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TILTING MODULES ARISING FROM TWO-TERM TILTING
COMPLEXES

HIROKI ABE

Abstract. We see that every two-term tilting complex over an Artin algebra has a
tilting module over a certain factor algebra as a homology group. Also, we determine
the endomorphism algebra of such a homology group, which is given as a certain factor
algebra of the endomorphism algebra of the two-term tilting complex. Thus, every
derived equivalence between Artin algebras given by a two-term tilting complex induces
a derived equivalence between the corresponding factor algebras.

Let A be an Artin algebra. We denote by mod-A the category of finitely generated right
A-modules and by PA the full subcategory of mod-A consisting of projective modules.

Definition 1. A pair (T ,F) of full subcategories T , F in mod-A is said to be a torsion
theory for mod-A if the following conditions are satisfied:

(1) T ∩ F = {0};
(2) T is closed under factor modules;
(3) F is closed under submodules; and
(4) for any X ∈ mod-A, there exists an exact sequence 0 → X ′ → X → X ′′ → 0 with

X ′ ∈ T and X ′′ ∈ F .

If T is stable under the Nakayama functor ν, then (T ,F) is said to be a stable torsion
theory for mod-A.

Let T • ∈ Kb(PA) be a two-term complex:

T • : · · · → 0 → T−1 α→ T 0 → 0 → · · · ,
and set the following subcategories in mod-A:

T (T •) = Ker HomK(A)(T
•[−1],−) ∩mod-A,

F(T •) = Ker HomK(A)(T
•,−) ∩mod-A.

Proposition 2 ([1, Propositions 5.5 and 5.7]). The following are equivalent.

(1) T • is a tilting complex.
(2) (T (T •),F(T •)) is a stable torsion theory for mod-A.

Furthermore, if these equivalent conditions hold, then the following hold.

(1) T (T •) = gen(H0(T •)), the generated class by H0(T •), and H0(T •) is Ext-projective
in T (T •).

(2) F(T •) = cog(H−1(νT •)), the cogenerated class by H−1(νT •) and H−1(νT •) is Ext-
injective in F(T •).

The detailed version of this note has been submitted for publication elsewhere.
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Conversely, let (T ,F) be a stable torsion theory for mod-A.

Proposition 3 ([1, Theorem 5.8]). Assume that there exist X ∈ T and Y ∈ F satisfying
the following conditions:

(1) T = gen(X) and X is Ext-projective in T ; and
(2) F = cog(Y ) and Y is Ext-injective in F .

Let P •
X be a minimal projective presentation of X and I•Y be a minimal injective presenta-

tion of Y , and set T •
X,Y = P •

X ⊕ ν−1I•Y [1]. Then T •
X,Y ∈ Kb(PA) is a tilting complex such

that T = T (T •
X,Y ) and F = F(T •

X,Y ).

Let T • be a two-term tilting complex. We set a = annA(H
0(T •)), the annihilator

of H0(T •). Note that H0(T •) is faithful in mod-A/a and the canonical full embedding
mod-A/a ↪→ mod-A induces gen(H0(T •)A/a) = gen(H0(T •)A) which is closed under ex-
tensions. Thus, the next lemma follows from Proposition 2.

Lemma 4. The following hold.

(1) proj dim H0(T •)A/a ≤ 1.

(2) Ext1A/a(H
0(T •),H0(T •)) = 0.

(3) There exists an exact sequence 0 → A/a → X0 → X1 → 0 in mod-A/a such
that X0 ∈ add(H0(T •)A/a) and X1 ∈ gen(H0(T •)A/a) which is Ext-projective in
gen(H0(T •)A/a).

We set a′ = annA(H
−1(νT •)), the annihilator of H−1(νT •). The next lemma follows by

the dual arguments of Lemma 4

Lemma 5. The following hold.

(1) inj dim H−1(νT •)A/a′ ≤ 1.

(2) Ext1A/a′(H
−1(νT •),H−1(νT •)) = 0.

(3) There exists an exact sequence 0 → Y 1 → Y 0 → A/a′ → 0 in mod-A/a′ such
that Y 0 ∈ add(H−1(νT •)A/a′) and Y 1 ∈ cog(H−1(νT •)A/a′) which is Ext-injective
in cog(H−1(νT •)A/a′).

Let X be the direct sum of all indecomposable non-projective Ext-projective modules
in gen(H0(T •)) which are not contained in add(H0(T •)). Then add(H0(T •)⊕X) coincides
with the class of all Ext-projective modules in gen(H0(T •)). Also, since gen(H0(T •)) =
gen(H0(T •) ⊕ X), the pair (gen(H0(T •) ⊕ X), cog(H−1(νT •)) is a stable torsion theory
in mod-A. Let P • be the minimal projective presentation of H0(T •) ⊕ X and I• be the
minimal injective presentation of H−1(νT •), and set U• = P • ⊕ ν−1I•[1]. Then U• is
a tilting complex such that T (U•) = gen(H0(T •) ⊕ X) and F(U•) = cog(H−1(νT •)) by
Proposition 3. Note that the stable torsion theory induced by U• coincides with that
of T •. From this fact, we can prove that add(H0(U•)) = add(H0(T •)). Since there
exist the inclusions add(H0(T •)) ⊂ add(H0(T •) ⊕ X) ⊂ add(H0(U•)), we conclude that
add(H0(T •)) = add(H0(T •)⊕X). Thus, we have the next lemma.

Lemma 6. For any M,N ∈ mod-A, the following hold.

(1) M ∈ add(H0(T •)) if and only if M is Ext-projective in gen(H0(T •)).
(2) N ∈ add(H−1(νT •)) if and only if N is Ext-injective in cog(H−1(νT •)).
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The next theorem is a direct consequence of the previous three lemmas.

Theorem 7. The following hold.

(1) H0(T •) is a tilting module in mod-A/a.
(2) H−1(νT •) is a cotilting module in mod-A/a′, i.e., D(H−1(νT •)) is a tilting module

in mod-(A/a′)op.

We determine the endomorphism algebras of H0(T •). Set B = EndK(A)(T
•). Since

there exists a surjective algebra homomorphism

θ : B → EndA/a(H
0(T •)),

which is induced by the functor H0(−), we have an algebra isomorphism

EndA/a(H
0(T •)) ∼= B/Ker θ.

Also, we can prove that Ker θ = annB(HomK(A)(A, T
•)) = annB(H

0(T •)). Thus, we have
the next theorem.

Theorem 8. We have the following algebra isomorphisms.

(1) EndA/a(H
0(T •)) ∼= B/b, where b = annB(H

0(T •)).
(2) EndA/a′(H

−1(νT •)) ∼= B/b′, where b′ = annB(H
−1(νT •)).

As the final of this note, we demonstrate our results through an example.

Example 9. Let A be the path algebra defined by the quiver

2
γ

��=
==

==
==

1

α
@@�������

β ��=
==

==
==

4

3
δ

@@�������

with relations αγ = βδ = 0. We denote by ei the empty path corresponding to the vertex
i = 1, · · · , 4. The Auslander–Reiten quiver of A is given by the following:
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where each indecomposable module is represented by its composition factors. It is not
difficult to see that the following pair gives a stable torsion theory for mod-A:

T = { 1
2 3 ,

1
2 ,

1
3 , 1 } and F = { 4 , 2

4 ,
3
4 ,

2 3
4 , 3 , 2 },

where T is a torsion class and F is a torsion-free class. We set

X = 1
2 3 , Y = 2 3

4 ⊕ 3 ⊕ 2 .

–3–



Then T = gen(X) andX is Ext-projective in T , and F = cog(Y ) and Y is Ext-injective in
F . According to Proposition 3, we have a two-term tilting complex T • = T •

1 ⊕T •
2 ⊕T •

3 ⊕T •
4 ,

where

T •
1 = 0 → 1

2 3 , T •
2 = 2

4 → 1
2 3 , T •

3 = 3
4 → 1

2 3 , T •
4 = 4 → 0.

Thus, we have

H0(T •) = 1
2 3 ⊕ 1

3 ⊕ 1
2

as a right A-module. Since a = annA(H
0(T •)) is a two-sided ideal generated by e4, γ, δ,

the factor algebra A/a is defined by the quiver

2

1

α
@@�������

β ��=
==

==
==

3

without relations. Next, it is not difficult to see that B = EndK(A)(T
•) is defined by the

quiver

2
λ

����
��
��
�

ν

��=
==

==
==

1 4

3

µ

^^======= ξ

@@�������

without relations. Then we have

HomK(A)(A, T
•) =

4⊕
i=1

HomK(A)(eiA, T
•)

= 1
2 3 ⊕ 1

3 ⊕ 1
2 ⊕ 0

as a left B-module. Thus, b = annB(HomK(A)(A, T
•)) is a two-sided ideal generated by

ν, ξ and the empty path corresponding to the vertex 4. Therefore, the factor algebra B/b
is defined by the quiver

2
λ

����
��
��
�

1

3

µ

^^=======

without relations. It follows by Theorems 7 and 8 that A/a and B/b are derived equivalent
to each other.
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DIMENSIONS OF DERIVED CATEGORIES

TAKUMA AIHARA AND RYO TAKAHASHI

Abstract. Several years ago, Bondal, Rouquier and Van den Bergh introduced the
notion of the dimension of a triangulated category, and Rouquier proved that the bounded
derived category of coherent sheaves on a separated scheme of finite type over a perfect
field has finite dimension. In this paper, we study the dimension of the bounded derived
category of finitely generated modules over a commutative Noetherian ring. The main
result of this paper asserts that it is finite over a complete local ring containing a field
with perfect residue field.

1. Introduction

The notion of the dimension of a triangulated category has been introduced by Bondal,
Rouquier and Van den Bergh [4, 14]. Roughly speaking, it measures how quickly the
category can be built from a single object. The dimensions of the bounded derived
category of finitely generated modules over a Noetherian ring and that of coherent sheaves
on a Noetherian scheme are called the derived dimensions of the ring and the scheme,
while the dimension of the singularity category (in the sense of Orlov [12]; the same as the
stable derived category in the sense of Buchweitz [5]) is called the stable dimension. These
dimensions have been in the spotlight in the studies of the dimensions of triangulated
categories.

The importance of the notion of derived dimension was first recognized by Bondal
and Van den Bergh [4] in relation to representability of functors. They proved that
smooth proper commutative/non-commutative varieties have finite derived dimension,
which yields that every contravariant cohomological functor of finite type to vector spaces
is representable.

As to upper bounds, the derived dimension of a ring is at most its Loewy length [14]. In
particular, Artinian rings have finite derived dimension. Christensen, Krause and Kussin
[6, 9] showed that the derived dimension is bounded above by the global dimension, whence
rings of finite global dimension are of finite derived dimension. In relation to a conjecture
of Orlov [13], a series of studies by Ballard, Favero and Katzarkov [1, 2, 3] gave in several
cases upper bounds for derived and stable dimensions of schemes. For instance, they
obtained an upper bound of the stable dimension of an isolated hypersurface singularity
by using the Loewy length of the Tjurina algebra. On the other hand, there are a lot of
triangulated categories having infinite dimension. The dimension of the derived category
of perfect complexes over a ring (respectively, a quasi-projective scheme) is infinite unless

2010 Mathematics Subject Classification. Primary 13D09; Secondary 14F05, 16E35, 18E30.
Key words and phrases. dimension of a triangulated category, derived category, singularity category,

stable category of Cohen-Macaulay modules.
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the ring has finite global dimension (respectively, the scheme is regular) [14]. It has turned
out by work of Oppermann and Šťov́ıček [11] that over a Noetherian algebra (respectively,
a projective scheme) all proper thick subcategories of the bounded derived category of
finitely generated modules (respectively, coherent sheaves) containing perfect complexes
have infinite dimension. However, these do not apply for the finiteness of the derived
dimension of a non-regular Noetherian ring of positive Krull dimension.

As a main result of the paper [14], Rouquier gave the following theorem.

Theorem 1 (Rouquier). Let X be a separated scheme of finite type over a perfect field.
Then the bounded derived category of coherent sheaves on X has finite dimension.

Applying this theorem to an affine scheme, one obtains:

Corollary 2. Let R be a commutative ring which is essentially of finite type over a perfect
field k. Then the bounded derived category Db(modR) of finitely generated R-modules has
finite dimension, and so does the singularity category DSg(R) of R.

The main purpose of this paper is to study the dimension and generators of the bounded
derived category of finitely generated modules over a commutative Noetherian ring. We
will give lower bounds of the dimensions over general rings under some mild assumptions,
and over some special rings we will also give upper bounds and explicit generators. The
main result of this paper is the following theorem. (See Definition 5 for the notation.)

Main Theorem. Let R be either a complete local ring containing a field with perfect
residue field or a ring that is essentially of finite type over a perfect field. Then there exist
a finite number of prime ideals p1, . . . , pn of R and an integer m ≥ 1 such that

Db(modR) = 〈R/p1 ⊕ · · · ⊕R/pn〉m.
In particular, Db(modR) and DSg(R) have finite dimension.

In Rouquier’s result stated above, the essential role is played, in the affine case, by the
Noetherian property of the enveloping algebra R⊗k R. The result does not apply to a
complete local ring, since it is in general far from being (essentially) of finite type and
therefore the enveloping algebra is non-Noetherian. Our methods not only show finiteness
of dimensions over a complete local ring but also give a ring-theoretic proof of Corollary
2.

2. Preliminaries

This section is devoted to stating our convention, giving some basic notation and re-
calling the definition of the dimension of a triangulated category.

We assume the following throughout this paper.

Convention 3. (1) All subcategories are full and closed under isomorphisms.
(2) All rings are associative and with identities.
(3) A Noetherian ring, an Artinian ring and a module mean a right Noetherian ring,

a right Artinian ring and a right module, respectively.
(4) All complexes are cochain complexes.

We use the following notation.
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Notation 4. (1) Let A be an abelian category.
(a) For a subcategory X of A, the smallest subcategory of A containing X which

is closed under finite direct sums and direct summands is denoted by addAX .
(b) We denote by C(A) the category of complexes of objects of A. The derived

category of A is denoted by D(A). The left bounded, the right bounded
and the bounded derived categories of A are denoted by D+(A),D−(A) and
Db(A), respectively. We set D∅(A) = D(A), and often write D?(A) with
? ∈ {∅,+,−, b} to mean D∅(A), D+(A), D−(A) and Db(A).

(2) Let R be a ring. We denote by ModR and modR the category of R-modules and
the category of finitely generated R-modules, respectively. For a subcategory X
of modR (when R is Noetherian), we put addRX = addmodRX .

The concept of the dimension of a triangulated category has been introduced by Rouquier
[14]. Now we recall its definition.

Definition 5. Let T be a triangulated category.

(1) A triangulated subcategory of T is called thick if it is closed under direct sum-
mands.

(2) Let X ,Y be two subcategories of T . We denote by X ∗ Y the subcategory of T
consisting of all objects M that admit exact triangles

X →M → Y → ΣX

with X ∈ X and Y ∈ Y . We denote by 〈X 〉 the smallest subcategory of T
containing X which is closed under finite direct sums, direct summands and shifts.
For a non-negative integer n, we define the subcategory 〈X 〉n of T by

〈X 〉n =


{0} (n = 0),

〈X 〉 (n = 1),

〈〈X 〉 ∗ 〈X 〉n−1〉 (2 ≤ n <∞).

Put 〈X 〉∞ =
∪

n≥0〈X 〉n. When the ground category T should be specified, we

write 〈X 〉Tn instead of 〈X 〉n. For a ring R and a subcategory X of D(ModR), we

put 〈X 〉Rn = 〈X 〉D(ModR)
n .

(3) The dimension of T , denoted by dim T , is the infimum of the integers d such that
there exists an object M ∈ T with 〈M〉d+1 = T .

3. Upper bounds

The aim of this section is to find explicit generators and upper bounds of dimensions
for derived categories in several cases.

We observe that the dimensions of the bounded derived categories of finitely generated
modules over quotient singularities are at most their (Krull) dimensions, particularly that
they are finite.

Proposition 6. Let S be either the polynomial ring k[x1, . . . , xn] or the formal power
series ring k[[x1, . . . , xn]] over a field k. Let G be a finite subgroup of the general linear
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group GLn(k), and assume that the characteristic of k does not divide the order of G. Let
R = SG be the invariant subring. Then Db(modR) = 〈S〉n+1 holds, and hence one has

dimDb(modR) ≤ n = dimR <∞.

For a commutative ring R, we denote the set of minimal prime ideals of R by MinR.
As is well-known, MinR is a finite set whenever R is Noetherian. Also, we denote by
λ(R) the infimum of the integers n ≥ 0 such that there is a filtration

0 = I0 ⊆ I1 ⊆ · · · ⊆ In = R

of ideals of R with Ii/Ii−1
∼= R/pi for 1 ≤ i ≤ n, where pi ∈ SpecR. If R is Noetherian,

then such a filtration exists and λ(R) is a non-negative integer.

Proposition 7. Let R be a Noetherian commutative ring.

(1) Suppose that for every p ∈ MinR there exist an R/p-complex G(p) and an integer
n(p) ≥ 0 such that Db(modR/p) = 〈G(p)〉n(p). Then Db(modR) = 〈G〉n holds,

where G =
⊕

p∈MinR G(p) and n = λ(R) ·max{n(p) | p ∈ MinR }.
(2) There is an inequality

dimDb(modR) ≤ λ(R) · sup{ dimDb(modR/p) + 1 | p ∈ MinR } − 1.

Let R be a commutative Noetherian ring. We set

``(R) = inf{n ≥ 0 | (radR)n = 0 },
r(R) = min{n ≥ 0 | (nilR)n = 0 },

where radR and nilR denote the Jacobson radical and the nilradical of R, respectively.
The first number is called the Loewy length of R and is finite if (and only if) R is Artinian,
while the second one is always finite. Let Rred = R/ nilR be the associated reduced ring.
When R is reduced, we denote by R the integral closure of R in the total quotient ring
Q of R. Let CR denote the conductor of R, i.e., CR is the set of elements x ∈ Q with
xR ⊆ R. We can give an explicit generator and an upper bound of the dimension of the
bounded derived category of finitely generated modules over a one-dimensional complete
local ring.

Proposition 8. Let R be a Noetherian commutative complete local ring of Krull dimen-
sion one with residue field k. Then it holds that Db(modR) = 〈Rred⊕k〉r(R)·(2 ``(Rred/CRred

)+2).

In particular,

dimDb(modR) ≤ r(R) · (2 ``(Rred/CRred
) + 2)− 1 <∞.

Let R be a commutative Noetherian local ring of Krull dimension d with maximal ideal
m. We denote by e(R) the multiplicity of R, that is, e(R) = limn→∞

d!
nd `R(R/mn+1). Recall

that a numerical semigroup is defined as a subsemigroup H of the additive semigroup
N = {0, 1, 2, . . . } containing 0 such that N\H is a finite set. For a numerical semigroup
H, let c(H) denote the conductor of H, that is,

c(H) = max{ i ∈ N | i− 1 /∈ H }.
For a real number α, put dαe = min{n ∈ Z | n ≥ α }. Making use of the above
proposition, one can get an upper bound of the dimension of the bounded derived category
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of finitely generated modules over a numerical semigroup ring k[[H]] over a field k, in terms
of the conductor of the semigroup and the multiplicity of the ring.

Corollary 9. Let k be a field and H be a numerical semigroup. Let R be the numerical
semigroup ring k[[H]], that is, the subring k[[th|h ∈ H]] of S = k[[t]]. Then Db(modR) =
〈S ⊕ k〉

2d c(H)
e(R)e+2

holds. Hence

dimDb(modR) ≤ 2

⌈
c(H)

e(R)

⌉
+ 1.

4. Finiteness

In this section, we consider finiteness of the dimension of the bounded derived category
of finitely generated modules over a complete local ring. Let R be a commutative algebra
over a field k. Rouquier [14] proved the finiteness of the dimension of Db(modR) when
R is an affine k-algebra, where the fact that the enveloping algebra R⊗k R is Noetherian
played a crucial role. The problem in the case where R is a complete local ring is that one
cannot hope that R⊗k R is Noetherian. Our methods instead use the completion of the
enveloping algebra, that is, the complete tensor product R ⊗̂k R, which is a Noetherian
ring whenever R is a complete local ring with coefficient field k.

Let R and S be commutative Noetherian complete local rings with maximal ideals m
and n, respectively. Suppose that they contain fields and have the same residue field k,
i.e., R/m ∼= k ∼= S/n. Then Cohen’s structure theorem yields isomorphisms

R ∼= k[[x1, . . . , xm]]/(f1, . . . , fa),

S ∼= k[[y1, . . . , yn]]/(g1, . . . , gb).

We denote by R ⊗̂k S the complete tensor product of R and S over k, namely,

R ⊗̂k S = lim←−
i,j

(R/mi⊗k S/n
j).

For r ∈ R and s ∈ S, we denote by r ⊗̂ s the image of r⊗ s by the canonical ring
homomorphism R⊗k S → R ⊗̂k S. Note that there is a natural isomorphism

R ⊗̂k S ∼= k[[x1, . . . , xm, y1, . . . , yn]]/(f1, . . . , fa, g1, . . . , gb).

Details of complete tensor products can be found in [15, Chapter V].
Recall that a ring extension A ⊆ B is called separable if B is projective as a B⊗A B-

module. This is equivalent to saying that the map B⊗A B → B given by x⊗ y 7→ xy is
a split epimorphism of B⊗A B-modules.

Now, let us prove our main theorem.

Theorem 10. Let R be a Noetherian complete local commutative ring containing a field
with perfect residue field. Then there exist a finite number of prime ideals p1, . . . , pn ∈
SpecR and an integer m ≥ 1 such that

Db(modR) = 〈R/p1 ⊕ · · · ⊕R/pn〉m.

Hence one has dimDb(modR) <∞.
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Sketch of proof. We use induction on the Krull dimension d := dimR. If d = 0, then R
is an Artinian ring, and the assertion follows from [14, Proposition 7.37]. Assume d ≥ 1.
By [10, Theorem 6.4], we have a sequence

0 = I0 ⊆ I1 ⊆ · · · ⊆ In = R

of ideals of R such that for each 1 ≤ i ≤ n one has Ii/Ii−1
∼= R/pi with pi ∈ SpecR. Then

every object X of Db(modR) possesses a sequence

0 = XI0 ⊆ XI1 ⊆ · · · ⊆ XIn = X

of R-subcomplexes. Decompose this into exact triangles

XIi−1 → XIi → XIi/XIi−1 → ΣXIi−1,

in Db(modR), and note that each XIi/XIi−1 belongs to Db(modR/pi). Hence one may
assume that R is an integral domain. By [16, Definition-Proposition (1.20)], we can take a
formal power series subring A = k[[x1, . . . , xd]] of R such that R is a finitely generated A-
module and that the extension Q(A) ⊆ Q(R) of the quotient fields is finite and separable.

Claim 1. We have natural isomorphisms

R ∼= k[[x]][t]/(f(x, t)) = k[[x, t]]/(f(x, t)),

S := R⊗AR ∼= k[[x]][t, t′]/(f(x, t), f(x, t′)) = k[[x, t, t′]]/(f(x, t), f(x, t′)),

U := R ⊗̂k A ∼= k[[x, t, x′]]/(f(x, t)),

T := R ⊗̂k R ∼= k[[x, t, x′, t′]]/(f(x, t), f(x′, t′)).

Here x = x1, . . . , xd, x
′ = x′

1, . . . , x
′
d, t = t1, . . . , tn, t

′ = t′1, . . . , t
′
n are indeterminates over

k, and f(x, t) = f1(x, t), . . . , fm(x, t) are elements of k[[x]][t] ⊆ k[[x, t]]. In particular, the
rings S, T, U are Noetherian commutative complete local rings.

There is a surjective ring homomorphism µ : S = R⊗AR → R which sends r⊗ r′ to
rr′. This makes R an S-module. Using Claim 1, we observe that µ corresponds to the
map k[[x, t, t′]]/(f(x, t), f(x, t′)) → k[[x, t]]/(f(x, t)) given by t′ 7→ t. Taking the kernel,
we have an exact sequence

0→ I → S
µ−→ R→ 0

of finitely generated S-modules. Along the injective ring homomorphism A→ S sending
a ∈ A to a⊗ 1 = 1⊗ a ∈ S, we can regard A as a subring of S. Note that S is a finitely
generated A-module. Put W = A \ {0}. This is a multiplicatively closed subset of A, R
and S, and one can take localization (−)W .

Claim 2. The SW -module RW is projective.

There are ring epimorphisms

α : U → R, r ⊗̂ a 7→ ra,

β : T → S, r ⊗̂ r′ 7→ r⊗ r′,

γ : T → R, r ⊗̂ r′ 7→ rr′.

Identifying the rings R, S, T and U with the corresponding residue rings of formal power
series rings made in Claim 1, we see that α, β are the maps given by x′ 7→ x, and γ
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is the map given by x′ 7→ x and t′ 7→ t. Note that γ = µβ. The map α is naturally
a homomorphism of (R,A)-bimodules, and β, γ are naturally homomorphisms of (R,R)-
bimodules. The ring R has the structure of a finitely generated U -module through α. The
Koszul complex on the U -regular sequence x′ − x gives a free resolution of the U -module
R:

(4.1) 0→ U → U⊕d → U⊕(d2) → · · · → U⊕(d2) → U⊕d x′−x−−−→ U
α−→ R→ 0.

This is an exact sequence of (R,A)-bimodules. Since the natural homomorphisms

A ∼= k[[x′]]→ k[[x′]][x, t]/(f(x, t)),

k[[x′]][x, t]/(f(x, t))→ k[[x′]][[x, t]]/(f(x, t)) ∼= U

are flat, so is the composition. Therefore U is flat as a right A-module. The exact sequence
(4.1) gives rise to a chain map η : F → R of U -complexes, where

F = (0→ U → U⊕d → U⊕(d2) → · · · → U⊕(d2) → U⊕d x′−x−−−→ U → 0)

is a complex of finitely generated free U -modules. By Claim 1, we have isomorphisms

U ⊗A R ∼= U ⊗AA[t]/(f(x, t)) ∼= U [t′]/(f(x′, t′)) ∼= U [[t′]]/(f(x′, t′))

∼= (k[[x, t, x′]]/(f(x, t)))[[t′]]/(f(x′, t′)) ∼= k[[x, t, x′, t′]]/(f(x, t), f(x′, t′)) ∼= T.

Note from [17, Exercise 10.6.2] thatR⊗L
AR is an object of D−(R-Mod-R) = D−(ModR⊗k R).

(Here, R-Mod-R denotes the category of (R,R)-bimodules, which can be identified with
ModR⊗k R.) There are isomorphisms

R⊗L
A R ∼= F ⊗AR

∼= (0→ U ⊗AR→ (U ⊗AR)⊕d → · · · → (U ⊗AR)⊕d x′−x−−−→ U ⊗AR→ 0)

∼= (0→ T → T⊕d → · · · → T⊕d x′−x−−−→ T → 0) =: C

in D−(ModR⊗k R). Note that C can be regarded as an object of Db(modT ). Taking the
tensor product η⊗A R, one gets a chain map λ : C → S of T -complexes. Thus, one has
a commutative diagram

K −−−→ C −−−→ R
δ−−−→ ΣKy λ

y ∥∥∥ ξ

y
I −−−→ S

µ−−−→ R
ε−−−→ ΣI

of exact triangles in Db(modT ).

Claim 3. There exists an element a ∈ W such that δ·(1 ⊗̂ a) = 0 in HomDb(modT )(R,ΣK).
One can choose it as a non-unit element of A, if necessary.

Let a ∈ W be a non-unit element of A as in Claim 3. Since we regard R as a T -module

through the homomorphism γ, we have an exact sequence 0→ R
1 ⊗̂ a−−→ R → R/(a)→ 0.
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The octahedral axiom makes a diagram in Db(modT )

R
1 ⊗̂ a−−−→ R −−−→ R/(a) −−−→ ΣR∥∥∥ δ

y y ∥∥∥
R

0−−−→ ΣK −−−→ ΣK ⊕ ΣR −−−→ ΣRy ∥∥∥ y y
R

δ−−−→ ΣK −−−→ ΣC −−−→ ΣRy y ∥∥∥ y
R/(a) −−−→ ΣK ⊕ ΣR −−−→ ΣC −−−→ ΣR/(a)

with the bottom row being an exact triangle. Rotating it, we obtain an exact triangle

K ⊕R→ C → R/(a)→ Σ(K ⊕R)

in Db(modT ). The exact functor Db(modT )→ D−(ModR⊗k R) induced by the canonical
ring homomorphism R⊗k R→ T sends this to an exact triangle

(4.2) K ⊕R→ R⊗L
AR→ R/(a)→ Σ(K ⊕R)

in D−(ModR⊗k R). As R is a local domain and a is a non-zero element of the maximal
ideal of R, we have dimR/(a) = d−1 < d. Hence one can apply the induction hypothesis
to the ring R/(a), and sees that

Db(modR/(a)) = 〈R/p1 ⊕ · · · ⊕R/ph〉R/(a)
m

for some integer m ≥ 1 and some prime ideals p1, · · · , ph of R that contain a. Now, let X
be any object of Db(modR). Applying the exact functor X ⊗L

R− to (4.2) gives an exact
triangle in D−(ModR)

(4.3) (X ⊗L
R K)⊕X → X ⊗L

A R→ X ⊗L
R R/(a)→ Σ((X ⊗L

R K)⊕X).

Note that X ⊗L
R R/(a) is an object of Db(modR/(a)) = 〈R/p1 ⊕ · · · ⊕ R/ph〉R/(a)

m . As

an object of Db(modR), the complex X ⊗L
R R/(a) belongs to 〈R/p1 ⊕ · · · ⊕ R/ph〉Rm. We

observe from (4.3) thatX is in 〈R⊕R/p1⊕· · ·⊕R/ph〉Rd+1+m. Thus we obtain Db(modR) =
〈R⊕R/p1⊕· · ·⊕R/ph〉d+1+m. (As R is a domain, the zero ideal of R is a prime ideal.) �

Now, we make sure that the proof of Theorem 10 also gives a ring-theoretic proof of the
affine case of Rouquier’s theorem. Actually, we obtain a more detailed result as follows.
Recall that a commutative ring R is said to be essentially of finite type over a field k if
R is a localization of a finitely generated k-algebra. Of course, every finitely generated
k-algebra is essentially of finite type over k.

Theorem 11. (1) Let R be a finitely generated algebra over a perfect field. Then there
exist a finite number of prime ideals p1, . . . , pn ∈ SpecR and an integer m ≥ 1
such that

Db(modR) = 〈R/p1 ⊕ · · · ⊕R/pn〉m.
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(2) Let R be a commutative ring which is essentially of finite type over a perfect field.
Then there exist a finite number of prime ideals p1, . . . , pn ∈ SpecR and an integer
m ≥ 1 such that

Db(modR) = 〈R/p1 ⊕ · · · ⊕R/pn〉m.

Now the following result due to Rouquier (cf. [14, Theorem 7.38]) is immediately
recovered by Theorem 11(2).

Corollary 12 (Rouquier). Let R be a commutative ring essentially of finite type over a
perfect field. Then the derived category Db(modR) has finite dimension.

Remark 13. In Corollary 12, the assumption that the base field is perfect can be removed;
see [7, Proposition 5.1.2]. We do not know whether we can also remove the perfectness
assumption of the residue field in Theorem 10. It seems that the techniques in the proof
of [7, Proposition 5.1.2] do not directly apply to that case.

5. Lower bounds

In this section, we will mainly study lower bounds for the dimension of the bounded
derived category of finitely generated modules. We shall refine a result of Rouquier over an
affine algebra, and also give a similar lower bound over a general commutative Noetherian
ring.

Throughout this section, let R be a commutative Noetherian ring. First, we consider
refining a result of Rouquier.

Theorem 14. Let R be a finitely generated algebra over a field. Suppose that there exists
p ∈ AsshR such that Rp is a field. Then one has the inequality dimDb(modR) ≥ dimR.

The following result of Rouquier [14, Proposition 7.16] is a direct consequence of The-
orem 14.

Corollary 15 (Rouquier). Let R be a reduced finitely generated algebra over a field. Then
dimDb(modR) ≥ dimR.

Next, we try to extend Theorem 14 to non-affine algebras. We do not know whether
the inequality in Theorem 14 itself holds over non-affine algebras; we can prove that a
similar but slightly weaker inequality holds over them.

Now we can show the following result.

