CHARACTERIZATION OF GORENSTEIN STRONGLY KOSZUL HIBI
RINGS BY F-INVARIANTS

KAZUNORI MATSUDA

ABSTRACT. Hibi rings are a kind of graded toric ring on a finite distributive lattice
D = J(P), where P is a partially ordered set. In this article, we compute diagonal F-
thresholds and F-pure thresholds of Hibi rings and give a characterization of Hibi rings
which satisfy the equality between these invariants in terms of its trivialness in the sense
of Herzog-Hibi-Restuccia.

1. INTRODUCTION

This is a partially joint work with T. Chiba.

Firstly, we recall the definition of Hibi rings(see[Hib]).

Let P = {p1,pa,...,pn} be a finite partially ordered set(poset for short), and letJ(P)
be the set of all poset ideals of P, where a poset ideal of P is a subset I of P such that if
rxe€l,ye Pand y < x then y € I.

A chain X of P is a totally ordered subset of P. The length of a chain X of P is #X —1,
where #X is the cardinality of X. The rank of P, denoted by rankP, is the maximum of
the lengths of chains in P. A poset is called pure if its all maximal chains have the same
length. For z,y € P, we say that y covers x, denoted by z <y, if x < y and there is no
z € P such that x < 2z < y.

Definition 1. ([Hib]) Let the notation be as above. Let ¢ be the following map:
o J(P)— k[T Xy,....Xy], I+—T][X
pi€l
Then the Hibi ring R(P) is defined as follows:
R(P) = k(D) [ I € J(P)].

Remark 2. (1) ([Hib]) Hibi rings are graded toric rings.
(2) dim R(P) = #P + 1.
(3) ([Hib]) R(P) is Gorenstein if and only if P is pure.

Finally, we define rank® P and rank, P for a poset P in order to state our main theorem.
A sequence C' = (qi, ..., q) is called a path of P if C satisfies the following conditions:

(1) ¢1,-..,q are distinct elements of P,
(2) ¢ is a minimal element of P and ¢, < ¢,

(3) ¢ < giv1 OF Gir1 < q;.

The detailed version of this paper will be submitted for publication elsewhere.
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In short, we regard the Hasse diagram of P as a graph, and consider paths on it. In
particular, if ¢, is a maximal element of P, then we call C' maximal path. For a path
C=(q,.-..,q), we denote C = q; — ¢.

For a path C' = (q1,...,q), ¢ is said to be a locally mazimal element of C' if ¢;_1 < ¢;
and ¢; 11 <q;, and a locally minimal element of C'if ¢; <q;_1 and ¢; <g;+1. For convenience,
we consider that ¢; is a locally minimal element and ¢, is a locally maximal element of C'.

For a path C' = (q1,...,q), if @ < -+ < ¢ then we call C' an ascending chain and
if ¢ > --- > q; then we call C a descending chain. We denote a ascending chain by a
symbol A and a descending chain by a symbol D. For a ascending chain A = (q1,...,q),
we put t(A) = ¢ and < A >= {qg € P | ¢ <t(A)}. Since < A > is a poset ideal of P
generated by A, we note that < A >€ J(P).

Let C = (qu,...,q:) be a path and V(C) the vertices of C.  We now introduce the
notion of the decomposition of C. We decompose V (C) as follows:

V)=V A [Tve) [TV [T TTVee) [T V(A
such that
V(A1) ={q, - @}
VI(D1) =A{dss - qqy }
V(Ag) = {Qa(1)+1a e 7Qa(2)},

V(Dn—1> = {qg(n—2)+17 SR 7QZl(n_1)}7
V(An) = {Qa(n—l)-i-l; <oy Ga(n) = Qt}y
where {ga(1), - -, qa(m)} is the set of locally maximal elements and {q1, ¢}y - @1y}
is the set of locally minimal elements of C. Then A; are ascending chains and D, are

descending chains. This decomposition is denoted by C' = A1+ D1+ As+---+D,_1+ A,.
For a path C' = (q,...,q), we define the upper length by

length*C' = #{(qi, ¢i+1) € E(C) | i < qit1},
where F(C) is the set of edges of C.

