DERIVED EQUIVALENCE CLASSIFICATION OF GENERALIZED
MULTIFOLD EXTENSIONS OF PIECEWISE HEREDITARY
ALGEBRAS OF TREE TYPE

HIDETO ASASHIBA AND MAYUMI KIMURA

ABSTRACT. We give a derived equivalence classification of algebras of the form A /{®)
for some piecewise hereditary algebra A of tree type and some automorphism ¢ of A
such that ¢(A%) = Al for some positive integer n.

INTRODUCTION

Throughout this note we fix an algebraically closed field k, and assume that all alge-
bras are basic and finite-dimensional k-algebras and that all categories are k-categories.
Let A be an algebra and n a positive integer. Then an algebra of the form 77} (A) :=

fl/ <7,ZI/Z> for some automorphism 1 of A is called a twisted n-fold extension of A.
Further an algebra of the form A/ (¢) for some automorphism ¢ of A with jump n
is called a generalized n-fold extension of A, where ¢ is called an automorphism with
jump n if ¢(A) = A" Since obviously 1[11/2 is an automorphism with jump n, we see
that twisted n-fold extensions are generalized n-fold extensions. An algebra is called
a generalized (resp. twisted) multifold extension if it is a generalized (resp. twisted)
n-fold extension for some positive integer n. In [3], we gave the derived equivalence
classification of twisted multifold extensions of piecewise hereditary algebras of tree
type by giving a complete invariant. In this note we extend this result to generalized
multifold extensions of piecewise hereditary algebras of tree type.

1. PRELIMINARIES

For a category R we denote by Ry and R; the class of objects and morphisms of R,
respectively. A category R is said to be locally bounded if it satisfies the following:

e Distinct objects of R are not isomorphic;

e R(xz,x) is alocal algebra for all x € Ry;

e R(x,y) is finite-dimensional for all z,y € Ry; and

e The set {y € Ry | R(z,y) # 0 or R(y,x) # 0} is finite for all x € Ry.

A category is called finite if it has only a finite number of objects.

A pair (A, E) of an algebra A and a complete set F := {ey,...,e,} of orthogonal
primitive idempotents of A can be identified with a locally bounded and finite category
R by the following correspondences. Such a pair (A, E) defines a category Ra,g) := R
as follows: Ry := E, R(z,y) := yAxz for all z,y € E, and the composition of R is

The detailed version of this paper will be submitted for publication elsewhere.
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defined by the multiplication of A. Then the category R is locally bounded and finite.
Conversely, a locally bounded and finite category R defines such a pair (Ag, ERr) as
follows: Ag = €D, cp, B(x,y) with the usual matrix multiplication (regard each
element of A as a matrix indexed by Ry), and Er := {(1:64j),(z,0))ijer, | T € Ro}-
We always regard an algebra A as a locally bounded and finite category by fixing a
complete set Ay of orthogonal primitive idempotents of A.

Definition 1.1. Let A be an algebra.

(1) The repetition A of Ais a k-category defined as follows (121 turns out to be locally
bounded):

o Agi= Ay x Z ={all .= (x,i) |z € Ay,i € Z}.
A UT|feAy)  iti=i A
o Azl ylil)y .= ¢ (ol | ¢ € DA(y, )} ifj=1i+1, forallzll il € A,
0 otherwise,
e For each 27yl 2] € A, the composition A(yl], 2y x A(zll], yll) — A(zl 21M)
is given as follows.
(i) If i = j, 7 = k, then this is the composition of A A(y, z) x A(z,y) — A(z, 2).
(ii) If i = 5,7 + 1 = k, then this is given by the right A-module structure of
DA: DA(z,y) x A(z,y) — DA(z,x).
(iii) If i+ 1 = j, 7 = k, then this is given by the left A-module structure of DA:
Ay, z) x DA(y,z) — DA(z,x).
(iv) Otherwise, the composition is zero .

(2) We define an automorphism v, of A, called the Nakayama automorphism of A,
by v () = 2y (i) = fOHU p (o) = gl foralli € Z, 0 € Ay, f € Ay, 6 €
U:L',yGAO DA(y7 x) .

(3) For each n € Z, we denote by A" the full subcategory of A formed by zI™ with
z€A and by 1M : A = A <5 A 2 2 the embedding functor.

