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Abstract. Gabriel topology is a special class of linear topology on rings, which plays
an important role in the theory of localization of (not necessary commutative) rings [].
Several evidences have suggested that there should be a corresponding notion for dg-
algebras. In my talk I introduced a notion of Gabriel topology on dg-algebras, derived
Gabriel topology, and showed its basic properties.

In the same way as the definition of derived Gabriel topology on a dg-algebra, we gave
the definition of topological dg-modules over a dg-algebra equipped with derived Gabriel
topology. An important example of topology on dg-modules is the finite topology on the
bi-dual module M⊛⊛ of a dg-module M by another dg-module J .

We show that a derived bi-duality dg-module is quasi-isomorphic to the homotopy
limit of a certain tautological functor. This is a simple observation, which seems to be
true in wider context. From the view point of derived Gabriel topology, this is a derived
version of results of J. Lambek about localization and completion of ordinary rings.
However the important point is that we can obtain a simple formula for the bi-duality
modules only when we come to the derived world from the abelian world.

We give applications. 1. we give a generalization and an intuitive proof of Efimov-
Dwyer-Greenlees-Iyenger Theorem which asserts that the completion of commutative
ring satisfying some conditions is obtained as a derived bi-commutator. (We can also
prove Koszul duality for dg-algebras with Adams grading satisfying mild conditions.)
2. We prove that every smashing localization of dg-category is obtained as a derived
bi-commutator of some pure injective module. This is a derived version of the classical
results in localization theory of ordinary rings.

These applications show that our formula together with the viewpoint that a derived
bi-commutator is a completion in some sense, provide us a fundamental understanding
of a derived bi-duality module.

Key Words: Derived bi-duality, homotopy limit, dg-algebras, completion, localiza-
tion, Koszul duality, Lambek Theorem.

1. Introduction

The following situation and its variants are ubiquitous in Algebras and Representation
theory:

Let R be a ring, J an R-module and E := EndR(J)
op the opposite ring of the endo-

morphism ring of J over R. Then we have the duality

(−)∗ := HomR(−, J) : ModR ⇄ (ModE)op : HomE(−, J) =: (−)∗

and the unite map ϵM :M →M∗∗ is given by the evaluation map:

ϵM(m) : HomR(M,J) → J, f 7→ f(m) for m ∈M.

The detailed version of this paper will has been submitted for publication elsewhere.
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The bi-dual R∗∗ of R is called the bi-commutator (or the double centralizer) and denoted
by BicR(J). The following is more popular expression (or the usual definition) of the
bi-commutator

BicR(J) := EndE(J)
op.

The bi-commutator has a ring structure and the evaluation map ϵR : R → BicR(J) become
a ring homomorphism. In particular, the case where the canonical algebra homomorphism
R → BicR(J) become an isomorphism, the module J is said to have the double centralizer
property. Dualities together with evaluation maps, bi-commutators and double centralizer
properties are one of the central topics in Algebras and Representation theory. (See e.g.
[5, 8, 10, 11, 17, 26])

Recently the concern with the derived bi-commutators (or the derived double centraliz-
ers) has been growing:

Let R a ring (or more generally dg-algebra) J an (dg-)R-module and E := REndR(J)op
the opposite dg-algebra of the endomorphism dg-algebra of J . Then the derived bi-
commutator is defined by

BicR(J) := REndE(J)
op.

There also exists a canonical algebra homomorphism R → BicR(J). In particular, the
case where the canonical algebra homomorphism R → BicR(J) become an isomorphism,
the module J is said to have the derived double centralizer property. Derived double
centralizer property for special modules has been extensively studied as a part of Koszul
duality. (See e.g. [12, 22].)

In [2, Section 4.16], Dwyer-Greenlees-Iyenger call a pair (R, J) dc-complete, in the case
where J has derived double centralizer property. They proved the following surprising
and impressive theorem, which we will refer as completion theorem.

