a divisor of pn − 1 since ν = νσn

p =
νpn by Corollary 8,(1) and hence νpn−1 = 1. It is false for n < d and so n = d. 2

Theorem 10 is an extension of the next familiar theorem in elementary number theory.
If r is prime and n is a divisor of r − 1, then pn

r
= 1 if and only if p

r
= x

r−1
n is solvable.

In fact, Assume pn
r
= 1. Then we may assume n is the order of σp and ⟨σp⟩ = ⟨σ

r−1
n

c ⟩ since
the subgroup of order n is unique in the cyclic ⟨σc⟩ where c is a primitive root of r. Hence

p
r
= x

r−1
n is solvable by σp = σ

(r−1)
n

k
c for some k. The other side is trivial.

Let DM be the integer ring of a subfield M of K and Let PM be prime ideal of DM

containing p.

Corollary 11. D/P = Fp|GP | and DM/PM = Fp for any subfield M of L.

Proof. First assertion is clear from Theorem 10. Second assertion follows from

αp p
= ασp = α for α ∈ DM and so αp PM= α. 2

We note that D/P = Fp if and only if p splits completely in D by Corollary 8,(3).
The next is an extension of [13, Theorem].

Corollary 12. Assume pn
m
= 1 and set s = [L : Q]. Then in case s > p, p is a common

index divisor of L and in case p = s, hθ(x)
p

̸= xp − x has a multiple root in Fp = DL/PL

where L = Q(θ) and hθ(x) is the minimal polynomial of θ over Q.

Proof. If there exists an element of µ ∈ DL such that p does not divide I(µ) ∈ Z
where d(µ) = I(µ)2d(L) for the discriminants d(µ) and d(L) of µ and L, respectively.
Noting that p does not divide d(L) by Dedekind’s theorem on discriminant (see [14, p.88,

Remark 2.15]) since p is unramified in K and so in L, we have d(µ)
p

̸= 0 and so the
minimal polynomial gµ(x) of µ over Q has distinct roots in Fp. Thus s = deg gµ(x) ≦ p.

In particular case s = p, gµ(x)
p
= xp − x. 2

We prove again Proposition 1,(3) (see [11] and [13]).

Corollary 13. If r is a common prime divisor of f and t, then p ≡ 1 mod 4 or r ≡
1 mod 4.

Proof. We set m = r and consider Guss sum g(λ) =
∑r−1

k=1 λ(k)ζ
k
r where λ is a quadratic

character by r and ζr = e
2πi
r . It is well known that g(λ)2 = (−1)

r−1
2 r

p
= (−1)

r−1
2 and

g(λ) = θ − θ1 = 2θ + 1 by θ + θ1 = −1 where θ =
∑

λ(a)=1 ζ
a
r and θ1 =

∑
λ(b)=−1 ζ

b
r .

M = Q(θ) = Q(g) is a quadratic subfield of L by r
2pq
= 1 (see Proposition 1,(2)).
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Since θ
PM= b for b ∈ Z by Corollary 11,

(−1)
r−1
2

p−1
2

p
= g(λ)p−1 = (2θ + 1)p−1 PM= (2b+ 1)p−1 p

= 1.

Noting 2b+ 1
p

̸= 0 by above equations except the last equivalence, we can complete these
from Fermat little theorem. 2

We prove again the part q
9
= −1 of Proposition 4,(4) (see [12] and [13]).

Corollary 14. If f divides t for a prime p = 3, then q
9
= −1.

Proof. The assumption implies q
3
= −1 and f = q2 + q + 1 is prime by Proposition 4.

Let c be a primitive root of f and set ζ = e
2πi
f . Then σ : ζ → ζc is a generator of the

Galois group G of K = Q(ζ) over Q, let L3 be the correspond subfield to H = ⟨σ3⟩. and
let G =

∪2
s=0Hσs be a coset decomposition by H. We set also θ =

∑
τ∈H ζτ and θs = θσ

s

for s = 0, 1, 2. We can see [L3 : Q] = 3 and L3 = Q(θ) by [14, p.61, Theorem 2.6].
Let g = g(χ) be a cubic Gauss sum for the cubic residue character χ by a primary prime

divisor η = ω(ω − q) of f = ηη̄ in Z[ω], where ω = e
2πi
3 . Namely, we set gs = g(χs) =∑f−1

t=0 χs(t)ζt which are rewritten as follow

gs =
2∑

t=0

f−4
3∑

k=0

χs(c3k+t)ζc
3k+t

=
2∑

t=0

χ(c)st(
∑
τ∈H

ζτ )σ
t

=
2∑

t=0

ωstθt.