We cite the following from [3, Lemma 2.3].
Lemma 1.2. Let v»: A — B be an isomorphism of algebras. Denote by ¥: Ay, x) —
B(Yy,x) the isomorphism defined by 1) for all x,y € A. Define: A — B as follows.
e For each zll € A zﬂ(x["]) ()l
oForeachfz]EA( )?/)(f[l) (YA, and
o For cach ¢l € A(all, y[’“) D(01) == (DY) (@) = (¢ o (v2) 1)1,
Then
(1) ¥ is an isomorphism.
(2) Given an isomorphism p: A — B, the following are equivalent.

() p=1;
(b) p satisfies the following.
(1) pVaA = VBp;

(i) p(A") = Al
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(iii) The diagram

ALB

1/0] l 11[0]

A0 plo]
P

18 commutative; and
(iv) p(ol%) = (¢ o (¥¥)™H)O for all 2,y € A and all $ € DA(y,x).

An algebra is called a tree algebra if its ordinary quiver is an oriented tree. Let
R be a locally bounded category with the Jacobson radical J and with the ordinary
quiver (). Then by definition of ) there is a bijection f: @y — Ry,x — f, and
injections ay ,: Q1(x,y) = J(fu, fy)/T*(fz, f,) such that a, . (Q1(z,y)) forms a basis of
J(fuy )] T*(f, ), where Q1 (z, y) is the set of arrows from z to y in @ for all z,y € Q.
For each a € Q1(z,y) choose a, () € J(fs, f,) such that a(a) + J*(fe, f,) = ay.().
Then the pair (f,a) of the bijection f and the family a of injections a, ,: Q1(z,y) —
J(fz, fy) (x,y € Qo) uniquely extends to a full functor ®: k@) — R, which is called a
display functor for R.

A path g from y to x in a quiver with relations (Q, I) is called mazimal if u & I but
ap, pf € I for all arrows a, B € Q1. For a k-vector space V' with a basis {vy,...,v,}
we denote by {v}, ..., v} the basis of DV dual to the basis {vy,...,v,}. In particular
if dimy V' =1, v* € DV is defined for all v € V\{0}.

Lemma 1.3. Let A be a tree algebra and @ : kQ) — A a display functor with I := Ker ®.
Then
(1) ® uniquely induces the display functor $ k@ — A for A, where

(i) Q = (Qo,Ql,s t) is defined as follows:
e Qo :=QyxZ={zll:= (2,i) | x € Qo,i € Z},
° Q1 X Z = {all .= (a,i) | a € Q1,7 € Z},
Q1= (Qy x Z) U {p? | u is a mazimal path in (Q,1),i € 7},
o 5(ally .= s(a)ll, t(all) := t(a) for all o) € Q) xZ, and if ju is a mazimal
path from y to x in (Q,I) then, 3(p*?) == 2l #(p*l) = yli+1],
(i) @ is defined by O(z?) := (D), @(a[’]) = (Pa), and Ol = (d(p)*)H
foralli € Z, x € Qo, a € Q1 and mazximal paths p in (Q,I).
(2) We define an automorphism vg of Q by vo(z?) = zli+l yo(all) = alitl]
vo (') .= i+l for alli € Z,x € Qo, a € Q1, and mazimal paths p in (Q, I)
(3) Ker o is equal to the ideal I defined by the full commutativity relations on Q and the
zero relations pu = 0 for those paths 1 of Q for which there is no path t( )~ vg(S(p)).
(Therefore note that if a path o, --- oy is in I, then alll .. [1] is in I for alli € Z.)

Let R be a locally bounded category. A morphism f: z — y in Ry is called a
maximal nonzero morphism if f # 0 and fg = 0,hf = 0 for all g € rad R(z,z),h €
rad R(y, z), z € Ry.
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Lemma 1.4. Let A be an algebra and 2l yll e Ao. Then there exists a mazimal
nonzero morphism in A(z, yUl) if and only if yv! = v, (211).

Proof. This follows from the fact that A(-, 2ty = DAzl -) for alli € Z,x € Ay. O

Lemma 1.5. Let A be an algebra. Then the actions of gva and va¢ coincide on the
objects of A for all ¢ € Aut(A).