Theorem 16. Let R be a ring of finite Krull dimension such that Rp is a field for all
p ∈ AsshR. Then we have dimDb(modR) ≥ dimR− 1.

Here is an obvious conclusion of the above theorem.

Corollary 17. Let R be a reduced ring of finite Krull dimension. Then dimDb(modR) ≥
dimR− 1.
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QUIVER PRESENTATIONS OF GROTHENDIECK CONSTRUCTIONS

HIDETO ASASHIBA AND MAYUMI KIMURA

Abstract. We give quiver presentations of the Grothendieck constructions of functors
from a small category to the 2-category of k-categories for a commutative ring k.

Key Words: Grothendieck construction, functors, quivers.

1. Introduction

Throughout this report I is a small category, k is a commutative ring, and k-Cat
denotes the 2-category of all k-categories, k-functors between them and natural transfor-
mations between k-functors.

The Grothendieck construction is a way to form a single category Gr(X) from a diagram
X of small categories indexed by a small category I, which first appeared in [4, §8 of
Exposé VI]. As is exposed by Tamaki [7] this construction has been used as a useful tool
in homotopy theory (e.g., [8]) or topological combinatorics (e.g., [9]). This can be also
regarded as a generalization of orbit category construction from a category with a group
action.

In [2] we defined a notion of derived equivalences of (oplax) functors from I to k-Cat,
and in [3] we have shown that if (oplax) functorsX,X ′ : I → k-Cat are derived equivalent,
then so are their Grothendieck constructions Gr(X) and Gr(X ′). An easy example of a
derived equivalent pair of functors is given by using diagonal functors: For a category
C define the diagonal functor ∆(C) : I → k-Cat to be a functor sending all objects of I
to C and all morphisms in I to the identity functor of C. Then if categories C and C ′

are derived equivalent, then so are their diagonal functors ∆(C) and ∆(C ′). Therefore,
to compute examples of derived equivalent pairs using this result, it will be useful to
present Grothendieck constructions of functors by quivers with relations. We already
have computations in two special cases. First for a k-algebra A, which we regard as a
k-category with a single object, we noted in [3] that if I is a semigroup G, a poset S, or
the free category PQ of a quiver Q, then the Grothendieck construction Gr(∆(A)) of the
diagonal functor ∆(A) is isomorphic to the semigroup algebra AG, the incidence algebra
AS, or the path-algebra AQ, respectively. Second in [1] we gave a quiver presentation
of the orbit category C/G for each k-category C with an action of a semigroup G in the
case that k is a field, which can be seen as a computation of a quiver presentation of the
Grothendieck construction Gr(X) of each functor X : G → k-Cat.

In this report we generalize these two results as follows:

(1) We compute the Grothendieck construction Gr(∆(A)) of the diagonal functor
∆(A) for each k-algebra A and each small category I.

The final version of this paper has been submitted for publication elsewhere.
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(2) We give a quiver presentation of the Grothendieck construction Gr(X) for each
functor X : I → k-Cat and each small category I when k is a field.

2. Preliminaries

Throughout this report Q = (Q0, Q1, t, h) is a quiver, where t(α) ∈ Q0 is the tail and
h(α) ∈ Q0 is the head of each arrow α of Q. For each path µ of Q, the tail and the head
of µ is denoted by t(µ) and h(µ), respectively. For each non-negative integer n the set of
all paths of Q of length at least n is denoted by Q≥n. In particular Q≥0 denotes the set
of all paths of Q.

A category C is called a k-category if for each x, y ∈ C, C(x, y) is a k-module and the
compositions are k-bilinear.

Definition 1. Let Q be a quiver.

(1) The free category PQ of Q is the category whose underlying quiver is (Q0, Q≥0, t, h)
with the usual composition of paths.

(2) The path k-category of Q is the k-linearization of PQ and is denoted by kQ.

Definition 2. Let C be a category. We set

Rel(C) :=
∪

(i,j)∈C0×C0

C(i, j)× C(i, j),

elements of which are called relations of C. Let R ⊆ Rel(C). For each i, j ∈ C0 we set

R(i, j) := R ∩ (C(i, j)× C(i, j)).
(1) The smallest congruence relation

Rc :=
∪

(i,j)∈C0×C0

{(dac, dbc) | c ∈ C(−, i), d ∈ C(j,−), (a, b) ∈ R(i, j)}

containing R is called the congruence relation generated by R.
(2) For each i, j ∈ C0 we set

R−1(i, j) := {(g, f) ∈ C(i, j)× C(i, j) | (f, g) ∈ R(i, j)}
1C(i,j) := {(f, f) | f ∈ C(i, j)}
S(i, j) := R(i, j) ∪R−1(i, j) ∪ 1C(i,j)

S(i, j)1 := S(i, j)

S(i, j)n := {(h, f) | ∃g ∈ C(i, j), (g, f) ∈ S(i, j), (h, g) ∈ S(i, j)n−1} (for all n ≥ 2)

S(i, j)∞ :=
∪
n≥1

S(i, j)n, and set

Re :=
∪

(i,j)∈C0×C0

S(i, j)∞.

Re is called the equivalence relation generated by R.
(3) We set R# := (Rc)e (cf. [5]).

The following is well known (cf. [6]).
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Proposition 3. Let C be a category, and R ⊆ Rel(C). Then the category C/R# and the
functor F : C → C/R# defined above satisfy the following conditions.

(i) For each i, j ∈ C0 and each (f, f ′) ∈ R(i, j) we have Ff = Ff ′.
(ii) If a functor G : C → D satisfies Gf = Gf ′ for all f, f ′ ∈ C(i, j) and all i, j ∈ C0

with (f, f ′) ∈ R(i, j), then there exists a unique functor G′ : C/R# → D such that
G′ ◦ F = G.

Definition 4. Let Q be a quiver and R ⊆ Rel(PQ). We set

〈Q | R〉 := PQ/R#.

The following is straightforward.

Proposition 5. Let C be a category, Q the underlying quiver of C, and set

R := {(ei, 1li), (µ, [µ]) | i ∈ Q0, µ ∈ Q≥2} ⊆ Rel(PQ),

where ei is the path of length 0 at each vertex i ∈ Q0, and [µ] := αn◦· · ·◦α1 (the composite
in C) for all paths µ = αn . . . α1 ∈ Q≥2 with α1, . . . , αn ∈ Q1. Then

C ∼= 〈Q | R〉.
By this statement, an arbitrary category is presented by a quiver and relations. Through-

out the rest of this report I is a small category with a presentation I = 〈Q | R〉.

3. Grothendieck constructions of Diagonal functors

Definition 6. Let X : I → k-Cat be a functor. Then a category Gr(X), called the
Grothendiek construction of X, is defined as follows:

(i) (Gr(X))0 :=
∪
i∈I0

{(i, x) | x ∈ X(i)0}

(ii) For (i, x), (j, y) ∈ (Gr(X))0

Gr(X)((i, x), (j, y)) :=
⊕

a∈I(i,j)

X(j)(X(a)x, y)

(iii) For f = (fa)a∈I(i,j) ∈ Gr(X)((i, x), (j, y)) and g = (gb)b∈I(j,k) ∈ Gr(X)((j, y), (k, z))

g ◦ f := (
∑
c=ba

a∈I(i,j)
b∈I(j,k)

gbX(b)fa)c∈I(i,k)

Definition 7. Let C ∈ k-Cat0. Then the diagonal functor ∆(C) of C is a functor from I
to k-Cat sending each arrow a : i → j in I to 1lC : C → C in k-Cat.

In this section, we fix a k-algebra A which we regard as a k-category with a single
object ∗ and with A(∗, ∗) = A. The quiver algebra AQ of Q over A is the A-linearization
of PQ, namely AQ := A⊗k kQ.

Theorem 8. We have an isomorphism Gr(∆(A)) ∼= AQ/〈R〉A, where 〈R〉A is the ideal
of AQ generated by the elements g − h with (g, h) ∈ R.

Remark 9. Theorem 8 can be written in the form

Gr(∆(A)) ∼= A⊗k (kQ/〈R〉k).
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4. The quiver presentation of Grothendieck constructions

In this section we give a quiver presentation of the Grothendieck construction of an
arbitrary functor I → k-Cat. Throughout this section we assume that k is a field.

Theorem 10. Let X : I → k-Cat be a functor, and for each i ∈ I set X(i) = kQ(i)/
〈R(i)〉 with Φ(i) : kQ(i) → X(i) the canonical morphism, where R(i) ⊆ kQ(i), 〈R(i)〉 ∩ {ex |
x ∈ Q(i)0} = ∅. Then Grothendieck construction is presented by the quiver with relations
(Q,R′) defined as follows.

Quiver: Q′ = (Q′
0, Q

′
1, t

′, h′), where

(i) Q′
0 :=

∪
i∈I

{ix | x ∈ Q
(i)
0 }.

(ii) Q′
1 :=

∪
i∈I

{{iα | α ∈ Q
(i)
1 } ∪ {(a, ix) : ix → j(ax) | a : i → j ∈ Q1, x ∈ Q

(i)
0 , ax 6=

0}},
where we set ax := X(a)(x).

(iii) For α ∈ Q
(i)
1 , t′(iα) = t(i)(α) and h′(iα) = h(i)(α).

(iv) For a : i → j ∈ Q1, x ∈ Q
(i)
0 , t′(a, ix) = ix and h′(a, ix) = j(ax).

Relations: R′ := R′
1 ∪R′

2 ∪R′
3, where

(i) R′
1 := {σ(i)(µ) | i ∈ Q0, µ ∈ R(i)},

where we set σ(i) : kQ(i) ↪→ kQ′.

(ii) R′
2 := {π(g, ix) − π(h, ix) | i, j ∈ Q0, (g, h) ∈ R(i, j), x ∈ Q

(i)
0 }, where for each

path a in Q we set

π(a, ix) := (an, in−1(an−1an−2 . . . a1x)) . . . (a2, i1(a1x))(a1, ix)

if a = an . . . a2a1 for some a1, . . . , an arrows in Q, and

π(a, ix) := e
ix

if a = ei for some i ∈ Q0.

(iii) R′
3 := {(a, iy)iα − j(aα)(a, ix) | a : i → j ∈ Q1, α : x → y ∈ Q

(i)
1 }, where we take

aα : ax → ay so that Φ(j)(aα) ∈ X(a)Φ(i)(α):

α ∈ kQ(i) Φ(i)
// X(i)

X(a)

��
aα ∈ kQ(j) Φ(j)

// X(j).

Note that the ideal 〈R′〉 is independent of the choice of aα because R′
1 ⊆ R′.

5. Examples

In this section, we illustrate Theorems 8 and 10 by some examples.
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Example 11. Let Q be the quiver

2

1 3 5

4

a
@@�������

b

��=
==

==
==

c // d //

e
��=

==
==

==

f

@@�������

and let R = {(ba, dc)}. Then the category I := 〈Q | R〉 is not given as a semigroup, as a
poset or as the free category of a quiver. For any algebra A consider the diagonal functor
∆(A) : I → k-Cat. Then by Theorem 8 the category Gr(∆(A)) is given by

AQ/〈ba− dc〉.

Remark 12. Let Q and Q′ be quivers having neither double arrows nor loops, and let
f : Q0 → Q′

0 be a map (a vertex map between Q and Q′). If Q(x, y) 6= ∅ (x, y ∈ Q0)

implies Q′(f(x), f(y)) 6= ∅ or f(x) = f(y), then f induces a k-functor f̂ : kP → kP ′

defined by the following correspondence: For each x ∈ Q0, f̂(ex) := ef(x), and for each
arrow a : x → y in Q, f(a) is the unique arrow f(x) → f(y) (resp. ef(x)) if f(x) 6= f(y)
(resp. if f(x) = f(y)).

Example 13. Let I = 〈Q | R〉 be as in the previous example. Define a functor X :
I → k-Cat by the k-linearizations of the following quivers in frames and the k-functors
induced by the vertex maps expressed by broken arrows between them:

1

2

1 1

2 1 2

1

2

α
��

α
��

α
��

α
��

X(a)

44

r
q

p
p

o
o

n m m l l k k j i

X(a)

44

r
q

p
p

o
o

n m m l l k k j i

X(c)

))

\ [ [ Z Y Y X X W W V V U T TX(c)
//_________________

X(e)

**

L
M

N
N

O
O

P Q Q R R S T T U

X(e)

**

L
M

N
N

O
O

P Q Q R R S T T U

X(b)

&&

U T T S R R Q Q P O
O

N
N

M
L

X(b)

))

\ [ [ Z Y Y X X W W V V U T T

X(d)

33fffffffffffffffff

X(f)

44

r
q

p
p

o
o

n m m l l k k j i

X(f)

99

i j k k l l m m n o
o

p
p

q
r

X(2)

X(1)

X(3)

X(5)

X(4)
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Then by Theorem 10 Gr(X) is presented by the quiver

Q′ =



21

22

11 51

12 31 52

41

42

1α

��

2α

��

4α

��

5α

��

(a,11)

44

r
q

q
p

o
o

n
n m m l k k j j

(a,12)

44

r
q

q
p

o
o

n
n m m l k k j j

(c,11)

))

[ [ Z Z Y Y X X W W V U U T T(c,12) //_________________

(e,11)

**

L
M

M
N

O
O

P
P Q R R S S T T

(e,12)

**

L
M

M
N

O
O

P
P Q R R S S T T

(b,21)

%%

T T S S R R Q P
P

O
O

N
M

M
L

(b,22)

))

[ [ Z Z Y Y X X W W V U U T T

(d,31)

33fffffffffffffffff

(f,41)

44

r
q

q
p

o
o

n
n m m l k k j j

(f,42)

99

j j k k l m m n
n

o
o

p
q

q
r


with relations

R′ = {π(ba, 11)− π(dc, 11), π(ba, 12)− π(dc, 12)}
∪{(a, iy)iα− j(aα)(a, ix) | a : i → j ∈ Q1, α : x → y ∈ Q

(i)
1 },

where the new arrows are presented by broken arrows.

Example 14. Let Q = ( 1
a // 2 ) and I := 〈Q〉. Define functors X,X ′ : I → k-Cat by

the k-linearizations of the following quivers in frames and the k-functors induced by the
vertex maps expressed by dotted arrows between them:

X :

1 2

3

1

α

��7
77

77
77

77

β

����
��
��
��
�

X(a)

��

X(a)

		

X(a)

��

X(1)

X(2),

X ′ :

1

2 3

1

α

����
��
��
��
�

β

��7
77

77
77

77

X′(a)

��
X′(a)

��
X′(a)

��

X ′(1)

X ′(2).

Then by Theorem 10 Gr(X) is given by the following quiver with no relations

11 12

13

21

1α

��@
@@

@@
@@

1β

��~~
~~
~~
~

(a,11)

��

(a,12)

��
(a,13)

��

, (a, 13)1α− (a, 11), (a, 13)1β − (a, 12)


∼=



11 12

13

21

1α

��@
@@

@@
@@

1β

��~~
~~
~~
~

(a,13)

��


,
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and Gr(X ′) is given by the following quiver with a commutativity relation

11

12 13

21

1α

��~~
~~
~~
~

1β

��@
@@

@@
@@

(a,11)

��(a,12) �� (a,13)��

, (a, 12)1α− (a, 11), (a, 13)1β − (a, 11)


∼=



11

12 � 13

21

1α

��~~
~~
~~
~

1β

��@
@@

@@
@@

(a,12) �� (a,13)��


.

By using the main theorem in [3] derived equivalences between X(1) and X ′(1) and
between X(2) and X ′(2) are glued together to have a derived equivalence between Gr(X)
and Gr(X ′).
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Algébrique du Bois Marie 1960–1961 (SGA 1), Dirigé par Alexandre Grothendieck. Augmenté de
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THE LOEWY LENGTH OF TENSOR PRODUCTS FOR DIHEDRAL
TWO-GROUPS

ERIK DARPÖ AND CHRISTOPHER C. GILL

Abstract. The indecomposable modules of a dihedral 2-group over a field of charac-
teristic 2 were classified by Ringel over 30 years ago. However, relatively little is known
about the tensor products of such modules, except in certain special cases. We describe
here the main result of our recent work determining the Loewy length of a tensor product
of modules for a dihedral 2-group. As a consequence of this result, we can determine
precisely when a tensor product has a projective direct summand.

1. Introduction

Let k be a field of positive characteristic p and let G be a finite group. The group algebra
kG is a Hopf algebra with coproduct and co-unit given by ∆(

∑
g∈G rgg) =

∑
g∈G rgg ⊗ g

and ε(
∑

g∈G rgg) =
∑

g∈G rg for rg ∈ k. Thus, there is a tensor product operation on the
category of kG-modules. If M and N are kG-modules, then the tensor product of M and
N is the module with underlying vector space M ⊗k N and module structure given by
g(m⊗ n) = ∆(g)(m⊗ n) = gm⊗ gn for g ∈ G,m ∈ M,n ∈ N . The tensor product is a
frequently used tool in the representation theory of finite groups. However, the problem
of determining the decomposition of a tensor product of two modules of a finite group G
– the Clebsch-Gordan problem – can be extremely difficult.

One approach to understanding tensor products of kG-modules goes via the representa-
tion ring, or Green ring, of kG. The isomorphism classes of finite-dimensional kG-modules
form a semiring, with addition given by the direct sum, and multiplication by the tensor
product of kG-modules. The Green ring, A(kG), is the Groethendieck ring of this semir-
ing, i.e., the ring obtained by formally adjoining additive inverses to all elements in the
semiring. Research in this direction was pioneered by J. A. Green [6], who proved the
Green ring of a cyclic p-group is semisimple. The question of semisimplicity of the Green
ring for other finite groups has been studied by several authors since. Benson and Carlson
[2] gave a method to produce nilpotent elements in a Green ring, and determined a quo-
tient of the Green ring which has no nilpotent elements.

This so-called Benson–Carlson quotient of the Green ring was studied by Archer [1] in
the case of the dihedral 2-groups, who realised it as an integral group ring of an abelian,
infinitely generated, torsion-free group. Archer gave a precise statement relating the
multiplication of two elements in this infinite group to the Auslander–Reiten quiver of
kD4q. The Green ring of the Klein four group V4 was completely determined by Conlon
[4]; a summary of this result can be found in [1].

For the dihedral 2-groups D4q, the indecomposable modules, over fields of characteristic
2, were classified by Ringel [7] over 30 years ago. However, very little progress has been
made towards understanding the behaviour of the tensor product of the kD4q-modules. In
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particular, the decomposition of a tensor product of two indecomposable kD4q-modules is
not known, other than in some very special cases. One example is the work of Bessenrodt
[3], classifying the endotrivial kD4q-modules, thus determining the kD4q-modules M for
which the tensor product of M with its dual M∗ is the direct sum of a trivial and a
projective module.

In recent work [5], we have continued the study of tensor products of kD4q-modules, de-
termining completely the Loewy length of the tensor product of any two indecomposable
kD4q-modules. This provides an additional piece of information towards the understand-
ing of the Green rings of the dihedral 2-groups, and gives certain bounds on which modules
can occur as direct summands of a tensor product. In particular, it determines precisely
when a tensor product of two modules has a projective direct summand.

The Loewy length `(M) of a module M is, by definition, the common length of the
radical series and the socle series of M , that is, `(M) = min{t ∈ N | radt(kD4q)M = 0}.

In the next section, we recall Ringel’s classification of the indecomposable kD4q-modules.
Section 3 gives a summary of the results in [5], and in Section 4, we give examples il-
luminating our results and showing how they can be used to determine the direct sum
decomposition of a tensor product in certain cases.

2. The indecomposable modules of dihedral 2-groups

Let q be a 2-power, and write D4q = 〈x, y | x2 = y2 = 1, (xy)q = (yx)q〉 for the dihedral
group of order 4q. There is an isomorphism of algebras

kD4q →̃ Λq :=
k〈X, Y 〉

(X2, Y 2, (XY )q − (Y X)q)
,

given by x 7→ 1 + X and y 7→ 1 + Y . Setting ∆(X) = 1 ⊗ X + X ⊗ 1 + X ⊗ X and
∆(Y ) = 1 ⊗ Y + Y ⊗ 1 + Y ⊗ Y defines a coproduct on Λq corresponding under this
isomorphism to the Hopf algebra structure of kD4q. Owing to the fact that Λq is a special
biserial algebra, its non-projective modules split into two classes, known as string modules
and band modules. We describe both classes of modules below.

Let W̄ be the set of words in letters a, b and inverse letters a−1, b−1 such that a or a−1

are always followed by b or b−1 and b or b−1 are always followed by a or a−1. A directed
subword of a word w ∈ W̄ is a word w′ in either the letters {a, b} or {a−1, b−1} such that
w = w1w

′w2 for some words w1, w2 ∈ W̄ . Let W be the subset of W̄ consisting of words
in which all directed subwords are of length strictly less than 2q. Define an equivalence
relation ∼1 on W by w ∼1 w

′ if, and only if, w′ = w or w′ = w−1. Given w = l1 . . . ln ∈ W ,
the string module determined by w, denoted by M(w), is the n + 1-dimensional module
with basis e0, . . . , en and Λq-action given by the following schema:

ke0 ke1
l1oo ke2

l2oo . . .oo ken−1

ln−1oo ken
lnoo .

If li ∈ {a−1, b−1}, the corresponding arrow should be interpreted as going in the opposite
direction, from kei−1 to kei, and having the label l−1

i . Now X maps ei to ej (j ∈ {i −
1, i + 1}) if there is an arrow kei

a→ kej, and as zero if no arrow labelled with a starting
in kei exists. Similarly, the action of Y is given by arrows labelled with b. Two modules
M(w) and M(w′), w,w′ ∈ W , are isomorphic if, and only if, w ∼1 w

′.
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Next, let W ′ be the subset of W consisting of words w of even positive length containing
letters from both {a, b} and {a−1, b−1}, and such that w is not a power of a word of smaller
length. Given w = l1 . . . lm ∈ W ′, and ϕ an indecomposable linear automorphism of kn,
the band module determined by w and ϕ, M(w,ϕ), is the Λq-module with underlying

vector space
⊕m−1

i=0 Vi where Vi = kn, and Λq-action specified by the following schema:

V0

lm

33V1
l1=ϕoo V2

l2oo · · ·oo Vm−2

lm−2oo Vm−1

lm−1oo .

The interpretation of the schema is similar to that for string modules. The elements
l2, . . . , lm act as the identity map on kn, l1 acts as the linear automorphism ϕ (this means
that if l1 ∈ {a−1, b−1} then V0 is mapped onto V1 by ϕ−1 under either X or Y ).

Define ∼2 to be the equivalence relation on W ′ defined by w ∼2 w
′ if, and only if,

w of w−1 is a cyclic permutation of w′. Two band modules M(w,ϕ) and M(w′, ψ) are
isomorphic if, and only if, w ∼2 w

′ and ϕ = φψφ−1 for some linear automorphism φ.
It may be noted that for every w ∈ W ′ there exists a w′ ∈ W with an even number of
maximal directed subwords such that w ∼2 w

′. While there are several different choices
for w′, its maximal directed subwords are uniquely determined, as elements in W/ ∼1, by
w.

Every indecomposable non-projective kD4q-module is isomorphic either to a string
or a band module, but not both. There is a single, indecomposable projective mod-
ule, kD4qkD4q. The Loewy length of any non-projective module is at most 2q, while
`(kD4qkD4q) = 2q + 1.

3. Loewy length of tensor products

Here, we give an overview of the results in [5]. We fix the the following conventions
and notation. The least natural number is 0. For l < 2q, Al ∈ W is the (unique) word of
length l in the letters a, b ending in a, and similarly Bl ∈ W is the word of length l in the
letters a, b ending in b.

IfM is a module and X ⊂M any set of generators, then `(M) = max{`(〈x〉) | x ∈ X},
and if N is another module then, in a similar fashion, `(M ⊗ N) = max{`(〈x〉 ⊗ N) |
x ∈ X}. Any kD4q-module that is generated by a single element is isomorphic to either
M(AlB

−1
m ) or M(AlB

−1
m , ρ) for some l,m < 2q and ρ ∈ k r {0}, hence it is sufficient

to determine Loewy lengths of tensor products of these types of modules, to solve the
problem for arbitrary modules M and N . Refining these ideas a little, one can prove the
following results.

Proposition 1. Let M and N be kD4q-modules. If M is a string module corresponding
to a word w ∈ W with maximal directed subwords wi, i ∈ {1, . . . ,m}, then

`(M ⊗N) = max{`(M(wi)⊗N) | i ∈ {1, . . . ,m}}.
Proposition 2. Let M = M(w,ϕ), where w ∈ W ′ and ϕ is an indecomposable auto-
morphism of kn, n > 1. Let w′ ∈ W ′ be a word with an even number of maximal directed
subwords wi, i ∈ {1, . . . , 2m}, such that w ∼2 w

′. If m and n are not both equal to 1, then

`(M(w,ϕ)⊗N) = max{`(M(wi)⊗N) | i ∈ {1, . . . , 2m}}.
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Proposition 1 and 2 leave us with determining the Loewy lengths of tensor products of
modules of the types M(Al), M(Bm) and M(AlB

−1
m , ρ) for l,m < 2q, ρ ∈ k r {0}. One

can note that these are precisely the non-projective kD4q-modules whose top and socle
are simple modules.

Given x ∈ N, denote by [x]i the ith term of its binary expansion, i.e., [x]i ∈ {0, 1} such
that x =

∑
i∈N[x]i2

i. Let l,m ∈ N, and take a ∈ N to be the smallest number such that
[l]i + [m]i 6 1 for all i > a. Set λ =

∑
i>a[l]i2

i and µ =
∑

j>a[m]j2
j. Now define a binary

operation # on N by setting

l#m = λ+ µ+ 2a − 1 .

If the binary expansions of l and m are disjoint, that is, if [l]i + [m]i 6 1 for all i ∈ N, we
write l ⊥ m. Now observe that if l ⊥ m then a = 0 and l#m = l+m, while l#m < l+m
otherwise.

Example 3. We have 85#38 = 119. Namely, 85 = 20+22+24+26 and 38 = 21+22+25,
hence a = 3 for these two numbers, and therefore 85#38 = (24 + 26) + 25 + 23 − 1 = 119.
Clearly, 85#38 = 119 < 123 = 85 + 38, which was to be expected, since 85 6⊥ 38.

The relevance of the operation # is that it neatly describes the Loewy length of a tensor
product of uniserial modules, that is, modules of the type M(Al) and M(Bl). If u is a
generating element in the module M(Al), and v a generating element in M(Am), then
`(〈u ⊗ v〉) = l#m + 1 (observe that u ⊗ v does not generate M(Al) ⊗M(Am), unless l
or m equals zero). Showing this is the most important step in the proof of our principal
theorem, which gives the Loewy lengths of tensor products of kD4q-modules with simple
top and simple socle.

Theorem 4. Let l,m ∈ N, l1, l2,m1,m2 ∈ Nr {0}, ρ, σ ∈ k r {0}.
1. String with string:

`(M(Al)⊗M(Bm)) =

{
1 + l#m = 1 + l +m if l ⊥ m,

2 + l#m if l 6⊥ m,

`(M(Al)⊗M(Am)) =

{
1 + l#m if [l]t = [m]t = 0 for all 0 6 t < a− 1,

2 + l#m otherwise.

where a = min{r ∈ N | [l]t + [m]t 6 1, ∀t > r}.

2. Band with string:

`
(
M(Al1B

−1
l2
, ρ)⊗M(Am)

)
=


2 + (l1 − 1)#m if ρ = 1, l1 = l2 and

l1 ⊥ m, l1 ⊥ (m− 1),

`
(
M

(
Al1B

−1
l2

)
⊗M(Am)

)
otherwise.

3. Band with band: Let M =M
(
Al1B

−1
l2
, ρ
)
, N =M

(
Am1B

−1
m2
, σ

)
.

(a) If l1 6= l2, then

`(M ⊗N) = `(M
(
Al1B

−1
l2

)
⊗N).
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Assume l1 = l2, m1 = m2.

(b) If l1 6⊥ m1, l1 6⊥ (m1 − 1), (l1 − 1) 6⊥ m1 then

`(M ⊗N) = 2 + (l1 − 1)#(m1 − 1).

(c) If l1 ⊥ m1, (l1 − 1) ⊥ m1, then

`(M ⊗N) =

{
2 + (l1 − 1)#(m1 − 1) if σ = 1,

l1 +m1 + 1 otherwise.

(d) If l1 ⊥ m1, l1 ⊥ (m1 − 1), then

`(M ⊗N) =

{
2 + (l1 − 1)#(m1 − 1) if ρ = 1,

l1 +m1 + 1 otherwise.

(e) If (l1 − 1) ⊥ m1, l1 ⊥ (m1 − 1), then

`(M ⊗N) =


2 + (l1 − 1)#(m1 − 1) if ρ = σ = 1,

l1 +m1 if ρ = σ 6= 1,

l1 +m1 + 1 otherwise.

We remark that if any one of the statements l ⊥ m, (l− 1) ⊥ m and l ⊥ (m− 1) holds
true, then so does precisely one of the remaining ones. Hence 3(b)–3(e) in the theorem
give a complete list of cases. As a consequence of Theorem 4:1, it is not difficult to prove
the following sequence of inequalities:

(3.1) `(M(Al)⊗M(Am)) 6 `(M(Al)⊗M(Bm)) 6 `(M(Al)⊗M(Am+1)) .

It is entirely possible that each of these inequalities are identities. This is the case for
example if l = 8, m = 9: `(M(A8) ⊗ M(A9)) = 2 + 8#9 = 2 + 15 = 2 + 8#10 =
`(M(A8)⊗M(A10)).

Corollary 5. Let l,m < 2q, 0 < l1, l2,m1,m2 < 2q, and ρ, σ ∈ k r {0}.
1. M(Al)⊗M(Bm) has a projective direct summand if, and only if, l +m > 2q,
2. M(Al)⊗M(Am) has a projective direct summand if, and only if, l +m > 2q + 1.
3. M(Al1B

−1
l2
, ρ)⊗M(Am) has a projective direct summand precisely when

max{l1 +m− 1, l2 +m} > 2q.

4. If l1 6= l2 or m1 6= m2, then M
(
Al1B

−1
l2
, ρ
)
⊗M

(
Am1B

−1
m2
, σ

)
has a projective direct

summand if, and only if,

max{l1 +m1 − 1, l1 +m2, l2 +m1, l2 +m2 − 1} > 2q .

5. If l1 = l2, m1 = m2 then M
(
Al1B

−1
l2
, ρ
)
⊗ M

(
Am1B

−1
m2
, σ

)
has projective direct

summands if, and only if,
(a) l1 ⊥ (m1 − 1), ρ 6= σ and l1 +m1 = 2q, or
(b) l1 6⊥ (m1 − 1), and l1 +m1 > 2q.

We remark that, for l,m < 2q, the condition l + m > 2q implies l 6⊥ m. Thus, in
particular, in 5(a) above, the condition l1 ⊥ (m1 − 1) is equivalent to (l1 − 1) ⊥ m1, and
similarly, in 5(b), l1 6⊥ (m1 − 1) could be replaced by (l1 − 1) 6⊥ m1.
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4. Examples

Example 6. Let M =M(A5B
−1
7 B4), N =M(A6B

−1
4 ). By Proposition 1,

`(M ⊗N) = max
{
`(M(w)⊗M(w′)) | w ∈ {A5, B

−1
7 , B4}, w′ ∈ {A6, B

−1
4 }

}
= `(M(B−1

7 )⊗M(A6)) = `(M(B7)⊗M(A6)) .

Since 7 6⊥ 6, by Theorem 4:1 we have, `(M(B7) ⊗M(A6)) = 2 + 7#6 = 9. Hence, the
Loewy length of M ⊗N is 9 and, seen as a kD16-module, M ⊗N has a projective direct
summand.

Example 7. By Proposition 1 and the inequality (3.1), we have

`(M(Al)⊗M(Am+1B
−1
m )) = max{`(M(Al)⊗M(Am+1)), `(M(Al)⊗M(Bm))}

= `(M(Al)⊗M(Am+1)) .

for all l,m ∈ N.

Example 8. While it is clear that `(M(AlB
−1
l , 1)⊗N) 6 `(M(AlB

−1
l )⊗N), the difference

between the lengths of the two tensor products may be zero, or arbitrarily large. For
example, if N = M(Am) and l 6⊥ m, then `(M(AlB

−1
l , 1) ⊗ N) = `(M(AlB

−1
l ) ⊗ N) by

Theorem 4:2. If, on the other hand, l = 2r and m = 2s with r > s then

`(M(AlB
−1
l , 1)⊗M(Am)) = 2 + (l − 1)#m = 2 + 2r − 1 = 1 + 2r,

while

`(M(AlB
−1
l )⊗M(Am)) = `(M(Bl)⊗M(Am)) = 1 + l +m = 1 + 2r + 2s .