Theorem 1 ([2],[3]). Let R be a commutative Noetherian ring and a an ideal such that

the residue ring R/a is of finite global dimension. We denote by R̂ the a-adic completion.
Then we have a quasi-isomorphism

R̂ ≃ BicR(R/a)

where BicR(R/a) is the derived bi-commutator of R/a over R.

From the view point of Derived-Categorical Algebraic Geometry (DCAG), all important
procedure in Algebraic Geometry should have derived-categorical interpretation. In [7]
Kontsevich claimed that formal completion for a scheme is obtained as a derived bi-
commutator. Following this idea, Efimov [3] introduced the derived bi-commutator of
subcategory ⌋J ⊂ D(R) and proved a scheme version of completion theorem. Since formal
completion plays an important role in Algebraic Geometry, completion theorem and its
scheme version are expected to become important in DCAG. Therefore it is desirable to
obtain better understanding of this theorem.

In the proof of completion theorem, Grothedieck vanishing theorem for local cohomol-
ogy is used. Since it is special theorem for commutative Noetherian rings, it is preferable
to obtain more categorical proof. Recently Porta, Shaul and Yekutieli [21] generalized
completion theorem for a commutative ring R and a weakly proregular ideal a based on
their work [20] about the derived functors of the completion functors and the torsion
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functors. However it is still remain unclear that to what extent we can obtain a transcen-
dental outcome by a homological operation with finite input. In this paper we establish a
simple description of the derived bi-commutator, which enable us to give a more intuitive
proof of completion theorem. Actually the description is given by a certain tautological
homotopy limit, and hence seems to state that every derived bi-commutator is completion
in some sense. (We can make this precise by introducing the notion of derived Gabriel
topology.)

For this purpose, we study derived bi-duality:

(−)⊛ := RHomR(−, J) : D(R) ⇄ D(E)op : RHomE(−, J) =: (−)⊛.

For a special class of modules J , derived bi-duality is already studied in the context of
Gorenstein dg-algebras [4, 6, 13]. We consider general dg-modules J and establish a simple
description of the derived bi-dual module M⊛⊛ via a certain tautological homotopy limit.
This is the main result of this paper. As an application other than completion theorem,
we discuss smashing localization of dg-categories.

As mentioned above, derived bi-dualities, derived bi-commutator and derived double
centralizer property are expected to play prominent roles in Algebras, Representation
theory, Derived-Categorical Algebraic Geometry. Our main theorem together with the
view point that derived bi-commutators are completion in some sense, would have many
applications. Moreover since the main theorem is proved in a formal argument, the
same formula should hold in more wider context. Bi-duality is a basic operation which
is ubiquitous in mathematics. So it can be expect that our main theorem become an
indispensable tool in many area of mathematics.

Below we give an outline, in which the readers see that if we omit homotopy theoretical
details, things become very simple. However, we will see that it is inevitable to work with
homotopy theory.

2. Derived bi-duality via homotopy limit

Let A be a dg-algebra and J a dg A-module. We denote E := (REndA(J))
op be the

opposite dg-algebra of the endomorphism dg-algebra. Then J has a natural dg E-module
structure. We obtain the dualities

(−)⊛ := RHomA(−, J) : D(A) ⇄ D(E)op : RHomE(−, J) =: (−)⊛.

There are natural transformations ϵ : 1D(A) → (−)⊛⊛ induced from evaluation morphisms.
We denote by ⟨J⟩ the smallest thick subcategory containing J . Namely ⟨J⟩ is the full

triangulated subcategory of D(A) consisting those objects which constructed from J by
taking cones, shifts, and direct summands finitely many times.

LetM be a dg A-module. We denote by ⟨J⟩M/ the under category. Namely, the objects
of ⟨J⟩M/ are morphisms k : M → K with K ∈ ⟨J⟩ and the morphisms from k : M → K
to ℓ : M → L are the morphisms ψ : K → L in ⟨J⟩ such that ℓ = ψ ◦ k. This category
⟨J⟩M/ comes naturally equipped with the co-domain functor Γ : ⟨J⟩M/ → D(A) which
sends an object k :M → K to its co-domain K.

