CONSTRUCTIONS OF AUSLANDER-GORENSTEIN LOCAL RINGS
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ABSTRACT. Generalizing the notion of crossed product, we provide systematic con-
structions of Auslander-Gorenstein local rings starting from an arbitrary Auslander-
Gorenstein local ring.

1. INTRODUCTION

Auslander-Gorenstein rings (see Definition 2) appear in various areas of current re-
search. For instance, regular 3-dimensional algebras of type A in the sense of Artin and
Schelter, Weyl algebras over fields of characteristic zero, enveloping algebras of finite di-
mensional Lie algebras and Sklyanin algebras are Auslander-Gorenstein rings (see [2],
3], [4] and [12], respectively). However, little is known about constructions of Auslander-
Gorenstein rings. It was shown in [7] that a left and right noetherian ring is an Auslander-
Gorenstein ring if it admits an Auslander-Gorenstein resolution over another Auslander-
Gorenstein ring. In this note, generalizing the notion of crossed product (see e.g. [8], [11]
and so on), we will provide systematic constructions of Auslander-Gorenstein local rings
starting from an arbitrary Auslander-Gorenstein local ring.

In order to provide the construction, we recall the notion of Frobenius extensions of
rings due to Nakayama and Tsuzuku [9, 10], which we modify as follows. A ring A is said
to be an extension of a ring R if A contains R as a subring, and the notation A/R is used
to denote that A is an extension ring of R. A ring extension A/R is said to be Frobenius
if the following conditions are satisfied: (F1) A € Mod-R and A € Mod-R° are finitely
generated projective; and (F2) A = Hompg(A, R) in Mod-A and A = Hompge (A, R)
in Mod-A° (see [1]). If R is a noetherian ring, a Frobenius extension A/R is a typical
example of a noetherian ring A admitting Auslander-Gorenstein resolution over R, so that
if R is an Auslander-Gorenstein ring then so is A with inj dim A < inj dim R, where the
equality holds whenever A/R is split, i.e., the inclusion R — A is a split monomorphism
of R-R-bimodules (Proposition 7).

Generalizing the notion of crossed product, we will define new multiplications on the
ring of full matrices and the group ring of finite cyclic groups. Let n > 2 be an integer
and set I(n) = {1,...,n}. We fix a cyclic permutation

(12 .. n
™\ni1 .- n-1

of I(n). Then the law of composition I(n) x I(n) — I(n), (i,7) — 7 *(j) makes I(n) a
cyclic group. We denote by €2(n) the set of mappings w : I(n) x I(n) — Z satisfying the
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following conditions: (W1) w(i,i) =0 for all i € I(n); (W2) w(i,j) +w(j, k) > w(i, k) for
all 4,7,k € I(n); (W3) w(i,j) +w(j,i) > 1 unless i = j; and (W4) w(i,j) + w(j, (i) =
w(i,m(i)) for all i,5 € I(n). We fix w € Q(n) and a ring R together with a pair (o, c) of
o € Aut(R) and ¢ € R such that o(c) = ¢ and xc = co(z) for all z € R. For instance, for
any ring R and any o € Aut(R), a skew power series ring R|[[t; o]] has such a pair (o,t)
(Example 8).

Denote by €2 (n) the subset of Q2(n) consisting of w € Q(n) such that w(1,7) = w(i,n) =
0 for all i € I(n). Set x(i) = > ;_, w(k,w(k)) for i € I(n). Assume that w € Q(n) and
that oX®) = idz. Let A be a free right R-module with a basis {vi}icrny and define a
multiplication on A subject to the following axioms: (G1) vv; = vrj(i)c“’(”_J(i)’j) for
all 4,5 € I(n); and (G2) 2v; = v;o XV (z) for all z € R and i € I(n). Then A is an
associative ring with 1 = v,, and R is considered as a subring of A via the injective ring
homomorphism R — A,z — v,x; A/R is a split Frobenius extension; A is commutative

if R is commutative and oX( = idg for all i € I(n); and A is local if R is local and
¢ € rad(R) (Theorem 16).

2. PRELIMINARIES

For a ring R we denote by rad(R) the Jacobson radical of R, by R* the set of units in R,
by Z(R) the center of R, by Aut(R) the group of ring automorphisms of R, for o € Aut(R)
by R the subring of R consisting of all x € R with o(z) = z, and for n > 2 by M,,(R) the
ring of n x n full matrices over R. We denote by Mod-R the category of right R-modules.
Left R-modules are considered as right R°°-modules, where R°? denotes the opposite ring
of R. In particular, we denote by inj dim R (resp., inj dim R°P) the injective dimension
of R as a right (resp., left) R-module and by Hompg(—, —) (resp., Hompger (—, —)) the set
of homomorphisms in Mod-R (resp., Mod-R°P).

We start by recalling the notion of Auslander-Gorenstein rings.

