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Abstract. Inspired by a previous work [Nak11] of Nakajima, we consider a class of
(equivariant) perverse sheaves on acyclic graded quiver varieties and study the Fourier-
Sato-Deligne transform from representation theoretical point of view. In particular, we
get a monoidal categorification of quantum cluster algebra with specific coefficient. As
a corollary, the strong positivity conjecture is verified. This is based on a talk in the
45th Symposium on Ring Theory and Representation Theory in Shinshu University and
a preprint [KQ12].

1. Introduction

Cluster algebras were invented by Fomin and Zelevinsky in [FZ02] with an aim to pro-
vide concrete and combinatorial formalism for the study of Lusztig’s dual canonical basis
and total positivity. They are commutative algebras generated by certain combinatori-
ally defined generators (the cluster variables). The quantum deformations were defined
in[BZ05]. Fomin and Zelevinsky stated their original motivation as follows:

“We conjecture that the above examples can be extensively generalized:
for any simply-connected connected semisimple group G, the coordinate
rings C[G] and C[G/N ], as well as coordinate rings of many other inter-
esting varieties related to G, have a natural structure of a cluster algebra.
This structure should serve as an algebraic framework for the study of
dual canonical bases in these coordinate rings and their q-deformations. In
particular, we conjecture that all monomials in the variables of any given
cluster (the cluster monomials) belong to this dual canonical basis.”

However, despite the many successful applications of (quantum) cluster algebras to other
areas (cf. the introductory survey by Keller [Kel12] and Geiss, Leclerc and Schröer
[GLS12]), the link between (quantum) cluster monomials and the dual canonical basis
of quantum groups remains largely elusive.

Also, the following positivity conjecture has attracted a lot of interest since the invention
of cluster algebras.

Conjecture 1 (Laurent positivity conjecture). With respect to any given seed, each clus-
ter variable expands into a Laurent polynomial with non-negative integer coefficients.

This conjecture has been proved for cluster algebras arising from surfaces by Musiker,
Schiffler, and Williams [MSW11], for cluster algebras containing a bipartite seed by Naka-
jima [Nak11], and the quantized version for quantum cluster algebras with respect to an
acyclic initial seed by [Qin12a]. Recently, Efimov [Efi11]obtained further partial results

The detailed version of this paper [KQ12] has been submitted for publication elsewhere.
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on this conjecture for quantum cluster algebras containing an acyclic seed using mixed
Hodge modules.

In [HL10], Hernandez and Leclerc proposed monoidal categorification of cluster algebra.

Definition 2 (monoidal categorification). Let A be a cluster algebra (of geometric type).
Let C be a monoidal abelian category. We say that C is a monoidal categorification of
A if the Grothendieck ring K0(C) of C is isomorphic to A as ring and the basis of K0(C)
which consists of simple objects of C includes the set of cluster monomials1.

The existence of monoidal categorification of cluster algebra yields the following conse-
quence on cluster algebras (with geometric coefficients).

Conjecture 3 (strong positivity conjecture). Let A be a cluster algebra (with geometric
coefficients ZP). Then there exists a Z-basis B of A which contains the set of cluster
monomials and has non-negative structure constants.

In [HL10] they gave a conjecture on the monoidal categorification of T -system cluster
algebra (with level ℓ) using the tensor subcategory Cℓ of finite dimensional representations
of (untwisted) quantum affine algebras and proved ℓ = 1 case for An and D4.In [Nak04,
Nak11], Nakajima studied finite dimensional representation of quantum affine algebra via
perverse sheaves on graded quiver varieties and gave a proof of ℓ = 1 case for bipartite
quiver.

In [KQ12, Qin12b], we studied graded quiver varieties which are associated with acyclic
quiver and generalized the Nakajima’s proof for ℓ = 1 cases using the Nakayama functor
on quiver representations.
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2. Quantum cluster algebras

2.1. Quantum cluster algebras. We briefly recall the definition of (quantum) cluster
algebras. For more details, see [KQ12]. A quiver Q = (Q0, Q1) is an oriented graph
where Q0 is a set of vertices and Q1 a set of arrows. For each arrow α, we denote its
outgoing vertex by out(h) and its incoming vertex by in(h). For a quiver Q, we associate
doubled quiver H by adding opposite arrows Q1 := {α : in(α) → out(α) | α ∈ Q1}.
We say (Q0, Q1) as opposite quiver. Sometimes we also denote Q0 and Q1 by I and Ω
respectively. We say that Q is p-acyclic if Q does not contain oriented cycles whose length
are less than p and is acyclic if Q does not contain any oriented cycles. For 2-acyclic quiver
Q (with frozen vertices), we can define cluster algebra A(Q) (with geometric coefficients).

