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Abstract. We introduce the atom spectrum of an abelian category as a topological
space consisting of all the equivalence classes of monoform objects. In terms of the
atom spectrum, we give a classification of Serre subcategories of an arbitrary noetherian
abelian category.
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1. Introduction

Classification of subcategories has been studied by a number of authors, for example,
[2], [3], [4], [7], and [1]. Subcategories themselves are interesting objects. Moreover we
expect that the structure of subcategories reflects some important properties of the whole
category.

Throughout this report, we fix an abelian category A. First of all, we recall the defini-
tion of a Serre subcategory.

Definition 1. A full subcategory X of A is called a Serre subcategory if it is closed under
subobjects, quotient objects, and extensions.

Remark 2. This condition is equivalent to that for any short exact sequence

0 → L → M → N → 0

in A, M belongs to X if and only if L and N belong to X .

A prototype of classifications of subcategories is the following theorem shown by Gabriel
[2]. For a ring R, denote by ModR the category of all the R-modules and by modR the
category of finitely generated R-modules. We say that a subset Φ of SpecR is closed
under specialization if for any p, q ∈ SpecR, p ⊂ q and p ∈ Φ imply q ∈ Φ.

Theorem 3 (Gabriel [2]). Let R be a commutative noetherian ring. Then we have the
following bijection

{Serre subcategories of modR} → {Φ ⊂ SpecR | Φ is closed under specialization}
X 7→

∪
M∈X

SuppM.

In this report, we generalize this theorem to any abelian category with some noetherian
property.

The detailed version of this paper has been submitted for publication elsewhere.
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2. Monoform objects

The key notion of this report is that of monoform objects. We recall the definition of
them.

Definition 4. A nonzero object H in A is called monoform if for any nonzero subobject
L of H, there does not exist a nonzero subobject of H which is isomorphic to a subobject
of H/L.

The following theorem states an important relationship between monoform objects and
Serre subcategories.

Theorem 5. Let M be an object in A. M is monoform if and only if M does not belong
to the smallest Serre subcategory containing all the objects of the form M/N where N is
a nonzero subobject of M .

Proposition 6. Let H be a monoform object in A. Then the following hold.

(1) Any nonzero subobject of H is also monoform.
(2) H is uniform, that is, for any nonzero subobjects L1 and L2 of H, L1 ∩ L2 ̸= 0.

Definition 7. For monoform objects H and H ′ in A, we say that H is atom-equivalent
to H ′ if there exists a nonzero subobject of H which is isomorphic to a subobject of H ′.

Remark 8. In fact, the relation of atom equivalence is an equivalence relation between
monoform objects in A since any monoform object is uniform.

Now we define the notion of atoms, which was originally introduced by Storrer [6] in
the case of module categories.

Definition 9. Denote by ASpecA the quotient set (or quotient class) of the set of mono-
form objects in A by atom equivalence. We call it the atom spectrum of A. Elements of
ASpecA are called atoms in A. The equivalence class of a monoform object H in A is
denoted by H.

In section 4, we see that there exists a bijection between ASpec (ModR) and SpecR.
Hence the atom spectrum is a generalization of the prime spectrum in the commutative
ring theory.

Definition 10. Let M be an object in A.

(1) Define the atom support of M by

ASuppM = {H ∈ ASpecA | H is a subquotient of M}.
(2) Define the set of associated atoms of M by

AAssM = {H ∈ ASpecA | H is a subobject of M}.
The following proposition is a generalization of a proposition which is well-known in

the commutative ring theory.

Proposition 11. Let 0 → L → M → N → 0 be a short exact sequence in A. Then the
following hold.

(1) ASuppM = ASuppL ∪ ASuppN .
(2) AAssL ⊂ AAssM ⊂ AAssL ∪ AAssN .
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3. Main theorem

In order to generalize Gabriel’s theorem (Theorem 3), we need to consider a general-
ized condition of “closed under specialization”. This condition is given by the following
topology.

Definition 12. Define a topology on ASpecA as follows: we say that a subset (or sub-
class) Φ of ASpecA is open if for any α, there exists H ∈ α such that ASuppH ⊂ Φ.

Proposition 13. Open subsets of ASpecA define a topology on ASpecA which has an
open basis {ASuppM | M ∈ A}.

We recall the definition of noetherian abelian categories.

Definition 14. (1) An object M in A is called noetherian if for any ascending chain
L0 ⊂ L1 ⊂ · · · of subobjects of M , there exists n ≥ 0 such that Ln = Ln+1 = · · · .

(2) An abelian category A is called noetherian if it is skeletally small (that is, the
class of isomorphism classes forms a set), and any object in A is noetherian.

Remark 15. The skeletally smallness is just a set-theoretical assumption. It A ensures
that ASpecA is a set. We do not need to assume it if we allow ASpecA to be a proper
class.

Theorem 16 ([5]). Let A be a noetherian abelian category. Then there exists a bijection

{Serre subcategories of A} → {open subsets of ASpecA}
X 7→

∪
M∈X

ASuppX .

The inverse map is given by Φ 7→ {M ∈ A | ASuppM ⊂ Φ}.

4. In the case of module categories

In the case of module categories, the atom spectrum is described in terms of one-sided
ideals.

Proposition 17. Let R be a ring. Then any atom in ModR is represented by a monoform
object of the form R/p, where p is a right ideal of R. Moreover if R is right noetherian,
then ASpec (modR) is homeomorphic to ASpec (ModR).

Proposition 18. Let R be a commutative ring. Then the following hold.

(1) For any ideal a of R, R/a is monoform in ModR if and only if a is a prime ideal
of R.

(2) For any prime ideals p and q of R, R/p is atom-equivalent to R/q if and only

if p = q. Therefore the correspondence p 7→ R/p gives a bijection SpecR →
ASpec (ModR).

(3) For any R-module M , ASuppM = SuppM , and AAssM = AssM .
(4) For any subset Φ of SpecR, Φ is open in the sense of ASpec (ModR) if and only

if Φ is closed under specialization.

Remark 19. In the case where R is noetherian, we can formulate these claims by using
ASpec (modR) instead of ASpec (ModR). Then new claims which we obtain also hold.

–71–



In the case of artinian rings, monoformness is stated in terms of composition factors.

Proposition 20. Let R be a right artinian ring. Then a finitely generated R-module M is
monoform if and only if it has simple socle S such that there exists no other composition
factor of M which is isomorphic to S.

Proposition 21. Let R be a right artinian ring and {S1, . . . , Sn} be a maximal set of
pairwise nonisomorphic simple modules. Then ASpecR = {S1, . . . , Sn} with the discrete
topology.

Example 22. Let R be the ring of lower triangular matrices over a field K, that is,

R =

[
K 0
K K

]
.

Then all the right ideals of R are

0,

[
0 0
K 0

]
, pa = K

[
1 0
a 0

]
(a ∈ K),m1 =

[
0 0
K K

]
,m2 =

[
K 0
K 0

]
, R.

All the comonoform right ideals of R are

pa(a ∈ K),m1,m2.

Since

R

pa
∼=

[
K K

]
,
R

m1

∼=
[
K 0

]
,
R

m2

∼=
[
K K

][
K 0

] ,
we have p̃a = m̃1 ̸= m̃2. Therefore all the Serre subcategories of modR are {zero objects},
⟨R/m1⟩Serre, ⟨R/m2⟩Serre, and modR, where ⟨R/mi⟩Serre is the smallest Serre subcategory
containing R/mi.
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