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Abstract. We study silting mutations (Okuyama-Rickard complexes) for selfinjective
algebras given by quivers with potential (QPs). We show that silting mutation is com-
patible with QP mutation. As an application, we get a family of derived equivalences of
Jacobian algebras.

1. Introduction

Derived categories are nowadays considered as an essential tool in the study of many
areas of mathematics. In the representation theory of algebras, derived equivalences of
algebras have been one of the central themes and extensively investigated. It is well-
known that endomorphism algebras of tilting complexes are derived equivalent to the
original algebra [20]. Therefore it is an important problem to give concrete methods to
calculate endomorphism algebras of tilting complexes. In this note, we focus on one of
the fundamental tilting complexes over selfinjective algebras, known as Okuyama-Rickard
complexes, which play an important role in the study of Broué’s abelian defect group
conjecture. From a categorical viewpoint, they are nowadays interpreted as a special case
of silting mutation [3]. We provide a method to determine the quivers with relations of
the endomorphism algebras of Okuyama-Rickard complexes when selfinjective algebras
are given by quivers with potential (QPs for short).

The notion of QPs was introduced by [7], which plays a significant role in the study of
cluster algebras (we refer to [13]). Recently it has been discovered that mutations of QPs
(Definition 2) give rise to derived equivalences [5, 15, 18, 22]. The aim of this note is to
give a similar (but different) type of derived equivalences by comparing QP mutation and
silting mutation (Definition 4).

Conventions. Let K be an algebraically closed field and D := HomK(−, K). All mod-
ules are left modules. For a finite dimensional algebra Λ, we denote by modΛ the category
of finitely generated Λ-modules and by addM the subcategory of modΛ consisting of di-
rect summands of finite direct sums of copies of M ∈ modΛ. The composition fg means
first f , then g. For a quiver Q, we denote by Q0 vertices and Q1 arrows of Q and by
a : s(a) → e(a) the start and end vertices of an arrow or path a.

2. Preliminaries

2.1. Quivers with potential. We recall the definition of quivers with potential. We
follow [7].

The detailed version of this paper will be submitted for publication elsewhere.
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• Let Q be a finite connected quiver without loops. We denote by KQi the K-vector
space with basis consisting of paths of length i in Q, and by KQi,cyc the subspace of KQi

spanned by all cycles. We denote the complete path algebra by

K̂Q =
∏
i≥0

KQi

and by JK̂Q the Jacobson radical of K̂Q. A quiver with potential (QP) is a pair (Q,W )

consisting of a finite connected quiver Q without loops and an element W ∈
∏

i≥2KQi,cyc,

called a potential. For each arrow a in Q, the cyclic derivative ∂a : K̂Qcyc → K̂Q is
defined as the continuous linear map satisfying ∂a(a1 · · · ad) =

∑
ai=a ai+1 · · · ada1 · · · ai−1

for a cycle a1 · · · ad. For a QP (Q,W ), we define the Jacobian algebra by

P(Q,W ) = K̂Q/J (W ),

where J (W ) = ⟨∂aW | a ∈ Q1⟩ is the closure of the ideal generated by ∂aW with respect
to the JK̂Q-adic topology.

• A QP (Q,W ) is called trivial if W is a linear combination of cycles of length 2

and P(Q,W ) is isomorphic to the semisimple algebra K̂Q0. It is called reduced if W ∈∏
i≥3 KQi,cyc.
Following [9], we use this terminology.

Definition 1. We call a QP (Q,W ) selfinjective if P(Q,W ) is a finite dimensional self-
injective algebra.

Next we recall the definition of mutation of QPs.

Definition 2. For each vertex k in Q not lying on a 2-cycle, we define a new QP
µ̃k(Q,W ) := (Q′,W ′) as follows.

(a) Q′ is a quiver obtained from Q by the following changes.
• Replace each arrow a : k → v in Q by a new arrow a∗ : v → k.
• Replace each arrow b : u → k in Q by a new arrow b∗ : k → u.

• For each pair of arrows u
b→ k

a→ v, add a new arrow [ba] : u → v
(b) W ′ = [W ] + ∆ is defined as follows.

• [W ] is obtained from the potential W by replacing all compositions ba by the

new arrows [ba] for each pair of arrows u
b→ k

a→ v.

• ∆ =
∑

a,b∈Q1

e(b)=k=s(a)

[ba]a∗b∗.

Then mutation µk(Q,W ) is defined as a reduced part of µ̃k(Q,W ) (we refer to [7]).

2.2. Silting mutation. The notion of silting objects was introduced by [14], which is
a generalization of tilting objects. Recently its theory has been rapidly developed and
many connections have been discovered, for example [6, 3, 8, 16]. In this subsection, we
briefly recall their definitions and properties.