Proof. Let zl € Ay. Then there is a maximal nonzero morphism in A(zl, v, (z11)) by
Lemma 1.4. Since ¢ is an automorphism of A, there is a maximal nonzero morphism

in A(¢(z), p(va(x))). Hence ¢p(va(x?)) = va(¢(x1)) by the same lemma. O
The following is immediate by the lemma above.

Proposition 1.6. Let A be an algebra, n an integer, and ¢ an automorphism of A.
Then the following are equivalent:

(1) ¢ is an automorphism with jump n;
(2) ¢(AY) = AT for some integer i; and
(3) ¢p(AI) = AUl for all integers j.

In the sequel, we always assume that n is a positive integer when we consider a
morphism with jump n. Let @ be a quiver. We denote by Q the underlying graph
of @, and call Q) finite if both @)y and (), are finite sets. Each automorphism of @) is
regarded as an automorphism of () preserving the orientation of @, thus Aut(Q) can be
regarded as a subgroup of Aut(Q). Suppose now that Q is a finite oriented tree. Then

it is also known that Aut(Q) < Auto(Q) := {f € Aut(Q) | 3 € Qo, f(x) = z}. We
say that @) is an admissibly oriented tree if Aut(Q)) = Auty(Q). We quote the following
from [3, Lemma 4.1]:

Lemma 1.7. For any finite tree T' there exists an admissibly oriented tree Q with a
unique source such that QQ =T.

We recall the following (cf. [3, Section 4.1]):

Definition 1.8. Let R be a locally bounded category. The formal additive hull add R
of R is a category defined as follows.

o (add R)y :={P;_ ;= (v1,...,2,) |n €N, 21,...,2, € Ro};

7

e For each z = P, v;,y = @)~ vi € (add R)o,
(add R)(z,y) = {(1ji)ji | pji € R(wi,y;) foralli=1,...,m,j=1,...,n};and
e The composition is given by the matrix multiplication.

It is well known that the Yoneda functorYg: add R — prj R, @, z; — @, R(-, z;
is an equivalence. Let I': R — S be a functor of locally bounded categories. Then F
naturally induces functors add F: add R — add S and F := K(add F): KP(add R) —
KP(add S), which are isomorphisms if F' is an isomorphism.
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2. REDUCTION TO HEREDITARY TREE ALGEBRAS

Proposition 2.1. Let A be a piecewise hereditary algebra of tree type Q for an admis-
sibly oriented tree Q), and n a positive integer. Then we have the following:
(1) For any ¢ € Aut(/i) with jump n, there exists some 1 € Aut(]lg@) with jump n
such that A/(¢) is derived equivalent to kQ/( v); cmd
(2) If we set ¢ == vidy € Aut(A), where ¢y = (1 ) v "¢ 40 1%, then there
exists some Y € Aut(]kQ) with jump n such that A/ (¢') is derwed equwalent
to kQ/( "), and that the actions of 1 and )" coincide on the objects of kQ

Proof. (1) We set ¢; := (1")~1s"¢| ;1 € Aut(A) for all i € Z. By [3, Lemma 5.4],
there exists a tilting triple (A, E , k@) with an isomorphism (: £ — k() such that L is
(n)-stable up to isomorphisms for all ne Aut(A) In particular, F is (¢;)-stable up to

isomorphisms for all ¢ € Z. Then (A E kQ) is a tilting triple with an isomorphism C
by [1, Theorem 1.5] and the following holds.

Claim 1. E is (¢)-stable up to isomorphisms.
Indeed for each T' € Ey and @ € Z, we have
]

- 71"%(1) (2.1)
~li+n] ~
= 1 “¢i7).
Since F is <qz~52> stable up to isomorphisms, there is some 7" € E such that 7" 2 ¢;(T),
and hence 1" qbz( ) = i ](T’) € E, as desired.