Example 9. Let M = M(a) = M(A1) and N = M(b(ab)l) = M(B2l+1) for some l ∈ N.
Now 1 6⊥ (2l+1), and 1#(2l+1) = 2l+1, so by Theorem 4:1, `(M ⊗N) = 2l+3. In this
case, the Loewy length actually provides the missing piece of information to compute the
isomorphism type of M ⊗N .
Namely, since k is the unique simple module, we have

dim soc(M ⊗N) = dimHomkD4q(k,M ⊗N) = dimHomkD4q(N
∗,M)

= dimHomkD4q(N,M) = 1

and similarly,

dim top(M ⊗N) = dimHomkD4q(M ⊗N, k) = 1 .

Hence M ⊗ N is a module with simple top and simple socle, of dimension 4(l + 1), and
Loewy length 2l + 3. A module satisfying these conditions is indecomposable, and must
be isomorphic to M(A2l+2B

−1
2l+2, ρ) for some ρ ∈ kr {0}. Now if k is the prime field, that

is the Galois field with two elements, this means that ρ = 1. From this follows that ρ = 1
also in the general case, since extension of scalars commutes with taking tensor products.
Hence, we have M ⊗N 'M(A2l+2B

−1
2l+2, 1).
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EXAMPLE OF CATEGORIFICATION OF A CLUSTER ALGEBRA

LAURENT DEMONET

Abstract. We present here two detailed examples of additive categorifications of the
cluster algebra structure of a coordinate ring of a maximal unipotent subgroup of a
simple Lie group. The first one is of simply-laced type (A3) and relies on an article by
Geiß, Leclerc and Schröer. The second is of non simply-laced type (C2) and relies on an
article by the author of this note. This is aimed to be accessible, specially for people
who are not familiar with this subject.

1. Introduction: the total positivity problem

Let N be the subgroup of SL4(C) consisting of upper triangular matrices with diagonal
1. We say that X ∈ N is totally positive if its 12 non-trivial minors are positive real
numbers (a minor is non-trivial if it is not constant on N and not product of other
minors). As a consequence of various results of Fomin and Zelevinsky [3] (see also [1]), in
a (very) special case, we get

Proposition 1 (Fomin-Zelevinsky). X ∈ N is totally positive if and only if the minors
∆1

4(X), ∆12
34(X), ∆123

234(X), ∆12
24(X), ∆2

4(X), ∆3
4(X) are positive.

where ∆`1...`k
c1...ck

(X) is the minor of X with rows `1, . . . , `k and columns c1, . . . , ck.
Remark that, as the algebraic variety N has dimension 6, we can not expect to find a

criterion with less than 6 inequalities to check the total positivity of a matrix.
To prove this, just remark that we have the following equality:

∆12
24∆

23
34 = ∆123

234∆
2
4 +∆3

4∆
12
34

which immediately implies that ∆1
4(X), ∆12

34(X), ∆123
234(X), ∆12

24(X), ∆2
4(X), ∆3

4(X) are
positive if and only if ∆1

4(X), ∆12
34(X), ∆123

234(X), ∆23
34(X), ∆2

4(X), ∆3
4(X) are positive.

Such an equality is called an exchange identity. In Figure 1, we wrote 14 sets of minors
which are related by exchange identities whenever they are linked by an edge. As every
minor appears in this graph, it induces the previous proposition.

These observations lead to the definition of a cluster algebra [4]. A cluster algebra is an
algebra endowed with an additional combinatorial structure. Namely, a (generally infi-
nite) set of distinguished elements called cluster variables grouped into subsets of the same
cardinality n, called clusters and a finite set {xn+1, xn+2, . . . , xm} called the set of coef-
ficients. For each cluster {x1, x2, . . . , xn}, the extended cluster {x1, . . . , xn, xn+1, . . . , xm}
is a transcendence basis of the algebra. Moreover, each cluster {x1, x2, . . . , xn} has n

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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Figure 1. Exchange graph of minors

neighbours obtained by replacing one of its elements xk by a new one x′
k related by a

relation

xkx
′
k = M1 +M2

where M1 and M2 are mutually prime monomials in {x1, . . . , xk−1, xk+1, . . . , xm}, given
by precise combinatorial rules. These replacements, called mutations and denoted by µk

are involutive. For precise definitions and details about these constructions, we refer to
[4].

In the previous example, the coefficients are ∆1
4, ∆

12
34 and ∆123

234 and the cluster variables
are all the other non-trivial minors. The extended clusters are the sets appearing at the
vertices of Figure 1.
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The aim of the following sections is to describe examples of additive categorifications
of cluster algebras. It consists of enhancing the cluster algebra structure with an additive
category, some objects of which reflect the combinatorial structure of the cluster algebra;
moreover, there is an explicit formula, the cluster character associating to these particular
objects elements of the algebra, in a way which is compatible with the combinatorial
structure. The examples we develop here rely on (abelian) module categories. They are
particular cases of categorifications by exact categories appearing in [6] (simply-laced case)
and [2] (non simply-laced case). The study of cluster algebras and their categorifications
has been particularly successful these last years. For a survey on categorification by
triangulated categories and a much more complete bibliography, see [7].

2. The preprojective algebra and the cluster character

Let Q be the following quiver (oriented graph):

1
α

((
2

β∗
66

α∗
hh 3

β
vv

As usual, denote by CQ the C-algebra, a basis of which is formed by the paths (including
0-length paths supported by each of the three vertices) and the multiplication of which is
defined by concatenation of paths when it is possible and vanishes when paths can not be
composed (we write here the composition from left to right, on the contrary to the usual
composition of maps). Thus, a (right) CQ-module is naturally graded by idempotents
(0-length paths) corresponding to vertices and the action of arrows seen as elements
of the algebra can naturally be identified with linear maps between the corresponding
homogeneous subspaces of the representation. We shall use the following right-hand side
convenient notation:

C

 0
−1


++ C2 1 0

0 1


44(

1 0
)ii C2

 0 0
1 0


tt

=

2
����
�

��<
<<

1
−1 ��<

<< 3
����
�

2
��<

<<

3

where each of the digits represents a basis vector of the representation and each arrow a
non-zero scalar (1 when not specified) in the corresponding matrix entry.

Let us now introduce the preprojective algebra of Q:

Definition 2. The preprojective algebra of Q is defined by

ΠQ =
CQ

(αα∗, α∗α + β∗β, ββ∗)

the representations of which are seen as particular representations of CQ (in other
words, modΠQ is a full subcategory of modCQ).
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Example 3. Among the following representations of CQ, the first one and the second
one are representations of ΠQ:

1
��<

<<

2
��<

<<

3

;

2
����
�

��<
<<

1
−1 ��<

<< 3
����
�

2

; 1 %%2ee ;

2
����
�

��<
<<

1
−1 ��<

<< 3
����
�

2
��<

<<

3

.

One of the property, which is discussed in many places (for example in [6]), of the
preprojective algebra of Q, fundamental for this categorification, is

Proposition 4. The category modΠQ is stably 2-Calabi-Yau. In other words, for every
X,Y ∈ modΠQ,

Ext1(X,Y ) ' Ext1(Y,X)∗

functorially in X and Y , where Ext1(Y,X)∗ is the C-dual of Ext1(Y,X). In particular, it
is a Frobenius category (is has enough projective objects and enough injective objects and
they coincide).

Let us now define the three following one-parameter subgroups of N :

x1(t) =


1 t 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 x2(t) =


1 0 0 0
0 1 t 0
0 0 1 0
0 0 0 1

 x3(t) =


1 0 0 0
0 1 0 0
0 0 1 t
0 0 0 1

 .

For X ∈ modΠQ and any sequence of vertices a1, a2, . . . , an of Q, we denote by

ΦX,a1a2...an =

{
0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X | ∀i ∈ {1, 2, . . . , n}, Xi

Xi−1

' Sai

}
the variety of composition series of X of type a1a2 . . . an (Sai is the simple module, of
dimension 1, supported at vertex ai). This is a closed algebraic subvariety of the product
of Grassmannians

Gr1(X)×Gr2(X)× · · · ×Grn(X).

We denote by χ the Euler characteristic. Using results of Lusztig and Kashiwara-Saito,
Geiß-Leclerc-Schroër proved the following result:

Theorem 5 ([6]). Let X ∈ modΠQ. There is a unique ϕX ∈ C[N ] such that

ϕX (xa1(t1)xa2(t2) . . . xa6(t6)) =
∑

i1,i2,...,i6∈N

χ
(
Φ

X,a
i1
1 a

i2
2 ...a

i6
6

) ti11 t
i2
2 . . . ti66

i1!i2! . . . i6!

for every word a1a2a3a4a5a6 representing the longest element of S4 (a
ik
k is the repetition

ik times of ak).

The map ϕ : modΠQ → C[N ] is called a cluster character.

Remark 6. (1) The uniqueness in the previous theorem is easy because it is well known
that

xa1(t1)xa2(t2) . . . xa6(t6)

runs over a dense subset of N ;
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X ∈ modΠQ S1 S2 S3

1
��<

<<

2

2
����
�

1

2
��<

<<

3

3
����
�

2

ϕX ∈ C[N ] ∆1
2 ∆2

3 ∆3
4 ∆12

23 ∆1
3 ∆23

34 ∆2
4

X ∈ modΠQ

2
����
�

��<
<<

1 3

1
��<

<< 3
����
�

2

1[dr]

2
��<

<<

3

2
��<

<<
����
�

1
��<

<< 3
����
�

2

3
����
�

2
����
�

1

ϕX ∈ C[N ] ∆13
34 ∆12

24 ∆123
234 ∆12

34 ∆1
4

Figure 2. Cluster character

(2) the existence is much harder and strongly relies on the construction of semi-
canonical bases by Lusztig [8]. In particular, the fact that it does not depend
on the choice of a1a2a3a4a5a6 is not clear a priori (see the following examples).

Example 7. We suppose that a1a2a3a4a5a6 = 213213. Then

xa1(t1)xa2(t2)xa3(t3)xa4(t4)xa5(t5)xa6(t6) =


1 t2 + t5 t2t4 t2t4t6
0 1 t1 + t4 t1t3 + t1t6 + t4t6
0 0 1 t3 + t6
0 0 0 1

 .

• The module S1 has only one composition series, of type 1. Therefore Φ1(S1) is
one point and Φa(S1) = ∅ for any other a. Identifying the two members in the
formula of the previous theorem,

ϕS1 (xa1(t1)xa2(t2)xa3(t3)xa4(t4)xa5(t5)xa6(t6)) = t2 + t5 = ∆1
2.

• The module

P2 =

2
��<

<<
����
�

1
��<

<< 3
����
�

2
has two composition series, of type 2312 and 2132. Therefore,

ϕP2 (xa1(t1)xa2(t2)xa3(t3)xa4(t4)xa5(t5)xa6(t6)) = t1t2t3t4 = ∆12
34.

Remark that, in this case, the only composition series which is playing a role
is 2132, even if the situation is symmetric. This justify the second part of the
previous remark.

The other indecomposable representations of ΠQ and their cluster character values are
collected in Figure 2.

Two important properties of this cluster character were proved by Geiß-Leclerc-Schroër
(see for example [6]):

Proposition 8. Let X,Y ∈ modΠQ.

(1) ϕX⊕Y = ϕXϕY .
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(2) Suppose that dimExt1(X, Y ) = 1 (and therefore dimExt1(Y,X) = 1) and let

0 → X → Ta → Y → 0 and 0 → Y → Tb → X → 0

be two (unique up to isomorphism) non-split short exact sequences. Then

ϕXϕY = ϕTa + ϕTb
.

3. Minimal approximations

This section recall the definition and elementary properties of approximations. It is
there for the sake of ease. In what follows, modΠQ can be replaced by any additive
Hom-finite category over a field.

Definition 9. Let X and T be two objects of modΠQ. A left add(T )-approximation of
X is a morphism f : X → T ′ such that

• T ′ ∈ add(T ) (which means that every indecomposable summand of T ′ is an inde-
composable summand of T ) ;

• every morphism g : X → T factors through f .

If, moreover, there is no strict direct summand T ′′ of T ′ and left add(T )-approximation
f ′ : X → T ′′, then f is said to be a minimal left add(T )-approximation.

In the same way, we can define

Definition 10. Let X and T be two objects in modΠQ. A right add(T )-approximation
of X is a morphism f : T ′ → X such that

• T ′ ∈ add(T ) ;
• every morphism g : T → X factors through f .

If, moreover, there is no strict direct summand T ′′ of T ′ and right add(T )-approximation
f ′ : T ′′ → X, then f is said to be a minimal right add(T )-approximation.

Now, a classical proposition which permits to explicitly compute approximations:

Proposition 11. Let X and T ' T i1
1 ⊕T i2

2 ⊕· · ·⊕T in
n be two objects in modΠQ (the Ti’s

are non-isomorphic indecomposable). For i, j ∈ {1, . . . , n}, we denote by Iij the subvector
space of Hom(Ti, Tj) consisting of the non-invertible morphisms (Iij = Hom(Ti, Tj) if
i 6= j). Thus, for j ∈ {1, . . . , n}, we obtain a linear map⊕

i∈{1,...,n}

Iij ⊗ Hom(X,Ti)
ϕj−→ Hom(X,Tj)

(g, f) 7→ g ◦ f.

Let Bj be a basis of cokerϕj lifted to Hom(X,Tj). Then the morphism

X
(f)j∈{1,...,n},f∈Bj−−−−−−−−−−→

⊕
j∈{1,...,n}

T
#Bj

j

is a minimal left add(T )-approximation of X. Moreover, any minimal left add(T )-
approximation of X is isomorphic to it.
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The previous proposition has a dual version which permits to compute minimal right
approximations. In practice, this computation relies on searching morphisms up to fac-
torization through other objects. There is an explicit example of computation in Example
19.

4. Maximal rigid objects and their mutations

Let us introduce the objects the combinatorics of which will play the role of the cluster
algebra structure.

Definition 12. Let X ∈ modΠQ.

• The module X is said to be rigid if it has no self-extension, (i.e., Ext1(X,X) = 0).
• The module X is said to be basic maximal rigid if it is basic (i.e., it does not
have two isomorphic indecomposable summands), rigid, and maximal for these
two properties.

Remark 13. A basic maximal rigid ΠQ-module contains ΠQ as a direct summand (because
ΠQ is both projective and injective and therefore has no extension with any module).

Example 14. The object

1
��<

<< 3
����
�

2
⊕

3
����
�

2
⊕

1
��<

<<

2
⊕

1[dr]

2
��<

<<

3

⊕
2

��<
<<

����
�

1
��<

<< 3
����
�

2

⊕
3

����
�

2
����
�

1

,

the last three summands of which are the indecomposable projective-injective ΠQ-modules,
is basic maximal rigid. It is easy to check that it is basic and rigid, but more difficult to
prove that it is maximal for these properties (see [6] for more details).

Remark 15. We can prove that all basic maximal rigid objects have the same number of
indecomposable summands (six in the example we are talking about).

The following result permits to define a mutation on basic maximal rigid objects. Con-
sidered as an operation on isomorphism classes of basic maximal rigid objects, the induced
combinatorial structure will correspond to the one of a cluster algebra.

Theorem 16 ([6]). Let T ' T1 ⊕ T2 ⊕ T3 ⊕ P1 ⊕ P2 ⊕ P3 ∈ modΠQ be basic maximal
rigid such that P1, P2 and P3 are the indecomposable projective ΠQ-modules and T1, T2

and T3 are indecomposable non-projective ΠQ-modules. Then, for i ∈ {1, 2, 3}, there are
two (unique) short exact sequences

0 → Ti
f−→ Ta

f ′
−→ T ∗

i → 0 and 0 → T ∗
i

g−→ Tb
g′−→ Ti → 0

such that

(1) f and g are minimal left add(T/Ti)-approximations ;
(2) f ′ and g′ are minimal right add(T/Ti)-approximations ;
(3) T ∗

i is indecomposable and non-projective ;
(4) dimExt1(Ti, T

∗
i ) = dimExt1(T ∗

i , Ti) = 1 and the two short exact sequences do not
split ;

(5) µi(T ) = T/Ti ⊕ T ∗
i is basic maximal rigid ;
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(6) Ta and Tb do not have common summands.

Remark 17. In the previous theorem, the existence and uniqueness, regarding the first
two conditions, are automatic, except the fact that the extremities of the two short exact
sequences coincide up to order. This fact strongly relies on the stably 2-Calabi-Yau
property. It implies that µi is involutive.

Definition 18. In the previous theorem, µi is called the mutation in direction i. The
short exact sequences appearing are called exchange sequences.

Example 19. Let

T =
1

��<
<< 3

����
�

2
⊕

3
����
�

2
⊕

1
��<

<<

2
⊕

1[dr]

2
��<

<<

3

⊕
2

��<
<<

����
�

1
��<

<< 3
����
�

2

⊕
3

����
�

2
����
�

1

.

Using Proposition 11, we get a left add

(
T/

3
����
�

2

)
-approximation of

3
����
�

2
:

3
����
�

2
→

1
��<

<< 3
����
�

2

and computing the cokernel, we get the exchange sequence:

0 →
3

����
�

2
→

1
��<

<< 3
����
�

2
→ S1 → 0

so that

µ2(T ) =
1

��<
<< 3

����
�

2
⊕ S1 ⊕

1
��<

<<

2
⊕

1[dr]

2
��<

<<

3

⊕
2

��<
<<

����
�

1
��<

<< 3
����
�

2

⊕
3

����
�

2
����
�

1

.

Doing mutation in the reverse direction:

0 → S1 →
3

����
�

2
����
�

1

→
3

����
�

2
→ 0.

Let us now compute µ1µ2(T ) with its two exchange sequences:

0 →
1

��<
<< 3

����
�

2
→ S1 ⊕

2
��<

<<
����
�

1
��<

<< 3
����
�

2

→
2

����
�

1
→ 0

0 →
2

����
�

1
→

1
��<

<<

2
⊕

3
����
�

2
����
�

1

→
1

��<
<< 3

����
�

2
→ 0

µ1µ2(T ) =
2

����
�

1
⊕ S1 ⊕

1
��<

<<

2
⊕

1[dr]

2
��<

<<

3

⊕
2

��<
<<

����
�

1
��<

<< 3
����
�

2

⊕
3

����
�

2
����
�

1

.
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Computing inductively all the mutations, we obtain the exchange graph of maximal
rigid objects of ΠQ (Figure 3).

Then, using Proposition 8 and Theorem 16 together with other technical results, we
get the following proposition:

Proposition 20 ([6]). If we project the mutation of maximal rigid objects to C[N ] through
the cluster character ϕ, we get a cluster algebra structure on C[N ] (in the sense of [4]).
Moreover, this structure is the one proposed combinatorially in [1]. Under this projection,
we get the correspondence:

{non projective indecomposable objects} ↔ {cluster variables}
{projective indecomposable objects} ↔ {coefficients}

{basic maximal rigid objects} ↔ {extended clusters}

Example 21. Taking the notation of Example 19 and looking at Figure 2, we get:

∆1
2∆

2
4 = ϕS1ϕ 3

����
�

2

= ϕ1
��<

<< 3
����
�

2

+ ϕ 3
����
�

2
����
�

1

= ∆12
24 +∆1

4

and

∆12
24∆

1
3 = ϕ1

��<
<< 3

����
�

2

ϕ 2
����
�

1

= ϕ

S1⊕

2
��<

<<
����
�

1
��<

<< 3
����
�

2

+ ϕ
1

��<
<<

2
⊕

3
����
�

2
����
�

1

= ϕS1ϕ 2
��<

<<
����
�

1
��<

<< 3
����
�

2

+ ϕ1
��<

<<

2

ϕ 3
����
�

2
����
�

1

= ∆1
2∆

12
34 +∆12

23∆
1
4.

which can be easily checked by hand. These are part of the equalities which appear in
the proof of Proposition 1.

5. From simply-laced case to general one

Define the following symplectic form:

Ψ =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


and the subgroup

N ′ = {M ∈ N |tMΨM = Ψ} or, equivalently N ′ = NZ/2Z

where Z/2Z = 〈g〉 acts on N by M 7→ Ψ−1 (tM−1)Ψ. The group N ′ is a maximal
unipotent subgroup of a symplectic group of type C2.
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1
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����
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����
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��<
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����
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����
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⊕ 1
��<

<
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1
��<
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����
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��<

<
3
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����
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<
1 3
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<
1 3
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��<
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3
⊕ S3
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��<

<
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����
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⊕ S2

1
��<

<
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⊕ 3

����
2

⊕ S2

1
��<

< 3
����

2
⊕ S1 ⊕ 1

��<
<
2

2
���� ��<

<
1 3

⊕ S1 ⊕ 2
����

1

2
���� ��<

<
1 3

⊕ 2
��<

<
3
⊕ 2

����
1

2
��<

<
3
⊕ S2 ⊕ 2

����
1

1
��<

<
2
⊕ S2 ⊕ 2

����
1

1
��<

<
2
⊕ S1 ⊕ 2

����
1

Figure 3. Exchange graph of maximal rigid objects (up to projective summands)

The only non-trivial action of Z/2Z on Q induces an action on ΠQ and therefore on
modΠQ. Denote by π : C[N ] → C[N ′] the canonical projection. We can now formulate
the following result:

Theorem 22 ([2]). (1) If T is a Z/2Z-stable basic maximal rigid ΠQ-module, then
µ1µ3(T ) = µ3µ1(T ). Moreover, µ1µ3(T ) and µ2(T ) are also Z/2Z-stable.

(2) If X ∈ modΠQ, then π (ϕX) = π (ϕgX).
(3) If we denote µ̄2 = µ2 and µ̄1 = µ1µ3 = µ3µ1, acting on the set of Z/2Z-stable

maximal rigid ΠQ-modules, µ̄ induces through π ◦ ϕ the structure of a cluster
algebra on C[N ′], the clusters of which are projections of the Z/2Z-stable ones of
C[N ].
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Example 23. We have

∆12
23


1 a12 a13 a14
0 1 a23 a24
0 0 1 a34
0 0 0 1

 = a12a23 − a13 and ∆2
4


1 a12 a13 a14
0 1 a23 a24
0 0 1 a34
0 0 0 1

 = a24.

Moreover,

Ψ−1

t 
1 a12 a13 a14
0 1 a23 a24
0 0 1 a34
0 0 0 1


−1

Ψ

=


1 a34 a23a34 − a24 a12a23a34 − a12a24 − a13a34 + a14
0 1 a23 a12a23 − a13
0 0 1 a12
0 0 0 1


which implies that, as expected,

π
(
∆12

23

)
= πϕ1

��<
<<

2

= πϕ 3
����
�

2

= π
(
∆2

4

)
.

The exchange graph of the Z/2Z-stable basic maximal rigid objects of modΠQ is pre-
sented on Figure 4, in relation to the exchange graph of the basic maximal rigid objects.
It permits, in view of Figure 1 to describe the clusters of C[N ′]:

∆1
4 = ∆123

234,∆
12
34,

∆13
34,∆

23
34 = ∆1

3

∆1
4 = ∆123

234,∆
12
34,

∆13
34,∆

1
2 = ∆3

4

∆1
4 = ∆123

234,∆
12
34,

∆12
24,∆

1
2 = ∆3

4MMMMMM
∆1

4 = ∆123
234,∆

12
34,

∆12
24,∆

2
4 = ∆12

23

qqq
qqq

∆1
4 = ∆123

234,∆
12
34,

∆2
3,∆

2
4 = ∆12

23

∆1
4 = ∆123

234,∆
12
34,

∆2
3,∆

23
34 = ∆1

3

MMM
MMM qqqqqq

.

6. Scope of these results and consequences

The example presented here can be generalized to the coordinate rings of:

• The groups of the form

N(w) = N ∩
(
w−1N−w

)
and Nw = N ∩ (B−wB−)
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Figure 4. Exchange graph of Z/2Z-stable maximal rigid objects

where N is a maximal unipotent subgroup of a Kac-Moody group, N− its opposite
unipotent group, B− the corresponding Borel subgroup, and w is an element of the
corresponding Weyl group. In particular, if N is of Lie type and w is the longest
element, then N(w) = N .

• Partial flag varieties corresponding to classical Lie groups.

These results were obtained in [5] and [6] for the simply-laced cases and in [2] for the
non simply-laced cases.

It permits for example to prove in these cases that all the cluster monomials (products
of elements of a same extended cluster) are linearly independent (result which is now
generalized but was new at that time) and other more specific results (for example the
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classification of partial flag varieties the coordinate rings of which have finite cluster type,
that is a finite number of clusters).
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HOCHSCHILD COHOMOLOGY OF CLUSTER-TILTED ALGEBRAS OF
TYPES An AND Dn

TAKAHIKO FURUYA AND TAKAO HAYAMI

Abstract. In this note, we study the Hochschild cohomology for cluster-tilted algebras
of Dynkin types An and Dn. We first show that all cluster-tilted algebras of type An

are (D,A)-stacked monomial algebras (with D = 2 and A = 1), and then investigate
their Hochschild cohomology rings modulo nilpotence. Also we describe the Hochschild
cohomology rings modulo nilpotence for some cluster-tilted algebras of type Dn which
are derived equivalent to a (D,A)-stacked monomial algebra. Finally we determine the
structures of the Hochschild cohomology rings modulo nilpotence for algebras in a class
of some special biserial algebras which contains a cluster-tilted algebra of type D4.

1. Introduction

The purpose in this note is to study the Hochschild cohomology for cluster-tilted alge-
bras of Dynkin types An and Dn.

Throughout this note, let K denote an algebraically closed field. Let A be a finite-
dimensional K-algebra, and let Ae be the enveloping algebra Aop ⊗K A of A (hence right
Ae-modules correspond to A-A-bimodules). Then the Hochschild cohomology ring HH∗(A)
of A is defined by the graded ring

HH∗(A) := Ext∗Ae(A,A) =
⊕
i≥0

ExtiAe(A,A),

where the product is given by the Yoneda product. It is well-known that HH∗(A) is a
graded commutative K-algebra.

Let NA be the ideal in HH∗(A) generated by all homogeneous nilpotent elements. The
following question is important in the study of the Hochschild cohomology rings for finite-
dimensional algebras:

Question ([23]). When is the Hochschild cohomology ring modulo nilpotence HH∗(A)/NA

finitely generated as an algebra?

It is shown that the Hochschild cohomology rings modulo nilpotence are finitely generated
in the following cases: blocks of a group ring of a finite group [12, 25], monomial algebras
[16], self-injective algebras of finite representation type [17], finite-dimensional hereditary
algebras ([19]). On the other hand, Xu [26] gave an algebra whose Hochschild cohomology
ring modulo nilpotence is infinitely generated (see also [23]).

In [7], Buan, Marsh and Reiten introduced cluster-tilted algebras, and since then they
have been the subjects of many investigations (see for example [1, 3, 6, 7, 8, 9, 10, 11, 21]).
We briefly recall their definition. Let H = KQ be the path algebra of a finite acyclic

The detailed version of this paper will be submitted for publication elsewhere.
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quiver Q over K, and let Db(H) the bounded derived category of H. Then the cluster
category CH associated with H is defined to be the orbit category Db(H)/τ−1[1], where τ
denotes the Auslander-Reiten translation in Db(H), and [1] is the shift functor in Db(H)
([5, 10]). Note that, by [5], CH is a Krull-Schmidt category, and by Keller [20] it is also a
triangulated category. A basic object T in CH is called a cluster tilting object, if it satisfies
the following conditions ([5]):

(1) Ext1CH (T, T ) = 0; and
(2) the number of the indecomposable summands of T equals the number of vertices

of Q.

Let ∆ be the underlying graph of Q. Then the endomorphism ring EndCH (T ) of a cluster
tilting object T in CH is called a cluster-tilted algebra of type ∆ ([7]). In this note, we deal
with cluster-tilted algebras of Dynkin types An and Dn. Note that by [7] these algebras
are of finite representation type.

In Section 2, we show that cluster-tilted algebras of type An are (D,A)-stacked mono-
mial algebras (with D = 2 and A = 1) of [18] (Lemma 3), and then describe the structures
of their Hochschild cohomology rings modulo nilpotence by using [18] (Theorem 4). In
Section 3, we determine the Hochschild cohomology rings modulo nilpotence for some
cluster-tilted algebras of type Dn which are derived equivalent to a (D,A)-stacked mono-
mial algebra (Proposition 7). We also describe the Hochschild cohomology rings modulo
nilpotence for algebras in a class of some special biserial algebras which contains a cluster-
tilted algebra of type D4 (Theorem 9).

2. Cluster-tilted algebras of type An and the Hochschild cohomology
rings modulo nilpotence

In this section we describe the structure of the Hochschild cohomology rings modulo
nilpotence for cluster-tilted algebras of type An (n ≥ 1).

First we recall the presentation by the quiver and relations of cluster-tilted algebras of
type An given in [3, 9]. For a vertex x in a quiver Γ , the neighborhood of x is the full
subquiver of Γ consisting of x and the vertices which are end-points of arrows starting
at x or start-points of arrows ending with x. Let n ≥ 2 be an integer, and let Qn be the
class of quivers Q satisfying the following:

(1) Q has n vertices.
(2) The neighborhood of each vertex v of Q is one of the following forms:

v

•

v

•

•

v

•

•

v

•

•

v

•

•

v

•

•

v

• •

•

v

• •

•

v

• •

•__?????

��

??�����

??�����__????? ��

��

__?????
??����� ��?

??
??

__?????

��?
??

??

__?????

��?
??

??

��?
??

??

__?????

??�����

__?????

��

__?????
??�����

��?
??

??

����
��
�

//

__?????
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(3) There is no cycles in the underlying graph of Q apart from those induced by
oriented cycles contained in neighborhoods of vertices of Q.

Let Q1 = {Q′}, where Q′ is the quiver which has a single vertex and no arrows. It is
shown in [9, Proposition 2.4] that a quiver Γ is mutation equivalent An if and only if
Γ ∈ Qn.

In [9], Buan and Vatne proved the following (see also [3]):

Proposition 1 ([9, Proposition 3.1]). The cluster-tilted algebras of type An are exactly
the algebras KQ/I, where Q ∈ Qn, and

(2.1) I = 〈p | p is a path of length 2, and on an oriented 3-cycle in Q〉
As a consequence we see that cluster-tilted algebras of type An are gentle algebras of [2]:

Corollary 2 ([9, Corollary 3.2]). The cluster-tilted algebras of type An are gentle algebras.

Green and Snashall [18] introduced (D,A)-stacked monomial algebras by using the no-
tion of overlaps of paths, where D and A are positive integers with D ≥ 2 and A ≥ 1, and
gave generators and relations of the Hochschild cohomology rings modulo nilpotence for
(D,A)-stacked monomial algebras completely. (In this note, we do not state the definition
of (D,A)-stacked algebras and the result of [18]; see for their details [13, Section 1], [18,
Section 3], or [23, Section 3].)

It is known that (2, 1)-stacked monomial algebras are precisely Koszul monomial al-
gebras (equivalently, quadratic monomial algebras), and also (D, 1)-stacked monomial
algebras are exactly D-Koszul monomial algebras (see [4]). By the definition, we directly
see that all gentle algebras are (2, 1)-stacked monomial algebras (see [13]). Hence, by
Corollary 2, we have the following:

Lemma 3. All cluster-tilted algebras of type An are (2, 1)-stacked monomial algebras, and
so are Koszul monomial algebras.

By Lemma 3, we can apply the result of [18] to describe the Hochshild cohomology rings
of cluster-tilted algebras of type An. Applying [18, Theorem 3.4] with Proposition 1, we
have the following theorem:

Theorem 4. Let n be a positive integer, and let Λ = KQ/I be a cluster-tilted algebra
of type An, where Q ∈ Qn and I is the ideal given by (2.1). Suppose that charK 6= 2.
Moreover, let r be the number of oriented 3-cycles in Q. Then

HH∗(Λ)/NΛ '

{
K[x1, . . . , xr]/〈xixj | i 6= j〉 if r > 0

K if r = 0,

where deg xi = 6 for i = 1, . . . , r.