1We remark that the correspondence between the set of isomorphism class of prime real simple objects
in C and the set of cluster variables is required in [HL10]. Under the monoidal categorification, the
correspondence can be shown in [GLS11c, Corollary 8.6]
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Berenstein and Zelevinsky[BZ05] have introduced a quantum analogue of cluster algebra
with geometric coefficients using quantum torus.

Let v be a formal parameter and we consider a ring Z[v±1] or Q[v±1]. Let m ≥ n be
be two positive integers. Let Λ be an m × m skew-symmetric integer matrix and B̃ an
m×n integer matrix. The upper n×n submatrix of B̃, denoted by B, is called principal
part of B̃.

Definition 4. The pair (Λ, B̃) is called compatible if we have Λ(−B̃) =

[
D
0

]
for some

n× n diagonal matrix D whose diagonal entries are strictly positive integers. It is called
a unitary compatible pair if moreover D is the identity matrix 1n. The matrix Λ is called

the Λ-matrix of (Λ, B̃) and the matrix B̃ is called the B-matrix of (Λ, B̃).

We write Λ(g, h) for gtΛh, g, h ∈ Zm, where gt is the transpose of g ∈ Zm as matrix.

Definition 5. The quantum torus T = T (Λ) over Z[v±] is the Laurent polynomial ring
Z[v±1][x±1

1 , ..., x±1
m ], endowed with the following twisted product ∗ such that we have

xgxh = vΛ(g,h)xg+h

for any g, h ∈ Zm. Here for any g = (gi) ∈ Zm, xg denote the monomial
∏

1≤i≤m xgi
i .

For ϵ ∈ {±1}, we define m×m-matrix Eϵ = (eij) and n×n-matrix Fϵ = (fij) as follows.

eij =


δij if j ̸= k

−1 if i = j = k

max(0,−ϵbik) if i ̸= k, j = k,

fij =


δij if i ̸= k

−1 if i = j = k

max(0, ϵbkj) if i = k, j ̸= k.

Fix a compatible pair (Λ, B̃) and the quantum torus T = T (Λ). Since quantum torus
is a Ore domain, we can consider its fraction skew-field F and T can be considered as a
subalgebra of F .

Definition 6. (1)A quantum seed is a tuple (Λ, B̃, (xi)1≤i≤m) where {xi}1≤i≤m ⊂ F and

(Λ, B̃) a compatible pair.

(2) For a quantum seed and 1 ≤ k ≤ n, we define quantum seed mutation µk(Λ, B̃, (xi)1≤i≤m) =

(Λ′, B̃′, (x′
i)1≤i≤m) as follows.

Λ′ = Eϵ(B)tΛEϵ(B),

B̃′ = Eϵ(B)tB̃Fϵ(B),

x′
i =

{
xi if i ̸= k

x′
k if i = k,
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where x′
k is defined in the following equation.

xkx
′
k = vΛ(ek,

∑
1≤i≤m[bik]+ei)

∏
1≤i≤m

x
[bik]+
i + vΛ(ek,

∑
1≤i≤m[−bik]+ei)

∏
1≤i≤m

x
[−bik]+
i .

(3) Let Tn be the regular n-tree with distinct colors {1, · · · , n} at each vertices. Quan-
tum cluster pattern is an assigment of quantum seed from Tn such that we have

(Λ(t′), B̃(t′), (xi(t
′))1≤i≤m) = µk(Λ(t), B̃(t), (xi(t))1≤i≤m)

for each edge t− t′ which is colored by k.
(4) For a quantum cluster pattern, we set Xq =

∪
t{xi(t)}1≤i≤m and call by the set

of quantum cluster variables. The quantum cluster algebra Aq is the Z[v±1]-subalgebra
which is generated by Xq.

