CYCLOTOMIC KLR ALGEBRAS OF CYCLIC QUIVERS

MASAHIDE KONISHI

ABSTRACT. For cyclic quiver, cyclotomic KLR algebras are defined by fixing o and T,
two weights on vertices. We fix a and T in a special (but essential) case, and then show
that there are systematic changes of structures.

1. INTRODUCTION

Khovanov-Lauda-Rouquier algebra (KLR algebra for short) is defined by Khovanov and
Lauda, and independently Rouquier in 2008. Generators and Relations are obtained from
a quiver [' and a weight o on its vertices. We can regard generators as concatenation of

such diagrams : + ><

110203104 110910304 ©10213 i4
An another weight A on vertices of I' defines a cyclotomic ideal. We call a quotient of
the KLR algebra by the cyclotomic ideal a cyclotomic KLR algebra. After here, we fix

quiver I' as its vertices are {0,1,2,--- ,n — 1}, and its arrows are from ¢ to 7 + 1 (also
n —1to 0), and set o = Z a;, A = Ay.
vertex

Our aim is to describe changes of structures of cyclotomic KLR algebras for n.

2. PRELIMINARIES
After here, K is a field and I, is a set consisting all of permutations of (0,1,--- ,n—1).

Definition 1. A KLR algebra Hr, is an algebra obtained by following generators and
relations.
e generators: {e(i)lie€ I,} U{yr, - ,yn} U{tb1, - ,¢n_1}
e relations:
e(i)e(j) = di,
Y eli)=1,
ieSeq(a)
yre(i) = e(i)yr,
Yre(i) = e(sk - 1)y,
YeYr = Y1Yk,
Uk = yr (L # Kk + 1),
Vet = Yoy, ([k =1 > 1),
Ukyrre(i) = yrbre(i),

The detailed version of this paper will be submitted for publication elsewhere.
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Yerrre(i) = Yryre(i),

o o) Gn )

2, [\ _ Yr+1 — Yr)ell U = U+l

viell) = (e —veeli) (i i)
(Yrr1 — o) Uk — yrr1)e(d)  (ix < dpg1)

UrkpPre(i) = Yeheteiae(i).

The three generators are respectively coresponding to the three diagrams in section 1.
A multiplication of two generators are obtained as a concatenation of two diagrams (but
if the colors of connecting part are different, it becomes 0). Each relations are also given
by following diagrams :

ijk ik
A cyclotomic ideal and a cyclotomic KLR algebra are defined from A as follows.

Definition 2. Generators of cyclotomic ideal are as follows :
{pe(d) i€ I,,iy =0} U{e(i)lie€ I,,i, # 0}.
Denote H,, for corresponding cyclotomic KLR algebra, a quotient of Hr , by the ideal.

3. PROPERTIES

In this section, we describe four properties of H,. We need some representation theo-
retical facts written in next section for proof.

Theorem 3. The number of i € I,, satisfying e(i) # 0 is exactly 2"~2. Moreover, the set
consisting all of such e(i)s is complete set of primitive orthogonal idempotents.

Proof. Fix n. We show there are at most 2”72 is satisfying e(i) # 0 by constructing i
from 4, to ¢, avoiding e(i) = 0. The rest part is proved in next section.

In the case of n = 2, there is only (0, 1).

In the case of n > 2, at first 41 must be 0 from the definition of the cyclotomic ideal.
Next, 75 must be 1 or n — 1 which are neighborhood of 0 in the quiver. If not, we obtain

e((oai%"')) = ¢%e((0>z2a))
- ¢le((i2707"'>)’¢1
= 0.
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We can write this equation by using diagrams as follows :

o=(7 - |

0 i 0 9
We must keep taking one of the two neighborhoods for ix(2 < k < n —1). If not,
e(i) = 0 from following equation :

0:@3 :‘ ;ij :‘

042  Ig—11g 0dy k-1 0dy  lg—11g 02 lg—1ig
At last, we can set the rest number for i,,. Then we can obtain 2”72 is constructed by
using above method. 0

Proposition 4. Let e(i) # 0 in H,. Then these properties hold :
(a) yre(i) =0 (L <k <n),
(b) yne(i) =0,
(©) yne(i) # 0.

Proof. (c) will be proved in next section.

In the case of n = 2, (a) is by definition, (b) follows by expanding ¢e(0, 1)v.

In the case of n > 2, we prove (a) by induction for k.

For k =1, yge(i) = 0 from definition.

We show yre(i) = 0 for k < n. By Thm.3, there is unique 1 < [ < k such that i; and
i; are neighborhoods. Using y,e(i) = 0 by assumption of induction, we obtain yze(i) = 0
from following equation :

0 22 i i 0 72 Ui g

0 9 (] 7 0 i 1 g
0 2o i U
0 22 1 g

We assume 7; — 7, in this equation, but if 4; <— 7, the difference is only signs. Therefore
(a) follows.