These equations are also solved about θs as 3θs =
∑2

t=0 ω̄
stgt. We can set the minimal

polynomial hθ = x3 + x2 + a2x+ a3 of θ over Z by
∑2

s=0 θs = −1.

We shall show a3
3
= −a2. Noting [9, p.92, Proposition 8.2.2] and θ̄s = θs since the complex

conjugate ¯ is the element of order 2 in H,

f = |g(χ)|2 = g(χ)g(χ) = θ20 + θ21 + θ22 + (ω + ω2)a2 = 1− 3a2.

Hence we have

a2 = (1− f)/3 = −q · (q + 1)/3
3
= (q + 1)/3.

It follows from equations 3θs =
∑2

t=0 ω̄
stgt that

−33a3 = (3θ0)(3θ1)(3θ2) =
2∏

s=0

(
2∑

t=0

ω̄stgt) = g30 + g31 + g32 − 3g0g1g2.

Using Stickelberger relation g31 = fη ([9, p.115, Corollary]), we can see the next from
g0 = −1, g2 = ḡ1 and η + η̄ = q − 1.

−a3 = (−1 + f(η + η̄) + 3f)/33 = ((q + 1)/3)3
3
= (q + 1)/3

3
= a2.

Thus we have a3
3
= −a2.

Since hθ ̸= x3 − x has a multiple root b in F3 by Corollary 12, we have h′
θ(b)

3
= 0, namely,

b
3
= a2, where h′

θ(x) is a derivative of hθ(x). Thus 0
3
= hθ(a2)

3
= a2 − a22 + a3

3
= −a22 and

0
3
= a2

3
= (q + 1)/3. 2
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Example 15. If m has a primitive root, namely, m = 2, 4, re and 2re where r is odd
primes (see [9, p.44]), then G is cyclic and Ls is the unique subfield with [Ls : Q] = s.
Thus we have next results from Corollary 12.

(1) If ℓr−1 r2
= 1 for primes ℓ, r with ℓ < r, then ℓ is a common index divisor of a subfield

Lr of Q(ζr2).

(2) If pq
r
= 1 for primes p, r with qq′ = r−1 and p < q′, then p is a common index divisor

of a subfield Lq′ of Q(ζr) (see [13, Theorem]).

Question. If f divides t, then is f square free ?
This question follows from the next observations: If f divides t, then we can see pq ≡ 1
and qp ≡ 1 mod f. Thus if f is divided by a prime square r2, we have pr−1 ≡ 1, qr−1 ≡
1 mod r2 by r ≡ 1 mod 2pq (see Proposition 1,(2)). It is well known from computation
by using computer that there are rare primes r satisfying ar−1 ≡ 1 mod r2 for a fixed
a > 1. Further, in this case p ̸≡ q mod r for fixed numbers p, q.

5. Integral normal basis

Let K be a Galois extension over Q with the Galois group G and let D be the integer
ring of K. If there exists an element µ ∈ D such that D =

∑
σ∈G µσZ, then we call

{µσ | σ ∈ G} a normal basis and µ a normal basis element.
Here we set Dm is the integer ring of the cyclotomic field K = Q(ζm) with the Galois

group G, where ζm = e
2πi
m . We set also Dθ is the integer ring of a proper subfield Q(θ) of

K and Gα is the stabilizer of α ∈ K. In the text book [14, p.73-74], it was proved that
the integer rings of subfields in Q(ζr) for a prime r have normal bases and this plays an
important role in [13]. Moreover, the integer rings of quadratic fields Q(

√
n) have normal

bases if and only if n ≡ 1 mod 4.

In the last of this paper, we shall show the following. It seems to be closely rated to the
above Question.

Proposition 16. Dm has a normal basis if and only if m is square free.