Γ : ⟨J⟩M/ → D(A), [k :M → K] 7→ K.

The following simple formula is the main theorem.
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Theorem 2. We have the following quasi-isomorphism

M⊛⊛ ≃ holim
⟨J⟩M/

Γ

Remark 3. In the above Theorem 2, Theorem 4 and Corollary 5, we omit homotopy
theoretical details. For the rigorous statements see [14].

To explain an idea of a proof, we give the following heuristic arguments. First we claim
that if K belongs to ⟨J⟩, then the evaluation map ϵK : K → K⊛⊛ is an isomorphism.
Indeed the case K = J is clear. Since the bi-dual (−)⊛⊛ is an exact functor, we can check
the claim for general K ∈ ⟨J⟩.

It follows from the above claim that every morphism k :M → K with K ∈ ⟨J⟩ factors
though ϵM :M →M⊛⊛.

M

k
��

ϵM // M⊛⊛

k⊛⊛
��

K K⊛⊛ϵ−1
K

∼=
oo

It seems that the derived bi-dual module M⊛⊛ satisfies one of the two conditions of the
limit of the family M → K of morphisms. In the following way, we can catch a glimpse
of the other condition that we can reach from K ∈ ⟨J⟩ to M⊛⊛:

It is well-known that a dg-module is obtained as a filtered homotopy colimit perfect
modules. Hence the dg E-module M⊛ is quasi-isomorphic to the homotopy colimit of
some family {Pλ}Λ of perfect E-modules.

(2.1) M⊛ ≃ hocolim
Λ

Pλ

Applying the dual functor (−)⊛ to this quasi-isomorphism, we obtain the following (quasi-
)isomorphisms

M⊛⊛ ≃ (hocolim
Λ

Pλ)
⊛ ≃ holim

Λ
(P⊛

λ ).

It is clear that E⊛ ≃ J . Therefore, since Pλ is a perfect E-module, the dual P⊛
λ belongs

to ⟨J⟩. This shows that we can reach from K ∈ ⟨J⟩ to M⊛⊛. Actually the following
Theorem 4 which is a version of the quasi-isomorphism (2.1) is a key of the proof of the
main theorem.

Theorem 4. Let X be a dg E-module. We denote by Perf E the category of perfect E-
modules. Then the over category (Perf E)/X comes naturally equipped with the domain
functor

Υ : Perf E → D(E), [p : P → X] 7→ P.

Then the canonical morphism
hocolim
(Perf E)/X

Υ → X

is a quasi-isomorphism.

Since the bi-dual A⊛⊛ of A is naturally isomorphic to the derived bi-commutator
BicA(J),

A⊛⊛ = RHomE(RHomA(A, J), J) ∼= RHomE(J, J) = BicA(J)
in particular, we have the following corollary.
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Corollary 5.

BicA(J) ≃ holim
⟨J⟩A/

Γ.

These theorem and corollary provide us a fundamental understanding of derived bi-
duality functors.

3. Completion via derived bi-commutator

As the first application, we generalize the completion theorem and give an intuitive
proof.

Let R be a ring and a a two-sided ideal. An (right) R-module M is called a-torsion
if for any m ∈ M there exists n ∈ Z≥1 such that man = 0. We denote by a-tor the
full subcategory of ModR consisting of a-torsion modules. We denote by Da-tor(R) the
full subcategory of D(R) consisting of complexes with a-torsion cohomology groups. We
denote by D(a-tor) the full subcategory of D(R) consisting of complexes each term of
which is a-torsion module.

Theorem 6. Assume that the canonical inclusion functor D(a-tor) → Da-tor(R) gives

an equivalence and that R/an belongs to ⟨R/a⟩ for n ≥ 0. We denote by R̂ the a-adic
completion. Then we have a quasi-isomorphism

BicR(R/a) ≃ R̂.