Quantum Laurent phenomena say that Aq is a subalgebra of the quantum torus T (cf.
[BZ05]). For a quiver whose principal part is acyclic, it is known that quantum Laurent
expansion at initial seed can be written as a generating function the Serre polynomial
of the quiver Grassmannian associated with the correponding cluster tilting object. For
more details, see [Qin12a]. For a Hodge-theoretic interpretation of quantum Laurent
phoenomena, see [Efi11].

3. Quiver varieties

3.1. Definition. For a quiver Q, we consider a repetition quiver Q̂ as follows:

Q̂0 = Q0 × (1 + 2Z)

Q̂1 = {(α, n) : (out(α), n) → ()}α∈Q1,n∈Z ∪ {σ(α, n) : (in(α), n) → (out(α), n− 2)}

For an acyclic quiver Q, we consider a repetition quiver Γ̂ = (Γ̂0, Γ̂1) with Γ̂0 =

Q0 × Z which contains Q̂ as a fullsubquiver on Q0 × (1 + 2Z). We also add new ar-
rows {σ(α, n) : (in(α), 2n + 1) → (out(α), 2n − 1)}α∈Q1,n∈Z and {a(i, n) : (i, 2n + 1) →
(i, 2n)}i∈Q0,n∈Z ∪ {b(i, n) : (i, 2n) → (i, 2n − 1)}i∈Q0,n∈Z. Let R be a mesh category sup-
ported only on Q0 × (1 + 2Z) and S be a fullsubcategory of R supported on Q0 × 2Z.

We consider a finite dimensional Γ̂0-graded vector space V ⊕ W where V is the Q̂0-
component and W is the Q0 × 2Z-component.

Let RepV⊕W (R) be a variety of representations of R-module whose dimension vector
is V ⊕ W . A point (B,α, β) ∈ RepV⊕W (R) is said to be stable (resp. costable) if the
following condition holds:

If a Q̂0-graded subspace V ′ of V is B-invariant and contained in Ker(β) (resp. contains
Im(α)), then V ′ = 0 (resp. V ′ = V ).

We denote by RepV⊕W (R)st the (possibly empty) set of stable points.

Definition 7 (graded quiver varieties). (1) The set-theoretical quotient M(V,W ) =
RepV⊕W (R)st/GV of the set of stable points with respect to the group action defined by
base change of the product of general linear groups GV is called smooth graded quiver
variety.

(2) The affine algebraic-geometric quotient M0(V,W ) = RepV⊕W (R)//GV is called
affine graded quiver variety.
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The smooth graded quiver variety can be defined as a homogenous spectrum of semi GV

invariants of RepV⊕W (R) with respect to a character χ : GV → Gm. So there is a natural
(GW -equivariant) projective morphism π : M(V,W ) → M0(V,W ) by general theory of
geometric invariant theory. Since M0(V,W ) parametrizes semisimple representations, we
can consider its union along all V . We denote it by M0(W ). The following gives a
“description” of M0(W ) and is due to Leclerc-Plamondon [LP12] based on a result by
Lusztig.

Theorem 8. We have a natural GW -equivariant isomorphism Φ0 : M0(W ) ≃ RepW (S).

Let PW be the set of isomorphism class of (GW -equivariant) simple perverse sheaves on
M0(W ) which appear in π!CM(V,W ) for some shifts and V and QW be the fullsubcategory
of Db(M0(W )) which is generated by PW by shifts and direct sums. Let KW be the
quantum Grothendieck group of QW which is defined by shifts and direct sum and has a
structure of Z[v±1]-module.

We have a natural stratification on M0(W ) and the classification of PW in terms of
the stratification.

Let Mreg
0 (V,W ) be the (possible empty) open subsets of M0(V,W ) which consists

of closed GV -orbits whose stablizer is trivial and the dimension vector (V,W ) is called
dominant if W − CQ(z)V ≥ 0, where CQ(z) is the quantum Cartan matrix defined by

CQ(z)ij = #
{
h ∈ Ω

∣∣∣out(h)=i
in(h)=j

}
z −

{
h ∈ Ω

∣∣∣out(h)=j
in(h)=i

}
z−1,

where z : ZΓ̂0 → ZΓ̂0 is the shift defined by (zW )i(n) = Wi(n− 1) .