Example 5. Let Q be the following quiver with 17 vertices and five oriented 3-cycles:

• • •

•

• • •

•

• •

•

•

•

•

• •

•

// //

XX22222����
��
�

// oo //

XX22222����
��
�

// //

XX22222����
��
�

//

����
��
�

XX22222222222

��2
22
22

// //

XX22222����
��
�
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Then Q ∈ Q17. Suppose charK 6= 2, and let Λ := KQ/I, where I is the ideal generated
by all possible paths of length 2 on oriented 3-cycles. Then Λ is a cluster-tilted algebra of
type A17, and by Theorem 4 we have HH∗(Λ)/NΛ ' K[x1, . . . , x5]/〈xixj | i 6= j〉, where
deg xi = 6 (1 ≤ i ≤ 5).

3. Cluster-tilted algebras of type Dn and the Hochschild cohomology
rings modulo nilpotence

The purpose in this section is to describe the Hochschild cohomology rings modulo
nilpotence for some cluster-tilted algebras of type Dn (n ≥ 4) which are derived equivalent
to a (D,A)-stacked monomial algebra.

In [3, Theorem 2.3], Bastian, Holm and Ladkani introduced specific quivers, called
“standard forms” for derived equivalences, and proved that any cluster-tilted algebra of
type Dn is derived equivalent to one of cluster-tilted algebras of type Dn whose quiver is
a standard form.

It is known that Hochschild cohomology ring is invariant under derived equivalence, so
that it suffices to deal with cluster-tilted algebras of type Dn whose quivers are standard
forms. In this note, we consider the following quivers Γi (1 ≤ i ≤ 4). Clearly these quivers
are standard forms of [3, Theorem 2.3].

Γ1 :
•

•
• • · · · • • with m (≥ 4) vertices,%%KK

KK

99ssss
// //

Γ2 :

•

••

•

a2 = b2

a0a1

b0 b1

__?????????����
��
��
��
�

//

����
��
��
��
�__?????????

with m vertices, where m (≥ 5) is odd, or m = 4,Γ3 :
•

•

• •

•

•

••

...
__?????

oo ����
��
�
��

��?
??

??
//??�����

Γ4 :
•

•

• •

•

•

••

...

•

•
•

•

•

•
•

with 2m vertices, where m ≥ 3.
__?????

oo ����
��
�
��

��?
??

??
//??�����

oo

��

__???����� OOoo

??���

__???

//

OO

��?
?? ??���

�� //
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Remark 6. For i = 1, . . . , 4, let Λi = KΓi/Ii be the cluster-tilted algebra of type Dn

corresponding to Γi. Then we see from [3, 24] that

(1) Λ1 is the path algebra of a Dynkin quiver of type Dm.
(2) Λ2 is of type D4, and I2 = 〈a1a2, b1b2, a2a0, b2b0, a0a1 − b0b1〉. We immediately see

that Λ2 is a special biserial algebra of [22], but not a self-injective algebra.
(3) Λ3 is of type Dm, and I3 = 〈p | p is a path of length m− 1〉. Hence Λ3 is a

(m−1, 1)-stacked monomial algebra, and is also a self-injective Nakayama algebra.
(4) Λ4 is of type D2m, and it follows by [3, Lemma 4.5] that Λ4 is derived equivalent

to the (2m− 1, 1)-stacked monomial algebra Λ′ = KQ′/I ′, where Q′ is the cyclic
quiver with 2m vertices

1 2

7

2m 3

4

6 5

•

•

• •

•

•

••

...
__?????

oo ����
��
�
��

��?
??

??
//??�����

and I ′ is generated by all paths of length 2m− 1. Note that Λ′ is a self-injective
Nakayama algebra, and moreover is a cluster-tilted algebra of type D2m ([21, 24]).

In [19], Happel described the Hochschild cohomology for path algebras. Using this result
and [18, Theorem 3.4], we have the following proposition:

Proposition 7. For the algebras Λ1, Λ3 and Λ4 above, we have

HH∗(Λ1) ' HH∗(Λ1)/NΛ1 ' K

HH∗(Λ3)/NΛ3 ' HH∗(Λ4)/NΛ4 ' K[x].

Finally we describe the Hochschild cohomology ring modulo nilpotence of the algebra
Ak := Γ2/Jk, where k ≥ 0 and Jk is the ideal generated by the following elements:

(a1a2a0)
ka1a2, b1b2, (a2a0a1)

ka2a0, b2b0, (a0a1a2)
ka0a1 − b0b1.

If k = 0, then J0 = I2, and so A0 = Γ2/J0 coincides with the algebra Λ2. Note that, for
all k ≥ 0, Ak is a special biserial algebra and not a self-injective algebra.
Now the dimensions of the Hochschild cohomology groups of Ak are given as follows:

Theorem 8 ([14]). For k ≥ 0 and i ≥ 0 we have

dimK HHi(Ak) =



k + 1 if i ≡ 0 (mod 6)

k + 1 if i ≡ 1 (mod 6)

k if i ≡ 2 (mod 6)

k + 1 if i ≡ 3 (mod 6) and charK | 3k + 2

k if i ≡ 3 (mod 6) and charK - 3k + 2

k + 1 if i ≡ 4 (mod 6) and charK | 3k + 2

k if i ≡ 4 (mod 6) and charK - 3k + 2

k if i ≡ 5 (mod 6).
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Moreover the Hochschild cohomology ring modulo nilpotence of Ak is given as follows:

Theorem 9 ([15]). For k ≥ 0, we have

HH∗(Ak)/NAk
' K[x], where deg x =

{
3 if k = 0 and charK = 2

6 otherwise.

Hence HH∗(Ak)/NAk
(k ≥ 0) is finitely generated as an algebra.

Remark 10. It seems that most of computations of the Hochschild cohomology rings mod-
ulo nilpotence for cluster-tilted algebras of type Dn except those in the derived equivalence
classes of Λi (1 ≤ i ≤ 4) are open questions.
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DERIVED AUTOEQUIVALENCES AND BRAID RELATIONS

JOSEPH GRANT

Abstract. We will consider braid relations between autoequivalences of derived cat-
egories of symmetric algebras. We first recall the construction of spherical twists for
symmetric algebras and the braid relations that they satisfy, as illustrated by Brauer
tree algebras. Then we explain the construction of periodic twists, which generalise
spherical twists for symmetric algebras. Finally, we explain a lifting theorem for peri-
odic twists, and show how this gives a new interpretation of the action on the derived
Picard group of lifts of longest elements of the symmetric group to the braid group.

1. Preliminaries

Let k be an algebraically closed field. All algebras we consider will be finite-dimensional
k-algebras, and for simplicity we will also assume that A is basic. We will denote the
category of finite-dimensional left A-modules by A -mod, and of finite-dimensional right
A-modules by mod-A.

Given an algebra A and a left (or right) A-module M , we have a right (or left, respec-
tively) A-module M∗ = Homk(M,k) with A-action fa(m) = f(am) for m ∈ M , f ∈ M∗,
and a ∈ A. This gives a duality

(−)∗ : A -mod
∼→ mod-A.

Similarly, if M is an A-B-bimodule for algebras A and B, then M∗ is a B-A-bimodule.
There is another way to construct a right module from M ∈ A -mod: we set M∨ =

HomA(M,A), where the action is given here by fa(m) = f(m)a for m ∈ M , f ∈ M∨,
and a ∈ A. This defines a functor

(−)∨ : A -mod → mod-A.

but in general this is not an equivalence. However, in the cases we consider below this
will be an equivalence.

Any algebra A has a natural structure of an A-A-bimodule given by the multiplication.
We say that A is a symmetric algebra if there exists an isomorphism of A-A-bimodules
A

∼→ A∗. Symmetric algebras have various equivalent definitions: one is that (−)∗ and
(−)∨ are natually isomorphic functors, and another is a Calabi-Yau type condition on the
derived category. For more information on this, we refer the reader to [Ric2, Section 3].

We will be interested in bounded derived categories of module categories over algebras
A, which we will denote Db(A). We refer the reader to [Wei, Chapter 10] for their definition
and basic properties. In partuicular, we will study autoequivalences of Db(A). Clearly the
autoequivalences form a group, but in fact we can restrict ourselves to a particular subset.
One way to define an endofunctor of Db(A) is to take the derived tensor product with

The detailed version of this paper will be submitted for publication elsewhere.
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a cochain complex X of A-A-bimodules. If this gives us an equivalence of triangulated
categories, we call X a two-sided tilting complex [Ric1]. Rickard showed that tensoring
with two-sided tilting complexes does give a subgroup of the group of autoequivalences
[Ric1]. We call this subgroup the derived Picard group of A, and denote it DPic(A). Here
we can work with ordinary tensor products, and will not need to consider derived tensor
products, as all our two-sided tilting complexes will be presented as cochain complexes of
A-A-bimodules which are projective on both sides.

2. Spherical Twists and Braid Relations

Let A be a symmetric algebra and let P be a projective A-module. Following [ST], we
say that P is spherical if EndA(P ) ∼= k[x]/〈x2〉. In this case, consider the cochain complex
of A-A-bimodules

P ⊗k P
∨ → A

concentrated in degrees 1 and 0, where the nonzero map is given by evaluation. We will
denote this complex by XP . It defines an object in the bounded derived category Db(A),
which we will also denote by XP . Then tensoring with XP defines an endofunctor

XP ⊗A − : Db(A) → Db(A)

which we denote by FP .

Theorem 1 ([RZ] for Brauer tree algebras, [ST] in general). If the projective A-module
P is spherical then FP is an autoequivalence.

Now let P1, . . . , Pn be a collection of n spherical projective A-modules. Following [ST],
we say that {P1, . . . , Pn} is an An-collection if

dimk HomA(Pi, Pj) =

{
0 if |i− j| > 1;
1 if |i− j| = 1

for all 1 ≤ i, j ≤ n.

Theorem 2 ([RZ] for Brauer tree algebras, [ST] in general). If {P1, . . . , Pn} is an An-
collection then the spherical twists Fi = FPi

satisfy the braid relations

• FiFj
∼= FjFi if |i− j| > 1;

• FiFjFi
∼= FjFiFj if |i− j| = 1

for all 1 ≤ i, j ≤ n.

Another way to say this is as follows: let Bn+1 be the braid group on the letters
{1, . . . , n, n+ 1}. This is generated by elements s1, . . . , sn and has relations

• sisj = sjsi if |i− j| > 1;
• sisjsi = sjsisj if |i− j| = 1.

If A has an An-collection then we have a group homomorphism

Bn+1 → DPic(A)

which sends si to the spherical twist Fi.
Let Sn+1 be the symmetric group on the letters {1, . . . , n, n + 1}. We also denote the

generators of Si by s1, . . . , sn, and there is an obvious group epimorphism Bn+1 � Sn+1.
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3. Periodic Twists

We now describe a generalization of the spherical twists described above.
An algebra E is called twisted periodic if there is an algebra automorphism σ : E

∼→ E
and an exact sequence of E-E-bimodules

0 → Eσ → Yn−1 → Yn−2 → · · · → Y1 → Y0 → E → 0

where each Yi is a projective E-E-bimodule. This just says that the E-E-bimodule E has
a periodic resolution which is projective up to some automorphism (twist). We say that
E has a period n.

Let A be a symmetric algebra and P a projective A-module. Let E = EndA(P )op, so
P is an A-E-bimodule, and suppose that E is a periodic algebra. We denote the cochain
complex

Yn−1 → Yn−2 → · · · → Y1 → Y0

concentrated in degrees n−1 to 0 by Y . Then we have a natural map f : Y → E of cochain
complexes of E-E-bimodules. We use this to construct a map g : P ⊗E Y ⊗E P∨ → A of
cochain complexes of A-A-bimodules defined as the following composition

P ⊗E Y ⊗E P∨ → P ⊗E E ⊗E P∨ ∼→ P ⊗E P∨ → A

where the first map is given by P ⊗E f ⊗E P∨ and the last is given by an evaluation map.
We take the cone of the map g to obtain a cochain complex

P ⊗E Yn−1 ⊗E P∨ → P ⊗E Yn−2 ⊗E P∨ → · · · → P ⊗E Y0 ⊗E P∨ → A

concentrated in degrees n to 0, which we denote X. By tensoring over A we obtain an
endofunctor

X ⊗A − : Db(A) → Db(A)

which we denote by ΨP .

Theorem 3 ([Gra]). If the algebra E is twisted periodic then ΨP is an autoequivalence.

Note that the functor ΨP depends on the resolution Y that we choose.
If E ∼= k[x]/〈x2〉 then we recover the spherical twists described above by using the exact

sequence

0 → Eσ → E ⊗k E → E → 0

where σ is the algebra automorphism which sends x to −x.

4. Brauer Tree Algebras of Lines

We define a collection of algebras Γn, n ≥ 1, which are isomorphic to the Brauer tree
algebras of lines without multiplicity. Let Γ1 = k[x]/〈x2〉 and let Γ2 = kQ2/I2, where Q2

is the quiver

Q2 = 1
α

))
2

β

ii
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and I2 is the ideal generated by αβα and βαβ. For n ≥ 3, let Γn = kQn/In where Qn is
the quiver

Qn = 1
α1

))
2

β2

ii

α2 ++ · · ·
β3

ii

αn−1
))
n

βn

kk

and In is the ideal generated by αi−1αi, βi+1βi, and αiβi+1 − βiαi−1 for 2 ≤ i ≤ n − 1.
Note that if we take the indecomposable projective Γn-modules Pi, Pi+1, . . . , Pj for 1 ≤
i < j ≤ n, we have EndA(Pi ⊕ Pi+1 ⊕ . . .⊕ Pj)

op ∼= Γj−i.
One can check that for all n ≥ 1, each indecomposable projective Γn-module is spherical.

Spherical twists for these algebras were studied in detail in [RZ].
We have the following observation:

Lemma 4. Let A be a symmetric algebra. A collection {P1, . . . , Pn} of projective A-
modules is an An-collection if and only if

EndA(
n⊕

i=1

Pi)
op ∼= Γn.

The algebras Γn are of finite representation type, and hence are twisted periodic, but
in fact we can say more.

Theorem 5 ([BBK]). The algebra n is twisted periodic with period n and automorphism
σn induced by the quiver automorphism which sends the vertex i to n− i+ 1.

A natural question is: what do the associated periodic twists look like? It was noted
in [Gra] that periodic twists associated to Γ2 are isomorphic to the composition F1F2F1

of spherical twists. We will show that this pattern continues.

5. A Lifting Theorem

Let A be a symmetric algebra and let P1, . . . , Pn be a collection of indecomposable
projective A-modules. We will use the following notation:

• P =
⊕n

i=1 Pi;
• E = EndA(P )op;
• Ei = EndA(Pi)

op;
• Qi = HomA(P, Pi),
• Q =

⊕n
i=1Qi;

so {Qi|1 ≤ i ≤ n} is a complete set of representatives of the isoclasses of indecomposable
projective E-modules. Note that EndE(Qi)

op ∼= Ei. We will explain a connection between
compositions of periodic twists for E and compositions of corresponding periodic twists
for A.

Theorem 6 (Lifting Theorem). Suppose that E and each Ei are twisted periodic with

fixed truncated resolutions Y and Yi. Let Ψi = ΨPi
: Db(A)

∼→ Db(A) and Ψ′
i = ΨQi

:

Db(E)
∼→ Db(E). If

ΨQ
∼= Ψ′

i`
. . .Ψ′

i2
Ψ′

i1

for some 1 ≤ i1, . . . , i` ≤ n then

ΨP
∼= Ψi` . . .Ψi2Ψi1.
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We now specialise to the case where {P1, . . . , Pn} is an An-collection, so E ∼= Γn, and
Fi = Ψi and F ′

i = Ψ′
i are spherical twists.

Recall that the symmetric group Sn+1 has a unique longest element, often denoted w0.
We choose a particular presentation

w0 = s1(s2s1) . . . (sn . . . s2s1) ∈ Sn+1

and define an element w0 of the braid group by the same presentation. Rouquier and
Zimmermann showed how this element acts on the derived Picard group of an algebra Γn:

Theorem 7 ([RZ, Theorem 4.5]). The image of the element w0 under the group morphism
Bn+1 → DPic(Γn) is the functor −σn [n] which twists on the right by the automorphism σn

and shifts cochain complexes n places to the left.

By Theorem 5 we see that ΨΓn : Db(Γn) → Db(Γn) is the same functor, and hence by
applying the lifting theorem we obtain the following:

Corollary 8. Suppose the symmetric algebra A has an An-collection {P1, . . . , Pn}. Then
the image of w0 in the group morphism Bn+1 → DPic(A) is ΨP , where P =

⊕n
i=1 Pi.

We also obtain a new proof of the braid relations by using Theorem 7 in the case n = 2,
or alternatively by performing a straightforward calculation with Γ2, and then applying
the lifting theorem.
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n-REPRESENTATION INFINITE ALGEBRAS

MARTIN HERSCHEND

Abstract. We introduce the class of n-representation infinite algebras and discuss some
of their homological properties. We also present the family of n-representation infinite

algebras of type Ã.

1. Introduction

This brief survey contains the results from my presentation at the 44th Symposium on
Ring Theory and Representation Theory in Okayama. It is based on joint work Osamu
Iyama and Steffen Oppermann. A detailed final version will be published elsewhere.

The class of hereditary finite dimensional algebras is one of the best understood in terms
of representation theory, especially in the context of Auslander-Reiten theory. This applies
in particular to representation finite hereditary algebras. In higher dimensional Auslander-
Reiten theory an analogue of these algebras is given by the class of n-representation finite
algebras [1, 2]. Recall that a finite dimensional algebra is called n-representation finite
if it has global dimension at most n and admits an n-cluster tilting module. Since a
1-cluster tilting module is the same as an additive generator of the module category,
1-representation finite means precisely hereditary and representation finite.

The aim of this report is to define the class of n-representation infinite algebras, that will
in a similar way be a higher dimensional analogue of representation infinite hereditary
algebras. To do this we begin by recalling some properties of n-representation finite
algebras.

Let K be a field and Λ a finite dimensional K-algebra with gl.dimΛ ≤ n. We always
assume that Λ is ring indecomposable. Denote by modΛ the category of finite dimensional
left Λ-modules and by Db(Λ) the bounded derived category of modΛ. Combining the K-
dual D := HomK(−, K) with the Λ-dual we obtain the Nakayama functor

ν := DRHom(−,Λ) : Db(Λ) → Db(Λ).

It is a Serre functor in the sense that there is a functorial ismorphism

HomDb(Λ)(X, Y ) ' DHomDb(Λ)(Y, ν(X)).

We combine ν with the shift functor on Db(Λ) to obtain the autoequivalence

νn := ν ◦ [−n] : Db(Λ) → Db(Λ).

It plays the role of the higher Auslander-Reiten translation in Db(Λ). More precisely,
define

τn := DExtnΛ(−,Λ) : modΛ → modΛ

The detailed version of this paper will be submitted for publication elsewhere.
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and

τ−n := ExtnΛ(DΛ,−) : modΛ → modΛ.

Then τn = H0(νn−) and τ−n = H0(ν−1
n −). Using these functors we can capture the notion

of n-representation finiteness in the following way.

Proposition 1. [3] Let Λ be a finite dimensional K-algebra with gl.dimΛ ≤ n. Then the
following conditions are equivalent.

(a) Λ is n-representation finite.
(b) For every indecomposable projective Λ-module P , there is a non-negative integer

`P such that ν−`P
n P is an indecomposable injective Λ-module.

We remark that if condition (b) is satisfied then ν−i
n P ' τ−i

n P for all 0 ≤ i ≤ `P and⊕
P

`P⊕
i=0

τ−i
n P =

⊕
P

`P⊕
i=0

ν−i
n P

is an n-cluster tilting Λ-module [1]. Furthermore, since ν−1 sends injectives to projectives
we have

ν−(`P+1)
n P = ν−1(ν−`P

n P )[n] = P ′[n] ∈ modΛ[n]

for some indecomposable projective P ′. We conclude that knowing the τ−n -orbits of the
indecomposable projectives in modΛ is enough to determine their ν−1

n -orbits. Comparing
this to the classical case n = 1 gives us a hint how to define n-representation infinite
algebras.

2. n-representation infinite algebras

Recall that if n = 1 and Λ is representation infinite, then τ−iP is never injective for
an indecomposable projective Λ-module P . In fact ν−i

1 P = τ−iP ∈ modΛ for all i ≥ 0.
Inspired by this we make the following definition.

Definition 2. Let Λ be a finite dimensional K-algebra with gl.dimΛ ≤ n. We say that
Λ is n-representation infinite if

ν−i
n Λ ∈ modΛ

for all i ≥ 0.

We remark that this condition is equivalent to νi
n(DΛ) ∈ modΛ for all i ≥ 0. In the

classical setting of n = 1 every indecomposable module is either preprojective, preinjective
or regular. We define higher analogues of these classes of modules as follows.

Definition 3. Let Λ be an n-representation infinite algebra. The full subcategories of
n-preprojective, n-preinjective and n-regular modules are defined as

P := add{ν−i
n Λ | i ≥ 0},

I := add{νi
n(DΛ) | i ≥ 0},

R := {X ∈ modΛ | ExtiΛ(P, X) = 0 = ExtiΛ(X, I) for all i ≥ 0},

respectively.

–56–



Note that P and I are well-defined as subcategories of modΛ since Λ is n-representation
infinite. Many properties of representation infinite hereditary algebras generalize to n-
representation infinite algebras. For instance n-regular modules can be characterized by
R = {X ∈ modΛ | νi

n(X) ∈ modΛ for all i ∈ Z}. Moreover, one has the following result
about vanishing of homomorphisms and extensions.

Theorem 4. Let Λ be an n-representation infinite algebra. Then the following holds:

HomΛ(R,P) = 0, HomΛ(I,P) = 0, HomΛ(I,R) = 0,
ExtnΛ(P,R) = 0, ExtnΛ(P, I) = 0, ExtnΛ(R, I) = 0.

3. n-representation infinite algebras of type Ã

In this section we assume that K is an algebraically closed field of characteristic zero.
We shall present a family of n-representation infinite algebras by generalizing one of the
simplest classes of representation infinite hereditary algebras, namely path algebras of

extended Dynkin quivers of type Ã.

On can construct extended Dynkin quivers of type Ã by taking the following steps.
Start with the double quiver of A∞

∞:

· · · −2
++ −1

((
kk 0kk

((
1

((
hh 2hh · · ·

Identify vertices and arrows modulo m for some m ≥ 1 and remove one arrow from each
2-cycle. For instance, choosing m = 2 and removing the arrows starting in the odd vertex
gives the Kronecker quiver:

0
))
55 1.

We shall construct the n-representation infinite algebras of type Ã similarly. First we
define the covering quiver Q. As vertices in Q we take the lattice

Q0 = G :=

{
v ∈ Zn+1

∣∣∣∣∣
n+1∑
i=1

vi = 0

}
.

It is freely generated as an abelian group by the elements fi := ei+1 − ei for 1 ≤ i ≤ n.
We also define fn+1 := e1 − en+1, so that

∑n+1
i=1 fi = 0. As arrows in Q we take

Q1 := {ai : v → v + fi | v ∈ G, 1 ≤ i ≤ n+ 1}.

Then Q is the double of A∞
∞ for n = 1. For n ≥ 2 we need to introduce certain relations.

Let v ∈ Q0 and i, j ∈ {1, . . . , n+1}. We consider the relation rvij := aiaj − ajai from v to
v + fi + fj and let I be the two-sided ideal in KQ generated by

{rvij | v ∈ Q0, 1 ≤ i, j ≤ n+ 1}.

Since G is an abelian group it acts on itself by translations. This extends to a unique
G-action on the quiver Q. We say that a subgroup B ≤ G is cofinite if G/B is finite.
In that case we define Γ(B) as the orbit algebra of KQ/I. More explicitly we define
Q/B := (Q0/B,Q1/B) and set

Γ(B) := K(Q/B)/〈rvij | v ∈ Q0/B, 1 ≤ i, j ≤ n+ 1〉
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where rvij := aiaj−ajai and a denotes the B-orbit of a. As motivation for this construction
we remark that Γ(B) is isomorphic to a skew group algebra K[x1, . . . , xn+1] ∗H for some
finite abelian subgroup H < SLn+1(K).

Next we consider the analogue of 2-cycles. For every v ∈ Q0 and permutation σ of
1, . . . , n + 1, there is a cyclic path aσ(1) · · · aσ(n+1) from v to v. We call such cyclic paths
small cycles. A subset C ⊂ Q1 is called a cut if it contains precisely one arrow from every
small cycle. The symmetry group of C is defined as

SC := {g ∈ G | gC = C} ≤ G.

We say that a cut C is acyclic if all paths in QC := (Q0, Q1 \ C) have length bounded
by some N ≥ 0, and periodic if SC is cofinite in G. If both these conditions are satisfied
and B ≤ SC is cofinite we say that

Γ(B)C := Γ(B)/〈a | a ∈ C/B〉

is n-representation finite of type Ã. The name is justified by the following Theorem.

Theorem 5. If C is an acyclic periodic cut and B ≤ SC is cofinite, then Γ(B)C is
n-representation finite.

We remark that if n = 1, then Γ(B)C is a path algebra of an acyclic quiver of type Ã
constructed exactly as explained above. For n = 2, Q0 is a triangular lattice in the plane
and Q is

• • • • • • •

• • • • • •

• • • • • • •

• • • • • •

• • • • • • •

· · ·

· · ·

· · ·
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where the small cycles are formed by the small triangles.
Finally we shall generalize the alternating orientation of A∞

∞. To do this define ω : G →
Z/(n+ 1)Z by ω(fi) = 1 and set

C := {ai : v → v + fi | ω(v) = 0, 1 ≤ i ≤ n+ 1}.

Then every path inQ of length n+1 intersects C and so C is acyclic. Moreover, SC = kerω
and so C is periodic.

For n = 1, QC is

· · · −2 −1
((

kk 0 1
((

hh 2 · · ·
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For n = 2, QC is

• • • • • • •

• • • • • •

• • • • • • •

• • • • • •

• • • • • • •

· · ·

· · ·

· · ·
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where the dotted lines indicate commutativity relations in Γ/〈C〉.
Now let’s consider Γ(B)C for B = SC . Then we can identify Q0/B with Z/(n+1)Z via

ω and C/B consists of all arrows from n+ 1 to 1. Hence Γ(B)C is the Beilinson algebra:

1

a1

...
!!

an+1

== 2

a1

...
!!

an+1

== 3 · · · n
a1

...
&&

an+1

99n+ 1 , aiaj = ajai.

and for n = 1 we obtain the Kronecker algebra:

1
))
55 2.
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ON A DEGENERATION PROBLEM FOR COHEN-MACAULAY
MODULES

NAOYA HIRAMATSU

1. Introduction

The aim of this article is to give an outline of the paper [3], which is a joint work with
Yuji Yoshino.

In this note, we would like to give several examples of degenerations of maximal Cohen-
Macaulay modules and to show how we can describe them (Theorem 12). This result
depends heavily on the recent work by Yoshino about the stable analogue of degenera-
tions for Cohen-Macaulay modules over a Gorenstein local algebra [9]. In Section 3 we
also investigate the relation among the extended versions of the degeneration order, the
extension order and the AR order (Theorem 22).

2. Examples of degenerations

In this section, we recall the definition of degeneration and state several known results
on degenerations.

Definition 1. Let R be a noetherian algebra over a field k, and let M and N be finitely
generated left R-modules. We say thatM degenerates to N , or N is a degeneration ofM ,
if there is a discrete valuation ring (V, tV, k) that is a k-algebra (where t is a prime element)
and a finitely generated left R⊗k V -module Q which satisfies the following conditions:

(1) Q is flat as a V -module.
(2) Q/tQ ∼= N as a left R-module.
(3) Q[1/t] ∼= M ⊗k V [1/t] as a left R⊗k V [1/t]-module.

The following characterization of degenerations has been proved by Yoshino [7].

Theorem 2. [7, Theorem 2.2] The following conditions are equivalent for finitely gener-
ated left R-modules M and N .

(1) M degenerates to N .
(2) There is a short exact sequence of finitely generated left R-modules

0 −−−→ Z

(
ϕ
ψ

)
−−−→ M ⊕ Z −−−→ N −−−→ 0,

such that the endomorphism ψ of Z is nilpotent, i.e. ψn = 0 for n� 1.

Remark 3. Let R be a noetherian k-algebra.

(1) Suppose that a finitely generated R-module M degenerates to a finitely generated
module N . Then as a discrete valuation ring V in Definition 1 we can always take
the ring k[t](t). See [7, Corollary 2.4.]. Thus we always take k[t](t) as V .
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(2) Assume that there is an exact sequence of finitely generated left R-modules

0 −−−→ L −−−→ M −−−→ N −−−→ 0.

Then M degenerates to L⊕N . See [7, Remark 2.5] for the detail.
(3) Let M and N be finitely generated R-modules and suppose that M degenerates

to N . Then the modulesM and N give the same class in the Grothendieck group,
i.e. [M ] = [N ] as an element of K0(mod(R)), where mod(R) denotes the category
of finitely generated R-modules and R-homomorphisms.

We are mainly interested in degenerations of modules over commutative rings. Hence-
forth, in the rest of the paper, all the rings are assumed to be commutative.

Definition 4. LetM and N be finitely generated modules over a commutative noetherian
k-algebra R.

(1) We denote by M ≤deg N if N is obtained from M by iterative degenerations,
i.e. there is a sequence of finitely generated R-modules L0, L1, . . . , Lr such that
M ∼= L0, N ∼= Lr and each Li degenerates to Li+1 for 0 ≤ i < r.

(2) We say thatM degenerates by an extension to N if there is a short exact sequence
0 → U →M → V → 0 of finitely generated R-modules such that N ∼= U ⊕N .
We denote by M ≤ext N if N is obtained from M by iterative degenerations by

extensions, i.e. there is a sequence of finitely generated R-modules L0, L1, . . . , Lr
such that M ∼= L0, N ∼= Lr and each Li degenerates by an extension to Li+1 for
0 ≤ i < r.

If R is a local ring, then ≤deg and ≤ext are known to be partial orders on the set of
isomorphism classes of finitely generated R-modules, which are called the degeneration
order and the extension order respectively. See [6] for the detail.

Remark 5. By virtue of Remark 3, if M ≤ext N then M ≤deg N . However the converse is
not necessarily true.

For example, consider a ring R = k[[x, y]]/(x2). A pair of matrices over k[[x, y]];

(ϕ, ψ) =

((
x y2

0 x

)
,

(
x −y2
0 x

))
is a matrix factorization of the equation x2, hence it gives a maximal Cohen-Macaulay R-
module N that is isomorphic to the ideal (x, y2)R. It is known that N is indecomposable.
Then we can show that R degenerates to (x, y2)R in this case, and hence R ≤deg (x, y

2)R.
See [3, Remark 2.5.].

In general if M ≤ext N and if M 6∼= N , then N is a non-trivial direct sum of modules.
Since N ∼= (x, y2)R is indecomposable, we see that R ≤ext (x, y

2)R can never happen.

Remark 6. We remark that if finitely generated R-modules M and N satisfy the relation
M ≤ext N , then M degenerates to N .

Now we note that the following lemma holds.

Lemma 7. Let I be a two-sided ideal of a noetherian k-algebra R, and let M and N be
finitely generated left R/I-modules. Then M ≤deg N (resp. M ≤ext N) as R-modules if
and only if so does as R/I-modules. �
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We make several other remarks on degenerations for the later use.

Remark 8. Let R be a noetherian k-algebra, and let M and N be finitely generated R-
modules. Suppose that M degenerates to N . The ith Fitting ideal of M contains that of
N for all i ≥ 0. Namely, denoting the ith Fitting ideal of an R-module M by FR

i (M), we
have FR

i (M) ⊇ FR
i (N) for all i = 0. (See [9, Theorem 2.5]).

Let R = k[[x]] be a formal power series ring over a field k with one variable x and let
M be an R-module of length n. It is easy to see that there is an isomorphism

(2.1) M ∼= R/(xp1)⊕ · · · ⊕R/(xpn),

where

(2.2) p1 ≥ p2 ≥ · · · ≥ pn ≥ 0 and
n∑
i=1

pi = n.

In this case the finite presentation of M is given as follows:

0 −−−→ Rn


xp1

. . .
xpn


−−−−−−−−−−−−−→ Rn −−−→ M −−−→ 0.

Note that we can easily compute the ith Fitting ideal of M from this presentation;

FR
i (M) = (xpi+1+···+pn) (i ≥ 0).