Example 3. (1) If C is a chain, then length*C' = lengthC'.
(2) Consider the following path C:

Then length*C' = 4.
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Next, we introduce the condition (*).

Definition 4. For a path C' = (q1,...,q), we say that C satisfies a condition (*) if C
satisfies the following conditions: for all ¢, which is locally maximal element or locally
minimal element of C, ¢y £ ¢, for all & > r and r > s.

Example 5. Consider the following poset P:

q3
44 d6
q2

q1 qs

Then7 Cl = (q17q27q5aQG) satisfies the condition (*)7 but CQ = (%a%y%a%a%a%) does
not satisfy the condition (*) because ¢z > ¢s.

Remark 6. (1) For a path C' = (q1, ..., q) such that C satisfies a condition (*) and ¢, is a
locally maximal element, we can extend C' to a path C = (¢1,---,Gi,---,q) such that C
is a maximal path which satisfies a condition (*). Indeed, if ¢; is not a maximal element of
P, then there exists ¢;.1 such that ¢; <<q;11. We decompose C = A1 +D1+...+D,, 1+ A,.
If g1 € < A; > for some i, then so is ¢;. This means that C' does not satisfy a condition
(*), a contradiction. Hence a path C" = (qi,...,q, q+1) also satisfies a condition (*).
Therefore, by repeating this operation, we can extend C' to a path C = (@1, Gty Q)
such that C' is a maximal path which satisfies a condition (*).

(2) Let C' = (qu,-..,q) be a path of P. If C'is a unique path such that its starting
point is ¢; and its end point is ¢;, then C' satisfies a condition (*). Indeed, if C' does
not so, there exists a locally maximal(or minimal) element ¢, such that gy < ¢, for some
s<r<s' Then, C" = (q1,...,4s,qs,---,q:) is also a path, but this is a contradiction.

Now, we can define the upper rank rank® P and the lower rank rank, P for a poset P.
Definition 7. For a poset P, we define

rank™ P = max{length*C' | C' is a maximal path which satisfies a condition(x)},

rank, P = min{length*C' | C' is a maximal path which satisfies a condition(x)}.

We call rank* P upper rank and rank, P lower rank of P. We note that #P—1 > rank*P >
rank P > rank, P.

Example 8. Consider the following poset P:

q3 d6
q2 qs
q1 qa

Then, the following paths satisfy the condition (*):
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q3 d6 q3 d6
q2 q2 g5 q2 qs

q1 q1 qa qa q4

Hence we have rank*P = 3 and rank, P = rankP = 2.

2. DIAGONAL F-THRESHOLDS OF HIBI RINGS

In this section, we recall the definition and several basic results of F-threshold and give
a formula of the F-thresholds of Hibi rings.

2.1. Definition and basic properties. Let R be a Noetherian ring of characteristic
p > 0 with dimR =d > 1. Let m be a maximal ideal of R. Suppose that a and J are
m-primary ideals of R such that a C v/J and a N R° # (§, where R° is the set of elements
of R that are not contained in any minimal prime ideal of R.

Definition 9 (see [HMTW]). Let R, a,J be as above. For each nonnegative integer e,
put v (p?) = max{r € N | a” ¢ JP} where JP! = (a* | @ € J). Then we define
J (e
¢ (a) = tim )
e—oo  p°
if it exists, and call it the F-threshold of the pair (R, a) with respect to J. Moreover, we
call ¢*(a) the diagonal F-threshold of R with respect to a.

About basic properties and examples of F-thresholds, see [HMTW]. In this section, we
summarize basic properties of the diagonal F-thresholds ¢™(m).

