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Abstract. Hibi rings are a kind of graded toric ring on a finite distributive lattice
D = J(P ), where P is a partially ordered set. In this article, we compute diagonal F -
thresholds and F -pure thresholds of Hibi rings and give a characterization of Hibi rings
which satisfy the equality between these invariants in terms of its trivialness in the sense
of Herzog-Hibi-Restuccia.

1. Introduction

This is a partially joint work with T. Chiba.
Firstly, we recall the definition of Hibi rings(see[Hib]).
Let P = {p1, p2, . . . , pN} be a finite partially ordered set(poset for short), and letJ(P )

be the set of all poset ideals of P , where a poset ideal of P is a subset I of P such that if
x ∈ I, y ∈ P and y ≤ x then y ∈ I.

A chain X of P is a totally ordered subset of P . The length of a chain X of P is #X−1,
where #X is the cardinality of X. The rank of P , denoted by rankP , is the maximum of
the lengths of chains in P . A poset is called pure if its all maximal chains have the same
length. For x, y ∈ P , we say that y covers x, denoted by x ⋖ y, if x < y and there is no
z ∈ P such that x < z < y.

Definition 1. ([Hib]) Let the notation be as above. Let φ be the following map:

φ : J(P ) −→ k[T,X1, . . . , XN ], I 7−→ T
∏
pi∈I

Xi

Then the Hibi ring R(P ) is defined as follows:

R(P ) = k[φ(I) | I ∈ J(P )].

Remark 2. (1) ([Hib]) Hibi rings are graded toric rings.
(2) dimR(P ) = #P + 1.
(3) ([Hib]) R(P ) is Gorenstein if and only if P is pure.

Finally, we define rank∗P and rank∗P for a poset P in order to state our main theorem.
A sequence C = (q1, . . . , qt) is called a path of P if C satisfies the following conditions:

(1) q1, . . . , qt are distinct elements of P ,
(2) q1 is a minimal element of P and qt−1 ⋖ qt,
(3) qi ⋖ qi+1 or qi+1 ⋖ qi.

The detailed version of this paper will be submitted for publication elsewhere.
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In short, we regard the Hasse diagram of P as a graph, and consider paths on it. In
particular, if qt is a maximal element of P , then we call C maximal path. For a path
C = (q1, . . . , qt), we denote C = q1 → qt.

For a path C = (q1, . . . , qt), qi is said to be a locally maximal element of C if qi−1 ⋖ qi
and qi+1⋖qi, and a locally minimal element of C if qi⋖qi−1 and qi⋖qi+1. For convenience,
we consider that q1 is a locally minimal element and qt is a locally maximal element of C.

For a path C = (q1, . . . , qt), if q1 ≤ · · · ≤ qt then we call C an ascending chain and
if q1 ≥ · · · ≥ qt then we call C a descending chain. We denote a ascending chain by a
symbol A and a descending chain by a symbol D. For a ascending chain A = (q1, . . . , qt),
we put t(A) = qt and < A >= {q ∈ P | q ≤ t(A)}. Since < A > is a poset ideal of P
generated by A, we note that < A >∈ J(P ).

Let C = (q1, . . . , qt) be a path and V (C) the vertices of C. We now introduce the
notion of the decomposition of C. We decompose V (C) as follows:

V (C) = V (A1)
⨿

V (D1)
⨿

V (A2)
⨿

· · ·
⨿

V (Dn−1)
⨿

V (An)

such that

V (A1) = {q1, . . . , qa(1)},
V (D1) = {q′1, . . . , q′d(1)},
V (A2) = {qa(1)+1, . . . , qa(2)},

··
·

V (Dn−1) = {q′d(n−2)+1, . . . , q
′
d(n−1)},

V (An) = {qa(n−1)+1, . . . , qa(n) = qt},
where {qa(1), . . . , qa(n)} is the set of locally maximal elements and {q1, q′d(1), . . . , q′d(n−1)}
is the set of locally minimal elements of C. Then Ai are ascending chains and Dj are
descending chains. This decomposition is denoted by C = A1+D1+A2+ · · ·+Dn−1+An.

For a path C = (q1, . . . , qt), we define the upper length by

length∗C = #{(qi, qi+1) ∈ E(C) | qi ⋖ qi+1},
where E(C) is the set of edges of C.

Example 3. (1) If C is a chain, then length∗C = lengthC.
(2) Consider the following path C:

����������������1

��������
2 ��������OOOOOOOOO ��������OOOOOOOOO

��������
3

��������
4

Then length∗C = 4.
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Next, we introduce the condition (*).