We denote by pM the sequence (p1, p2, · · · , pn) of non-negative integers. Recall that such
a sequence satisfying (2.2) is called a partition of n.

Conversely, given a partition p = (p1, p2, · · · , pn) of n, we can associate an R-module of
length n by (2.1), which we denote by M(p). In such a way we see that there is a one-one
correspondence between the set of partitions of n and the set of isomorphism classes of
R-modules of length n.

Definition 9. Let n be a positive integer and let p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn)
be partitions of n. Then we denote p � q if it satisfies

∑j
i=1 pi ≥

∑j
i=1 qi for all 1 ≤ j ≤ n.

We note that � is known to be a partial order on the set of partitions of n and called
the dominance order (see for example [4, page 7]).

In the following proposition we show the degeneration order for R-modules of length n
coincides with the opposite of the dominance order of corresponding partitions.

Proposition 10. Let R = k[[x]] as above, and let M , N be R-modules of length n. Then
the following conditions are equivalent:

(1) M ≤deg N ,
(2) M ≤ext N ,
(3) pM � pN .

Proof. First of all, we assume M degenerates to N , and let pM = (p1, p2, · · · , pn) and
pN = (q1, q2, · · · , qn). Then, by definition, we have the equalities of the Fitting ideals;
FR
i (M) = (xpi+1+···+pn) and FR

i (M) = (xqi+1+···+qn) for all i ≥ 0. Since M degenerates
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to N , it follows from Remark 8 that FR
i (M) ⊇ FR

i (N) for all i. Thus pi+1 + · · · + pn ≤
qi+1 + · · · + qn. Since

∑n
i=1 pi = n =

∑n
i=1 qi, it follows that p1 + · · · + pi ≥ q1 + · · · + qi

for all i ≥ 0. Therefore pM � pN , so that we have proved the implication (1) ⇒ (3).
Finally we shall prove (3) ⇒ (2). To this end let p = (p1, p2, · · · , pn) and q =

(q1, q2, · · · , qn) be partitions of n. Note that it is enough to prove that the corresponding
R-module M(p) degenerates by an extension to M(q) whenever q is a predecessor of p
under the dominance order. (Recall that q is called a predecessor of p if p � q and there
are no partitions r with p � r � q other than p and q.)

Assume that q is a predecessor of p under the dominance order. Then it is easy to
see that there are numbers 1 ≤ i < j ≤ n with pi − pj ≥ 2, pi > pi+1, pj−1 > pj such
that the equality q = (p1, · · · , pi − 1, pi+1, · · · , pj + 1, · · · , pn) holds. In this case, setting
L = M((p1, · · · , pi−1, pi+1, · · · , pj−1, pj, · · · , pn)), we have M(p) = L ⊕ M((pi, pj)) and
M(q) = L⊕M((pi − 1, pj + 1)). Note that, in general, if M degenerates by an extension
to N , then M ⊕ L degenerates by an extension to N ⊕ L, for any R-modules L. Hence
it is enough to show that M((a, b)) degenerates by an extension to M((a − 1, b + 1)) if
a ≥ b+ 2. However there is a short exact sequence of the form:

0 −−−→ R/(xa−1) −−−→ R/(xa)⊕R/(xb) −−−→ R/(xb+1) −−−→ 0

1 −−−→ (x, 1)

Thus M((a, b)) = R/(xa) ⊕ R/(xb) degenerates by an extension to M((a − 1, b + 1)) =
R/(xa−1)⊕R/(xb+1). �

Combining Proposition 10 with Lemma 7, we have the following corollary which will
be used latter.

Corollary 11. Let R = k[[x]]/(xm), where k is a field and m is a positive integer, and
let M , N be finitely generated R-modules. Then M ≤deg N holds if and only if M ≤ext N
holds. �

Next we describe another example.
Let k be a field of characteristic 0 and R = k[[x0, x1, x2, · · · , xd]]/(f), where f is a

polynomial of the form

f = xn+1
0 + x21 + x22 + · · ·+ x2d (n ≥ 1).

Recall that such a ring R is call the ring of simple singularity of type (An). Note that R
is a Gorenstein complete local ring and has finite Cohen-Macaulay representation type.
(Recall that a Cohen-Macaulay k-algebra R is said to be of finite Cohen-Macaulay rep-
resentation type if there are only a finite number of isomorphism classes of objects in
CM(R). See [5].) We shall show the following whose proof will be given in the last part
of this section.

Theorem 12. Let k be an algebraically closed field of characteristic 0 and let R =
k[[x0, x1, x2, · · · , xd]]/(xn+1

0 + x21 + x22 + · · · + x2d) as above, where we assume that d is
even. For maximal Cohen-Macaulay R-modules M and N , if M ≤deg N , then M ≤ext N .

To prove the theorem, we need several results concerning the stable degeneration which
was introduced by Yoshino in [9].
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Let A be a commutative Gorenstein ring. We denote by CM(A) the category of all
maximal Cohen-Macaulay A-module with all A-homomorphisms. And we also denote by
CM(A) the stable category of CM(A). For a maximal Cohen-Macaulay module M we
denote it by M to indicate that it is an object of CM(A). Since A is Gorenstein, it is
known that CM(A) has a structure of triangulated category.

The following theorem proved by Yoshino [9] shows the relation between stable degen-
erations and ordinary degenerations.

Theorem 13. [9, Theorem 5.1, 6.1, 7.1] Let (R,m, k) be a Gorenstein complete local k-
algebra, where k is an infinite field. Consider the following four conditions for maximal
Cohen-Macaulay R-modules M and N :

(1) Rm ⊕M degenerates to Rn ⊕N for some m,n ∈ N.
(2) There is a triangle

Z

(
ϕ

ψ

)
−−−→ M ⊕ Z −−−→ N −−−→ Z[1]

in CM(R), where ψ is a nilpotent element of EndR(Z).
(3) M stably degenerates to N .
(4) There exists an X ∈ CM(R) such that M ⊕ Rm ⊕X degenerates to N ⊕ Rn ⊕X

for some m,n ∈ N.
Then, in general, the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) hold. If R is an isolated

singularity, then (2) and (3) are equivalent. Furthermore, if R is an artinian ring, then
the conditions (1), (2) and (3) are equivalent.

Corollary 14. [9, Corollary 6.6] Let (R1,m1, k) and (R2,m2, k) be Gorenstein complete
local k-algebras. Assume that the both R1 and R2 are isolated singularities, and that k
is an infinite field. Suppose there is a k-linear equivalence F : CM(R1) → CM(R2) of
triangulated categories. Then, for M, N ∈ CM(R1), M stably degenerates to N if and
only if F (M) stably degenerates to F (N). �

We now consider the stable analogue of the degeneration by an extension.

Definition 15.

(1) We denote byM ≤st N if N is obtained fromM by iterative stable degenerations,
i.e. there is a sequence of objects L0, L1, . . . , Lr in CM(R) such that M ∼= L0,
N ∼= Lr and each Li stably degenerates to Li+1 for 0 ≤ i < r.

(2) We say that M stably degenerates by a triangle to N , if there is a triangle of the
form U → M → V → U [1] in CM(R) such that U ⊕ V ∼= N . We denote by
M ≤tri N if there is a finite sequence of modules L0, L1, · · · , Lr in CM(R) such
that M ∼= L0, N ∼= Lr and each Li stably degenerates by a triangle to Li+1 for
0 ≤ i < r.

Remark 16. Let R be a Gorenstein local ring that is a k-algebra.

(1) Let M,N ∈ CM(R). If M degenerates to N , then M stably degenerates to N .
Therefore that M ≤deg N forces that M ≤st N . (See [9, Lemma 4.2].)
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(2) Suppose that there is a triangle

L −−−→ M −−−→ N −−−→ L[1],

in CM(R). Then M stably degenerates to L ⊕ N , thus M ≤st L ⊕ N . (See [9,
Proposition 4.3].)

We need the following proposition to prove Theorem 12.

Proposition 17. Let (R,m, k) be a Gorenstein complete local ring and let M,N ∈
CM(R). Assume [M ] = [N ] in K0(mod(R)). ThenM ≤tri N if and only ifM ≤ext N . �

Now we proceed to the proof of Theorem 12.
Let k be an algebraically closed field of characteristic 0 and let

R = k[[x0, x1, x2, · · · , xd]]/(xn+1
0 + x21 + x22 + · · ·+ x2d)

as in the theorem, where we assume that d is even. Suppose that M ≤deg N for maximal
Cohen-Macaulay R-modules M and N . We want to show M ≤ext N .

Since M ≤deg N , we have M ≤st N in CM(R) and [M ] = [N ] in K0(mod(R)), by
Remarks 16(1) and 3(3). Now let us denote R′ = k[[x0]]/(x

n+1
0 ), and we note that CM(R)

and CM(R′) are equivalent to each other as triangulated categories. In fact this equiva-
lence is given by using the lemma of the Knörrer’s periodicity (cf. [5]), since d is even. Let
Ω : CM(R) → CM(R′) be a triangle functor which gives the equivalence. Then, by virtue
of Corollary 14, we have Ω(M) ≤st Ω(N) in CM(R′). Since R′ is an artinian algebra, the
equivalence (1) ⇔ (3) holds in Theorem 13, and thus we have M̃ ⊕ R′m ≤deg Ñ ⊕ R′n,

where M̃ (resp. Ñ) is a module in CM(R′) with M̃ ∼= Ω(M) (resp. Ñ ∼= Ω(N)) and m, n
are non-negative integers. It then follows from Corollary 11 that M̃ ⊕R′m ≤ext Ñ ⊕R′n.
Hence, by Proposition 17, we have that Ω(M) ≤tri Ω(N) in CM(R′). Noting that the par-
tial order≤tri is preserved under a triangle functor, we see thatM ≤tri N in CM(R). Since
[M ] = [N ] in K0(mod(R)), applying Proposition 17, we finally obtain thatM ≤ext N . �

Example 18. Let R = k[[x0, x1, x2]]/(x
3
0 + x21 + x22), where k is an algebraically closed

field of characteristic 0. Let p and q be the ideals generated by (x0, x1 −
√
−1 x2) and

(x20, x1 +
√
−1 x2) respectively. It is known that the set {R, p, q} is a complete list of the

isomorphism classes of indecomposable maximal Cohen-Macaulay modules over R. The
Hasse diagram of degenerations of maximal Cohen-Macaulay R-modules of rank 3 is a
disjoint union of the following diagrams:

R3,

R⊕ p⊕ q

p⊕ p⊕ p
??????

q⊕ q⊕ q
������

R2 ⊕ p,

R⊕ q⊕ q

p⊕ p⊕ q

R2 ⊕ q.

R⊕ p⊕ p

p⊕ q⊕ q
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3. Extended orders

In the rest of this paper R denotes a (commutative) Cohen-Macaulay complete local
k-algebra, where k is any field.

We shall show that any extended degenerations of maximal Cohen-Macaulay R-modules
are generated by extended degenerations of Auslander-Reiten (abbr.AR) sequences if R is
of finite Cohen-Macaulay representation type. For the theory of AR sequences of maximal
Cohen-Macaulay modules, we refer to [5]. First of all we recall the definitions of the
extended orders generated respectively by degenerations, extensions and AR sequences.

Definition 19. [6, Definition 4.11, 4.13] The relation ≤DEG on CM(R), which is called
the extended degeneration order, is a partial order generated by the following rules:

(1) If M ≤deg N then M ≤DEG N .
(2) If M ≤DEG N and if M ′ ≤DEG N

′ then M ⊕M ′ ≤DEG N ⊕N ′

(3) If M ⊕ L ≤DEG N ⊕ L for some L ∈ CM(R) then M ≤DEG N .
(4) If Mn ≤DEG N

n for some natural number n then M ≤DEG N .

Definition 20. [6, Definition 3.6] The relation ≤EXT on CM(R), which is called the
extended extension order, is a partial order generated by the following rules:

(1) If M ≤ext N then M ≤EXT N .
(2) If M ≤EXT N and if M ′ ≤EXT N

′ then M ⊕M ′ ≤EXT N ⊕N ′

(3) If M ⊕ L ≤EXT N ⊕ L for some L ∈ CM(R) then M ≤EXT N .
(4) If Mn ≤EXT N

n for some natural number n then M ≤EXT N .

Definition 21. [6, Definition 5.1] The relation ≤AR on CM(R), which is called the ex-
tended AR order, is a partial order generated by the following rules:

(1) If 0 → X → E → Y → 0 is an AR sequence in CM(R), then E ≤AR X ⊕ Y .
(2) If M ≤AR N and if M ′ ≤AR N

′ then M ⊕M ′ ≤AR N ⊕N ′

(3) If M ⊕ L ≤AR N ⊕ L for some L ∈ CM(R) then M ≤AR N .
(4) If Mn ≤AR N

n for some natural number n then M ≤AR N .

The following is the main theorem of this section.

Theorem 22. Let R be a Cohen-Macaulay complete local k-algebra as above. Adding to
this, we assume that R is of finite Cohen-Macaulay representation type.Then the following
conditions are equivalent for M,N ∈ CM(R):

(1) M ≤DEG N ,
(2) M ≤EXT N ,
(3) M ≤AR N .

Proof. The implications (3) ⇒ (2) ⇒ (1) are clear from the definitions.
To prove (1) ⇒ (2), it suffices to show that M ≤EXT N whenever M degenerates to

N . If M degenerates to N , then, by virtue of Theorem 2, we have a short exact sequence
0 → Z → M ⊕ Z → N → 0 with Z ∈ CM(R). Thus M ⊕ Z ≤ext N ⊕ Z, hence
M ≤EXT N .

It remains to prove that (2) ⇒ (3), for which we need the following lemma which is
essentially due to Auslander and Reiten [1].
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Lemma 23. Under the same assumptions on R as in Theorem 22, let 0 → L → M →
N → 0 be a short exact sequence in CM(R). Then there are a finite number of AR
sequences in CM(R);

0 → Xi → Ei → Yi → 0 (1 ≤ i ≤ n),

such that there is an equality in G(CM(R));

L−M +N =
n∑
i=1

(Xi − Ei + Yi).

Here, G(CM(R)) =
⊕

Z ·X where X runs through all isomorphism classes of indecom-
posable objects in CM(R).

To prove this lemma, we consider the functor category Mod(CM(R)) and the Auslander
category mod(CM(R)) of CM(R). �
Remark 24. In the paper [6], Yoshino introduced the order relation ≤hom as well. Adding
to the assumption that R is of finite Cohen-Macaulay representation type, if we assume
further conditions onR, such asR is an integral domain of dimension 1 orR is of dimension
2, then he showed that ≤hom is also equal to any of ≤AR, ≤EXT and ≤DEG.
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WEAK GORENSTEIN DIMENSION FOR MODULES AND
GORENSTEIN ALGEBRAS

MITSUO HOSHINO AND HIROTAKA KOGA

Abstract. We will generalize the notion of Gorenstein dimension and introduce that of
weak Gorenstein dimension. Using this notion, we will characterize Gorenstein algebras.

1. Introduction

1.1. Notation and definitions. For a ring A we denote by rad(A) the Jacobson radical
of A. Also, we denote by Mod-A the category of right A-modules, by mod-A the full sub-
category of Mod-A consisting of finitely presented modules and by PA the full subcategory
of mod-A consisting of projective modules. For each X ∈ Mod-A we denote by EA(X)
its injective envelope. Left A-modules are considered as right Aop-modules, where Aop

denotes the opposite ring of A. In particular, we denote by inj dim A (resp., inj dim Aop)
the injective dimension of A as a right (resp., left) A-module and by HomA(−,−) (resp.,
HomAop(−,−)) the set of homomorphisms in Mod-A (resp., Mod-Aop). Sometimes, we
use the notation XA (resp., AX) to stress that the module considered is a right (resp.,
left) A-module.

In this note, complexes are cochain complexes and modules are considered as complexes
concentrated in degree zero. For a complexX• and an integer n ∈ Z, we denote by Hn(X•)
the nth cohomology. We denote by K(Mod-A) the homotopy category of complexes
over Mod-A, by K−(PA) (resp., K

b(PA)) the full triangulated subcategory of K(Mod-A)
consisting of bounded above (resp., bounded) complexes over PA and by K−,b(PA) the full
triangulated subcategory of K−(PA) consisting of complexes with bounded cohomology.
We denote by D(Mod-A) the derived category of complexes over Mod-A. Also, we denote
by Hom•

A(−,−) (resp., − ⊗• −) the associated single complex of the double hom (resp.,
tensor) complex and by RHom•

A(−, A) the right derived functor of Hom•
A(−, A). We refer

to [4], [9] and [15] for basic results in the theory of derived categories.

Definition 1 ([5]). A module X ∈ Mod-A is said to be coherent if it is finitely generated
and every finitely generated submodule of it is finitely presented. A ring A is said to be
left (resp., right) coherent if it is coherent as a left (resp., right) A-module.

Throughout the first three sections, A is a left and right coherent ring. Note that
mod-A consists of the coherent modules and is a thick abelian subcategory of Mod-A in
the sense of [9].

We denote by Db(mod-A) the full triangulated subcategory of D(Mod-A) consisting of
complexes over mod-A with bounded cohomology.

The detailed version of this paper will be submitted for publication elsewhere.
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Definition 2 ([9]). A complexX• ∈ Db(mod-A) is said to have finite projective dimension
if HomD(Mod-A)(X

•[i],−) vanishes on mod-A for i � 0. We denote by Db(mod-A)fpd the
épaisse subcategory of Db(mod-A) consisting of complexes of finite projective dimension.

Note that the canonical functor K(Mod-A) → D(Mod-A) gives rise to equivalences of
triangulated categories

K−,b(PA)
∼→ Db(mod-A) and Kb(PA)

∼→ Db(mod-A)fpd.

We denote by D(−) both RHom•
A(−, A) and RHom•

Aop(−, A). There exists a bifunc-
torial isomorphism

θM•,X• : HomD(Mod-Aop)(M
•, DX•)

∼→ HomD(Mod-A)(X
•, DM•)

for X• ∈ D(Mod-A) and M• ∈ D(Mod-Aop). For each X• ∈ D(Mod-A) we set

ηX• = θDX•,X•(idDX•) : X• → D2X• = D(DX•).

Definition 3. A complex X• ∈ Db(mod-A) is said to have bounded dual cohomology if
DX• ∈ Db(mod-Aop). We denote by Db(mod-A)bdh the full triangulated subcategory of
Db(mod-A) consisting of complexes with bounded dual cohomology.

Definition 4 ([2] and [12]). A complex X• ∈ Db(mod-Aop)bdh is said to have finite
Gorenstein dimension if ηX• is an isomorphism. We denote by Db(mod-A)fGd the full
triangulated subcategory of Db(mod-A) consisting of complexes of finite Gorenstein di-
mension.
For a module X ∈ Db(mod-A)fGd, we set

G-dim X = sup{ i ≥ 0 | ExtiA(X,A) 6= 0}

if X 6= 0, and G-dim X = 0 if X = 0. Also, we set G-dim X = ∞ for a module
X ∈ mod-A with X /∈ Db(mod-A)fGd. Then G-dim X is called the Gorenstein dimension
of X ∈ mod-A. We denote by GA the full additive subcategory of mod-A consisting of
modules of Gorenstein dimension zero.

Remark 5. A module X ∈ mod-A has Gorenstein dimension zero if and only if X is
reflexive, i.e., the canonical homomorphism

X → HomAop(HomA(X,A), A), x 7→ (f 7→ f(x))

is an isomorphism and ExtiA(X,A) = ExtiAop(HomA(X,A), A) = 0 for i 6= 0.

Remark 6. The following hold.

(1) Db(mod-A)fpd ⊆ Db(mod-A)fGd ⊆ Db(mod-A)bdh and PA ⊆ GA.
(2) The pair of functors RHom•

A(−, A) and RHom•
Aop(−, A) defines a duality be-

tween Db(mod-A)fGd and Db(mod-Aop)fGd and a duality between Db(mod-A)fpd
and Db(mod-Aop)fpd.

(3) The pair of functors HomA(−, A) and HomAop(−, A) defines a duality between GA

and GAop and a duality between PA and PAop .
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1.2. Introduction. The notion of Gorenstein dimension has played an important role in
the study of Gorenstein algebras (see e.g. [2], [10], [11] and so on). In this note, gener-
alizing this, we will introduce the notion of weak Gorenstein dimension and characterize
Gorenstein algebras in terms of weak Gorenstein dimension.

A complex X• ∈ Db(mod-A)bdh with sup{ i | Hi(X•) 6= 0} = d < ∞ is said to
have finite weak Gorenstein dimension if Hi(ηX•) is an isomorphism for all i < d and
Hd(ηX•) is a monomorphism. Obviously, every X• ∈ Db(mod-A)fGd has finite weak
Gorenstein dimension, the converse of which does not hold true in general (see Example 9
and Proposition 15). Extending the fact announced by Avramov [3], we will characterize
complexes of finite weak Gorenstein dimension. Denote by GA/PA the residue category
of GA over PA. Also, denote by Db(mod-A)fGd/D

b(mod-A)fpd the quotient category of
Db(mod-A)fGd over the épaisse subcategory Db(mod-A)fpd. Avramov [3] announced that
the embedding GA → Db(mod-A)fGd gives rise to an equivalence

GA/PA
∼→ Db(mod-A)fGd/D

b(mod-A)fpd.

We will extend this fact. Denote by ĜA the full additive subcategory of mod-A consisting
of modules X ∈ mod-A with ExtiA(X,A) = 0 for i 6= 0, by ĜA/PA the residue category of

ĜA over PA and by Db(mod-A)bdh/D
b(mod-A)fpd the quotient category of Db(mod-A)bdh

over the épaisse subcategory Db(mod-A)fpd. We will show that the embedding ĜA →
Db(mod-A)bdh gives rise to a full embedding

F : ĜA/PA → Db(mod-A)bdh/D
b(mod-A)fpd

(see Proposition 8), that a complex X• ∈ Db(mod-A)bdh has finite weak Gorenstein
dimension if and only if there exists a homomorphism Z[m] → X• in Db(mod-A)bdh
inducing an isomorphism in Db(mod-A)bdh/D

b(mod-A)fpd for some Z ∈ ĜA and m ∈ Z
(see Lemma 12) and that F is an equivalence if and only if ĜA = GA (see Proposition 15).

Using the notion of weak Gorenstein dimension, we will characterize Gorenstein al-
gebras. Let R be a commutative noetherian local ring and A a noetherian R-algebra,
i.e., A is a ring endowed with a ring homomorphism R → A whose image is contained
in the center of A and A is finitely generated as an R-module. We say that A satisfies
the condition (G) if the following equivalent conditions are satisfied: (1) Every simple
X ∈ mod-A has finite weak Gorenstein dimension; and (2) A/rad(A) has finite weak
Gorenstein dimension (see Definition 18). Our main theorem states that the following
are equivalent: (1) inj dim A = inj dim Aop < ∞; and (2) Ap satisfies the condition (G)
for all p ∈ SuppR(A) (see Theorem 19). Furthermore, in case A is a local ring, we will
show that for any d ≥ 0 the following are equivalent: (1) inj dim A = inj dim Aop = d;
(2) inj dim A = depth A = d; and (3) A/rad(A) has weak Gorenstein dimension d (see
Theorem 20). Note that if inj dim A = depth A < ∞ then A is a Gorenstein R-algebra
in the sense of Goto and Nishida [8].

This note is organized as follows. In Section 2, we will extend the fact announced by
Avramov [3] quoted above. Also, we will include an example of A with ĜA 6= GA which
is due to J.-I. Miyachi. In Section 3, we will introduce the notion of weak Gorenstein
dimension and study finitely presented modules of finite weak Gorenstein dimension. In
Section 4, we will study noetherian algebras of finite selfinjective dimension and prove the
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main theorem. In Section 5, we will characterize local noetherian algebras of finite self-
injective dimension. Also, we will provide several examples showing what rich properties
local noetherian algebras of finite selfinjective dimension enjoy.

2. Full embedding

Let GA/PA be the residue category of GA over the full additive subcategory PA and
Db(mod-A)fGd/D

b(mod-A)fpd the quotient category of Db(mod-A)fGd over the épaisse
subcategory Db(mod-A)fpd. Then, as Avramov [3] announced, the embedding GA →
Db(mod-A)fGd gives rise to an equivalence

GA/PA
∼→ Db(mod-A)fGd/D

b(mod-A)fpd.

In this section, we will extend this fact.

Definition 7. We denote by ĜA the full additive subcategory of mod-A consisting of
modules X ∈ mod-A with ExtiA(X,A) = 0 for i 6= 0.

We denote by ĜA/PA the residue category of ĜA over the full additive subcategory PA

and by Db(mod-A)/Db(mod-A)fpd the quotient category of Db(mod-A) over the épaisse
subcategory Db(mod-A)fpd. Also, we denote by Db(mod-A)bdh/D

b(mod-A)fpd the quo-
tient category of Db(mod-A)bdh over the épaisse subcategory Db(mod-A)fpd.

Proposition 8. The embedding ĜA → Db(mod-A)bdh gives rise to a full embedding

F : ĜA/PA → Db(mod-A)bdh/D
b(mod-A)fpd.

In the next section, we will characterize a complex X• ∈ Db(mod-A)bdh which admits

a homomorphism Z[m] → X• in Db(mod-A)bdh inducing an isomorphism Z[m]
∼−→ X•

in Db(mod-A)bdh/D
b(mod-A)fpd for some Z ∈ ĜA and m ∈ Z. Such a complex does not

necessarily belong to Db(mod-A)fGd. Namely, ĜA 6= GA in general (see Proposition 15
below), which has been pointed out by J.-I. Miyachi in oral communication.

Example 9 (Miyachi). Let k be a field and fix a nonzero element c ∈ k which is not
a root of unity. Let S = k < x, y > be a non-commutative polynomial ring and I =
(x2, y2, cxy + yx) a two-sided ideal generated by x2, y2 and cxy + yx. Set R = S/I,
zn = x+ cny+ I ∈ R for n ∈ Z and w = xy+ I ∈ R. Then R is a selfinjective algebra and

for each n ∈ Z there exist exact sequences R
zn+1−−→ R

zn−→ R in mod-R and R
zn−→ R

zn+1−−→ R
in mod-Rop. Since c is not a root of unity, znR 6∼= zmR and HomR(znR, zmR) ∼= k unless

n = m. Thus, since we have a projective resolution · · · → R
z3−→ R

z2−→ R
z1−→ z1R → 0 in

mod-R, applying HomR(−, z0R) we have ExtiR(z1R, z0R) = 0 for all i ≥ 1 (see [14]).
Now, we set

A =

(
k z0R
0 R

)
and e1 =

(
1 0
0 0

)
, e2 =

(
0 0
0 1

)
∈ A.

Then a module X ∈ mod-A is given by a triple (X1, X2;φ) of X1 ∈ mod-k, X2 ∈ mod-R
and φ ∈ HomR(X1 ⊗k z0R,X2), and a module M ∈ mod-Aop is given by a triple
(M1,M2;ψ) of M1 ∈ mod-k, M2 ∈ mod-Rop and ψ ∈ Homk(z0R ⊗R M2,M1) (see [7]).

Set X = (0, z1R; 0) ∈ mod-A. Since we have a projective resolution · · · z3−→ e2A
z2−→
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e2A
z1−→ X → 0 in mod-A, it follows that ExtiA(X, e1A)

∼= ExtiR(z1R, z0R) = 0 and

ExtiA(X, e2A)
∼= ExtiR(z1R,R) = 0 for i > 0. Thus X ∈ ĜA. On the other hand, we have

HomA(X,A) ∼= Ker(Ae2
z2−→ Ae2)

∼= (wR,Rz1; 0)
∼= (wR, 0; 0)⊕ (0, Rz1; 0)

in mod-Aop and hence HomAop(HomA(X,A), A) is decomposable, so that we have X �
HomAop(HomA(X,A), A) and X /∈ GA.

3. Weak Gorenstein dimension

In this section, we will introduce the notion of weak Gorenstein dimension for finitely
presented modules and study finitely presented modules of finite weak Gorenstein dimen-
sion.

Definition 10. A complex X• ∈ Db(mod-A) with sup{ i | Hi(X•) 6= 0} = d < ∞
is said to have finite weak Gorenstein dimension if X• ∈ Db(mod-A)bdh, H

i(ηX•) is an
isomorphism for i < d and Hd(ηX•) is a monomorphism.

For a module X ∈ mod-A of finite weak Gorenstein dimension we set

Ĝ-dim X = sup{ i | ExtiA(X,A) 6= 0}
if X 6= 0 and Ĝ-dim X = 0 if X = 0. Also, we set Ĝ-dim X = ∞ if X ∈ mod-A does
not have finite weak Gorenstein dimension. Then Ĝ-dim X is called the weak Gorenstein
dimension of X ∈ mod-A.

Remark 11. For any X ∈ mod-A the following hold.

(1) Ĝ-dim X = 0 if and only if X is embedded in some P ∈ PA, i.e., the canonical
homomorphism

X → HomAop(HomA(X,A), A), x 7→ (f 7→ f(x))

is a monomorphism and X ∈ ĜA.
(2) If G-dim X = d <∞ then Ĝ-dim X = d.

(3) If Ĝ-dim X = d < ∞ then Ĝ-dim X ′ ≤ d for all X ′ ∈ add(X), the full additive
subcategory of mod-A consisting of direct summands of finite direct sums of copies
of X.

Lemma 12. A complex X• ∈ Db(mod-A) with sup{ i | Hi(X•) 6= 0} = d < ∞ has
finite weak Gorenstein dimension if and only if there exists a distinguished triangle in
Db(mod-A)

X• → Y • → Z[−d] →
with Y • ∈ Kb(PA), Y

i = 0 for i > d, and Z ∈ ĜA.

Corollary 13 (cf. [6, Lemma 2.17]). For any X ∈ mod-A with Ĝ-dim X < ∞ there

exists an exact sequence 0 → X → Y → Z → 0 in mod-A with Ĝ-dim X = proj dim Y
and Z ∈ ĜA.

Lemma 14. For any exact sequence 0 → X → Y → Z → 0 in mod-A the following hold.
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(1) If Ĝ-dim Z <∞, then Ĝ-dim X <∞ if and only if Ĝ-dim Y <∞.

(2) If Ĝ-dim Y < ∞, then Ĝ-dim X < ∞ if and only if Z ∈ Db(mod-A)bdh and
Hi(D2Z) = 0 for i < −1.

(3) If Ĝ-dim X <∞ and H0(ηX) is an isomorphism, then Ĝ-dim Y <∞ if and only

if Ĝ-dim Z <∞.

Proposition 15. The following are equivalent.

(1) GA = ĜA.

(2) Ĝ-dim X = 0 for all X ∈ ĜA.
(3) Db(mod-A)fGd = Db(mod-A)bdh.

(4) The embedding ĜA/PA → Db(mod-A)bdh/D
b(mod-A)fpd is dense.

4. Finiteness of selfinjective dimension

Throughout the rest of this note, A is a left and right noetherian ring.
In this section, using the notion of weak Gorenstein dimension, we will characterize

noetherian algebras of finite selfinjective dimension.

Lemma 16. For any injective I ∈ Mod-A the following hold.

(1) flat dim I ≤ inj dim Aop and the equality holds if I is an injective cogenerator.
(2) Let d ≥ 0 and assume that there exists a direct system ({Xλ}, {fλ

µ}) in mod-A

over a directed set Λ such that lim−→ Xλ
∼= I and Ĝ-dim Xλ ≤ d for all λ ∈ Λ.

Then flat dim I ≤ d.

Corollary 17. For any d ≥ 0 the following are equivalent.

(1) inj dim A = inj dim Aop ≤ d.

(2) Ĝ-dim X ≤ d for all X ∈ mod-A.

Throughout the rest of this note, R is a commutative noetherian local ring with the
maximal ideal m and A is a noetherian R-algebra, i.e., A is a ring endowed with a ring
homomorphism R → A whose image is contained in the center of A and A is finitely
generated as an R-module. It should be noted that A/mA is a finite dimensional algebra
over a field R/m.

We denote by Spec(R) the set of prime ideals of R. For each p ∈ Spec(R) we denote
by (−)p the localization at p and for each X ∈ Mod-R we denote by SuppR(X) the set of
p ∈ Spec(R) with Xp 6= 0. Also, we denote by dim X the Krull dimension of X ∈ mod-R.
We refer to [13] for basic commutative ring theory.

Definition 18. We say that A satisfies the condition (G) if the following equivalent
conditions are satisfied:

(1) Ĝ-dim X <∞ for all simple X ∈ mod-A.