Example 10. (1) Let (R, m) be a regular local ring of positive characteristic. Then
c™(m) = dim R.
(2) Let k[X1,..., X4)" be the r-th Veronese subring of a polynomial ring S = k[X7, ..., X4).
Put m = (Xi,..., Xy)"R. Then ¢™(m) = ==L,
(3) (IMQOY, Corollary 2.4]) If (R, m) is a local ring with dim R = 1, then ¢™(m) = 1.
Example 11. (]MOY, Theorem 2|) Let S = k[Xi,..., X, Y1,...,Y,] be a polynomial
ring over k in m + n variables, and put n = (Xq,..., X, Y1,...,Y,)S. Take a binomial

f=XM X Y Y € S where ap > -0 > apy, by > - > by Let R = S,/(f)
be a binomial hypersurface local ring with the unique maximal ideal m. Then

max{a; + b —min{d>_", a;, 37, b;},0}

M(m) = -2
cM(m) =m+n-2+ max{ay, by }

In [CM], we gave a formula of ¢™(m) of Hibi rings.

Theorem 12 (see [CM]). Let P be a finite poset, and R = R(P) the Hibi ring made from
P. Let m = R, be the graded maximal ideal of R. Then

c™(m) = rank™ P + 2.
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3. F'-PURE THRESHOLDS OF HIBI RINGS

In this section, we recall the definition of the F-pure threshold and give a formula of
the F-pure thresholds of Hibi rings. This formula is given by Chiba.

The F-pure threshold, which was introduced by [TW], is an invariant of an ideal of
an F-finite F-pure ring. F-pure threshold can be calculated by computing generalized
test ideals (see [HY]), and [Bl] showed how to compute generalized test ideals in the case
of toric rings and its monomial ideals. Since Hibi rings are toric rings, we can compute
F-pure thresholds of the homogeneous maximal ideal of arbitrary Hibi rings, and will be
described in terms of poset.

Definition 13 (see [TW]). Let R be an F-finite F-pure ring of characteristic p > 0, a
a nonzero ideal of R, and t a non-negative real number. The pair (R, a’) is said to be
F-pure if for all large ¢ = p°, there exists an element d € a*@= Y1 such that the map
R — RY% (1 s d'9) splits as an R-linear map. Then the F-pure threshold fpt(a) is
defined as follows:

fpt(a) = sup{t € R>¢ | (R, a) is F-pure}.

Hara and Yoshida [HY] introduced the generalized test ideal 7(a’) (¢ is a non negative
real number). Then fpt(a) can be calculated as the minimum jumping number of 7(a),
that is,

fpt(a) = sup{t € R>q | 7(a") = R}.
Chiba gave a formula of fpt(m) of Hibi ring R = R(P).

Theorem 14 (see [CM]). Let P be a finite poset, and R = R(P) the Hibi ring made from
P. Let m = R, be the graded mazximal ideal of R. Then

fpt(m) = rank, P + 2.
4. —a(R) OF HiBI RINGS AND CHARACTERIZATION OF HIBI RINGS WHICH SATISFY
c™(m) = —a(R) = fpt(m)
The first main theorem of this article is the following:

Theorem 15 (see [CM], [BH]). Let P be a poset, and R = R(P) the Hibi ring made from
P. Let m = R, the unique graded mazimal ideal of R. Then

c™(m) = rank™ P + 2,
—a(R) = rankP + 2,
fpt(m) = rank, P + 2,
where a(R) is a-invariant of R(see [GW]). In particular, ¢™(m) > —a(R) > fpt(m).

In this section, we give a characterization of Hibi rings which satisfy ¢™(m) = —a(R) =
fpt(m), that is, we consider the following question:

Question: When does ¢™(m) = —a(R) = fpt(m) hold for Hibi rings?
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Hirose, Watanabe and Yoshida [HWY] showed that for any homogeneous affine toric
ring R with the unique graded maximal ideal m, R is Gorenstein if and only if fpt(m) =
—a(R). Hence we need to study Hibi rings which satisfy ¢™(m) = —a(R).

Let Py, P, be posets and let Ry = R(P;), Ry = R(P) be Hibi rings made from P,
P; respectively. In order to give an answer of the above question, we observe the tensor
products and Segre products of R; and Ry(see [Hib|, [HeHiR]).

Firstly, we define some notions.

Definition 16. A ring R is trivial if R can be made by the following operations : starting
from polynomial rings, repeated applications of tensor products and Segre products.

Definition 17. (see [HeHiR]) A poset P is simple if there is no element of P which is
comparable with any other element of P.