Definition 4. For a path C = (q1, . . . , qt), we say that C satisfies a condition (*) if C
satisfies the following conditions: for all qr which is locally maximal element or locally
minimal element of C, qs′ ̸≤ qs for all s

′ > r and r > s.

Example 5. Consider the following poset P :

q1 ��������q2 ��������q3 ��������
q4��������OOOOOOOOO

q5��������OOOOOOOOO

q6��������ooooooooo

Then, C1 = (q1, q2, q5, q6) satisfies the condition (*), but C2 = (q1, q2, q3, q4, q5, q6) does
not satisfy the condition (*) because q2 ≥ q5.

Remark 6. (1) For a path C = (q1, . . . , qt) such that C satisfies a condition (*) and qt is a
locally maximal element, we can extend C to a path C̃ = (q1, . . . , qt, . . . , qt′) such that C̃
is a maximal path which satisfies a condition (*). Indeed, if qt is not a maximal element of
P , then there exists qt+1 such that qt⋖qt+1. We decompose C = A1+D1+. . .+Dn−1+An.
If qt+1 ∈ < Ai > for some i, then so is qt. This means that C does not satisfy a condition
(*), a contradiction. Hence a path C ′ = (q1, . . . , qt, qt+1) also satisfies a condition (*).
Therefore, by repeating this operation, we can extend C to a path C̃ = (q1, . . . , qt, . . . , qt′)
such that C̃ is a maximal path which satisfies a condition (*).

(2) Let C = (q1, . . . , qt) be a path of P . If C is a unique path such that its starting
point is q1 and its end point is qt, then C satisfies a condition (*). Indeed, if C does
not so, there exists a locally maximal(or minimal) element qr such that qs′ ≤ qs for some
s < r < s′. Then, C ′ = (q1, . . . , qs, qs′ , . . . , qt) is also a path, but this is a contradiction.

Now, we can define the upper rank rank∗P and the lower rank rank∗P for a poset P .

Definition 7. For a poset P , we define

rank∗P = max{length∗C | C is a maximal path which satisfies a condition(∗)},
rank∗P = min{length∗C | C is a maximal path which satisfies a condition(∗)}.

We call rank∗P upper rank and rank∗P lower rank of P . We note that #P−1 ≥ rank∗P ≥
rankP ≥ rank∗P .

Example 8. Consider the following poset P :

q1 ��������q2 ��������q3 ��������
q5��������
q4��������OOOOOOOOO

q6��������
Then, the following paths satisfy the condition (*):
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q1 ��������q2 ��������q3 ��������
q1 ��������q2 ��������

q4��������OOOOOOOOO

q5�������� q6��������
q2 ��������q3 ��������

q4��������OOOOOOOOO q4 ��������q5 ��������q6 ��������
Hence we have rank∗P = 3 and rank∗P = rankP = 2.

2. Diagonal F-thresholds of Hibi rings

In this section, we recall the definition and several basic results of F -threshold and give
a formula of the F -thresholds of Hibi rings.

2.1. Definition and basic properties. Let R be a Noetherian ring of characteristic
p > 0 with dimR = d ≥ 1. Let m be a maximal ideal of R. Suppose that a and J are
m-primary ideals of R such that a ⊆

√
J and a ∩R◦ ̸= ∅, where R◦ is the set of elements

of R that are not contained in any minimal prime ideal of R.

Definition 9 (see [HMTW]). Let R, a, J be as above. For each nonnegative integer e,
put νJ

a (p
e) = max{r ∈ N | ar ̸⊆ J [pe]}, where J [pe] = (ap

e | a ∈ J). Then we define

cJ(a) = lim
e→∞

νJ
a (p

e)

pe

if it exists, and call it the F -threshold of the pair (R, a) with respect to J . Moreover, we
call ca(a) the diagonal F -threshold of R with respect to a.

About basic properties and examples of F -thresholds, see [HMTW]. In this section, we
summarize basic properties of the diagonal F -thresholds cm(m).

Example 10. (1) Let (R,m) be a regular local ring of positive characteristic. Then
cm(m) = dimR.

(2) Let k[X1, . . . , Xd]
(r) be the r-th Veronese subring of a polynomial ring S = k[X1, . . . , Xd].

Put m = (X1, . . . , Xd)
rR. Then cm(m) = r+d−1

r
.