“Proof ”.
Assumption. In this “Proof” we assume that holim = lim. We identify quasi-isomorphisms
with isomorphisms.

We denote by I the (non-full) subcategory of ⟨R/a⟩R/ which consists of objects πn :
R → R/an for n ≥ 1 and of morphisms πm → πn induced from the canonical projections
φm,n : R/am → R/an for m ≥ n. In other words, I is the image of the functor (Z≥1)

op →
D(A) which sends an object n to πn and a morphism m → n to πm → πn where we
consider the ordered set Z≥1 as a category in the standard way. Therefore we have

lim
I

Γ|I ∼= lim
n→∞

R/an ∼= R̂.

Thanks to Corollary 5 the problem is reduced to show that limI Γ|I ∼= lim⟨R/a⟩R/
Γ. There-

fore it is enough to prove that I is a left cofinal subcategory of ⟨R/a⟩R/. Namely only we
have to show that the over category I/k is non-empty and connected for each k ∈ ⟨R/a⟩R/.

Let k : R → K be an object of ⟨R/a⟩R/. It is clear that ⟨R/a⟩ contained in Da-tor(R).

Since we assume that D(a-tor)
∼→ Da-tor(R), K belongs to D(a-tor). It follows that K is

(quasi-)isomorphic to a complex each term of which is an a-torsion modules. Therefore a
morphism k : R → K canonically factors through some cyclic a-torsion module R/an.

R

πn

��

k

""E
EE

EE
EE

EE

R/an
ψ

// K
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In other words, there exists a morphism ψ : πn → k in ⟨R/a⟩R/. This proves the non-
emptiness of I/k. Since the factorization k = ψ ◦ πn is canonical, we see that I/k is
connected. This shows that I is left co-final in ⟨R/a⟩R/ and completes the “proof”. “□”

In [21] Porta, Shaul and Yekutieli generalized completion theorem (Theorem 1) by using
a compact generator of Da-tor(R).

Theorem 7 ([21, Theorem 4.2]). Let R be a commutative ring and a a weakly pro-regular
ideal. Let K be a compact generator of Da-tor(R). Then we have the following quasi-
isomorphism of dg-algebras under R.

BicR(K) ≃ R̂.

By our method, we give a generalization of this theorem.

Theorem 8. Let R be a ring and a an two-sided ideal such that the canonical functor
D(a-tor) → Da-tor(R) gives an equivalence. Let K be a compact generator of Da-tor(R).
Then we have a quasi-isomorphism

BicR(K) ≃ R̂.

It is proved by [20, Corollary 3.31] that if a ring R is commutative and an ideal a is
weakly pro-regular, then the canonical functor D(a-tor) → Da-tor(R) gives an equivalence.
Therefore Theorem 8 implies Theorem 7.

Remark 9. The conditions on Theorem 6 and Theorem 8 are not practical. The reason
why we put these artificial conditions is not to obtain generality but to clarify to what
extent the derived bi-commutator gives the completion.

The condition that the canonical functor cana : D(a-tor) → Da-tor(R) gives an equiv-
alence is satisfied if the subcategory a-tor is closed under taking injective hull. This
condition is satisfied if a right ideal a has the Artin-Rees property. In particular, in the
case where a ring R is commutative Noetherian, for any ideal a the functor cana is an
equivalence. As we mentioned before, if a ring R is commutative and an ideal a is weakly
pro-regular, then the canonical functor cana is an equivalence. It should be noted that
if R is commutative Noetherian, any ideal a is weakly pro-regular (See [1, 20, 23]). It
is showed in [20, Example 3.35] that a weakly pro-regular ideal in non-Noetherian ring
naturally appears.

The following question arises: find a necessary and sufficient condition on rings R and
ideals a such that the canonical functor cana is an equivalence.

4. Smashing localization via derived bi-commutator

First we recall the following classical fact.