Tensor Products:
Let P be a not simple poset. Then there exists p € P such that p is comparable with
any other element of P. Put P, ={q€ P|q¢<p}and P, ={q € P|q> p}. Then

R(P) ~ R; ® Ry
holds. Moreover, it is easy to see that
rank*P = rank®P; 4+ rank*P, + 2,
rankP = rankP; + rankP, + 2,
rank, P = rank,P; + rank, P, + 2.

Hence we have
rank® P = rankP = rank, P

)

rank*P; = rank P, = rank, P, and rank®P = rankP; = rank, .

Segre Products:

Let P be a not connected (that is, its Hasse diagram is not connected) poset. Then
there exist two non-empty subposets P, and P, of P such that the elements of P, and P,
are incomparable. Then

R(P) ~ Ri#R,
holds. Moreover, it is easy to see that
rank*P = max{rank” P, rank* P},
rankP = max{rankP;,rankPs},
rank,P = min{rank,P;,rank,P;,}.
Hence we have
rank* P, = rankP; and rank™P, =rankP, =  rank*P = rankP

and
rankP = rank,P = rankP; = rank,P, and rankP; = rank.P»
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holds. If P is pure, then the converses of the above assertion are also true, that is

rank®*P = rankP = rank, P

)

rank® P, = rankP, = rank, P, and rank®P; = rankP, = rank, P

holds since rank P = rank PP, = rank/P.
By using these observation, we prove the following proposition.

Proposition 18. Let P be a finite poset, and R = R(P) the Hibi ring made from P. Let
m = R, be the graded mazimal ideal of R. Then if R is trivial, then rank* P = rankP,
that is, ¢™(m) = —a(R). Moreover, if P is pure, the converse is also true.

Proof. The first assertion is clear from the above observation and the fact that ¢®(m) =
—a(R) if R is a polynomial ring.

We prove that the converse is true if P is pure. Assume that R is not trivial. From the
above observation, we may assume that P is simple and connected.

Firstly, we refer the following lemma.

Lemma 19. (/[HeHiR, Lemma 3.5]) Every simple and connected poset P possesses a
saturated ascending chain A = ¢ — ¢, (m > 2) together with a, b € P satisfying the
following condition : (i) ¢y, > b; (i) a > c¢1; (1) ¢ £ b; (10) a £ ¢

Hence, it is enough to show that rank® P > rank P under the situation as in Lemma 3.5.
We consider three paths Cl = Pmin ~7 Pmax; CQ = Pmin —7 ¢max and C3 = @min —7 Gmax a8
the following:

pnlaX ? ? qnlax
s

-2
Sot+m C

b

a

&1
sS1+m—2

S1
Pmin (g 4} Gmin

We put length(puin — ¢1) = s1 and length(c,, — gmax) = S2. Since P is pure,
rank P = lengthC; = lengthCy = lengthCs = s1 + s9 +m — 1.
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Hence we have
length(a — pmax) = s2 +m — 2, length(gmin — b) = s1 +m — 2.

Let C' = quin — ¢ — €1 — Pmax be a path. Then it is easy to show that C' satisfies a
condition (*). Moreover,

length*C' = (sa+m—1)+ (s;+m —1)
= S1+8+2m—2
> S1+Sy+m—1
= rankP

since m > 2. Therefore we have rank™P > rankP. ]

In [HeHiR], Herzog, Hibi and Restuccia introduced the notion of strongly Koszulness
for homogeneous k-algebra, and they proved that a Hibi ring is strongly Koszul if and
only if it is trivial(see [HeHiR, Theorem 3.2]). Moreover, from [HWY], we can see that
for any Hibi ring R = R(P) with the unique graded maximal ideal m, rankP = rank, P if
and only if P is pure. Therefore, we get the following theorem:

Theorem 20 (see [CM], [HeHiR]). Let P be a finite poset, and R = R(P) the Hibi ring
made from P. Let m = Ry be the graded mazimal ideal of R. The the following assertions
are equivalent:

(1) R is trivial and Gorenstein.

(2) R is strongly Koszul and Gorenstein.

(3) R satisfies ™ (m) = —a(R) = fpt(m).

(4) P satisfies rank™ P = rank P = rank, P.
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