(3) ([MOY, Corollary 2.4]) If (R,m) is a local ring with dimR = 1, then cm(m) = 1.

Example 11. ([MOY, Theorem 2]) Let S = k[X1, . . . , Xm, Y1, . . . , Yn] be a polynomial
ring over k in m + n variables, and put n = (X1, . . . , Xm, Y1, . . . , Yn)S. Take a binomial
f = Xa1

1 · · ·Xam
m − Y b1

1 · · ·Y bn
n ∈ S, where a1 ≥ · · · ≥ am, b1 ≥ · · · ≥ bn. Let R = Sn/(f)

be a binomial hypersurface local ring with the unique maximal ideal m. Then

cm(m) = m+ n− 2 +
max{a1 + b1 −min{

∑m
i=1 ai,

∑n
j=1 bj}, 0}

max{a1, b1}
.

In [CM], we gave a formula of cm(m) of Hibi rings.

Theorem 12 (see [CM]). Let P be a finite poset, and R = R(P ) the Hibi ring made from
P . Let m = R+ be the graded maximal ideal of R. Then

cm(m) = rank∗P + 2.
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3. F -pure thresholds of Hibi rings

In this section, we recall the definition of the F -pure threshold and give a formula of
the F -pure thresholds of Hibi rings. This formula is given by Chiba.

The F -pure threshold, which was introduced by [TW], is an invariant of an ideal of
an F -finite F -pure ring. F -pure threshold can be calculated by computing generalized
test ideals (see [HY]), and [Bl] showed how to compute generalized test ideals in the case
of toric rings and its monomial ideals. Since Hibi rings are toric rings, we can compute
F -pure thresholds of the homogeneous maximal ideal of arbitrary Hibi rings, and will be
described in terms of poset.

Definition 13 (see [TW]). Let R be an F -finite F -pure ring of characteristic p > 0, a
a nonzero ideal of R, and t a non-negative real number. The pair (R, at) is said to be
F -pure if for all large q = pe, there exists an element d ∈ a⌈t(q−1)⌉ such that the map
R −→ R1/q (1 7→ d1/q) splits as an R-linear map. Then the F -pure threshold fpt(a) is
defined as follows:

fpt(a) = sup{t ∈ R≥0 | (R, at) is F -pure}.

Hara and Yoshida [HY] introduced the generalized test ideal τ(at) (t is a non negative
real number). Then fpt(a) can be calculated as the minimum jumping number of τ(ac),
that is,

fpt(a) = sup{t ∈ R≥0 | τ(at) = R}.

Chiba gave a formula of fpt(m) of Hibi ring R = R(P ).

Theorem 14 (see [CM]). Let P be a finite poset, and R = R(P ) the Hibi ring made from
P . Let m = R+ be the graded maximal ideal of R. Then

fpt(m) = rank∗P + 2.

4. −a(R) of Hibi rings and Characterization of Hibi rings which satisfy
cm(m) = −a(R) = fpt(m)

The first main theorem of this article is the following:

Theorem 15 (see [CM], [BH]). Let P be a poset, and R = R(P ) the Hibi ring made from
P . Let m = R+ the unique graded maximal ideal of R. Then

cm(m) = rank∗P + 2,

−a(R) = rankP + 2,

fpt(m) = rank∗P + 2,

where a(R) is a-invariant of R(see [GW]). In particular, cm(m) ≥ −a(R) ≥ fpt(m).

In this section, we give a characterization of Hibi rings which satisfy cm(m) = −a(R) =
fpt(m), that is, we consider the following question:

Question: When does cm(m) = −a(R) = fpt(m) hold for Hibi rings?
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Hirose, Watanabe and Yoshida [HWY] showed that for any homogeneous affine toric
ring R with the unique graded maximal ideal m, R is Gorenstein if and only if fpt(m) =
−a(R). Hence we need to study Hibi rings which satisfy cm(m) = −a(R).

Let P1, P2 be posets and let R1 = R(P1), R2 = R(P2) be Hibi rings made from P1,
P2 respectively. In order to give an answer of the above question, we observe the tensor
products and Segre products of R1 and R2(see [Hib], [HeHiR]).

Firstly, we define some notions.

Definition 16. A ring R is trivial if R can be made by the following operations：starting
from polynomial rings, repeated applications of tensor products and Segre products.

Definition 17. (see [HeHiR]) A poset P is simple if there is no element of P which is
comparable with any other element of P .