In the same way, since yye(i) = 0 for £ < n and there are two neighborhoods i;,i,
(1 <1< m<n)of i, we obtain y2e(i) = 0 as follows :

0=

i

0 U Tm in 0 4 T i
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0 1] im in 0 il Zm in
0 2.l im 'Ln

Also we assume there i; — 4,, — 4,,, but the difference with the case i; < i, < 1i,, is
only signs. Therefore (b) follows. O

For H,, set two subsets I¢, I} of I,, as follows :
It = {iel,le(i) #0}
I, = {i€ellliy=1}
And set an idempotent e of H,, as follows :
e= Ze(i)
ier}
At last, set two maps ": I, (a) = I}«),”: I} (a) = I¢_;(a) as follows :
i=(0,1,i0+1, - in1+1) for i=(0,ig - in_1),
i=(0,i5—1,---,in—1) for i=(0,1iz,- in).

In other word, " increments i; except ¢; and inserts 1 at second,”decrements i; except 2,
and remove 7. Both maps are bijection and inversion of the other.

Proposition 5. For each n > 2, an isomorphism of algebras
H, ,—>eH,e
15 obtained as follows :
e(i) = e(1) , Y1 Y, V> Vst -

Proof. For e(i), e(i) = 0 and e(i) = 0 are equivalent. For 1, what we check is only
Yn—1 € H,_1 and y, € H, by Prop.4. It is easy to check each relations is preserved.
Since elements in eH,e can be presented without 1, we can make the inversion map
eH,e — H,_; as follows :

e(i) = GG) y Yn Y Yn—1 wk = ¢k—1 .
O
Proposition 6. For each H,, the two indecomposable projective modules corresponding
to two primitive idempotents e(i) and e(j) are isomorphic if and only if i, = jy.
In particular, the isomorphic class of indecomposable projective modules has (n — 1)
elements.
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4. APPENDIX : REPRESENTATION THEORETICAL FACTS

Using isomorphism given in [BK], each H,, is replaced by well-known object in repre-
sentation theory. Using the facts in it, we complete the proofs of previous section.

Theorem 7 (Brundan-Kleshchev,Rouquier).

(a) @D Hran = Hy(n)

laf=n

The right side is Ariki-Koike algebra determined by A and n,q = /1 € C.
(b) He,,a, A is a block. That is, an indecomposable two-sided ideal.

We set A = Ag. In this case, Ariki-Koike algebra is Hecke algebra H,(S,) of type A.
The following theorem holds. For notations in the theorem, see Mathas([4] p.50 Ex.18).

Theorem 8 (Dipper-James). Let A be a partition of r.
There exists H,(S,)-module S* with following properties :
Let n be minimum integer satisfying 1 +q+q¢*> +---+¢* 1 = 0.
(a) If X is n-regular (the same number doesn’t continue n times), then top of S* is
uniquely determined. In this case, we denote D for topS>.
(b) {D’\ | A n-regular} is complete list of simple H,(S,)-modules.

The following lemma holds in general.

Lemma 9. Let P* a indecomposable projective module corresponding to D*.
As a left module,
H,(S,) = @ (dimD*) P*
A
The following property holds in this time [5].

Theorem 10. As an element of Grothendieck group,
o D] = 5]
o [D(n—k,lk)i| _ [D(n—k-i-l,l’“*l)} X |:S(n—k,1k)i|

By using hook length formula, the following property holds.

dim S —F1") = (n B 1)

Proposition 11.

k

Proof. The Young diagram corresponding to (n — k, 1¥) is as follows :

e 2]1] k .
: (n—k,1%) _ :
2 dim5 n-kl(n—Fk—1)!
(n—1)!
((n—1) —k)k!

- (")
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By using Thm.10 and Prop.11, the following property holds.
Proposition 12. For 0 < k <n — 1, denote A\, = (n — k, 1%).

n—1
}:dmuﬁk:2mﬂ

k=0

Proof. Since dimD* = —dimD*-1 + dimS**,
we obtain dimD* + dimDM-1 = dimS™M = (”;1)
Therefore if n is odd,

. n—l n—l n—l
E: : A n—2
dim D" ]+( )+( )+...+(n ) 2

k=0

n—1

1 1 1
) dimD“:(n )+<n )+---+<n ):2"—2
2 1 3 n—1

Therefore we obtain the following corollary.

if even,

Corollary 13. Every 22 e(i)s obtained in Thm.3 is primitive idempotent.
The folloing preperty holds.
Proposition 14. Ife(i) # 0 then y,e(i) # 0.

Proof. There are no elements except for y,e(i) in e(i) H,e(i) such that linearly independent
to e(i). On the other hand, since there are no indecomposable simple projective modules
by Thm.10, dim(End(e(i)H,)) > 2. Hence y,e(i) # 0 from End(e(i)H,) = e(i)H,e(i).

OJ

About Prop.6, if part follows from [1] and only if part follows from the fact ;
H,, is Morita equivalent to Brauer tree algebra of A,, type.
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