By [3, Remark 3.5], we have a (¢)-stable tilting subcategory E’ and an isomorphism
0: E' — E. Therefore by [2, Proposition 5.4] A/(¢) and E'/(¢) are derived equivalent.
If we set ¢ = (CO)o(¢O)~ ! then (2.1) shows that ¢ is an automorphism with jump n,

and that £//(¢) = kQ /{1 ) Hence A/(¢) and kQ /(1) are derived equivalent.
(2) Note that ¢’ is also an automorphism with jump n. By the same argument

we see that E is also (¢)-stable up to isomorphisms; there exists a (¢')-stable tilting
subcategory E” and an isomorphism 6': E” = E; and A/(¢/) and E"/(¢/) are de-
rived equivalent. Set ¢’ := (CAQ’ )gzg’ (59’ )~!, then ¢’ is an automorphism with jump n,
E" (¢ = @/(1&’% and A/(¢) and @/<w’> are derived equivalent. Now for ¢ = 0
(2.1) shows that QNSTI[O] (T) = ﬁ[n]gzNSO(T) for all T € Ey. Since ¢ = ¢, the same cal-
culation shows that ¢’ i (T) = " ¢o(T) for all T € E,. Thus the actions of ¢ and
¢ coincide on the objects of E which shows that the actions of ¢ and v/ coincide

on the objects of kQI”. Hence by Lemma 1.5 their actions coincide on the objects of
k@. O

3. HEREDITARY TREE ALGEBRAS

Remark 3.1. Let ) be an oriented tree.
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(1) We may 1dent1fy ]kQ = JkQ / I as stated in Lemma 1. 3, and we denote by [ the
morphism p + [ in kQ for each morphism g in ]kQ

(2) Let z,y € Qo. Since I contains full commutativity relations, we have dimy H@(az, Y)
< 1, and in particular Q has no double arrows.

(3) Let a: © — y be in Q1 and ¢ € Aut(]l@). Then there exists a unique arrow ¢x —
¢y in Q, which we denote by (7¢)(a), and we have ¢(@) = ¢a(70)() € ﬂg@(qzﬁm oY)
for a unique ¢, € k* :=k\ {0} This defines an automorphism ¢ of Q, and thus a
group homomorphism 7 : Aut(kQ) — Aut(Q).

(4) Similarly, let a: 2 — y be in @; and ¢ € Aut(k@). Then there exists a unique

arrow Yx — 1y in @, which we denote by (71)(«). This defines an automorphism )
of @, and thus a group homomorphism 7 : Aut(k@) — Aut(Q).

We cite the following from [3, Proposition 7.4].

Proposition 3.2. Let R be a locally bounded category, and g,h automorphisms of R
acting freely on R. If there exists a map p: Ry — k* such that p(y)g(f) = h(f)p(zx)
for all morphisms f: x — y in R, then R/(g) = R/(h). O

Definition 3.3. (1) For a quiver Q = (Q, @1, 5,t) we set Q[Q; ] to be the quiver

Q[Ql_l] = (QO?Ql U {a_l | RS Ql}a 8/7t/)7
where §'|g, == s, t'|g, :=t, §'(a™!) :=t(a) and (o) := s(a) for all @ € Q1. A walk
in @ is a path in Q[Q;].

(2) Suppose that @ is a finite oriented tree. Then for each z,y € @y there exists a
unique shortest walk from z to y in @, which we denote by w(x,y). If w(z,y) =
asr---aft for some ag,---,a, € @ and e1,...,6, € {1,—1}, then we define a
Suquiver W(l’,y) of Q by W(l‘,y) = (W(%y)mw(%y)l, Slvtl)7 where W(x7y)0 =
{s(;),t(e;) | i =1,...,n}, W(x,y)1 :=={a,...,a,}, and §',t" are restrictions of s,
to W(x,y)1, respectively. Since ) is an oriented tree, w(x,y) is uniquely recovered
by W(xz,y). Therefore we can identify w(x,y) with W(z,y), and define a sink and a
source of w(x,y) as those in W (z,y).

Proposition 3.4. Let Q) be a finite oriented tree and ¢, automorphz’sms ofﬂ@ acting
freely on kQ ]f the actions of ¢ and v coincide on the objects oka, then there exists a

map p: (Qo =) kQO — k* such that p(y)(f) = o(f)p ( ) for all morphisms f:x —y
in kQ. Hence in particular, kQ/( ) is isomorphic to kQ/( ).

Proof. Assume that the actions of ¢,v¢ € Aut(k@) coincides on the objects of @
Then ¢ and v induce the same quiver automorphism ¢ = 7¢ = 7 of ), and there

~

exist (Pa)ued,r (Va)aco, € (k)@ such that for each o € Q; we have

$(@) = daqla), V(@) =1haq(a).