Tensor Products:
Let P be a not simple poset. Then there exists p ∈ P such that p is comparable with

any other element of P . Put P1 = {q ∈ P | q < p} and P2 = {q ∈ P | q > p}. Then
R(P ) ≃ R1 ⊗R2

holds. Moreover, it is easy to see that

rank∗P = rank∗P1 + rank∗P2 + 2,

rankP = rankP1 + rankP2 + 2,

rank∗P = rank∗P1 + rank∗P2 + 2.

Hence we have
rank∗P = rankP = rank∗P

⇕

rank∗P1 = rankP1 = rank∗P1 and rank∗P2 = rankP2 = rank∗P2.

Segre Products:
Let P be a not connected (that is, its Hasse diagram is not connected) poset. Then

there exist two non-empty subposets P1 and P2 of P such that the elements of P1 and P2

are incomparable. Then
R(P ) ≃ R1#R2

holds. Moreover, it is easy to see that

rank∗P = max{rank∗P1, rank
∗P2},

rankP = max{rankP1, rankP2},
rank∗P = min{rank∗P1, rank∗P2}.

Hence we have

rank∗P1 = rankP1 and rank∗P2 = rankP2 ⇒ rank∗P = rankP

and
rankP = rank∗P ⇒ rankP1 = rank∗P1 and rankP2 = rank∗P2
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holds. If P is pure, then the converses of the above assertion are also true, that is

rank∗P = rankP = rank∗P

⇕

rank∗P1 = rankP1 = rank∗P1 and rank∗P2 = rankP2 = rank∗P2

holds since rankP = rankP1 = rankP2.
By using these observation, we prove the following proposition.

Proposition 18. Let P be a finite poset, and R = R(P ) the Hibi ring made from P . Let
m = R+ be the graded maximal ideal of R. Then if R is trivial, then rank∗P = rankP ,
that is, cm(m) = −a(R). Moreover, if P is pure, the converse is also true.

Proof. The first assertion is clear from the above observation and the fact that cm(m) =
−a(R) if R is a polynomial ring.

We prove that the converse is true if P is pure. Assume that R is not trivial. From the
above observation, we may assume that P is simple and connected.

Firstly, we refer the following lemma.

Lemma 19. ([HeHiR, Lemma 3.5]) Every simple and connected poset P possesses a
saturated ascending chain A = c1 → cm (m ≥ 2) together with a, b ∈ P satisfying the
following condition：(i) cm ⋗ b; (ii) a⋗ c1; (iii) c1 ̸≤ b; (iv) a ̸≤ cm.

Hence, it is enough to show that rank∗P > rankP under the situation as in Lemma 3.5.
We consider three paths C1 = pmin → pmax, C2 = pmin → qmax and C3 = qmin → qmax as

the following:

c1 ��������a ��������

pmax ��������

pmin �������� qmin��������

b�������� cm��������
qmax��������

hhhh
hhhh

hhhh

hhhhhhhhhhhh

s2 +m− 2

m− 1

s1

s1 +m− 2

s2

We put length(pmin → c1) = s1 and length(cm → qmax) = s2. Since P is pure,

rankP = lengthC1 = lengthC2 = lengthC3 = s1 + s2 +m− 1.
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Hence we have

length(a → pmax) = s2 +m− 2, length(qmin → b) = s1 +m− 2.

Let C = qmin → cm → c1 → pmax be a path. Then it is easy to show that C satisfies a
condition (*). Moreover,

length∗C = (s2 +m− 1) + (s1 +m− 1)

= s1 + s2 + 2m− 2

> s1 + s2 +m− 1

= rankP

since m ≥ 2. Therefore we have rank∗P > rankP . □

In [HeHiR], Herzog, Hibi and Restuccia introduced the notion of strongly Koszulness
for homogeneous k-algebra, and they proved that a Hibi ring is strongly Koszul if and
only if it is trivial(see [HeHiR, Theorem 3.2]). Moreover, from [HWY], we can see that
for any Hibi ring R = R(P ) with the unique graded maximal ideal m, rankP = rank∗P if
and only if P is pure. Therefore, we get the following theorem:

Theorem 20 (see [CM], [HeHiR]). Let P be a finite poset, and R = R(P ) the Hibi ring
made from P . Let m = R+ be the graded maximal ideal of R. The the following assertions
are equivalent:

(1) R is trivial and Gorenstein.
(2) R is strongly Koszul and Gorenstein.
(3) R satisfies cm(m) = −a(R) = fpt(m).
(4) P satisfies rank∗P = rankP = rank∗P .
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