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ABSTRACT. We give a new formula for the decomposition of a tensor product of in-
decomposable modules of cyclic two-groups. This formula is also shown to describe the
decomposition of tensor products of an important class of modules of dihedral two-groups.

1. INTRODUCTION

In this note, we give a new, closed formula for the decomposition of a tensor product of
indecomposable modules of cyclic 2-groups, and show how this formula also describes the
decomposition of tensor products of a class of Dy-modules. The problem of decomposing
such a tensor product of modules of cyclic p-groups in characteristic p has been treated
by several authors (e.g. [4, 6, 5, 1]). However, to date, all solutions have been recursive,
and rather involved. Concentrating on the case p = 2 is a simplification which makes it
possible to give a closed decomposition formula.

Our interest in this problem originated in the study of tensor products of modules of
dihedral 2-groups. Thus, we show that the decomposition formula for modules of cyclic
2-groups also describes the decompositions of tensor products of the Dy-modules induced
from the maximal cyclic subgroup.

Throughout this text, k denotes a field of characteristic 2. The dihedral group of order
2q is written as Dy, = (0,7 | 0 = 72 = (07)? = 1). Here ¢ will always be a 2-power,
¢ > 2. The unique cyclic subgroup of index 2 in Dy, is H, = (07) < Da,.

The indecomposable modules of kC, are classified by their dimensions; that is, up to
isomorphism, for each i € {1, ..., ¢} there exists a unique indecomposable kC,-module of
dimension i. Fix a set of representatives {V;};<, such that dimV; = i. Every projective
indecomposable module is isomorphic to V,, and the tensor product of a projective with
any other module is again projective. We recall that every non-projective kC;-module is
(2-periodic of period at most 2. Indeed, for each i < g, the formula Q(V;) ~ V,_; holds.

There is a unique projection Cy, — C,. This surjection, via the usual inflation op-
eration, induces a full embedding of module categories mod kC;, — mod kCy, Vi — V;,
respecting the tensor product. Thus V; is viewed as a module for all cyclic 2-groups of
order greater than or equal to i.

2. DECOMPOSITION FORMULA FOR TENSOR PRODUCTS OF MODULES OF CYCLIC
2-GROUPS

The following result makes it possible to compute the decomposition of a tensor product
of any two kC,-modules recursively.

This paper is a summary of results that will be published elsewhere.
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Proposition 1. Leti,j < q. Then V,® V; ~ Q(V,_; ® V;) @ max{i + j — ¢,0}V.

If /2 < i < q then ¢ — i < q/2 hence, by applying Proposition 1, we can transfer the
problem of finding the decomposition of V;®V; to the smaller module category mod kCy /5.
This gives an inductive process which halts when one of the factors is projective, in which
case the product can be immediately computed. Example 2 below illustrates the proced-
ure. To avoid any ambiguity, we write {2, to indicate the Heller translate in mod kCj.

Example 2. Consider the module Vig ® Vg, a tensor product of indecomposable modules
of kC35. Applying Proposition 1, we see that

(2.1) Vis ® Vo = Q3p(Via @ V).

Viewing V14 ® Vi as a module for (14 and again applying Proposition 1, we obtain
(2.2) Via ® Vi = Qy6(Va @ V) © 4V36.

Now V5 ® Vi € mod kCyg, and

(2.3) Vo @ Ve = Qs(V2® Va).

In mod kCs, V4 is projective, so Vo ® Vo ~ 2V5,. Applying in turn Equations (2.3), (2.2)
and (2.1), we obtain the decomposition

Vis®@ Vs =~ Q32(Q16(Q2s(2V2)) @ 4Vi6)
~ 2V @ 4Vie.

The idea behind our decomposition formula is to record the successive applications of
Proposition 1 in numerical sequences, which are then used to compute the indecomposable
summands of the tensor product. Let z be any positive integer. Set v(z) = min{y € N |
2Y > 2} and 2/ = 2°®) — . A sequence (2,)ns0 is defined recursively by 2o = x and
Tny1 = 2. Let r € N be the first number such that z, is a 2-power. Then (z,)!,_, is

n
strictly decreasing, whereas z,, = 0 for all n > r.