Now let Λ be a finite dimensional algebra and T := Kb(projΛ) be the homotopy category
of bounded complexes of finitely generated projective Λ-modules.
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Definition 3. Let T be an object of T . We call T silting (respectively, tilting) if
HomT (T, T [i]) = 0 for any positive integer i > 0 (for any integer i ̸= 0) and satisfies
T = thickT , where thickT denote by the smallest thick subcategory of T containing T .

We call a morphism f : X → Y left minimal if any morphism g : Y → Y satisfying
fg = f is an isomorphism. For an object M ∈ T , we call a morphism f : X → M ′

left (addM)-approximation of X if M ′ belongs to addM and HomT (f,M
′′) is surjective

for any object M ′′ in addM . Dually we define a right minimal morphism and a right
(addM)-approximation.

Definition 4. Let T be a basic silting object in T and take an arbitrary decomposition
T = X ⊕ M . We take a minimal left (addM)-approximation f : X → M ′ of X and a
triangle

X
f // M ′ // Y // X[1].

We put µX(T ) := Y ⊕ M and call it a left silting mutation of T with respect to X.
Dually we define a right silting mutation.

We recall an important result of silting mutation.

Theorem 5. [3, Theorem 2.31] Any mutation of a silting object is again a silting object.

Next we give some notations for our setting.
Let Q be a finite connected quiver and Λ := KQ/(R) be a finite dimensional algebra.

We denote by {ek | k ∈ Q0} a complete set of primitive orthogonal idempotents of Λ.
Take a set of vertices I := {k1, . . . , kn} ⊂ Q0 and we denote by eI := ek1 + · · · + ekn and
µI(Λ) := µΛeI (Λ). We remark that an Okuyama-Rickard complex is nothing but a silting
object of T [3, Theorem 2.50].

By Theorem 5, µI(Λ) is always a silting object of T , but it is not necessarily a tilting
object. However, for selfinjective algebras, it is a tilting object if it satisfies a condition
given by Nakayama permutations.

Definition 6. Let Λ be a selfinjective algebra above. Then there exists a permutation
σ : Q0 → Q0 satisfying D(ekΛ) ∼= Λeσ(k) for any k ∈ Q0, where ν := DHomΛ(−,Λ) :
mod Λ → mod Λ is the Nakayama functor. We call σ the Nakayama permutation of Λ.

Note that ΛeI ∼= ν(ΛeI) if and only if I = σI. The following result is useful. We refer
to [1, 3] for the proof.

Proposition 7. Let Λ be a selfinjective algebra above. Then µI(Λ) is a tilting object in
T if and only if I = σI.

3. Main results

For a set of vertices I := {k1, . . . , kn} ⊂ Q0, we assume the following conditions.

(a1) Any vertex in I is not contained in 2-cycles in Q.
(a2) There are no arrows between vertices in I.
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In this case, since the mutation is independent of the choice of order of mutations, we
can define the successive mutation

µI(Q,W ) := µk1 ◦ · · · ◦ µkn(Q,W ).

Then our main result is the following.

Theorem 8. Let (Q,W ) be a selfinjective QP and Λ := P(Q,W ). Let I be a set of vertices
of Q0 satisfying the conditions (a1) and (a2). Then we have a K-algebra isomorphism

EndKb(projΛ)(µI(Λ)) ∼= P(µI(Q,W )).

We will give the proof in the next section. Combining with Theorem 7, we have the
following result.

Corollary 9. Let I be a set of vertices of Q0 satisfying σI = I and the conditions (a1)
and (a2). Then P(Q,W ) and P(µI(Q,W )) are derived equivalent.

Proof. By Theorem 7, µI(Λ) is a tilting object of T . Then Λ and EndKb(projΛ)(µI(Λ)) are
derive equivalent [20] and the result follows from Theorem 8 □

Moreover, since selfinjectivity is preserved by derived equivalence [4], we have the fol-
lowing result, which is given in [9, Theorem 4.2].

Corollary 10. Let I be a set of vertices of Q0 satisfying σI = I and the conditions (a1)
and (a2). Then µI(Q,W ) is a selfinjective QP.

We note that the Nakayama permutation of µI(Q,W ) is again given by the same
permutation [9, Proposition 4.4.(b)]. By this corollary, we can apply Corollary 9 to new
QPs repeatedly and, consequently, obtain a lot of derived equivalences.

Example 11. Let (Q,W ) be the QP given as follows

1
a1
�����
�

2
a2
����
��

6

a6^^====

3 a3 // 4 a4 // 5,

a5^^====

W = a1a2a3a4a5a6.