Theorem 10 ([10, Corollary 3.4.1], [17, Theorem 7.1]). Let f : R → S be a (right)
Gabriel localization of a ring R, that is, f is an epimorphism in the category of rings and
S is left flat over R. Let J be a co-generator of the torsion theory which corresponds to
the Gabriel localization f . If we take a product J ′ := Jκ of copies of J over large enough
cardinal κ, then we have an isomorphism

BicR(J
′) ∼= S.
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In this section we prove a derived version. A morphisms f : A → B of dg-algebras
is called smashing localization (or homological epimorphism) if the restriction functor
f∗ : D(B) → D(A) is fully faithful. Recall that a ring homomorphism R → S is an
epimorphism in the category of rings if and only if the restriction functor f∗ : ModS →
ModR is fully faithful. Therefore smashing localization can be considered as a dg-version
of epimorphisms of rings.

Theorem 11. Let A → B be a smashing localization of dg-algebras and J be a pure
injective co-generator of D(B). Then we have a quasi-isomorphism over A

BicA(f∗J ′) ≃ B.
where J ′ = JΠκ is a large enough product of J .

The notion of pure injective co-generator which is introduced by Krause [9] is a dg-
version of injective co-generator for the module category ModR of an ordinary ring R.

Remark 12. Nicolás and Saorin [18] proved that for any smashing localization F : D(A) →
S, there exists a subcategory I ⊂ D(A) such that the functor Lι∗I : D(A) → D(BicA(I))
induced from the canonical morphism ιI : A → BicA(I) is equivalent to F .

In our way of the proof, an essential point is the following theorem.

Theorem 13. Let J a pure injective co-generator of D(A) and M a dg A-module. If we
take a product J ′ = JΠκ of copies of J over large enough cardinal κ, then the evaluation
morphism is a quasi-isomorphism

ϵM :M
∼→M⊛⊛

where the bi-dual is taken over J ′.

From the view point that a derived bi-commutator is a completion, we can give an
intuitive proof of Theorem 13 by using Theorem 2. (In the case where A is an ordinary
ring and M is a module, the same results is already proved by Shamir [24] in a different
way. ) In the rest of this subsection, we use the same assumption with that of “Proof” of
Theorem 6.

For the sake of simplicity we deal with the case where A is an ordinary ring, M is
an A-module and J is an injective co-generator of ModA. Then the module M has an
injective resolution by the products of J

0 →M → JΠκ0 → JΠκ1 → JΠκ2 → · · · .
We can reduce the problem to the following theorem by setting κ := sup{κi | i ∈ Z}.

Theorem 14. Let M
∼−→ J• be an injective resolution of M .

(4.1) 0 →M → J0 → J1 → J2 → · · · .
Assume that J i is a direct summand of J . Then the evaluation map ϵM :M →M⊛⊛ is a
quasi-isomorphism.

We denote by In the totalization of the n-th truncated resolution.

In := tot[J0 → J1 → · · · → Jn].
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Then by assumption the complex In belongs to the thick subcategory ⟨J⟩ generated by
J . Therefore the canonical morphism πn :M → In belongs to the under category ⟨J⟩M/.
Moreover we have a canonical morphism φn+1,n : In+1 → In for n ≥ 0 which is compatible
with πn.

M

πn

��

πn−1

&&LL
LLL

LLL
LLL

LL

· · ·
φn+1,n

// In
φn,n−1

// In−1

φn−1,n−2
// · · · .

Note that since the limit limn→∞ In is the totalization of the injective resolution (4.1),
the morphisms {πn} induces a (quasi-)isomorphism M → limn→∞ In. We will see that
the family {πn :M → In}n≥0 is an “approximation” for the morphisms k :M → K with
K ∈ ⟨J⟩.

We denote by I the subcategory of ⟨J⟩M/ consisting of objects πn : M → In and of
morphisms ϕm,n : πm → πn so that I is isomorphic to (Z≥0)

op. Then it is clear that

lim
I

Γ|I ∼= lim
n→∞

In ≃M.