(2) Ĝ-dim A/rad(A) <∞.

Theorem 19. The following are equivalent.

(1) inj dim A = inj dim Aop <∞.
(2) Ap satisfies the condition (G) for all p ∈ SuppR(A).
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5. Gorenstein algebras

In this section, we will deal with the case where inj dim A = inj dim Aop = depth A.
In that case, A is a Gorenstein R-algebra in the sense of Goto and Nishida (see [8]). Also,
we will characterize local Gorenstein algebras in terms of weak Gorenstein dimension.

We set S = A/rad(A) and denote by depth X the depth of X ∈ mod-R. Throughout
the rest of this note, we assume that A is a local ring, i.e., S is a division ring. Note that
S ∈ mod-A is a unique simple module up to isomorphism and that every X ∈ mod-A
admits a minimal projective resolution.

Theorem 20. For any d ≥ 0 the following are equivalent.

(1) inj dim A = inj dim Aop = d.
(2) inj dim A = depth A = d.

(3) Ĝ-dim SA = d.

Corollary 21. Assume that inj dim A = inj dim Aop = d < ∞. Then A is Cohen-
Macaulay as an R-module and Id ∼= HomR(A,ER(R/m)) for a minimal injective resolution
A→ I• in Mod-A.

Example 22. Even if inj dim A = inj dim Aop <∞, it may happen that A is not Cohen-
Macaulay as an R-module. For instance, let R be a Gorenstein local ring with dim R ≥ 1
and set

A =

(
R R/xR
0 R/xR

)
with x ∈ m a regular element. Then A is not Cohen-Macaulay as an R-module but
inj dim A = inj dim Aop <∞ (see [1, Example 4.7]).

Example 23. Even if A is a Cohen-Macaulay R-module and inj dim A = inj dim Aop <
∞, it may happen that inj dim A 6= depth A. For instance, let R be a Gorenstein local
ring with dim R = d and set

A =

(
R R
0 R

)
.

Then A is a Cohen-Macaulay R-module with depth A = d but inj dim A = inj dim Aop =
d+ 1.

Example 24. Even if A is a Cohen-Macaulay R-module and inj dim A = inj dim Aop =
depth A = d < ∞, it may happen that Id � HomR(A,ER(R/m)) for a minimal injective
resolution A→ I• in Mod-A. For instance, let R be a Gorenstein local ring with dim R =
d and A a free R-module with a basis {eij}1≤i,j≤3. Define a multiplication on A subject
to the following axioms: (A1) eijekl = 0 unless j = k; (A2) eiieij = eij = eijejj for all
i, j; (A3) e12e21 = e11 and e21e12 = e22; and (A4) ei3e3j = e3jei3 = 0 for all i, j 6= 3. Set
ei = eii for all i. Then A is an R-algebra with 1 = e1 + e2 + e3 and Cohen-Macaulay
as an R-module. Also, setting Ω = HomR(A,R), we have e1A ∼= e2A ∼= e3Ω and e1Ω ∼=
e2Ω ∼= e3A. It follows that inj dim A = inj dim Aop = d but Id ∼= HomR(Ω, ER(R/m)) �
HomR(A,ER(R/m)) in Mod-A.
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ON Ω-PERFECT MODULES AND SEQUENCES OF BETTI NUMBERS

OTTO KERNER AND DAN ZACHARIA

Abstract. Let R be a selfinjective algebra. In this paper we consider Ω-perfect modules
and show how to use them to get information about the shapes of the Auslander-Reiten
components containing modules of finite complexity. We also look at the growth of the
sequence of Betti numbers for modules belonging to certain types of Auslander-Reiten
components.

1. Introduction, background and motivation

The notion of complexity of a module has been around for more than thirty years. In
depth studies have started in parallel at around the same time for group representations
(see [1, 2, 7, 8, 21] for instance) and also in commutative algebra (see [4, 5, 16, 23] and
[24]). In both cases the interest in complexity arose from the desire to understand the
growth of minimal projective resolutions.

We will recall now the definition of complexity. For this definition we don’t need to
restrict ourselves to finite dimensional algebras, so R can be either a finite dimensional
algebra over a field k, or R = (R,m,k) can be a local noetherian ring with maximal ideal
m and residue field k. Let M be a finitely generated R-module and let

P • : · · · −→ P 2 δ2−→ P 1 δ1−→ P 0 δ0−→ M → 0

be a minimal projective (free in the local case) resolution of M . The i-th Betti number
of M , denoted βi(M), is the number of indecomposable summands of P i. Then, the
complexity of M is defined as

cxM = inf{n ∈ N|βi(M) ≤ cin−1 for some positive c ∈ Q and all i ≥ 0}

For instance cxM = 0 is equivalent toM having finite projective dimension, and cxM = 1
means that the Betti numbers of M are all bounded. If no such n exists, then we say that
the complexity of M is infinite (at some point in time people also used to say that the
complexity does not exist in this case). Let Ω denote the syzygy operator. Then it is clear
from the definition that if M is a finitely generated R-module, then cxM = cxΩM , and
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an immediate application of the horseshoe lemma also shows that if 0 → A → B → C → 0
is a short exact sequence of R-modules, then cxB ≤ max{cxA, cxC}.

Note also that every Ω-periodic module (that is a module M with the property that
ΩkM ∼= M for some positive integer k) has complexity 1. In fact, Eisenbud has proved
that if R = kG is the group algebra of a finite group, or if R is a complete intersection,
then every module of complexity 1 is Ω-periodic [10]. The converse need not hold in
general, not even in the symmetric local case; we have the following example due to Liu
and Schulz, [22]: Consider R = k〈x, y〉/〈x2, y2, xy + qyx〉 where 0 6= q ∈ k is not a root
of 1, and let T be the trivial extension of R by Homk(R, k). Then T is a local symmetric
algebra. Let M be the T -module (x+y)T . For all i ∈ Z the modules ΩiM have dimension
4, and are pairwise non-isomorphic. Since T is symmetric, τM = Ω2M holds, where τ is
the Auslander-Reiten translation. Hence the module M has complexity 1 and is neither
Ω- nor τ -symmetric. The module M therefore is contained in a ZA∞ component. There
are also counterexamples in the commutative case (see Gasharov and Peeva [15]).

Throughout this paper, R will denote a finite dimensional selfinjective algebra over
an algebraically closed field k with Jacobson radical r. Then, by an induction on the
Loewy length, it follows readily from the definition and the above remarks, that for
every finitely generated R-module M , we have cxM ≤ cxR/r. D will denote the usual
dualityD = Homk(−,k), and ν will denote the Nakayama equivalence

ν = DHomR(−, R)

Also, since R is selfinjective, then νΩ = Ων. Moreover in this case, the Auslander-Reiten
translate τ is given by τ = νΩ2. Since ν is a dimension preserving equivalence that
takes projective modules into projective modules, we have that cxM = cx νM , hence
cxM = cx τM for every finitely generated R-module M .

The paper is organized as follows. In the second section we talk about the shape of the
Auslander-Reiten components containing modules of finite complexity as obtained in [20]
and about the methods used in approaching this problem. In particular, we talk about
a very special class of modules called Ω-perfect. In section three, we study the existence
of Ω-perfect modules. Finally, in the last section we look at some special cases where we
analyze the growth of the Betti numbers.

2. Auslander-Reiten components containing modules of finite complexity

We start this section with the following easy observation:

Lemma 1. Let R be a selfinjective algebra and let Cs be a stable component of its
Auslander-Reiten quiver. The complexity is constant on Cs.

Proof. Let B → C ∈ Cs be an irreducible morphism. Then there exists an Auslander-
Reiten sequence 0 → τC → B ⊕ E → C → 0 for some module E. Hence we have
cxB ≤ cx(B ⊕ C) ≤ max{cxC, cx τC} = cxC. Since there is an irreducible morphism
from τC to B we use the same reasoning to get the reverse inequality. There is also an
“extreme” case to prove: the case when the only irreducible morphisms to modules C ∈ Cs
are from projective modules. But it is not hard to prove that this corresponds to the case

–77–



when R is a Nakayama algebra of Loewy length two. In that case, the only non projective
modules are the simple modules and they are all periodic, hence their complexity is 1. �

In order to describe the shapes of the stable Auslander-Reiten components containing
modules of finite complexity we recall first the notion of Ω-perfect modules introduced
in [17, 18]. We observe first that if g : B → C is an irreducible epimorphism between
two nonprojective modules, then we have an induced irreducible map Ωg : ΩB → ΩC,
see [3] for instance These modules have a particularly nice behaviour under the syzygy
operator. However, there is no reason why Ωg should be again an epimorphism. Being
irreducible, we know though that it must be either an epimorphism or a monomorphism.
And one could ask the same question about an irreducible monomorphism f : when can
we guarantee that its syzygy Ωf is gain an irreducible monomorphism? We have the
following definition:

Definition. An irreducible map g : B → C is called Ω-perfect if for all n ≥ 0 the induced
maps Ωng : ΩnB → ΩnC are all monomorphisms or are all epimorphisms. An irreducible
map g is eventually Ω-perfect if, for some i > 0, the induced map Ωig : ΩiB → ΩiC
is Ω-perfect. An indecomposable non projective R-module C is called Ω-perfect, if each
irreducible map into C is Ω-perfect. We say that C is it eventually Ω-perfect if some
syzygy of C is an Ω-perfect module.

It was proved in [17] that if g : B → C is an irreducible epimorphism, then Ωg is again an
epimorphism if and only if its kernel is not a simple module. Thus, an irreducible map
g : B → C is eventually Ω-perfect, if and only if there exists a positive integer n such that
for each i ≥ n, the induced map Ωig : ΩiB → ΩiC has a non simple kernel. We have the
following consequence, see [18]:

Proposition 2. Let R be a selfinjective algebra having no periodic simple modules. Then
every nonprojective R-module is eventually Ω-perfect. �
We can specialize to the local finite dimensional case to obtain the following:

Corollary 3. Let R = (R,m,k) be a local selfinjective algebra, and assume that there are
modules of complexity two or higher. Then every indecomposable non projective R-module
is eventually Ω-perfect. �
One very nice feature of Ω-perfect maps is that they behave very nice under the syzygy
operator. We have the following (see [17]):

Proposition 4. Let R be a selfinjective algebra, and let 0 → A → B
g→ C → 0 be a

short exact sequence of R-modules where g is an irreducible Ω-perfect map. Then, for

each i ≥ 0 we have induced exact sequences 0 → ΩiA → ΩiB
Ωig→ ΩiC −→ 0, and thus

βi(B) = βi(A) + βi(C) for each i ≥ 0. �
It turns out that every indecomposable not τ -periodic module of complexity one is even-
tually Ω-perfect ([17]). The proof of this result is somehow involved and it would be
interesting to have a more direct and possibly elementary proof. Note also that a recent
result of Dugas ([9]), proves that if a simple module over a selfinjective algebra has com-
plexity 1, then it must be periodic. As mentioned above in the introduction, this need
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not hold for all modules with bounded Betti numbers so the assumption that the module
is simple, is essential.

We would also like to mention the following facts. Let C be an Ω-perfect module. Then
it is easy to show that τC is also Ω-perfect. Let now B be an indecomposable module,
and assume that there is an irreducible monomorphism B → C. Then it was shown in
[17] that B must also be Ω-perfect. We would like to know the answer to the following
question:

Question 5. LetB and C be two indecomposableR-modules, letB → C be an irreducible
epimorphism and assume C is Ω-perfect. Is B also Ω-perfect?

We will first look at Auslander-Reiten components containing modules that are not even-
tually Ω-perfect since this is the much easier case. We will show that these components
must have a very predictable shape. First, we recall the following definition and theorem,
see [19].

Definition. Let R be an artin algebra and let Cs be a stable component of its Auslander-
Reiten quiver. A function d : Cs → Q is additive if it satisfies the following properties:

(a) d(C) > 0 for each C ∈ Cs.
(b) 2d(C) =

∑
i d(Ei) for each indecomposable non projective module C, where the

sequence 0 → τC →
⊕

iEi

⊕
P → C → 0 is an Auslander-Reiten sequence and P is a

(possibly 0) projective R-module.
(c) d(C) = d(τC) for each C ∈ Cs.

The following theorem was proved by Happel-Preiser-Ringel in [19]:

Theorem 6. Let R be an artin algebra over an algebraically closed field and let Cs be
a stable component of its Auslander-Reiten quiver. Assume that there exists an additive
function on Cs. Then the tree class of Cs is either an extended Dynkin diagram of type

Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree of type A∞, D∞ or A∞
∞.

Assume that a non-periodic stable component Cs contains a module C that is not even-
tually Ω-perfect. This means that some syzygy of C is a simple periodic module. Let
us denote that module by S, and let n be the Ω-period of S. It is clear that S is also
ν-periodic since the Nakayama functor preserves lengths, so let m denote the ν-period of
S. Let T = S ⊕ΩS ⊕ . . .⊕Ωn−1S, and let W = T ⊕ νT ⊕ . . .⊕ νm−1T . It is now imme-
diate that τW = W . Also, it is not hard to show that the function d : Cs → Q given by
d(M) = dimHomR(W,M) is an additive function, see [13, 20]. Using the Happel-Preiser-
Ringel theorem and the above observations we have the following surprising application
(see [20]):

Theorem 7. Let R be a selfinjective algebra and let Cs be a stable component of the
Auslander-Reiten quiver of R containing a module that is not eventually Ω-perfect. As-
sume in addition that the component is not τ -periodic. Then Cs is of the form Z∆ where

∆ is of type Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree of type D∞ or A∞
∞. �

We should make a few remarks here. First, note the excluded case when the component
is τ -periodic is also well understood. They are either infinite tubes or they are periodic
components whose tree class is a Dynkin diagram (see [19, 26]). Note also that the theorem

–79–



says that components of type ZA∞ cannot occur. In fact, we shall see in the next section

that we cannot have components of type Z∆ for ∆ = Ã1, Ẽ6, Ẽ7, or Ẽ8 either. At this
point we would like to state a second question that has actually been around in the area
for some time.

Question 8. Let R be a selfinjective algebra and assume that its Auslander-Reiten quiver

contains a component of type Z∆ where ∆ = Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8, D∞ or A∞
∞. Does this

imply that R is a tame algebra?

The answer to the above question is affirmative in the group algebra case, see [12]. There-
fore it seems that given a selfinjective algebra, almost all the indecomposable modules are
eventually Ω-perfect. We will discuss more about this phenomenon in the next section.

Considering Theorem 2.7, it turns out that a similar result holds for components con-
taining modules of finite complexity. The following result was proved in [20]. It is a
generalization of Webb’s theorem who had proved it first for group algebras [28].

Theorem 9. Let R be a selfinjective algebra and let Cs be a stable component of the
Auslander-Reiten quiver of R containing a module of finite complexity. Assume in addi-
tion that the component is not τ -periodic. Then Cs is of the form Z∆ where ∆ is of type

Ãn, D̃n, Ẽ6, Ẽ7, Ẽ8, or an infinite Dynkin tree of type A∞, D∞ or A∞
∞. �

3. Ω-perfect modules

In this section we continue the study of Ω-perfect modules over a selfinjective algebra

and show that every component of type ZẼi for i = 6, 7, 8 or ZÃ1 consists of eventually
Ω-perfect modules. We also give an example of a component containing only modules
that are not Ω-perfect, and discuss possible values for complexities. We also pose some
new questions. We will need the notion of τ -perfect irreducible map. It is obviously very
similar to the one of Ω-perfect map: we say that an irreducible map g : B → C is called
τ -perfect if for all n ≥ 0 the induced maps τng : τnB → τnC are all monomorphisms or
are all epimorphisms.

If C is a component of the Auslander-Reiten quiver of R, we will denote by Cs its stable
part, and by ΩC the component containing all the modules of the form ΩX for X ∈ C
non projective. We have the following:

Proposition 10. Let R be a selfinjective artin algebra and let C be an Auslander-Reiten
component. If the module X ∈ C does not have any projective or simple predecessors in
C, then ΩX does not have either any simple or projective predecessors in ΩC.
Proof. Assume that ΩX has a simple predecessor S in the component ΩC. By applying
the inverse syzygy operator we obtain in C a chain of irreducible maps Ω−1S → · · · → X.
Denote by P the indecomposable projective-injective with socle S. We have an Auslander-
Reiten sequence 0 → rP → P ⊕ rP/S → P/S → 0, and since P/S ∼= Ω−1S, we see that
P is a predecessor of X in C. Assume now that ΩX has a projective predecessor in its
component, so there exists a chain of irreducible maps P → P/S → · · · → ΩX where S
is the socle of P . As before, we have that P/S ∼= Ω−1S, so there is a chain of irreducible
maps in Ω2C from S to Ω2X. Applying the Nakayama functor, we obtain that τX, and
hence X have a simple predecessor since the Nakayama functor preserves lengths. �
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One can prove in a similar fashion that for a selfinjective algebra, a component C contains
a simple (projective) module, if and only if the component ΩC contains a projective
(respectively simple) module.

Remark 11. Let C be an Auslander-Reiten component having a boundary, that is, a
component containing indecomposable modules whose Auslander-Reiten sequences have
indecomposable middle terms. Assume that C is not a tube, and let C be an indecom-
posable module lying on the boundary of C. Without loss of generality we may assume
that neither C nor ΩC has a simple module in the positive direction of their τ -orbit. This
means that if 0 → τC → B → C → 0 is the Auslander-Reiten sequence ending at C,
then both maps τC → B and B → C are Ω-perfect and so C is an Ω-perfect module. So
we see that nonperiodic components with boundaries, always contain Ω-perfect maps and
Ω-perfect modules. As we will see soon, this need not happen in components of the type
ZA∞

∞.

Lemma 12. Let g : B → C be an irreducible map that is not eventually Ω-perfect, where
neither B nor C has a nonzero projective summand. Then, there exists a positive integer
α such that for each i ≥ 0 we have |`(ΩiB)− `(ΩiC)| ≤ α.

Proof. By taking enough powers of the Auslander-Reiten translate τ , we may assume
without loss of generality that g is onto, and that its kernel S is a simple periodic module.

Note that by applying Ω we obtain an induced exact sequence 0 → ΩB
Ωg−→ ΩC → S → 0.

If the induced map Ω2g is again a monomorphism, then we get the commutative exact
diagram

0

��

0

��

0

��
0 // Ω2B

��

Ω2g // Ω2C

��

// L

��

// 0

0 // PΩB

��

// PΩC

��

// Q

��

// 0

0 // ΩB

��

Ωg // ΩC

��

// S

��

// 0

0 0 0

hence the two modules L and ΩS are isomorphic, and we have a short exact sequence
0 → Ω2B → Ω2C → ΩS → 0. If on the other hand, the map Ω2g is an epimorphism,
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then we obtain a commutative diagram

0

��

0

��
0 // L // Ω2B

��

Ω2g // Ω2C

��

// 0

0 // L // PΩB

��

// PΩC

��

// S // 0

0 // ΩB

��

Ωg // ΩC

��

// S // 0

0 0

and therefore we obtain a short exact sequence 0 → Ω2S → Ω2B → Ω2C → 0. Continuing
in this fashion we see that for each integer i ≥ 0 we get either short exact sequences
0 → ΩiS → ΩiB → ΩiC → 0, or of the form 0 → Ωi+1B → Ωi+1C → ΩiS → 0. By
letting α = maxi∈N{`(ΩiS)}, our result follows, since the simple module S is periodic. �
The following (most probably) well-known lemma will be used to characterize Ω-perfect
maps in terms of the “τ -perfect” property. As usual, if M is an indecomposable non-
projective module, α(M) denotes the number of non-projective indecomposable direct
summands of the middle term of the Auslander-Reiten sequence ending in M .

Lemma 13. Let Λ be a selfinjective artin algebra and let M be an indecomposable non
projective and non simple Λ-module with α(M) = 2 with n = `(M) = `(τM). Assume
also that there exists an irreducible map E → M where E is indecomposable and that
`(E) = `(M)− 1.

(a) The middle term of the Auslander-Reiten sequence ending at M has no nonzero
projective summand.

(b) If E, M and τM are uniserial, then the remaining summand F of the Auslander-
Reiten sequence ending at M is uniserial too and its length is `(F ) = `(M) + 1.

Proof. Let 0 → τM → E ⊕ F ⊕ P → M → 0 be the Auslander-Reiten sequence ending
at M , where F is indecomposable non projective, and P is a nonzero projective module.
Note first that P must be indecomposable since the algebra is selfinjective. Using now
the fact that τM = rP , a length argument shows that

`(F ) = 2n− `(E)− `(P ) = 2n− (n− 1)− (n+ 1) = 0

contradicting our assumption. This proves the first part of the lemma.
For part (b), note first that the Auslander-Reiten sequence ending at M has the form
0 → τM → E⊕F → M → 0 where E and F are both indecomposable and `(F ) = n+1.
Hence τM is a maximal submodule of F . To prove the uniseriality of F , it suffices to
show that τM = rF . It is folklore (see also [17], Proposition 2.5.) that, since τM is not
simple, we have an induced exact sequence

0 → rτM → rE ⊕ rF → rM → 0.

Counting lengths, we get `(rF ) = 2(n − 1) − (n − 2) = n. Since the image of τM in F
contains the radical of F , it follows that τM ∼= rF , and F is also an uniserial module. �
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We are now ready to prove the promised characterization of Ω-perfect maps.

Proposition 14. Let R be a selfinjective algebra of infinite representation type, and let
C be an indecomposable module and let g : B → C be an irreducible map. Then g is
eventually Ω-perfect if and only if both g and Ωg are eventually τ -perfect.

Proof. Obviously, if g is eventually Ω-perfect then both maps g and Ωg are eventually
τ -perfect. For the reverse direction, assume that both maps g and Ωg are eventually
τ -perfect, but that g is not eventually Ω-perfect. By applying enough powers of Ω, we
may assume that g,Ωg are both τ -perfect, and that for each i ≥ 0, the maps τ ig are onto
and Ωiτg are one-to-one. Thus, for each i ≥ 0, there exist simple modules Si and exact

sequences 0 → Si → Ω2iB
Ω2ig−→ Ω2iC → 0 and 0 → Ω2i+1B

Ω2i+1g−→ Ω2i+1C → Si → 0. But
Ω2i+2g is again surjective so we infer from the proof of lemma 13 that for each i ≥ 0,
Ω2Si

∼= Si+1. Since there are only finitely many nonisomorphic simple modules, the
sequence {S1, νS2 = τS1, ν

2S3 = τ 2S1, · · · } is eventually periodic. Therefore without loss
of generality we may assume that there is a periodic simple module S, say of period n,
whose τ -powers are all simple.

We claim first that the simple modules S, τS, · · · , τn−1S lie on the boundary of a regular
tube C. To see this, observe first that we can deduce that the middle term E of the
Auslander-Reiten sequence 0 → τS → E → S → 0 is indecomposable. Moreover, E
cannot be projective, since otherwise the middle term of each Auslander-Reiten sequence
ending at a τ iS would be an indecomposable projective-injective module of length two.
This would imply that our algebra is selfinjective Nakayama of Loewy length two, contra-
dicting our assumption on the representation type of R. By construction, all the modules
in the same τ -orbit of C have the same length, and these lengths increase by one from
a τ -orbit to the next one. We may apply now the previous lemma and infer that the
component is a regular component. By the second part of the lemma we get that all
the modules in C are uniserial, a contradiction since we cannot have uniserial module of
arbitrary large length. �
Let ∆ be a quiver. A vertex x of ∆ is called a tip, if only one arrow of ∆ starts or ends

at x. If C is a component whose stable part is of type Z∆, then a module M corresponds
to a tip of ∆ if and only if the Auslander-Reiten sequence ending at M is of the form:

0 → τM → Y ⊕ P → M → 0

for some projective (possibly zero) module P and indecomposable non projective module
Y . Assume that C is a connected component of the Auslander-Reiten quiver, and that
we have Cs ∼= Z∆ for some quiver ∆. Since an Auslander-Reiten component contains at
most finitely many indecomposable projective or simple modules, for each indecomposable
module M ∈ Cs there exists a positive integer r such that τ rM has no projective or simple
predecessors in C. We have the following immediate consequence:

Corollary 15. Let Cs be a stable component of type Z∆ and let M be an indecomposable
module in Cs. Assume that M corresponds to a tip of ∆. Then M is eventually Ω-
perfect. �

We have the following:

–83–



Proposition 16. Let Cs be a stable component of type Z∆ where ∆ is one of Ẽ6, Ẽ7, Ẽ8,
Ã1, A∞. Then every module in Cs is eventually Ω-perfect.

Proof. The case where ∆ = A∞ was treated in [20], (Theorem 2.11. and Lemma 2.6.).
Consider now the only case when the connected component Z∆ has no tip, that is the
case when ∆ = Ã1, that is, the Kronecker quiver. Let M ∈ Cs with no projective or
simple predecessors. The Auslander-Reiten sequence ending at M is of the form

0 → τM
[f1,f2]t−→ E ⊕ E

[g1,g2]−→ M → 0

and it is obvious that all of the irreducible maps f1, f2, g1, g2 are epimorphisms, or all are
monomorphisms. We claim that they are all epimorphisms. If they are monomorphisms,
then in the Auslander-Reiten sequence

0 → τE
[τg1,τg2]t−→ τM ⊕ τM

[f1,f2]−→ E → 0

the maps τg1, τg2 are also monomorphisms. Continuing in the positive τ direction we
obtain an arbitrary long chain or irreducible monomorphisms

· · · τ iE ↪→ τ iM ↪→ τ i−1E ↪→ · · · ↪→ E ↪→ M

which is absurd. We can make the same argument for ΩM , and it follows that M is
Ω-perfect.
Assume now that ∆ is one of the remaining finite quiver Ẽi, take M in Cs with α(M) = 3,
such that M has no projective or simple predecessor in C and let CM be the full subquiver
of C, defined by the vertices which are predecessors of M . If X ∈ CM with α(X) = 1
(hence X corresponds to one of the 3 tips of ∆, then X is Ω-perfect by Remark 3.2, the
irreducible map Y → τX is an Ω-perfect epimorphism, and τX → Y is injective and
Ω-perfect. Consequently all irreducible maps between indecomposable modules in CM are
Ω-perfect, hence all indecomposable modules N ∈ CM with α(N) ≤ 2 are Ω-perfect. Take
finally V ∈ CM with α(V ) = 3 and let

0 → τV
[f1,f2,f3]t−→ ⊕3

i=1Xi
[g1,g2,g3]−→ V → 0

the Auslander-Reiten sequence ending in V . The irreducible maps fi all are surjective,
while the gi are injective. Choose j ≤ 3, let ⊕iXi = Y ⊕Xj and let [g, gj] : Y ⊕Xj → V
be the sink map. Since fj is an Ω-perfect epimorphism, the same holds for the ”parallel”
morphism g, hence V is Ω-perfect, too. �

As we will see very soon, it turns out that if C is a component in which no irreducible
map is Ω-perfect, then every non projective module in C has complexity at most 2. In
fact, we have a slightly more general result. We start with the following:

Proposition 17. Let C be an indecomposable non projective, and non τ -periodic module
and assume that there exist irreducible morphisms B → C and τC → B that are not
eventually Ω-perfect. Then, there exists a positive integer α such that for each n ≥ 0,
`(Ω2nC) ≤ `(C) + nα. In particular, C and every nonprojective module in the same
Auslander-Reiten component has complexity 2.

–84–



Proof. Observe first that for each indecomposable non projective R-module M , we have
`(Ω2M) = `(τM). Now, applying the previous Lemma 3.3, we obtain for each i ≥ 0
that `(ΩiB) ≤ `(ΩiC) + α/2, and `(Ωi+2C) ≤ `(ΩiB) + α/2 for some positive number α.
Hence, for each i ≥ 0 we have `(Ωi+2C) − `(ΩiC) ≤ α. In particular, for each n ≥ 0 we
have `(Ω2nC) − `(C) ≤ nα. This means that the complexity of C is bounded by 2. If
cxC = 1, then, since it is not τ periodic, the module C must lie in a ZA∞-component
by [17], but for these components every irreducible map is eventually Ω-perfect. Hence
cxC = 2. �

We obtain the following immediate consequence: assume that we have a component C,
whose stable part Cs is of the form ZA∞

∞, and assume also that there exists an Auslander-
Reiten sequence 0 → τC → E ⊕ F → C → 0 where E and F are indecomposable, and
neither E → C nor F → C is eventually Ω-perfect. Observe also that in this case, no
irreducible map in Cs between indecomposable modules is eventually Ω-perfect. It follows
immediately from the previous proposition that every non projective module in C has
complexity 2. This situation can actually occur. The following example is due to Ringel.

Example 18. Let R be the finite dimensional selfinjective string algebra given by the
quiver

1
α

((
2

β
((

γ
hh 3

δ

hh

modulo the relations αβ = 0, δγ = 0, γαγα = βδβδ and αγαγα = δβδβδ = 0. There
exists a ZA∞

∞ component where none of the irreducible maps between the indecomposable
modules is eventually Ω-perfect, (or even τ -perfect). For instance, consider the string
module M = r3P2. It is easy to see that M is not eventually Ω-perfect, that α(M) = 2,
and that no irreducible map from an indecomposable module toM is eventually Ω-perfect.
Moreover, by [6], M lies in a component consisting entirely of string modules. But the
only string modules lying on the boundary of an Auslander-Reiten component can lie on
tubes (see [12], II.6.4), so this module belongs to a ZA∞

∞ component. Note also that the
simple modules S1 and S3 are Ω-periodic of period 6, and that they both lie on tubes of
rank 3.

Example 19. Following Erdmann [12], for each positive integer m, we denote by Λm the
local symmetric string algebra over a field K,

Λm = K〈x, y〉/〈x2, (xy)m+1 − (yx)m+1, x2 − (yx)my, x3〉
If the characteristic of K is 2, and m+1 = 2n ≥ 4, then the algebra Λm modulo its socle is
isomorphic to the group algebra of the semidihedral group of order 2n+2 modulo its socle.
Motivated by this fact, Erdmann calls this algebra semidihedral. She proves that Λm has
infinitely many stable components of type ZA∞

∞ and ZD∞ ([12], Propositions II,10.1 and
II,10.2), and that the other stable components are tubes of rank 1 and 2. Moreover, she
shows that the unique simple module lies in a component of type ZD∞ so it is not periodic.
Therefore, every indecomposable non projective Λm-module is eventually Ω-perfect by
[18]. Note that in the same book, Erdmann generalizes the notion of semidihedral algebra
to that of algebras of semidihedral type and one also obtains interesting examples for the
non local case ([12], Lemma VIII. 2.1.).
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3.1. ZD∞-components. We assume for the remainder of this section that C is a con-
nected Auslander-Reiten component whose stable part is of the form ZD∞. Let C be an
indecomposable module lying on the boundary of C. Then, without loss of generality we
may assume that C is Ω-perfect, by Remark 11. In this context we have the following:

Lemma 20. Let A and B be two indecomposable modules lying on the boundary of C with

Auslander-Reiten sequences 0 → τA
f1−→ M

g1−→ A → 0 and 0 → τB
f2−→ M

g2−→ B → 0.
Then the irreducible map [g1, g2]

t : M → A⊕B is an epimorphism if and only if the map
[f1, f2] : τA⊕ τB → M is also an epimorphism.

Proof. Counting lengths, we have `(τA)+ `(A)+ `(τB)+ `(B) = 2`(M). This means that
`(A) + `(B) < `(M) if and only if `(τA) + `(τB) > `(M). The result follows, since an
irreducible map is either a monomorphism, or an epimorphism. �

Keeping the notation from the lemma, we may clearly assume that the modules A and
B lying on the boundary of the component are Ω-perfect, and that the Auslander-Reiten
sequence ending at M is 0 → τM → τA⊕ τB ⊕ τX → M → 0 for some indecomposable
module X. Since the irreducible epimorphisms M → A and M → B are Ω-perfect, then
the irreducible epimorphisms τA ⊕ τX → M and τB ⊕ τX → M are also Ω-perfect
being “parallel” to Ω-perfect epimorphisms. Similarly, the irreducible monomorphisms
τM → τX ⊕ τA and τM → τX ⊕ τB are also Ω-perfect. Putting together our remarks,
we have:

Proposition 21. Let C be an Auslander-Reiten component whose stable part is of type
ZD∞. Assume that there is an irreducible map between indecomposable non projective
modules X → Y that is not eventually Ω-perfect. Then each non projective module in C
has complexity 2.