NOW, given Zu.] € N7 set [@J]O = (Z.Oaj()) ( ) and? if [Zuj]n = (iaajb)a
. (fat1,Jb) if da = Jo,
2.4 b ) ny1 = e :
24 Sl {(za,ﬂm) if da < j-
This defines a sequence ([i,j].)"_ = (([i, 5%, [i, 5] ))>w , where w is the smallest
n=0

number such that max{[i,j]q(ul), [i,j]g)} is a 2-power. Now, set m, = 2@ for z, =

max {[i,j],(ll), [z’,j]g)}, n € 40,...,w}. Finally, for all n < w, let

(2.5) a, = max {0, (1, 7]V + [i, 7]® — mn} and
(2.6) B = (=1)"m,.
u=0
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Theorem 3. For alli,j € N,

%@V}Zéan‘/gn

n=0

It may be noted that while the numbers 7,, are, for simplicity of presentation, recursively
defined, they may all be read off from the binary expansion of the number ¢ in a non-
recursive manner.

Example 4. Consider the case i = 20 and j = 51. We have
10 = 20, 11 =32—19=12, 19 =16 —1; =4,
and
Jo = o1, J1 =64 —jo =13, J2 =16 —j1 = 3, J3=4—-7j2=1

Now we can define all sequences needed for the application of Theorem 3. First, the
sequence [i, j| consists of pairs (i4, jy), formed by applying the equation (2.4) above:

[%]]0 = (20751)7 {27‘7]1 = (207 13)7 [27]]2 = (127 13)7 [%]]3 = (1273)7 [27]]4 = (473)7
m,, is the smallest 2-power greater than or equal to the two components of [i, j],:
mo = 64, mp = 32, mo = 16, ms = 16, my = 4,

a, =i, j]g) + [, j],(f) — my, if this number is positive, otherwise «,, = 0:

Oé(]:?, 061:1, Oégzg, OégZO, ()64:3;
B, is the alternating sum of the numbers myq, ..., my,:
By = 64, £ = 32, By = 48, b3 = 32, B4 = 36.

With Theorem 3, we conclude that

Voo @ Vi1 = TVes @ Vo @ 9Vig @ V6.

3. APPLICATION: PSEUDOPROJECTIVE MODULES OF DIHEDRAL 2-GROUPS

It turns out that Theorem 3 can be used to describe tensor products of a class of
modules of dihedral 2-groups. These are the so-called pseudoprojective modules, given as
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M(A;By,1) for some [ € N (see [3] for definition of the relevant notation). The pseudo-
projective modules are band modules, given by schemas in the following way:

X k Y
AN

>-<
;< - — =<=—
< - - =

>

NS
k
We shall use M, to denote the pseudoprojective module of dimension d, in other words,
M(A,B; 1) ~ My,

The pseudoprojective modules are precisely the kDj,-modules that are induced from
the maximal cyclic subgroup H, < Dyg:

Proposition 5. For eachi € {1,...,q}, the induced module V;ngq is isomorphic to Moy;.

Applying Mackey’s tensor product theorem (see e.g. [2, Corollary 3.3.5(i)]),

w D2y w
My @ Myj ~2(V; ® Vj)Tszg 2 (@ anV/gn>[ ~ @204an5” .
n=0

n=0
Similarly, for V5;, Va; € mod kCsy,,
Co

Vai @ Vaj V;ngq ®V; ngqz 2 (EB aann>[ ~ EB 2a, Vg,
n=0 n=0

It follows that the decompositions of tensor products Va; ® Va; and My; ® My; are governed
by the same formula. This proves the following result.

Cq

Corollary 6. For any even numbers i,j € N, the decomposition formula

Mi ® Mj ~ é O./nv/gn

n=0

holds, with the numbers o, and B, defined by Equations (2.5) and (2.6) respectively.
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