For each path A = a,,--- a1 in Q with aq,...,q, € Ql we set Oy 1= @q,, - Do, Then
we have



where ¢(A) := q(az) - - - g(on) because ¢(ar,) - - d(@1) = da,, ** Parq(n) -~ - q(ar).

To show the statement we may assume that ¢, =1 for all & € Q. Since for each
T,y € Qo the morphism space kQ(x y) is at most 1-dimensional and has a basis of the
form 7@ for some path p, it is enough to show that there exists a map p : QO — k~*
satisfying the following condition:

p(Wy = ggp(ul)  for all B : ull — vl in Q. (3.1)

We define a map p as follows:
Fix a maximal path p: y ~» x in Q). Then x is a sink and y is a source in ). We

can write 1 as = ag--- o for some ay,...,q; € Q. First we set p(z¥)) := 1. By

induction on 0 < i € Z we define p(z[!) and p(z[=) by the following formulas:
p(al™) = ¢ i@, emp(a), (3.2)
p('r[z 1) - gb—*[z 1]¢u[z ( [7’]) (33)

Now for each i € Z and u € Q if w(u,z) = g5 --- B7* for some fy,..., By, € Q1 and
€1, -,Em € {1,—1}, then we set
o p(al). (3.4)

( ) %m ) alil

We have to verify the condition (3.1).

Case 1. 3 = all: ull — ol for some i € Z, and a: w — v in Q. Since Q is an
oriented tree, we have either w(u,r) = w(v,z)a or w(v,z) = w(u,z)a™t. In either
case we have p(vl) = ¢_p(ull) by the formula (3.4).

Case 2. Otherwise, we have 8 = X! : ¢l — [+ for some maximal path A\: v ~» u
in @ and i € Z. In this case the condition (3.1) has the following form:

p(01) = gyep(ul?). (3.5)

Two paths are said to be parallel if they have the same source and the same target.
We prepare the following for the proof.

Claim 2. If ¢ and n are parallel paths in Q, then we have b = Op.
Indeed, since ¢ —n € I, we have ¢({) = (b( ), which shows
¢¢@ wa(n)-
(1), and ¥({) # 0 because ¢ # 0. Hence ¢¢ = ¢,

d

Here we have q(C) = ¢(C) = (1) = ¢
as required.

We now set d(a, b) to be the number of sinks in w(a, b) for all a,b € Qy. By induction
on d(y,v) we can show that the condition (3.5) holds. O

4. MAIN RESULT

Theorem 4.1. Let A be a piecewise hereditary algebra of tree type and ¢ an automor-
phism of A with jump n. Then A/(¢) and Ty, (A) are derived equivalent, where we set

g0 = (1) "1y g] 40 1°)
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Proof. Let T be the tree type of A. Then by Lemma 1.7 there exists an admissibly
oriented tree Q with Q = T. We set ¢ := %y (= dovt). Then T, o (A) = AJ(¢). B

Proposition 2.1(2) there exist some 1), 1/)’ € Aut(ﬂg@) both with ] Jump n such that A/(¢ )
(resp. A/(¢')) is derived equivalent to kQ /(1) (resp. kQ /{¢"}), and the actions of ¢ and
W' coincide on the objects of kQ. Then by Proposition 3.4 we have kQ/( ) = ﬂ@/{zw
Hence A/(¢) and T7 (A) are derived equivalent. O

Definition 4.2. Let A be a generalized n-fold extension of a piecewise hereditary
algebra A of tree type T, say A = A/(¢) for some ¢ € Aut(A) with jump n. Further
let Q be an admissibly oriented tree with () = T. Then by Proposition 2.1 there
exists ¢ € Aut(ﬂg@) with jump n such that A/(¢) is derived equivalent to ﬂg@/ ().
We define the (derived equivalence) type type(A) of A to be the triple (7, n,7 (1)),
where 1 := (1)~ "5V gy 1 and 7(¢)) is the conjugacy class of 7(t) in Aut(T).
type(A) is uniquely determined by A.

By Theorem 4.1, we can extend the main theorem in [3] as follows.

Theorem 4.3. Let A, A’ be generalized multifold extensions of piecewise hereditary
algebras of tree type. Then the following are equivalent:

(i) A and A" are derived equivalent.
(ii) A and A" are stably equivalent.

(iil) type(A) = type(4').
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