Proposition 1 (Auslander). Let R be a left and right noetherian ring. Then for any
n > 0 the following are equivalent.
(1) In a minimal injective resolution I* of R in Mod-R, flat dim I* < i for all 0 <
1< n.
(2) In a minimal injective resolution J* of R in Mod-R°P, flat dim J* < i for all
0<i<n. .
(3) Forany 1 <i<n+1, any M € mod-R and any submodule X of Extp(M, R) €
mod-R°° we have Exth, (X, R) =0 for all 0 < j <. .
(4) Forany1 <i <n+1, any X € mod-R° and any submodule M of Ext., (X, R) €
mod-R we have Extl,(M, R) =0 for all 0 < j <.

Definition 2 ([4]). For a left and right noetherian ring R we say that R satisfies the
Auslander condition if it satisfies the equivalent conditions in Proposition 1 for all n > 0,
and that R is an Auslander-Gorenstein ring if inj dim R = inj dim R°® < oo and if it
satisfies the Auslander condition.

Next, we recall the notion of Frobenius extensions of rings due to Nakayama and
Tsuzuku [9, 10] which we modify as follows (see [1, Section 1]).
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Definition 3 ([1]). A ring A is said to be an extension of a ring R if A contains a ring
R as a subring, and the notation A/R is used to denote that A is an extension of a ring
R. A ring extension A/R is said to be Frobenius if the following conditions are satisfied:
(F1) A € Mod-R and A € Mod-R°? are finitely generated projective; and
(F2) A= Hompg(A, R) in Mod-A and A = Hompger (A, R) in Mod-A°P.

It should be noted that if A/R is a Frobenius extension then so is A°?/R°P. The next
proposition is well-known and easily verified.

Proposition 4. Let A/R be a ring extension with ¢ : A = Hompg(A, R) in Mod-A. Then
the following hold.

(1) There exists a ring homomorphism 6 : R — A such that z¢(1) = ¢(1)8(x) for
all x € R. In particular, ¢ is an isomorphism of R-A-bimodules if and only if
O(x) =z for all x € R.

(2) If A € Mod-R 1is finitely generated projective then so is Homg(A, R) € Mod-R°P
and A = Hompes (Hompg(A, R), R),a — (h +— h(a)), which is an isomorphism of
A-R-bimodules.

(3) If A € Mod-R is finitely generated projective, and if ¢ is an isomorphism of R-
A-bimodules, then A € Mod-R° is finitely generated projective and we have an
isomorphism of A-R-bimodules v : A = Hompes (A, R) with 1 (a)(b) = ¢(b)(a) for
all a,b € A, so that A/R is a Frobenius extension.

Definition 5. Let A/R be a Frobenius extension with ¢ : A = Homp(A, R) in Mod-A
and # : R — A a ring homomorphism such that z¢(1) = ¢(1)0(x) for all z € R. In
general, (R) # R ([1]). Following [9, 10], we say that A/R is a Frobenius extension of
second kind if @ induces a ring automorphism of R and that A/R is a Frobenius extension
of first kind if #(x) = z for all x € R, i.e., ¢ is an isomorphism of R-A-bimodules.

Definition 6 ([1]). A ring extension A/R is said to be split if the inclusion R — A is a
split monomorphism of R-R-bimodules.

Proposition 7 ([1]). For any Frobenius extension A/R the following hold.
(1) If R is an Auslander-Gorenstein ring then so is A with inj dim A < inj dim R.
(2) Assume that A/R is split. If A is an Auslander-Gorenstein ring then so is R with
inj dim R = inj dim A.
We end this section with recalling the notion of skew power series rings.

Example 8. Let R be aring and o € Aut(R). Let R[t; o] be a free right R-module with a
basis {t?},>0 and define a multiplication on R[t; o] subject to the following axioms: (P1)
tPt? = P74 for all p,q > 0; and (P2) xt? = tPo?(x) for all z € R and p > 0. Then R[t; o] is
an associative ring with 1 = t° and #? is the pth power of ¢t = t! for all p > 2. We consider
R as a subring of R|[t; o] via the injective ring homomorphism R — R|[t; o],z — t'z.
Next, setting (¢7) = >_ . t*R for p > 1, we have a descending chain of two-sided ideals
(t) D (#*) D --- in R[t;0] and set R[[t;o]] = Jim R[t;0]/(t?). Namely, R[[t;o]] is the
ring of formal power series and contains R[t; 0] as a subring. Also, every 7 € Aut(R)
with 70 = o7 is extended to a ring automorphism of R[[t;o]] such that > ., tPz, —
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>_pso tP7(2p) which we denote again by 7. In particular, o € Aut(R[[t; o]]) with o(t) =t
and at = to(a) for all a € R[[t; o]].
3. STRUCTURE SYSTEM

Throughout the rest of this note, we set I(n) = {1,...,n} with n > 2 and fix a cyclic

permutation
(12 - n
™\n 1. n-1

of I(n). Then 7~%(j) = 77 (s) for all 4,5 € I(n) and the law of composition

I(n) x I(n) = I(n), (i, j) = 7 (j)

makes I(n) a cyclic group.
We denote by Q(n) the set of mappings w : I(n) x I(n) — Z satisfying the following
conditions:

(W1) w(i,i) =0 for all i € I(n);
(W2) w(i,j) +w(j, k) > w(i, k) for all i, 5,k € I(n);
(W3) w(i,j) +w(j,4) > 1 unless ¢ = j; and
(W4) wi, )+ w(i. 7(0)) = w(i 7(0)) for all i, € I(n).
Example 9. Let n = 4. Then, setting
0 4 4 3
. 1 0 2 -1
(w(i,J))1<ij<a = ~1 30 -1}
2 46 0

we have w € Q(4).