Theorem 9. (1) M0(V,W ) is not empty if and only if (V,W ) is dominant. If (V,W ) is
dominant, M(V,W ) is connected.

(2) M0(W ) =
⊔

Mreg
0 (V,W )

(3) PW = {ICW (V ) | (V,W ) is dominant}, where ICW (V ) := IC(M0(V,W ),C) is
the intersection cohomology complex associated with the stratum Mreg

0 (V,W ).

3.2. Quantum Grothendieck ring. Let 0 ⊂ W 2 ⊂ W be a S0-graded subspace and
W 1 = W/W 2 and fix a splitting W ≃ W 1 ⊕W 2. Let λ : Gm → GW be the 1-parameter
subgroup defined by λ(t) = idW 1 ⊕ tidW 2 . Then Gm acts on M(V,W ) and M0(W ).
Let T0(W

1,W 2) be the closed subvariety of M0(W ) which consists of points such that
limt→0 t · [B,α, β] exists. Then we have the following diagram:

M0(W
1)×M0(W

2) T0(W
1,W 2)κ0

oo
ι0

// M0(W ) ,

where κ0 : T0(W
1,W 2) → M0(W

1) ×M0(W
2) be the morphism defined by taking limit

limt→0 t · [B,α, β] and ι0 : T0(W
1,W 2) ↪→ M0(W ) be the closed embedding. Let R̃es :=

(κ0)!ι
∗
0 : D

b(M0(W )) → Db(M0(W
1) × M0(W

2)) be the restriction functor defined by

the above morphism. It can be shown that R̃es(QW ) ⊂ QW 1 ⊠QW 2 . Using the restriction
functor (with some shifts), we get the following definition of quantum Grothendieck ring.

Definition 10. Let Rv be the subring of
∏

W HomZ[v±1](KW ,Z[v±1]) which consists the
Z[v±1]-linear module homomorphisms satisfy

⟨fW , ICW (V )⟩ = ⟨fW−CQ(z)V , ICW−CQ(z)V (0)⟩
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for arbitrary dominant (V,W ).

Let {LW (V )} be the dual basis of {IC(M(V,W ))} and L = {LW} be the basis of Rv

which is determined by {LW (0)}. It is known that L has positive structure constants and
there is a embedding R into quantum torus using the generating function with respect to
the pairing with {πW (V )}, where πW (V ) = π!CM(V,W )[dimM(V,W )].

We consider the support condition (∗)ℓ on W =
⊕

(i,n)∈S0
Wi(n):

Wi(n) = 0 unless n ∈ {0, 2, · · · , 2ℓ}.
Let Rv,ℓ be the Z[v±1]-subalgebra which satisfies the support condition (∗)ℓ and Rℓ be
the specialization at v = 1. It can be shown that L |v=1 ∩Rℓ gives a basis of Rℓ.

3.3. T -system quiver. For an acyclic quiver Q = (Q0, Q1) and non-negative integer
ℓ, we consider the following ice quiver TQ,ℓ. Let (TQ,ℓ)0 be the set Q0 × {0, 1, · · · , ℓ}
and (TQ,ℓ)1 = {(α, k) : (out(α), k) → (in(α), k)}α∈Q1,0≤k≤ℓ−1 ∪ {σ(α, k) : (in(α), k) →
(out(α), k−1)}α∈Q1,1≤k≤ℓ∪{ti,k : (i, k) → (i, k+1)}i∈Q0,0≤k≤ℓ−1. We call TQ,ℓ by T -system
quiver with level ℓ and we set (TQ,ℓ)

fr
0 = Q0 × {ℓ}.

It is a special case of the quivers in [BFZ05] and [GLS11b, GLS11a] which are associated
with the ℓ+1 power cℓ+1

Q of the acyclic Coxeter element cQ and the corresponding unipotent

subgroup N(cℓ+1
Q ).

Conjecture 11. There is a ring isomorphism Φ: A(TQ,ℓ) ≃ Rℓ and the image of the
cluster monomials is contained in the basis L |v=1 ∩Rℓ.