Proof. From the shape of our component, it follows by looking at “parallel” maps one at a
time, that we may assume that there exists an irreducible map of the form τM → τA⊕τB
or τA ⊕ τB → M that is not eventually Ω-perfect, where A and B are indecomposable
modules lying on the boundary of C, and M is an indecomposable module. Observe that,
neither τM → τA ⊕ τB nor τA ⊕ τB → M can be eventually Ω-perfect by Lemma 20.
Being of type ZD∞ means also that C cannot contain modules of complexity 1 by [17].
We apply now 17. and the result follows. �
We would like to propose the following questions summarizing the discussion in the first
three sections. The first one has been around for some time and is due to Rickard [25].

Questions 22. Let R be a selfinjective algebra.

(1) Assume that there exists an indecomposable R-module of complexity greater than
2. Is R is of wild representation type?

(2) Assume that R has stable components of type ZD∞ or ZA∞
∞. Is R of tame repre-

sentation type? Must these components have complexity 2?
(3) Assume that R has a stable component of type ZA∞. Is R necessarily of wild

representation type?

The answer to the first question is known to be yes if R admits a theory of support
varieties, for instance in the group algebras case. See also [14]. The answer to the second
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and third question is also known to be affirmative in the group algebra case [12] but
almost nothing is known outside this case.

4. Growth of Betti numbers. The local case

Let us return to the situation where R = (R,m, k) is a local noetherian k-algebra. The
following questions were among questions posed in the late 1970s and the early 1980s.
They are still open even in the commutative artinian case, and even if we also add the
selfinjective assumption.

Questions 23. Let R = (R,m, k) be a local noetherian k-algebra. Let M be an inde-
composable finitely generated R-module of infinite projective dimension.

(1) Assume that M has complexity 1. Is the sequence of Betti numbers {βi(M)}i
eventually constant?

(2) Is the sequence of Betti numbers {βi(M)}i eventually nondecreasing?

The first question has an affirmative answer if R is a complete intersection ([10]). In the
radical square zero case the answer is also affirmative. We sketch the proof below (see
also [15])

Proposition 24. Let R = (R,m, k) is a local artinian ring with m2 = 0 and let M be a
finitely generated R-module with cxM = 1. Then the Betti numbers of M are eventually
constant.

Proof. Let F be a finitely generated free R-module. We observe first that since m2 = 0,
every submodule ofmF is semisimple [3], so all the syzygies ofM must be semisimple. Let
k denote the largest possible value of a Betti number of M and assume that it corresponds
to the i-th Betti number, that is βi(M) = k. This means that the i-th syzygy of M is a
direct sum of k simple modules, hence βi+1(M) ≥ k. Our choice of k implies now that
βi+j(M) = k for all j ≥ 0 and the result follows. �

Question 1 also has an affirmative answer in the case where R = (R,m, k) is a com-
mutative Gorenstein artinian ring with m3 = 0, see [15]. Question 2 is also pretty much
unresolved. In the local commutative artinian case, Gasharov and Peeva have shown
([15]) that for a finitely generated module M , we have the following:

βi+1(M) ≥ (2e− `(R) + h− 1)βi(M)

for large enough i. Here e = dimk m/m2, h is the Loewy length of R, and `(R) is the
length of R. They have also shown that if the constant 2e − `(R) + h − 1 ≥ 2, then the
sequence of Betti numbers has exponential growth. However it is not hard to produce
examples of local commutative artinian rings where the constant 2e − `(R) + h − 1 is
a negative number. We also want to mention the following two results due to Ramras
[23, 24]:

Theorem 25. Let (R,m,k) be a regular local ring of dimension at least two, and let
S = R/mk for some k ≥ 2. Let M be a finitely generated non free S-module. Then, for
each i ≥ 1 we have βS

i+2(M) > βS
i (M). �

and
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Theorem 26. Let R be a local artinian ring, and let M be a finitely generated non free
R-module. Then, for each i ≥ 1 we have

`(R)βi(M) > βi+1(M) >
`(socR)

`(R)
βi(M)

Observe that if we assume in the last theorem that R is also selfinjective, then its socle
has length equal to 1, so we don’t get any extremely useful information about the growth
of the sequence of Betti numbers.

It turns out that in certain cases we can prove a similar theorem to Ramras’ first
theorem. For this type of result we might restrict ourselves only to the local selfinjective
case R = (R,m, k) but this is not necessary. Recall that since R is selfinjective, then
for each integer n ≥ 0 we have that βi(τM) = βi+2(M) if M is an indecomposable non
projective R-module. We will assume that cxM > 1. Next we want to make sure that the
stable component of M consists of modules that are eventually Ω-perfect. As mentioned
in the introduction, this can be easily achieved if we assume that every simple R-module
is non periodic (cx k > 1 for the local case) by [18].

We have the following:

Lemma 27. Let R be a selfinjective algebra and let M be a finitely generated non projective
indecomposable R-module. Assume that the stable component of the Auslander-Reiten
quiver containing M is of the form ZA∞

∞ and that it consists entirely of eventually Ω-
perfect modules. Then the sequences {β2n(M)}n and {β2n+1(M)}n are eventually strictly
increasing.

Proof. Let M be a module in this component. We may assume that M is Ω-perfect by
taking enough powers of theAuslander-Reiten translate. The Auslander-Reiten sequence
ending at M must have the following form [18, 20]

X
$$ $$II

II

τM
%% %%KK

KKK

99 99ssss
M

Y

:: ::uuuu

so we have an epimorphism τM → M that is the composition of two Ω-perfect epi-
morphisms. But we can infer from 4 that whenever we have an Ω-perfect epimorphism
f : B → C, then for each i we have βi(B) > βi(C) since βi(Kerf) > 0. This implies that
βi+2(M) = βi(τM) > βi(X) > βi(M) for all i ≥ 0 and the result follows. �
We now treat the D∞ case.

Lemma 28. Let R be a selfinjective algebra. Let Cs be a stable component of the Auslander-
Reiten quiver of the form ZD∞ consisting entirely of eventually Ω-perfect modules.

(1) Let M be a module in Cs not lying on the border of the component. Then the
sequences {β2n(M)}n and {β2n+1(M)}n are eventually strictly increasing.

(2) Let Y and Z be two indecomposable modules in Cs lying in the two different τ -
orbits that form the border of the component. Then the sequences {β2n(Y ⊕ Z)}n
and {β2n+1(Y ⊕ Z)}n are eventually strictly increasing.
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Proof. Let M be an indecomposable module in this component. We may assume that M
is Ω-perfect by taking enough powers of the Auslander-Reiten translate. If the Auslander-
Reiten sequence ending atM has three indecomposable terms in the middle, the Auslander-
Reiten sequence ending at M must have the following form [18, 20]

X
$$ $$II

II

τM // //

99 99ssss

%% %%KK
KKK

Y � � // M

Z
, �

::uuuu

so as in the previous lemma we have an epimorphism τM → M that is the composition
of two Ω-perfect epimorphisms. and βi+2(M) = βi(τM) > βi(M) for all i ≥ 0. So
the sequences of odd ,and of even Betti numbers for M are strictly increasing. Next we
look at the module X. It is clear that we may assume that X is also Ω-perfect. The
Auslander-Reiten sequence ending at X is of the form

0 → τX → τM ⊕X1 → X → 0

where the irreducible map X1 → X is an epimorphism. We proceed as in the proof of
the previous lemma and obtain that for large enough n, the sequences {β2n(X)}n and
{β2n+1(X)}n are strictly increasing. We proceed by induction along the sectional path of
irreducible epimorphisms

· · ·Xn → · · · → X2 → X1 → X

and we conclude that for each module Xj the two sequences {β2n(Xj)}n and {β2n+1(Xj)}n
are eventually strictly increasing. This implies that the result holds for every module in
the component, whose Auslander-Reiten sequence has the middle term decomposing into
two indecomposable summands. This proves the first part of the lemma. By 20 we see
that we have a composition of two irreducible epimorphisms fro τY ⊕ τZ → Y ⊕ Z and
we may also assume that both Y and Z are Ω-perfect. This shows that {β2n(Y ⊕ Z)}n
and {β2n+1(Y ⊕ Z)}n are eventually strictly increasing. �
For the case when the stable component is of type ZÃn or ZD̃n we proceed as above. We
have the following similar proposition:

Proposition 29. Let R be a selfinjective algebra and let M be a finitely generated non
projective indecomposable R-module. Assume that the stable component of the Auslander-

Reiten quiver containing M is of the form ZÃn or ZD̃n and consists entirely of eventually
Ω-perfect modules. Assume that the Auslander-Reiten sequence ending at M has a de-
composable middle term. Then the sequences {β2n(M)}n and {β2n+1(M)}n are eventually
increasing.

Proof. Note first that M has complexity 2, by [20]. We use now the fact that a component

of type ZÃn is of tree type A∞
∞ and use the same argument as above. For the case when

the component is of type ZD̃n with n > 4, we can use the same proof as in the ZD̃∞ case,
so it remains to look at the case when n = 4. In that case, if M is an Ω-perfect module,
by [18] the Auslander-Reiten sequence ending at M has the form

0 → τM
[ f1,f2,f3,f4 ]

T

−−−−−−−−→ E1 ⊕ E2 ⊕ E3 ⊕ E4
[ g1,g2,g3,g4 ]−−−−−−−→ M → 0
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where each fi is an irreducible epimorphism and each gi is an irreducible monomorphism.
We show first that at least one of the two induced irreducible maps E1 ⊕ E2 → M or
E3 ⊕ E4 → M is an irreducible epimorphism. Assume they are both monomorphisms.
Then both `(E1 ⊕ E2) < `(M) and `(E3 ⊕ E4) < `(M) hence

`(M) + `(τM) = `(E1) + `(E2) + `(E3) + `(E4) < 2`(M)

implying `(τM) < `(M). SinceM is Ω-perfect we can repeat this argument and we obtain
that the sequence {`(τnM)} is strictly decreasing; clearly a contradiction. Therefore we
may assume that E3 ⊕ E4 → M is an irreducible epimorphism. This means that we can
look at our sequence as being

0 → τM
[ f1,f2,f ′

3 ]
T

−−−−−−→ E1 ⊕ E2 ⊕ E ′
3

[ g1,g2,g′3 ]−−−−−→ M → 0

where E ′
3 = E3 ⊕ E4. Now we obtain again from [18] that the induced map f ′

3 is an
irreducible epimorphism and since M is Ω-perfect, βi(τM) > βi(M) for all i ≥ 0. The
result follows now immediately. �
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QUANTUM UNIPOTENT SUBGROUP AND DUAL CANONICAL
BASIS

YOSHIYUKI KIMURA

Abstract. In a series of works [13, 16, 14, 15, 18, 19], Geiß-Leclerc-Schröer defined
the cluster algebra structure on the coordinate ring C[N(w)] of the unipotent subgroup,
associated with a Weyl group element w. And they proved cluster monomials are con-
tained in Lusztig’s dual semicanonical basis S∗. We give a set up for the quantization
of their results and propose a conjecture which relates the quantum cluster algebras in
[3] to the dual canonical basis Bup. In particular, we prove that the quantum analogue
Oq[N(w)] of C[N(w)] has the induced basis from Bup, which contains quantum flag mi-
nors and satisfies a factorization property with respect to the ‘q-center’ of Oq[N(w)].
This generalizes Caldero’s results [4, 5, 6] from finite type to an arbitrary symmetrizable
Kac-Moody Lie algebra.

1. Introduction

1.1. The canonical basis B and the dual canonical basis Bup. Let g be a sym-
metrizable Kac-Moody Lie algebra, Uq(g) its associated quantized enveloping algebra,
and U−

q (g) its negative part. In [24], Lusztig constructed the canonical basis B of U−
q (g)

by a geometric method when g is symmetric. In [21], Kashiwara constructed the (lower)
global basis Glow(B(∞)) by a purely algebraic method. Grojnowski-Lusztig [20] showed
that the two bases coincide when g is symmetric. We call the basis the canonical ba-
sis. There are two remarkable properties of the canonical basis, one is the positivity of
structure constants of multiplication and comultiplication, and another is Kashiwara’s
crystal structure B(∞), which is a combinatorial machinery useful for applications to
representation theory, such as tensor product decomposition.

SinceU−
q (g) has a natural pairing which makes it into a (twisted) self-dual bialgebra, we

consider the dual basis Bup of the canonical basis in U−
q (g). We call it the dual canonical

basis.

1.2. Cluster algebras. Cluster algebras were introduced by Fomin and Zelevinsky [10]
and intensively studied also with Berenstein [11, 1, 12] with an aim of providing a concrete
and combinatorial setting for the study of Lusztig’s (dual) canonical basis and total pos-
itivity. Quantum cluster algebras were also introduced by Berenstein and Zelevinsky [3],
Fock and Goncharov [8, 9, 7] independently. The definition of (quantum) cluster algebra
was motivated by Berenstein and Zelevinsky’s earlier work [2] where combinatorial and
multiplicative structures of the dual canonical basis were studied for g = sln (2 ≤ n ≤ 4).
In [1], it was shown that the coordinate ring of the double Bruhat cell contains a cluster
algebra as a subalgebra, which is conjecturally equal to the whole algebra.

The detailed version of this paper [22] will be published from Kyoto Journal of Mathematics.
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A cluster algebra A is a subalgebra of rational function field Q(x1, x2, · · · , xr) of r
indeterminates which is equipped with a distinguished set of generators (cluster variables)
which is grouped into overlapping subsets (clusters) consisting of precisely r elements.
Each subset is defined inductively by a sequence of certain combinatorial operation (seed
mutations) from the initial seed. The monomials in the variables of a given single cluster
are called cluster monomials. However, it is not known whether a cluster algebra have a
basis, related to the dual canonical basis, which includes all cluster monomials in general.

1.3. Cluster algebra and the semicanonical basis. In a series of works [13, 16, 14,
15, 18, 19], Geiß, Leclerc and Schröer introduced a cluster algebra structure on the coor-
dinate ring C[N(w)] of the unipotent subgroup associated with a Weyl group element w.
Furthermore they show that the dual semicanonical basis S∗ is compatible with the inclu-
sion C[N(w)] ⊂ U(n)∗gr and contains all cluster monomials. Here the dual semicanonical
basis is the dual basis of the semicanonical basis of U(n), introduced by Lusztig [25, 28],
and “compatible” means that S∗ ∩ C[N(w)] forms a C-basis of C[N(w)]. It is known
that canonical and semicanonical bases share similar combinatorial properties (crystal
structure), but they are different. Geiß, Leclerc and Schröer conjecture that certain dual
semicanonical basis elements are specialization of the corresponding dual canonical basis
elements. This is called the open orbit conjecture.

Acknowledgement. The author is grateful to Professor Osamu Iyama for giving oppor-
tunity to talk in Okayama University.

2. Quantum unipotent subgroup and the dual canonical basis

2.1. Notations. Let g be a symmetrizable Kac-Moody Lie algebra and g = n+⊕h⊕n− =
h⊕

⊕
α∈∆ gα be its triangular decomposition and its root decomposition. LetW be a Weyl

group which is associated with g. Let ∆± be the set of positive (resp. negative) roots. For
a Weyl group element w ∈ W , we set ∆(w) := ∆+∩w∆− = {α ∈ ∆+ | w−1α < 0} ⊂ ∆+.
For a Weyl group element w, let −→w = (i1, i2, . . . , i`) be a reduced expression of w. We set
βk := si1 . . . sik−1

(αik) for each 1 ≤ k ≤ `. Then it is known that ∆(w) = {βk | 1 ≤ k ≤ `}.
Let n(w) be the nilpotent Lie subalgebra which is associated with ∆(w), that is

n(w) =
⊕
1≤k≤`

gβk
.

For i ∈ I, we have Lusztig’s braid symmetry Ti on Uq(g), see [26, Chapter 32] for
more details. It is known that {Ti}i∈I satisfies braid relations. Hence the composite
Tw := Ti1 · · ·Ti`does not depend on a choice of reduced word −→w = (i1, i2, . . . , i`) of w. In
this article, we set Ti = T ′

i,−1.

2.2. Poincaré-Birkhoff-Witt basis. Let g be a symmetrizable Kac-Moody Lie algebra
and Uq(g) be the corresponding quantized enveloping algebra. We have a standard gen-
erators {Ei}i∈I ∪ {qh} ∪ {Fi}i∈I Let U−

q (g) be the Q(q)-subalgebra which is generated
by {Fi}i∈I . It is known that U−

q (g) is isomophic to the Q(q)-algebra which is defined by
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{Fi}i∈I and q-Serre relations

1−aij∑
k=0

(−1)kF
(k)
i FjF

(1−aij−k)
i ,

where {aij} is the generalized Cartamn matrix which defines g and F
(k)
i is the divided

power which is defined by F
(k)
i := F k

i /[k]i!. Let U−
q (g)Q be the Q[q±1]-subalgebra which

is generated by {F (n)
i }i∈I,n∈Z≥0

. This Q[q±1]-algebra is called Lusztig’s Q[q±1]-form.

We define root vectors associated with a reduced word−→w = (i1, i2, . . . , i`) for a Weyl
group element w ∈ W . See [26, Proposition 40.1.3, Proposition 41.1.4] for more detail.
For a Weyl group elementw ∈ W and a reduced word −→w = (i1, i2, . . . , i`) , we define βk

as above. We define the root vectors F (βk) associated with βk ∈ ∆(w)

F (βk) = Ti1 . . . Tik−1
(Fik).

It is known that F (βk) ∈ U−
q (g) for all 1 ≤ k ≤ `. We also define its divided power by

F (cβk) = Ti1 . . . Tik−1
(F

(c)
ik

). For an ` tuple of non-negative integers c = (c1, c2, . . . , c`), we
set

F (c,−→w ) := F (c`β`) · · ·F (c1β1).

It is known that F (c,−→w ) ∈ U−
q (g)Q.

Theorem 1 ([26, Proposition 40.2.1, Proposition 41.1.3]).

Theorem 2. (1) Then {F (c,−→w )}c∈Z`
≥0

forms a Q(q)-basis of a subspace defined to be

U−
q (w) of U

−
q (g) which does not depend on −→w .

(2) We have F (c,−→w ) ∈ U−
q (g)Q for all c ∈ Z`

≥0.

We consider the total order on ∆(w) as follows:

β1 < β2 < · · · < β`.

We have the following convex properties on {F (βk)}1≤k≤`.

Theorem 3 ([29, Proposition 3.6], [23, 5.5.2 Proposition]). For j < k, let us write

F (cjβj)F (ckβk)− q−(cjβj ,ckβk)F (ckβk)F (cjβj) =
∑

c′∈Z`
≥0

fc′F (c′,−→w )

fc′ ∈ Q(q). If fc′ 6= 0, then c′j < cj and c′k < ck with
∑

j≤m≤k c
′
mβm = cjβj + ckβk.

By the above formula, it is shown that U−
q (w) is a Q(q)-algebra which is generated by

{F (βk)}1≤k≤`.

2.3. PBW basis and crystal basis. Let L(∞) be the crystal lattice of U−
q (g) and

B(∞) be the crystal basis and B the canoncial basis.
The following result is due to Saito and Lusztig.

–94–



Theorem 4 ([30, Theorem 4.1.2], [27, Proposition 8.2]). (1) We have F (c,−→w ) ∈ L(∞)
and

b(c,−→w ) := F (c,−→w ) mod qL(∞) ∈ B(∞).

(2) The map Z`
≥0 → B(∞) which is defined by c 7→ b(c,−→w ) is injective and the image

B(w) does not depend on the choice of −→w .

2.4. Dual canonical basis. Let ( , )K be the inner product on U−
q (g) defined by Kashi-

wara and U−
q (g)

up
Q be the dual Q[q±1]-lattice of U−

q (g)Q. Let Bupbe the dual basis of B
with respect to ( , )K and this is called dual canonical basis. We set

F up(c,−→w ) :=
1

(F (c,−→w ), F (c,−→w ))K
F (c,−→w ).

Proposition 5. (1) We have F up(βk) ∈ Bup.
(2) Let U−

q (w)
up
Q be the Q[q±1]-span of {F up(c,−→w )}c∈Z`

≥0
. Then U−

q (w)
up
Q is the Q[q±1]-

algebra generated by {F up(βk)}1≤k≤`.

Using the above proposition we obtain the following compabitility. This is a quantum
analogue of the Geiß-Leclerc-Schroër’s result.

Theorem 6. Let Bup(w) := Bup ∩U−
q (w)

up
Q . Then Bup(w) is a Q[q±1]-basis of Bup(w).

2.5. Specialization at q = 1. For the Lusztig form, we have the specilization isomor-
phism C⊗Q[q±1]U

−
q (g)Q ' U(n). Dually, we have the C-algebra isomorphism Φup : C⊗Q[q±1]

U−
q (g)

up
Q ' C[N ].

Under the isomorphism C⊗Q[q±1] U
−
q (g)

up
Q ' C[N ], as a corollay of the above theorem,

we obtain the following result for U−
q (w) which concerns the specialization at q = 1.

Corollary 7. Under the C-algebra isomorphism Φup, we have

C⊗Q[q±1] U
−
q (w)

up
Q ' C[N(w)],

where N(w) is the unipotent subgroup associated with the nilpotent Lie algebra n(w).

3. Quantum closed unipotent subgroup and Dual canonical basis

For a Weyl group element w ∈ W and a reduced word −→w = (i1, . . . , i`), we set

U−
w :=

∑
a=(a1,...,a`)∈Z`

≥0

Q(q)F
(a1)
i1

. . . F
(a`)
i`

.

This is called Demazure-Schubert filtration. It is known that U−
w is compatible with the

canonical basis B, that is B ∩U−
w is a Q[q±1]-basis of U−

w . We denote the correponding
subset by B(w,∞). Hence we set

Oq[Nw] := U−
q (g)/(U

−
w)

⊥,

where (U−
w)

⊥ is the annhilator of U−
w with respect to Kashiwara’s bilinear form ( , )K .

Since (U−
w)

⊥ is compatible with Bup, the canonical projection induces the dual canonical
basis on Oq[Nw].
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Theorem 8. (1)Let U−
q (w) → U−

q (g) → Oq[Nw] be the inclusion and the canonical
projectinon. Then the composite is monomorphism of algebra.

(2) We have B(w) ⊂ B(w,∞).

4. Quantum flag minor and Its multiplicative proprerties

For a dominant integral weight λ ∈ P+, let V (λ) be the corresponding integrable highest
weight module with highest weight vector uλ. We have symmetric bilinear form ( , )λon
V (λ). Let πλ : U

−
q (g) � V (λ) be the projection defined by x 7→ xuλ. Let jλ be dual of

πλ, that is jλ : V (λ) ↪→ U−
q (g). For a Weyl group element w ∈ W , we have the extremal

vector uwλ of weight λ. It is known that uwλ is contained in the canoical basis and the
dual canoncial basis. We set quantum unipotent minro Dwλ,λby

Dwλ,λ := jλ(uwλ).

It is known that Dwλ,λ ∈ Bup. The following is main result in our study.

Theorem 9. (1) For w ∈ W and λ ∈ P+, we have Dwλ,λ ∈ U−
q (w).

(2) For arbitrary b ∈ B(w), there exists N ∈ Z such that qNGup(b)Dwλ,λ ∈ Bup(w),
there Gup(b) is the dual canonical basis element which is associated with b ∈ B(w).

Using the above theorem, we obtain the following quantum seed.
For a Weyl group element w, a reduced word −→w = (i1, i2, . . . , i`) and c = (c1, . . . , c`) ∈

Z`
≥0, we set

D
−→w (c) :=

∏
1≤k≤`

Dsi1...sik ck$ik
,ck$ik

.

Then {D−→w (c)}c∈Z`
≥0

forms a mutually commmuting familty and {D−→w (c)}c∈Z`
≥0

is linear

independent over Z[q±1]. {D−→w (c)}c∈Z`
≥0

can be considered as a quantum analogue of the

initial seed in [18] and we can form the corresponding quantum cluster algebra by it. Our
conjecture is an Q[q±1]-algebra isomorphism between the quantum cluster algebra and
the quantum unipotent subgroup Oq[N(w)] and the set of quantum cluster monomials is
contained by the dual canonical basis Bup(w). This is just a quantum analogue of [18]
and this is compatible with their open orbit conjecture for symmetric g. Recently the
Q(q)-algebra isomorphism is obtained by [17].
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WEAKLY CLOSED GRAPH

KAZUNORI MATSUDA

Abstract. We introduce the notion of weak closedness for connected simple graphs.
This notion is a generalization of closedness introduced by Herzog-Hibi-Hreindóttir-
Kahle-Rauh. We give a characterization of weakly closed graphs and prove that the
binomial edge ideal JG is F -pure for weakly closed graph G.

Key Words: binomial edge ideal, F-purity, weakly closed graph.

2000 Mathematics Subject Classification: 05C25, 05E40, 13A35, 13C05.

1. Introduction

This article is based on [6].
Throughout this article, let k be an F -finite field of positive characteristic. Let G be

a graph on the vertex set V (G) = [n] with edge set E(G). We assume that a graph G
is always connected and simple, that is, G is connected and has no loops and multiple
edges. And the term “labeling” means numbering of V (G) from 1 to n.

For each graph G, we call JG := ([i, j] = XiYj − XjYi | {i, j} ∈ E(G)) the binomial
edge ideal of G (see [4], [8]). JG is an ideal of S := k[X1, . . . , Xn, Y1, . . . , Yn].

2. Weakly closed graph

In this section, we give the definition of weakly closed graphs and the first main theorem
of this chapter, which is a characterization of weakly closed graphs.

Until we define the notion of weak closedness, we fix a graph G and a labeling of V (G).
Let (a1, . . . , an) be a sequence such that 1 ≤ ai ≤ n and ai 6= aj if i 6= j.

Definition 1. We say that ai is interchangeable with ai+1 if {ai, ai+1} ∈ E(G). And we
call the following operation {ai, ai+1}-interchanging :

(a1, . . . , ai−1, ai, ai+1, ai+2, . . . , an) → (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an)

Definition 2. Let {i, j} ∈ E(G). We say that i is adjacentable with j if the following
assertion holds: for a sequence (1, 2, . . . , n), by repeating interchanging, one can find a
sequence (a1, . . . , an) such that ak = i and ak+1 = j for some k.

Example 3. About the following graph G, 1 is adjacentable with 4:

4 ��������
1 ��������

3��������
2��������

The detailed version of this paper will be submitted for publication elsewhere.
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Indeed,

(1, 2, 3, 4)
{1,2}−−−→ (2, 1, 3, 4)

{3,4}−−−→ (2, 1, 4, 3).

Now, we can define the notion of weakly closed graph.

Definition 4. Let G be a graph. G is said to be weakly closed if there exists a labeling
which satisfies the following condition: for all i, j such that {i, j} ∈ E(G), i is adjacentable
with j.

Example 5. The following graph G is weakly closed:

6 �������� 2��������
3
��������OOOOOOO

5 �������� 4��������
ooo

ooo
o

1��������
ooooooo

OOOOOOO

Indeed,

(1, 2, 3, 4, 5, 6)
{1,2}−−−→ (2, 1, 3, 4, 5, 6)

{3,4}−−−→ (2, 1, 4, 3, 5, 6),

(1, 2, 3, 4, 5, 6)
{3,4}−−−→ (1, 2, 4, 3, 5, 6)

{5,6}−−−→ (1, 2, 4, 3, 6, 5).

Hence 1 is adjacentable with 4 and 3 is adjacentable with 6.

Before stating the first main theorem of this chapter, which is a characterization of
weakly closed graphs, we recall that the definition of closed graphs.

Definition 6 (See [4]). G is closed with respect to the given labeling if the following
condition is satisfied: for all {i, j}, {k, l} ∈ E(G) with i < j and k < l one has {j, l} ∈
E(G) if i = k but j 6= l, and {i, k} ∈ E(G) if j = l but i 6= k.

In particular, G is closed if there exists a labeling for which it is closed.

Remark 7. (1) [4, Theorem 1.1] G is closed if and only if JG has a quadratic Gröbner
basis. Hence if G is closed then S/JG is Koszul algebra.

(2) [2, Theorem 2.2] Let G be a graph. Then the following conditions are equivalent:
(a) G is closed.
(b) There exists a labeling of V (G) such that all facets of ∆(G) are intervals

[a, b] ⊂ [n], where ∆(G) is the clique complex of G.

The following characterization of closed graphs is a reinterpretation of Crupi and Ri-
naldo’s one. This is relevant to the first main theorem of this chapter deeply.

Proposition 8 (See [1, Proposition 2.6]). Let G be a graph. Then the following conditions
are equivalent:

–100–



(1) G is closed.
(2) There exists a labeling which satisfies the following condition: for all i, j such that

{i, j} ∈ E(G) and j > i + 1, the following assertion holds: for all i < k < j,
{i, k} ∈ E(G) and {k, j} ∈ E(G).

Proof. (1) ⇒ (2): Let {i, j} ∈ E(G). Since G is closed, there exists a labeling satisfying
{i, i + 1}, {i + 1, i + 2}, . . . , {j − 1, j} ∈ E(G) by [HeHiHrKR, Proposition 1.4]. Then
we have that {i, i + 2}, . . . , {i, j − 2}, {i, j − 1} ∈ E(G) by the definition of closedness.
Similarly, we also have that {k, j} ∈ E(G) for all i < k < j.

(2) ⇒ (1): Assume that i < k < j. If {i, k}, {i, j} ∈ E(G), then {k, j} ∈ E(G)
by assumption. Similarly, if {i, j}, {k, j} ∈ E(G), then {i, k} ∈ E(G). Therefore G is
closed. �

The following theorem characterizes weakly closed graph.

Theorem 9. Let G be a graph. Then the following conditions are equivalent:

(1) G is weakly closed.
(2) There exists a labeling which satisfies the following condition: for all i, j such that

{i, j} ∈ E(G) and j > i + 1, the following assertion holds: for all i < k < j,
{i, k} ∈ E(G) or {k, j} ∈ E(G).

Proof. (1) ⇒ (2): Assume that {i, j} ∈ E(G), {i, k} 6∈ E(G) and {k, j} 6∈ E(G) for
some i < k < j. Then i is not adjacentable with j, which is in contradiction with weak
closedness of G.

(2) ⇒ (1): Let {i, j}E(G). By repeating interchanging along the following algorithm,
we can see that i is adjacentable with j:

(a): Let A := {k | {k, j} ∈ E(G), i < k < j} and C := ∅.
(b): If A = ∅ then go to (g), otherwise let s := max{A}.
(c): Let B := {t | {s, t} ∈ E(G), s < t ≤ j} \ C = {t1, . . . , tm = j}, where t1 < . . . <

tm = j.
(d): Take {s, t1}-interchanging, {s, t2}-interchanging, . . . , {s, tm = j}-interchanging in

turn.
(e): Let A := A \ {s} and C := C ∪ {s}.
(f): Go to (b).
(g): Let U := {u | i < u < j, {i, u} ∈ E(G) and {u, j} 6∈ E(G)} and W := ∅.
(h): If U = ∅ then go to (m), otherwise let u := min{U}.
(i): Let V := {v | {v, u} ∈ E(G), i ≤ v < u} \W = {v1 = i, . . . , vl}, where v1 = i <

. . . < vl.
(j): Take {v1 = i, u}-interchanging, {v2, u}-interchanging, . . . , {vl, u}-interchanging in

turn.
(k): Let U := U \ {u} and W := W ∪ {u}.
(l): Go to (h).
(m): Finished. �
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By comparing this theorem and Proposition 8, we get the following corollary. A graph
G is said to be complete r-partite if there exists a partition V (G) =

∐r
i=1 Vi such that

{i, j} ∈ E(G) if and only of a 6= b for all i ∈ Va and j ∈ Vb.

Corollary 10. Closed graphs and complete r-partite graphs are weakly closed.

Proof. Assume that G is complete r-partite and V (G) =
∐r

i=1 Vi. Let {i, j} ∈ E(G) with
i ∈ Va and j ∈ Vb. Then a 6= b. Hence for all i < k < j, k 6∈ Va or k /∈ Vb. This implies
that {i, k} ∈ E(G) or {k, j} ∈ E(G). �

3. F -purity of binomial edge ideals

In this section, we study about F -purity of binomial edge ideals. Firstly, we recall that
the definition of F -purity of a ring R.

Definition 11 (See [5]). Let R be an F -finite reduced Noetherian ring of characteristic
p > 0. R is said to be F-pure if the Frobenius map R → R, x 7→ xp is pure, equivalently,
the natural inclusion τ : R ↪→ R1/p, (x 7→ (xp)1/p) is pure, that is, M → M ⊗R R1/p,
m 7→ m⊗ 1 is injective for every R-module M .