Lemma 10. For any w € Q(n) the following hold.

(1) w(m(i), 7(5)) = w(i,j) — w(i, (i) + (G, 7(5)) for all i, j € I(n).
(2) w(1,4) =0 for all i € I(n) if and only if w(i,n) =0 for all i € I(n).

We denote by €, (n) the subset of Q(n) consisting of w € Q(n) such that w(1,i) =
w(i,n) =0 for all i € I(n) (cf. Lemma 10(2)).

Example 11. Let n = 4. Then, setting

(W(iaj))lgi,jg4 =

w N wo
DO
LW o = O
o O OO

we have w € Q0 (4).

Lemma 12. For any w € Q2 (n) the following hold.
(1) w(i,m(2)) =w(i, 1) = w(n,m(i) > 1 unless i = 1.
(2) w(i,j) +w(n? (i), k) = w(i, 77 (k) + w(n™(k), j) for all i, j, k € I(n).
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We denote by X (n) the set of mappings x : I(n) — Z satisfying the following condi-
tions:

(X1) x(1) < x(2) <--- < x(n);

(X2) x(7) + x(n —i+1) = x(n) for all i € I(n); and

(X3) x(j — 1) < x(j) — x() < x(j — i + 1) for all i, j € I(n) with i < .
Remark 13. For any x : I(n) — Z satisfying the condition (X2) we have x(1)+x(n) = x(n)
and hence x(1) = 0.

Example 14. Let n = 4. Then, setting x(1) =0, x(2) =3, x(3) =5 and x(4) = 8, we
have xy € X (4).

Proposition 15. For any w € Q4 (n), setting x(i) = S__, w(k, 7(k)) for i € I(n), we
have x € Xy(n) and

’ X(#) = x(7) = x(i = ) ifi>j
for alli,j € I(n), so that we have a bijection Q0 (n) = X, (n),w > X.

4. GROUP RINGS

Throughout the rest of this note, we fix aring R together with a pair (o, ¢) of 0 € Aut(R)
and ¢ € R satisfying the following condition

(x) o(c)=c and xc=co(x) for all x € R.

Note that if c € R then o(z) = ¢ 'zc for all x € R, and that the condition (*) is satisfied
if either ¢ = 0 and o is arbitrary, or ¢ € Z(R) and o = idg. We refer to Example 8 for a
non-trivial example. As usual, we require that ¢ = 1 even if ¢ = 0. We fix w € Q, (n)
and, setting x(i) = >, _, w(k, 7(k)) for i € I(n), assume that oX(") = idp.

Let A be a free right R-module with a basis {v; }ici(») and define a multiplication on A
subject to the following axioms:

(G1) vv; = vwfj(i)c“’(”ﬂ(im) for all 4, j € I(n); and

(G2) 2v; = v;o X0 () for all x € R and i € I(n).

Denoting by {3 }ici(n) the dual basis of {v; }icr(n) for the free left R-module Homp(A, R),
we have a = ZZE] vzﬁz( ) forall a € A. Tt is not difficult to see that for any a,b € A
and ¢ € I(n) we have

Bilab) = Y ¢ IaD(5 ) (a))5;(0).
j€l(n)
Theorem 16. The following hold.

(1) A is an associative ring with 1 = v, and contains R as a subring via the injective
ring homomorphism R — A,z — v,x.

(2) A/R is a split Frobenius extension of first kind.

(3) viv; = vjv; for alli,j € I(n). In particular, A is commutative if R is commutative
and oX = idg for all i € I(n). Furthermore, for anyi € I1(n) with i # n we have
v;" = ¢ for some2 <r <mnands>1.
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(4) There exists an injective ring homomorphism
pr A= Mu(R), a s (o™ (55 (a))ijern

such that a € A* for all a € A with p(a) € M,(R)*.
(5) If ¢ € rad(R) then B,(a) € R* for all a € A* and R/rad(R) = A/rad(A)
canonically, so that if R is local then so is A.

Remark 17. Every 7 € Aut(R) with 70 = o7 and 7(¢) = c is extended to a ring au-
tomorphism of A such that >, ;) vii = 3 2icp(,) viT(2:) Which we denote again by 7.
In particular, o € Aut(A) with o(c) = ¢ and ac = co(a) for all a € A, so that for any
v € Z(A)? we can replace (R;0,c) by (A;o,vc) in the construction above.

In the following, we denote by R|w; 0, ] the ring A constructed above.
Example 18. If x(i) = (i — 1)p with p > 1 for all ¢ € I(n) then
R[t; o]/ (t" — ) = Rlw; o, ], t = v,_1,
where (t" — ?) = (t" — ?)R[t; oP].
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