We remark that the subring Rℓ is an analogue of K0(Cℓ), where Cℓ is the tensor subcat-
egory in [HL10] and there is a natural quantum analogue between the quantum cluster
algebra [GLS11a] and the (twisted) quantum Grothendieck ring. This should yields the
quantization conjecture in [Kim12].

4. Level 1 case

We prove the above conjecture holds in ℓ = 1 case.

4.1. Description of quiver varieties. We consider the ℓ = 1 case. LetW =
⊕

(i,n)∈S0
Wi(n)

be S0-graded vector space such that Wi(n) = 0 unless n ∈ {0, 2}. Since the full subquiver
of S on Q0 × {0, 2} does not contain oriented cycles and the mesh relations, RepW (S) is
an affine space. Let Si be a simple module of Q, Ii be an injective envelop of Si and Pi

be the projective cover of Si.

Proposition 12. For W = W (0)⊕W (2) be S0-graded vector space such that Wi(n) = 0
unless n ∈ {0, 2}. We set PW (2) =

⊕
i∈Q0

Wi(2)⊗Pi and IW (0) =
⊕

i∈Q0
Wi(0)⊗Ii. Then

we have an isomorphism:

Φ0 : M0(W ) ≃ EW := HomQ(P
W (2), IW (0)).

We also assume Q̂0-graded vector space V satisfies Vi(n) = 0 unless n ∈ {1}. Let

F(V,W ) be the quiver Grassmann of IW (0) with dimension vector V (1). Let F̃(V,W ) be
the variety of pairs (z, S) with z ∈ HomQ(P

W (2), IW (0)) and S ∈ F(V,W ) which satisfy

Im(z) ⊂ S. Let π : F̃(V,W ) → EW be the first projection.
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Proposition 13. We have a GW -equivariant isomorphism Φ: M(V,W ) ≃ F̃(V,W )
which satisfies the following commutative diagram:

M(V,W )

π

��

Φ // F̃(V,W )

π

��
M0(W )

Φ0

// EW

.

4.2. Fourier-Deligne-Sato transform. Since F̃(V,W ) is a vector subbundle over F(V,W )

of the trivial bundle EW × F(V,W ), we consider its annihilator bundle F̃⊥(V,W ) ⊂
E∗

W ×F(V,W ). By the Nakayama duality, we have E∗
W ≃ HomQ(I

W (0), IW (2)) and

F̃⊥(V,W ) = {(z∗, S) ∈ E∗
W ×F(V,W )|S ⊂ Ker(z∗)} .

Let π⊥ : F̃⊥(V,W ) → E∗
W be the first projection. Then the fiber (π⊥)−1(z∗) is the quiver

Grassmannian of Ker(z∗) with dimension vector V (1). Let Ψ: Db(EW ) ≃ Db(E∗
W ) be the

Fourier-Deligne-Sato transform and LW be the subset of PW which consists the Fourier
transform Ψ(ICW (V )) has entire support E∗

W . We note that ICW (0) ∈ LW .
We consider the following alternating sum of LW :

LW =
∑

ICW (V )∈LW

(−1)dimM(V,W )rankΨ(ICW (V ))LW−CQ(z),

where rankΨ(ICW (V )) is the generic rank of Ψ(ICW (V )). It can be shown that LW yields
the quantum cluster character in [Qin12a].

Let AW = AutQ(I
W (0)) × AutQ(I

W (2)) be the automorphism group. We have natu-
ral projection of groups AW → GW . By construction π⊥ is equivariant with respect to
the AW -action, so the simple perverse sheaves which can be obtained by π⊥ are AW -
equivariant perverse sheaves. By considering AW -action, we get the following characteri-
zation.

Theorem 14. If E∗
W has an open AW -orbit, we have LW = {ICW (0)}.

The sufficient condition for which E∗
W contains an open AW -orbit can be characterized

by the canonical decomposition of injective presentation by Derksen-Fei[DF09]. In par-
ticular, it can be shown that the set of quantum cluster monomials is contained in the
“dual canonical basis” {LW}. So we get the proof of the conjecture for ℓ = 1 case.
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