Therefore by “Theorem” 2 it is enough to prove that the subcategory I ⊂ ⟨J⟩M/ is left
co-final. Namely for each k ∈ ⟨J⟩M/ the over category I/k is non-empty and connected.

We recall the following elementary fact from Homological algebra: Let M ′ be another
A-module and M

∼−→ J ′• an injective resolution. Assume that an A-homomorphism
f :M →M ′ is given. Then (1) there exists a morphism ψ : J• → J ′• of complexes which
completes the commutative diagram

M

f
��

// J•

ψ
��

M ′ // J ′•.

(2) This morphism ψ is not uniquely determined. (3) However it is uniquely determined
up to homotopy.

Using the same methods of the proof of (1), we can check that I/k is non-empty. By
the same reason with (2), the category I/k is not connected. However in the same way of
the proof of (3), we can verify that I/k is “homotopically connected”. We explain detail
in the special case where the co-domain K of k :M → K is an injective module:

Since the canonical morphism π0 : M → I0 = J0 is injective, there exists an extension
ψ : I0 → K of π0. This shows that I/k ̸= ∅. However there is no canonical choice of an
extension. Moreover since the degree 0-part of the canonical morphism φn,0 : In → I0 is
the identity map 1J0 : J0 → J0, two extensions ψ and ψ′ are not connected to each other
in I/k, unless ψ = ψ′. Nevertheless we can see that for any pair (ψ, ψ′) of extensions,
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there exists a homotopy commutative diagram

π1

φ1,0

��

φ1,0

// π0

ψ
��

π0

ψ′
// k.

Hence the objects ψ and ψ′ of I/k is homotopically connected to each other in I/k. This
shows that it is inevitable to work with homotopy theory.

5. Koszul duality for Adams graded dg-algebras
(a part of joint work with A. Takahashi)

The following theorem will be proved and applied in [16].

Theorem 15. Let A := A0 ⊕ A1 ⊕ A2 ⊕ · · · be an N-Adams graded dg-algebra. If the
A0-modules An satisfies a mild condition. Then we have a quasi-isomorphism

BicA(A/A≥1) ≃ A

The proof is given in the same way of the proof of Theorem 6. Here we consider the
Adams grading as a “linear topology” on A. The condition is that A is “complete” with
respect to this topology.

6. From the view point of Derived Gabriel topology

Gabriel topology is a special class of linear topology on rings, which plays an important
role in the theory of localization of rings [25]. The notion of derived Gabriel topology,
which is a derived version of Gabriel topology, is introduced in [15]. From the view point
of derived Gabriel topology, Theorem 2 says that the derived bi-dual M⊛⊛ equipped with
“the finite topology” is the “J-adic completion” ofM . In this sense Theorem 2 is inspired
by the following results of J. Lambek.

Theorem 16 ([10, Theorem 4.2],(See also [11, Theorem 3.7])). Let R be a ring and J an
injective R-module. For an R-moduleM , we denote by Q(M) the module of quotients with
respect to J . Assume that every torsionfree factor module of Q(M) is J-divisible. Then
the (ordinary) bi-duality HomEndR(J)(HomR(M,J), J) equipped with the finite topology is
the J-adic completion of Q(M).

Recently many results in ring theory have been becoming to have their derived analogue
([19, 27]). However it can be said that the statements of these derived versions are parallel
to that of the original versions. Contrary to this, our derived version of Lambek theorem
is definitely improved from the original version. The assumptions and conditions in the
original version is removed in the derived version. So the point is that we can obtain a
simple formula for the bi-duality modules only when we come to the derived world from
the abelian world.

At the first sight, three theorems below concerning on derived bi-dualities

• Completion theorem
• Localization theorem
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• Koszul duality

seem to be theorems of different kind. However in the present paper we will see that
these are consequences of a simple formula, which is the main theorem 2. From the view
point of derived Gabriel topology, these theorems are consequences of completeness of
each algebras with respect to appropriate topologies.
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