Then (Q,W ) is a selfinjective QP with a Nakayama permutation (153)(264). Let Λ :=
P(Q,W ) and T := Kb(projΛ) and take a silting object in T

µ1(Λ) =


−1

Λe1
a1−→

0

Λe2
⊕

Λ(1− e1).

Then by Theorem 8, we have an isomorphism

EndT (µ1(Λ)) ∼= P(µ1(Q,W )),

where µ1(Q,W ) is the QP given as follows
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1 a∗6
��=

===

2

a∗1 @@����

a2
����
��

6
[a6a1]

oo

3 a3 // 4 a4 // 5,

a5^^<<<<

[a6a1]a
∗
1a

∗
6 + [a6a1]a2a3a4a5.

Next we consider the σ-orbit of the vertex 1 and let I = {1, 3, 5}. Then we have a
tilting object

µI(Λ) =


−1

Λe1 ⊕ Λe3 ⊕ Λe5

(
a1 0 0
0 a3 0
0 0 a5

)
−→

0

Λe2 ⊕ Λe4 ⊕ Λe6
⊕

Λ(1− eI).

Then we have an isomorphism

EndT (µI(Λ)) ∼= P(µI(Q,W )),

where µI(Q,W ) is the QP given as follows

1
a∗6

��=
==

==

2

a∗1
@@�����

[a2a3]
<<

��<<

6
a∗5

��>
>>

>>
[a6a1]oo

3

a∗2
AA�����

4a∗3oo
[a4a5]��

AA��

5,a∗4oo

[a6a1]a
∗
1a

∗
6 + [a2a3]a

∗
3a

∗
2 + [a4a5]a

∗
5a

∗
4 + [a6a1][a2a3][a4a5].

We note that, although P(µI(Q,W )) is selfinjective and derived equivalent to P(Q,W ),
P(µ1(Q,W )) is neither selfinjective nor derived equivalent to P(Q,W ).

Example 12. Let (Q,W ) be the QP given as follows

1 2 3

4 5 6

7 8 9,

//
OO

oo

��
OO

oo

��

//
OO

��
// oo

where the potential is the sum of each small squares. Then (Q,W ) is a selfinjective
QP with a Nakayama permutation (19)(28)(37)(46)(5). For σ-orbits I1 := {1, 9} and
I3 := {3, 7}, we have selfinjective QPs µI1(Q,W ) and µI3 ◦ µI1(Q,W ) and their Jacobian
algebras are derived equivalent to P(Q,W ).

1 2 3

4µI1 (Q,W )
−→ 5 6

7 8 9,

oo

��

oo
??���� ��

OO

oo

��

//
OO
����
��

OO

// //

1 2 3

4µI3◦µI1 (Q,W )
−→ 5 6

7 8 9.

oo

��

//
??���� �� ��

oo
OO

//
OO
����
��

OO

oo //

__????

��?
??

?
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Example 13. Let (Q,W ) be the QP associated with tubular algebra of type (2, 2, 2, 2)

1
a

yyttt
ttt

ttt
b
��

����
c
88

��8
8

d

%%KK
KKK

KKK
K

2

a′ %%KK
KKK

KKK
K 3

b′
88

��88

4

c′
��

����

5,

d′yysss
sss

sss
W = aa′e+ bb′e+ cc′e+ aa′f + λbb′f + dd′f, λ ∈ K \ {0, 1}.

6

e

OO

f

OO

Then (Q,W ) is a selfinjective QP [9] and the Nakayama permutation is the identity.
Thus mutation of the QP at any vertex admits a derived equivalence in this case. For
example, µ2(Q,W ) is the following QP with λ′ = λ

λ−1

1

b
��

����
c
88

��8
8

d

%%KK
KKK

KKK
K

2

a
99sssssssss

3

b′
88

��88

4

c′
��

����

5,

d′yysss
sss

sss
bb′e+ cc′e+ dd′e+ λ′bb′a′a+ dd′a′a.

6
a′

eeKKKKKKKKK

e

OO

Thus µ2(Q,W ) is a selfinjective QP and P(µ2(Q,W )) is derived equivalent to P(Q,W ).

Example 14. Let (Q,W ) be the QP given as follows

•

• •

• • •

• •

• • • •,

EE��� ��2
22

oo
FF��� ��2
22 FF��� ��2

22

oo oo

FF��� ��2
22 EE��� ��2

22

oo oo

where the potential is the sums of each small triangles. Then (Q,W ) is a selfinjective
QP and one can easily get a lot of derived equivalence classes of algebras by the same
procedures. See [9, Figure 4] for one of the concrete description. We refer to [12], which
enables one to compute quiver mutations immediately.
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