Proof. Assume m is square free. In case m is a prime, Dm has a normal basis by
[14, p.74, Remark 2.10] and so our result holds by the method in the proof of [10, p.68,
Proposition 17 and p.75, Theorem 4].
Conversely, we assume Dm has a normal basis and m is divided by the square r2 of a prime
r. Then using [14, p.74, Theorem 2.12], we may assumem = r2 andDθ with [Q(θ) : Q] = r
has a normal basis element µ. Thus we can show that Dr2 =

∑
ρ∈ Gω

µρDω where ω = ζrr2 .

In fact, [Q(ω) : Q] = r− 1 yields G = Gθ ×Gω and K = Q(θ) ·Q(ω) = Q(θ)[ω] = Q[θ, ω].
Noting d = ±1 if α/d is an algebraic integer for an algebraic integer α and d ∈ Z with
(α, d) = 1, we obtain

Dr2 = DθDω = (
∑

ν∈G/Gθ

µνZ)Dω =
∑
ρ∈Gω

µρDω
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Since Dr2 has a basis {1, ζ, . . . , ζℓ−1} with ζ = ζr2 and ℓ = r2 − r by Dr2 = Z[ζ] (see
[10, p.75, Theorem 3] ), we have

µ =
ℓ−1∑
k=0

akζ
k =

r−1∑
t=0

r−2∑
s=0

ars+tζ
rs+t =

r−1∑
t=0

αtζ
t where αt =

r−2∑
s=0

ars+tω
s ∈ Dω.

We set τ = σb with b = cr−1 where c is a primitive root for r2. Noting Gω = ⟨τ⟩ is the
Galois group of Q(ζ) over Q(ω), we can see from this equation that

µτs =
r−1∑
k=0

αkζ
kτs =

r−1∑
k=0

αkω
k bs−1

r ζk.

This is equivalent to

(µ, µτ , µτ2 , . . . , µτr−1

) = (1, ζ, . . . , ζr−1)A, where A := (αkω
k bs−1

r )k,s.

The next calculation implies a contradiction such that a unit |A| is contained in rDω.
Since r is the order of b = cr−1 mod r2, we have for r > k > 0,

k
bs − 1

r
≡ k

bt − 1

r
mod r, i.e., bs ≡ bt mod r2 if and only if s ≡ t mod r.

Thus for any k > 0, we obtain

r−1∑
s=0

ωk bs−1
r =

r−1∑
t=0

ωt =
ωr − 1

ω − 1
= 0.

This equation shows that we can change the first column of |A| is equal to (rα0, 0, · · · , 0)t
and so we have a contradiction such that a unit |A| is contained in rDω. 2

We confirm Proposition 16 for r = 2 and Kronecker-Weber theorem for quadratic fields
(see [10, p.210, Corollary 3] or [14, p.133]).

Confirmation. The quadratic field Q(
√
n) with the discriminant d is a subfield of Q(ζd).

In fact, ℓ represent primes and we set s = #{ℓ | ℓ ≡ −1 mod 4, ℓ|n}. Using g2ℓ = (−1)
ℓ−1
2 ℓ

in any case, where gℓ is a quadratic Gauss sum by ℓ, we can see our assertion.
In case n ≡ 1 mod 4, noting s is even,

Q(
√
n) ⊂

∏
ℓ|n

Q(ζℓ) = Q(ζn).

In case n ≡ −1 mod 4, noting s is odd and Q(
√
−1) = Q(ζ4),

Q(
√
n) ⊂ Q(ζ4)

∏
ℓ|n

Q(ζℓ) = Q(ζ4n).

In case n ≡ 2 mod 4, we set n = 2n0 where n0 is odd. Noting the above two cases and
Q(

√
2) ⊂ Q(ζ8) by ζ8 + ζ−1

8 =
√
2,

Q(
√
n) ⊂ Q(

√
2)Q(

√
n0) ⊂ Q(ζ8)

∏
ℓ|n0

Q(ζℓ) = Q(ζ4n).
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[17] von Żyliński, E., ZurTheorie der außerwesentlichen Discriminantenteiler algebraischer Körper,
Math. Ann. 73 (1913) 273-274.

Emeritus Professor, Hirosaki University
Toriage 5-13-5, Hirosaki, 036-8171, JAPAN
E-mail address: moka.mocha_no_kaori@snow.ocn.ne.jp

–136–