The following proposition, which is called the Fedder’s criterion, is useful to determine
the F -purity of a ring R.

Proposition 12 (See [3]). Let (S,m) be a regular local ring of characteristic p > 0. Let
I be an ideal of S. Put R = S/I. Then R is F -pure if and only if I [p] : I 6⊆ m[p], where
J [p] = (xp | x ∈ J) for an ideal J of S.

In this section, we consider the following question:

Question. When is S/JG F -pure ?

In [8], Ohtani proved that if G is complete r-partite graph then S/JG is F -pure. More-
over, it is easy to show that if G is closed then S/JG is F -pure. However, there are many
examples of G such that G is neither complete r-partite nor closed but S/JG is F -pure.
Namely, there is room for improvement about the above studies.

The second main theorem of this chapter is as follows:

Theorem 13. If G is weakly closed, then S/JG is F -pure.

Proof. For a sequence v1, v2, . . . , vs, we put

Yv1(v1, v2, . . . , vs)Xvs := (Yv1 [v1, v2][v2, v3] · · · [vs−1, vs]Xvs)
p−1.

Let m = (X1, . . . , Xn, Y1, . . . , Yn)S. By taking completion and using Proposition 2.2, it

is enough to show that Y1(1, 2, . . . , n)Xn ∈ (J
[p]
G : JG) \ m[p]. It is easy to show that

Y1(1, 2, . . . , n)Xn 6∈ m[p] by considering its initial monomial.
Next, we use the following lemmas (see [8]):
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Lemma 14 ([8, Formula 1]). If {a, b} ∈ E(G), then

Yv1(v1, . . . , c, a, b, d, . . . , vn)Xvn ≡ Yv1(v1, . . . , c, b, a, d, . . . , vn)Xvn

modulo J
[p]
G .

Lemma 15 ([8, Formula 2]). If {a, b} ∈ E(G), then

Ya(a, b, c, . . . , vn)Xvn ≡ Yb(b, a, c, . . . , vn)Xvn ,

Yv1(v1, . . . , c, a, b)Xb ≡ Yv1(v1, . . . , c, b, a)Xa

modulo J
[p]
G .

Let {i, j} ∈ E(G). Since G is weakly closed, i is adjacentable with j. Hence there
exists a polynomial g ∈ S such that

Y1(1, 2, . . . , n)Xn ≡ g · [i, j]p−1

modulo J
[p]
G from the above lemmas. This implies Y1(1, 2, . . . , n)Xn ∈ (J

[p]
G : JG). �

4. Difference between closedness and weak closedness and some
examples

In this section, we state the difference between closedness and weak closedness and give
some examples.

Proposition 16. Let G be a graph.

(1) [4, Proposition 1.2] If G is closed, then G is chordal, that is, every cycle of G with
length t > 3 has a chord.

(2) If G is weakly closed, then every cycle of G with length t > 4 has a chord.

Proof. (2) It is enough to show that the pentagon graph G with edges {a, b}, {b, c}, {c, d},
{d, e} and {a, e} is not weakly closed. Suppose that G is weakly closed. We may assume
that a = min{a, b, c, d, e} without loss of generality. Then b 6= max{a, b, c, d, e}. Indeed,
if b = max{a, b, c, d, e}, then c, d, e are connected with a or b by the definition of weak
closedness, but this is a contradiction. Similarly, e 6= max{a, b, c, d, e}. Hence we may
assume that c = max{a, b, c, d, e} by symmetry. If b = min{b, c, d}, then d, e are connected
with b or c, a contradiction. Therefore, b 6= min{b, c, d}. Similarly, b 6= max{b, c, d}.
Hence we may assume that d = min{b, c, d} and e = max{b, c, d} by symmetry. Then
{a, b} and a < d < b, but {a, d}, {d, b} 6∈ E(G). This is a contradiction. �

Next, we give a characterization of closed (resp. weakly closed) tree graphs in terms of
claw (resp. bigclaw). A graph G is said to be tree if G has no cycles. We consider the
following graphs (a) and (b). We call the graph (a) a claw and the graph (b) a bigclaw.
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(b)

Proposition 17. Let G be a tree.

(1) [4, Corollary 1.3] The following conditions are equivalent:
(a) G is closed.
(b) G is a path.
(c) G is a claw-free graph.

(2) The following conditions are equivalent:
(a) G is weakly closed.
(b) G is a caterpillar, that is, a tree for which removing the leaves and incident

edges produces a path graph.
(c) G is a bigclaw-free graph.

Proof. (2) One can see that a bigclaw graph is not weakly closed. �
Remark 18. From Proposition 17(2), we have that chordal graphs are not always weakly
closed. As other examples, the following graphs are chordal, but not weakly closed:
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POLYCYCLIC CODES AND SEQUENTIAL CODES

MANABU MATSUOKA

Abstract. In this paper we generalize the notion of cyclicity of codes, that is, poly-
cyclic codes and sequential codes. We study the relation between polycyclic codes and
sequential codes over finite commutative QF rings. Furthermore, we characterized the
family of some constacyclic codes.

Key Words: finite rings, (θ, δ)-codes, skew polynomial rings.
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1. Introduction

Let R be a finite commutative ring. A linear code C of length n over R is a sub-
module of the R-module Rn = {(a0, · · · , an−1)|ai ∈ R}. If C is a free R-module, C is
said to be a free code. A linear code C ⊆ Rn is called cyclic if (a0, a1, · · · , an−1) ∈ C
implies (an−1, a0, a1, · · · , an−2) ∈ C. The notion of cyclicity has been extended in various
directions.

In [6], S. R. López-Permouth, B. R. Parra-Avila and S. Szabo studied the duality
between polycyclic codes and sequential codes. By the way, J. A. Wood establish the ex-
tension theorem and MacWilliams identities over finite frobenius rings in [9]. M. Greferath
and M. E. O’Sullivan study bounds for block codes on finite frobenius rings in [2]. In this
paper, we generalize the result of [6] to codes with finite commutative QF rings.

In section 2 we define polycyclic codes over finite commutative rings. And we study
the properties of polycyclic codes. In section 3 we define sequential codes and consider
the properties of sequential codes. In section 4 we study the relation between polycyclic
codes and sequential codes over finite commutative QF rings. And we characterized the
family of some constacyclic codes.

Throughout this paper, R denotes a finite commutative ring with 1 6= 0, n denotes a
natural number with n ≥ 2, unless otherwise stated.

2. Polycyclic codes

A linear [n, k]-code over a finite commutative ring R is a submodule C ⊆ Rn of rank
k. We define polycyclic codes over a finite commutative ring.

Definition 1. Let C be a linear code of length n over R. C is a polycyclic code induced by
c if there exists a vector c = (c0, c1, · · · , cn−1) ∈ Rn such that for every (a0, a1, · · · , an−1) ∈
C, (0, a0, a1, · · · , an−2) + an−1(c0, c1, · · · , cn−1) ∈ C. In this case we call c an associated
vector of C.

The detailed version of this paper will be submitted for publication elsewhere.
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As cyclic codes, polycyclic codes may be understood in terms of ideals in quotient
rings of polynomial rings. Given c = (c0, c1, · · · , cn−1) ∈ Rn, if we let f(X) = Xn −
c(X), where c(X) = cn−1X

n−1 + · · · + c1X + c0 then the R-module homomorphism ρ :
Rn → R[X]/(f(X)) sending the vector a = (a0, a1, · · · , an−1) to the equivalence class of

polynomial an−1Xn−1 + · · ·+ a1X + a0, allows us to identify the polycyclic codes induced
by c with the ideal of R[X]/(f(X)).

Definition 2. Let C be a polycyclic code in R[X]/(f(X)). If there exist monic polynomi-
als g and h such that ρ(C) = (g)/(f) and f = hg, then C is called a principal polycyclic
code.

Proposition 3. A code C ⊆ Rn is a principal polycyclic code induced by some c ∈ C if
and only if C is a free R-module and has a k × n generator matrix of the form

G =


g0 g1 · · · gn−k 0 · · · 0
0 g0 g1 · · · gn−k · · · 0

0
. . . . . . . . . . . . . . . 0

...
...

0 · · · 0 g0 g1 · · · gn−k


with an invertible gn−k. In this case

ρ(C) =
(
gn−kXn−k + · · ·+ g1X + g0

)
is the ideal of R[X]/(f(X)).

Definition 4. Let C = (g)/(f) ⊆ R[X]/(f(X)) be a principal polycyclic code. If the
constant term of g is invertible, then C is called a principal polycyclic code with an
invertible constant term.

For a c = (c0, c1, · · · , cn−1) ∈ Rn, let Dc be the following square matrix;

Dc =


0 1 0

. . .
0 1
c0 c1 · · · cn−1

.

It follows that a code C ⊆ Rn is polycyclic with an associated vector c ∈ Rn if and
only if it is invariant under right multiplication by Dc.

3. Sequential codes

Definition 5. Let C be a linear code of length n over R. C is a sequential code induced by
c if there exists a vector c = (c0, c1, · · · , cn−1) ∈ Rn such that for every (a0, a1, · · · , an−1) ∈
C, (a1, a2, · · · , an−1, a0c0+ a1c1+ · · ·+ an−1cn−1) ∈ C. In this case we call c an associated
vector of C.

Let C be a sequential code with an associated vector c = (c0, c1, · · · , cn−1). Then C is
invariant under right multiplication by the matrix

–107–



tDc =


0 0 c0
1 c1

. . .
...

0 1 cn−1


On Rn define the standard inner product by

< x, y >=
∑n−1

i=0 xiyi

for x = (x0, x1, · · · , xn−1), y = (y0, y1, · · · , yn−1) ∈ Rn.
The dual code C⊥ of a linear code C is defined by

C⊥ = {a ∈ Rn| < c, a >= 0 for any c ∈ C}.
Clearly, C⊥ is a linear code over R.

Theorem 6. For a code C ⊆ Rn, we have the following assertions:
(1) If C is polycyclic, then C⊥ is sequential.
(2) If C is sequential, then C⊥ is polycyclic.

4. Codes over finite commutative QF rings

Let R be a (not necessarily commutative) ring. A left R-module P is projective if for
every R-epimorphism g : M → N and every R-homomorphism f : P → N , there exists a
R-homomorphism h : P → M with f = g◦h.

A left R-module Q is injective if for every R-monomorphism g : N → M and every
R-homomorphism f : N → Q, there exists a R-homomorphism h : M → Q with f = h◦g.

The ring R is said to be left (resp. right) self-injective if R itself is injective as left
(resp. right) R-module. If both conditions hold, R is said to be a self-injective ring.

A left R-module M is Artinian if M is satisfies the descending chain condition on
submodules. A ring R is left (resp. right) Artinian if R itself is Artinian as left (resp.
right) R-module. If both conditions hold, R is said to be an Artinian ring.

It is clear that a finite ring is an Artinian ring.

Definition 7. For a (not necessarily commutative) ring R, R is called a QF (quasi-
Frobenius) ring if R is left Artinian and left self-injective.

It is well-known that the definition of a QF ring is left-right symmetric.
For any R-submodule C ⊆ Rn, C◦ is defined by

C◦ = {λ ∈ HomR(R
n, R)|λ(C) = 0}.

Theorem 8. For a (not necessarily commutative) ring R, the following conditions are
equivalent:
(1) R is a QF ring.
(2) For submodules M ⊆ Rn, M◦◦ = M.

Theorem 9. For a (not necessarily commutative) ring R, the following are equivalent:
(1) R is a QF ring.
(2) A left module is projective if and only if it is injective.

We define an R-module homomorphism δx : Rn → R as δx(y) =< y, x > for any x ∈ Rn.
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Proposition 10. The homomorphism δ : C⊥ → C◦ sending x to δx is an isomorphism
of R-modules.

Theorem 11. Let R be a finite commutative QF ring. For a submodule C ⊆ Rn, (C⊥)⊥ =
C.

By Theorem 1 and Theorem 4, we can get the following corollary.

Corollary 12. Let R be a finite commutative QF ring. Then C is a polycyclic code if
and only if C⊥ is a sequential code.

Theorem 13. Let R be a finite commutative QF ring. If C ⊆ Rn is a free R-module of
finite rank, then C⊥ is a free R-module of rankC⊥ = n− rankC.

We determine the parity check matrix of a constacyclic code.

Proposition 14. Let R be a finite commutative QF ring and f = Xn − α ∈ R[X].
Suppose f = hg ∈ R[X] where g and h are polynomials of degree n−k and k, respectively.
Let C be the linear [n, k]-code corresponding to the ideal generated by g in R[X]/(Xn−α)
and h(X) = hkX

k +hk−1X
k−1+ · · ·+h1X +h0. Then C has the (n− k)×n parity check

matrix H given by

H =


hk · · · h1 h0 0 · · · 0
0 hk · · · h1 h0 · · · 0

0
. . . . . . . . . . . . . . . 0

...
...

0 · · · 0 hk · · · h1 h0

.

Definition 15. Let R be a finite commutative QF ring. For a sequential code C ⊆ Rn, C
is called a principal sequential code if C⊥ is a principal polycyclic code. And C is called a
principal sequential code with an invertible constant term if C⊥ is a principal polycyclic
code with an invertible constant term.

Now we can get the main theorem.

Theorem 16. Let R be a finite commutative QF ring. Suppose C is a free codes of Rn.
Then the following conditions are equivalent:
(1) Both C and C⊥ are principal polycyclic codes with invertible constant terms.
(2) Both C and C⊥ are principal sequential codes with invertible constant terms.
(3) C is a principal polycyclic and sequential code with an invertible constant term.
(4) C⊥ is a principal polycyclic and sequential code with an invertible constant term.
(5) C = (g)/(Xn − α) is a constacyclic code with an invertible α.
(6) C⊥ = (q)/(Xn − β) is a constacyclic code with an invertible β.

Acknowledgement. The author wishes to thank Prof. Y. Hirano, Naruto University of

Education, for his helpful suggestions and valuable comments.
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A NOTE ON DIMENSION OF TRIANGULATED CATEGORIES.

HIROYUKI MINAMOTO

Abstract. In this note we study the behavior of the dimension of the perfect derived
category Perf(A) of a dg-algebra A over a field k under a base field extension K/k. In
particular we show that the dimension of a perfect derived category is invariant under a
separable algebraic extension K/k. As an application we prove the following statement:
Let A be a self-injective algebra over a perfect field k. If the dimension of the stable
category modA is 0, then A is of finite representation type. This theorem is proved by
M. Yoshiwaki in the case when k is an algebraically closed field. Our proof depends on
his result.

1. Introduction

In [3] R. Rouquier introduced the dimension of triangulated categories and showed that
it gives an upper bound or a lower bound of other dimensions in algebraic geometry or
in representation theory(see also [4]). The dimension of triangulated categories is studied
by many researchers.

In this note we study the behavior of the dimension of the perfect derived category
Perf(A) of a dg-algebra A over a field k under a base field extension K/k. For a field
extension K/k, we denote A⊗k K by AK .

Theorem 1. (1) For an algebraic extension K/k, we have

tridim Perf(A) ≤ tridim Perf(AK).

(2) If moreover K/k is separable, then equality holds.

As an application we prove the following theorem, which gives evidence that dimension
of triangulated categories captures some representation theoretic properties.

The stable category modA plays an important role in the study of self-injective algebra
A (cf. [2, 4]). If a self-injective algebra A is of finite representation type then the dimension
of the stable category modA is zero. Then a natural question arises as to whether the
converse should also hold.

Theorem 2. Let A be a self-injective finite dimensional algebra over a perfect field k. If
tridim modA = 0, then A is of finite representation type.

In the case when k is an algebraically closed field, this theorem is proved by M. Yoshi-
waki in [5]. Our proof depends on his result.

The final version of this paper has been submitted for publication elsewhere.
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2. Dimension of triangulated categories.

We review the definition of dimension of triangulated categories due to R. Rouquier
We need to prepare a bit of notations.

Let T be a triangulated category. For a full subcategory I of T we denote by 〈I〉
the smallest full subcategory of T containing I which is closed under taking shifts, finite
direct sums, direct summands and isomorphisms. For full subcategories I and J of T we
denote by I ∗ J the full subcategory of T consisting of those object M ∈ T such that

there exists an exact triangle I → M → J
[1]−→ with I ∈ I and J ∈ J . Set I�J := 〈I∗J 〉.

For n ≥ 1 we define inductively

〈I〉n :=

{
〈I〉 for n = 1;

〈I〉 � 〈I〉n−1 for n ≥ 2.

Now we define the dimension of a triangulated category T to be

tridim T := min{n | 〈E〉n+1 = T for some E ∈ T }.

3. Sketch of proof of Theorem 1 and 2

First we consider the case when K/k is a finite extension. Let E be an object of
Perf(AK) such that 〈E〉n = Perf(AK) for some n ∈ N. Then we see that 〈UE〉n = Perf(A)
where U : Perf(AK) → Perf(A) is the forgetful functor.

In the case K/k is an infinite algebraic extension, the key of the proof is the following
lemma.

Lemma 3. Let K/k be an algebraic extension and E an object of D(A).
If an object G of D(AK) belongs to 〈E ⊗k K〉n, then there exists an intermediate field

k ⊂ K0 ⊂ K which is finite dimensional over k such that there exists an object G′ of
〈E ⊗k K0〉n, such that G′ ⊗K0 K

∼= G in D(AK).

Let E be an object of Perf(AK) such that 〈E〉n = Perf(AK) for some n ∈ N. Since
Perf(AK) = ∪i∈N〈AK〉i, by the above lemma there exists an intermediate field k ⊂ K0 ⊂ K
which is finite dimensional over k such that there exists an object E ′ of Perf(AK0) such that
E ′ ⊗K0 K ' E. Then we see that 〈U0(E

′)〉n = Perf(A) where U0 : Perf(AK0) → Perf(A)
is the forgetful functor.

To prove the second statement, we use the fact that when K/k is a finite separable
field extension, the canonical morphism K ⊗k K → K splits as K −K bimodules. In the
case when K/k is an infinite separable field extension, we reduce to the finite separable
extension case by the above lemma.

Theorem 2 is reduced to the case when the base field k is an algebraically closed field
by Theorem 1 and the following lemma.

Lemma 4. Let A be a finite dimensional k-algebra. If Ak is of finite representation type,
then A is of finite representation type.
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4. Examples which show that we need to impose conditions on Theorem 1

To conclude this note we give examples which show that we need to impose conditions
on Theorem 1.

Example 5. If an algebraic extensionK/k is not separable, then the dimension tridim Perf(AK)
is possibly larger than the dimension tridim Perf(A).

Here is an example. Let F be a field of characteristic p > 0. Let K := F (t) be a rational
function field in one variable and define k := F (tp) ⊂ K = F (t). Set A := K. Then it is
easy to see AK

∼= K[x]/(xp). Since gldimAK = ∞, we see that tridim Perf(AK) = ∞ by
[3, Proposition 7.26]. However since A = K is a field, we have tridim Perf(A) = 0.

Example 6. In the case when the extensionK/k is not algebraic, the dimension tridim Perf(AK)
is possibly larger than tridim Perf(A) even if an extension K/k is separable.

Here is an example. Assume that for simplicity k is algebraically closed. Let K = k(y)
and A = k(x) be rational function fields in one variable over k. Then we can easily see
that tridim Perf(AK) = 1 by the method of the proof of [3, Theorem 7.17]. However since
A = k(x) is a field, we see that tridim Perf(A) = 0.
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APR TILTING MODULES AND QUIVER MUTATIONS

YUYA MIZUNO

Abstract. We study the quiver with relations of the endomorphism algebra of an APR
tilting module. We give an explicit description of the quiver with relations by graded
quivers with potential (QPs) and mutations. Consequently, mutations of QPs provide a
rich source of derived equivalence classes of algebras.

1. Introduction

Derived categories have been one of the important tools in the study of many areas
of mathematics. In the representation theory of algebras, tilting modules play an essen-
tial role to give an equivalence of derived categories. More precisely, the endomorphism
algebra of a tilting module is derived equivalent to the original algebra. Therefore the
relationship of quivers with relations of these algebras has been investigated for a long
time.

The first well-known result of these studies appears in the work of [5]. It is the origin
of tilting theory and formulated in terms of an APR tilting module now [4]. Let us recall
an important property of APR tilting modules.

Theorem 1. [4] Let KQ be a path algebra of a finite acyclic quiver Q and Tk be the APR
tilting KQ-module associated with a source k ∈ Q. Then we have an algebra isomorphism

EndKQ(Tk) ∼= K(µkQ),

where µk is a mutation at k.

Thus the quiver of the endomorphism algebra is completely determined by combinato-
rial methods and the mutation can be considered as a generalization of BGP reflection.
The notion of mutation was introduced by Fomin-Zelevinsky [11], which is an important
ingredient of cluster algebras, and many links with other subjects have been discovered
and widely investigated. In particular, Derksen-Weyman-Zelevinsky applied mutations
to quivers with potential (QPs). It has been found that mutations of QPs have close
connections with tilting theory, for example [9, 17].

The main purposes of this paper is to generalize the above result for a more general
class of algebras by using mutations of QPs. Since we have gl.dimKQ ≤ 1, it is natural
to consider algebras Λ with gl.dimΛ ≤ 2. In this case, we can describe the quiver and
relations by the following steps.

1. Define the associated graded QP (QΛ,WΛ, CΛ).
2. Apply left mutation µL

k to (QΛ,WΛ, CΛ).
3. Take the truncated Jacobian algebras P(µL

k (QΛ,WΛ, CΛ)).

The detailed version of this paper will be submitted for publication elsewhere.
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Then we have the following result.

Theorem 2. (Theorem 7) Let Λ be a finite dimensional algebra with gl.dimΛ ≤ 2 and
Tk be the APR tilting Λ-module associated with a source k. Then we have an algebra
isomorphism

EndΛ(Tk) ∼= P(µL
k (QΛ,WΛ, CΛ)).

We give three remarks about the theorem. First, we can show that P(µL
k (QΛ,WΛ, CΛ))

coincides with K(µkQ) if gl.dimΛ = 1, so that Theorem 2 gives a generalization of The-
orem 1. Second, the condition gl.dimΛ ≤ 2 is actually not necessary, and it is enough
to assume that the associated projective module has the injective dimension at most 2.
Finally, this isomorphic provides a bridge of the two notions which have entirely different
origins, and it implies that the contemporary concepts have a profound connection with
the classical ones.

Conventions and notations. We always suppose that K is an algebraically closed field
for simplicity. All modules are left modules and the composition fg of morphisms means
first f , then g. We denote the set of vertices by Q0 and the set of arrows by Q1 of a quiver
Q. We denote by a : s(a) → e(a) the start and end vertices of an arrow or path a.

2. Preliminaries

In this section, we give a brief summary of the definitions and results we will use in the
next sections. See references for more detailed arguments and precise definitions.

2.1. Quivers with potentials. We review the notions initiated in [10].
• Let Q be a finite connected quiver. We denote by KQi the K-vector space with basis

consisting of paths of length i in Q, and by KQi,cyc the subspace of KQi spanned by all
cycles. We denote complete path algebra by

K̂Q =
∏
i≥0

KQi.

A quiver with potential (QP) is a pair (Q,W ) consisting of a quiver Q and an element
W ∈

∏
i≥2 KQi,cyc, called a potential. For each arrow a in Q, the cyclic derivative

∂a : K̂Qcyc → K̂Q is defined by the continuous linear map which sends ∂a(a1 · · · ad) =∑
ai=a ai+1 · · · ada1 · · · ai−1. For a QP (Q,W ), we define the Jacobian algebra by

P(Q,W ) = K̂Q/J (W ),

where J (W ) = 〈∂aW | a ∈ Q1〉 is the closure of the ideal generated by ∂aW with respect
to the JK̂Q-adic topology.

• A QP (Q,W ) is called reduced if W ∈
∏

i≥3 KQi,cyc.
• For two QPs (Q′,W ′) and (Q′′,W ′′), we define a new QP (Q,W ) as a direct sum

(Q′,W ′)⊕ (Q′′,W ′′), where Q0 = Q′
0(= Q′′

0), Q1 = Q′
1

∐
Q′′

1 and W = W ′ +W ′′.

Definition 3. For each vertex k in Q not lying on a loop nor 2-cycle, we define a mutation
µk(Q,W ) as a reduced part of µ̃k(Q,W ) = (Q′,W ′), where (Q′,W ′) is given as follows.
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(1) Q′ is a quiver obtained from Q by the following changes.
• Replace each arrow a : k → v in Q by a new arrow a∗ : v → k.
• Replace each arrow b : u → k in Q by a new arrow b∗ : k → u.

• For each pair of arrows u
b→ k

a→ v, add a new arrow [ba] : u → v
(2) W ′ = [W ] + ∆ is defined as follows.

• [W ] is obtained from the potential W by replacing all compositions ba by the

new arrows [ba] for each pair of arrows u
b→ k

a→ v.

• ∆ =
∑

a,b∈Q1

e(b)=k=s(a)

[ba]a∗b∗.

2.2. Truncated Jacobian algebras. We introduce the notion of cuts and the truncated
Jacobian algebras.

Definition 4. [14] Let (Q,W ) be a QP. A subset C ⊂ Q1 is called a cut if each cycle
appearing W contains exactly one arrow of C. Then we define the truncated Jacobian
algebra by

P(Q,W,C) := P(Q,W )/〈C〉 = K̂QC/〈∂cW | c ∈ C〉,
where QC is the subquiver of Q with vertex set Q0 and arrow set Q1 \ C.

Then, we can naturally define a QP with a cut from a given algebra as follows.

Definition 5. [16] Let Q be a finite connected quiver and Λ = K̂Q/〈R〉 be a finite
dimensional algebra with a minimal set of relations.

Then we define a QP (QΛ,WΛ) as follows:

(1) (QΛ)0 = Q0

(2) (QΛ)1 = Q1

∐
CΛ, where CΛ := {ρr : e(r) → s(r) | r ∈ R}.

(3) WΛ =
∑
r∈R

ρrr.

Then the set CΛ gives a cut of (QΛ,WΛ).

2.3. APR tilting modules. We call a Λ-module T tilting module if proj.dimΛT ≤ 1,
Ext1Λ(T, T ) = 0, and there exists a short exact sequence 0 → Λ → T0 → T1 → 0 with
T0, T1 in addT .

Definition 6. Let Λ be a basic finite dimensional algebra and Pk be a simple projective
non-injective Λ-module associated with a source k of the quiver Λ. Then Λ-module
T := τ−Pk ⊕ Λ/Pk is called an APR tilting module, where τ− denotes the inverse of the
Auslander-Reiten translation.

3. Main theorem

3.1. Main result. Let Q be a finite connected quiver and Λ = K̂Q/〈R〉 be a finite
dimensional algebra with a minimal set of relations. Assume that Pk is the simple pro-
jective non-injective Λ-module associated with a source k ∈ Q. Our aim is to determine
the quiver and the set of relations giving EndΛ(Tk).
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Consider the associated QP (QΛ,WΛ, CΛ) of Λ and we put µ̃k(QΛ,WΛ) = (Q′,W ′).
Then W ′ is given by

W ′ = [
∑
r∈R

ρrr] +
∑

a∈Q1,r∈R
s(a)=k=s(r)

[ρra]a
∗ρ∗r,

and it is easy to check that subset

C ′ = { ρr | r ∈ R, s(r) 6= k}
∐

{ [ρra] | a ∈ Q1, r ∈ R, s(a) = k = s(r)}

of Q′ is a cut of (Q′,W ′).
Then we have the following.

Theorem 7. Let Λ = K̂Q/〈R〉 be a finite dimensional algebra with a minimal set of
relations. Let Tk := τ−Pk ⊕ Λ/Pk be the APR tilting module. Then if inj.dimPk ≤ 2, we
have an algebra isomorphism

EndΛ(Tk) ∼= P(µ̃k(QΛ,WΛ), C
′).

Notice that the assumption inj.dimPk ≤ 2 is automatic if gl.dimΛ = 2. Thus our
theorem give a generalization from gl.dimΛ = 1 to gl.dimΛ = 2.

Here we will explain the choice of C ′. In fact C ′ is naturally obtained by using graded
mutations. For this purpose, we recall graded QPs, as introduced by [1].

Graded quivers with potentials. Let (Q,W ) be a QP and we define a map d : Q1 → Z.
We call a QP (Q,W, d) Z-graded QP if each arrow a ∈ Q1 has a degree d(a) ∈ Z, and
homogeneous of degree l if each term in W is a degree l.

Definition 8. Let QP (Q,W, d) be a Z-graded QP of degree l. For each vertex k in Q
not lying on a loop nor 2-cycle, we define a left mutation µL

k (Q,W, d) as a reduced part
of µ̃L

k (Q,W, d) = (Q′,W ′, d′), where (Q′,W ′, d′) is given as follows.

(1) (Q′,W ′) = µ̃k(Q,W )
(2) The new degree d′ is defined as follows:

• d′(a) = d(a) for each arrow a ∈ Q ∩Q′.
• d′(a∗) = −d(a) for each arrow a : k → v in Q.
• d′(b∗) = −d(b) + l for each arrow b : u → k in Q.

• d′([ba]) = d(a) + d(b) for each pair of arrows u
b→ k

a→ v in Q.

In particular, µ̃L
k (Q,W, d) also has a potential of degree l. Similarly, we can define

µ̃R
k at k. In this case, we define d′(b∗) = −d(b) for each arrow b : u → k in Q and

d′(a∗) = −d(a) + l for each arrow a : k → v in Q.

If (Q,W ) has a cut C, we can identify the QP with a Z-graded QP of degree 1 associating
a grading on Q by

dC(a) =

{
1 a ∈ C

0 a 6∈ C.

We denote by (Q,W,C) the graded QP of degree 1 with this grading. If any arrow of
µ̃L
k (Q,W,C) has degree 0 or 1, degree 1 arrows give a cut of µ̃k(Q,W ) since µ̃L

k (Q,W,C)
is homogeneous of degree 1. Therefore a cut of µ̃k(QΛ,WΛ) is naturally induced as degree
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1 arrows of µ̃L
k (QΛ,WΛ, CΛ) and the above C ′ is obtained in this way. Thus we identify

degree 1 arrows as a cut.
Because we have P(µ̃L

k (QΛ,WΛ, CΛ)) ∼= P(µL
k (QΛ,WΛ, CΛ)), we can rewrite Theorem 7

that we have an algebra isomorphism

EndΛ(Tk) ∼= P(µL
k (QΛ,WΛ, CΛ)).

3.2. Examples. We explain the theorem with some examples.

Example 9. We keep the assumption of Theorem 7. If gl.dimΛ = 1, then we have
Λ = KQ and

P(µL
k (QΛ,WΛ, CΛ)) = P(µL

k (Q, 0, 0)) = K(µkQ),

so that the mutation procedure is just reversing arrows having k. Thus the above theorem
coincides with the classical result (Theorem 1).

Example 10. Let Λ = K̂Q/〈R〉 be a finite dimensional algebra given by the following
quiver with a relation.

2
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〈R〉 = 〈ab〉.

Then we consider the APR tilting module T1 := τ−P1 ⊕ Λ/P1 and calculate Q′ and R′

satisfying K̂Q′/〈R′〉 ∼= EndΛ(T1) by the following steps.
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2
b

!!C
CC

CC
C

1

a
=={{{{{{

c !!C
CC

CC
C 4

ρoo µ̃L
1=⇒

3
d

=={{{{{{

2
a∗

{{ww
ww
w b

##G
GG

GG

1
ρ∗ // 4

[ρa]pp

[ρc]
nn3

d
;;wwwwwc∗

ccGGGGG

〈R〉 = 〈ab〉. WΛ = ρab. W ′ = [ρa]b+[ρa]a∗ρ∗+[ρc]c∗ρ∗.

2
a∗

~~||
||
||

µL
1=⇒ 1

ρ∗ // 4

[ρc]pp

P(µL
1 (QΛ,WΛ,CΛ))
=⇒ Q′ =

3

d
>>||||||c∗

``BBBBBB

2
a∗

{{ww
ww
w

1
ρ∗ // 4

3

d
;;wwwwwc∗

ccGGGGG

W ′ = [ρc]c∗ρ∗ 〈R′〉 = 〈c∗ρ∗〉.
Similarly from the left-hand side algebra Λ, we obtain the quiver and the set of relations

giving EndΛ(T1), which is given by right-hand side picture.
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(1)

1

a2 a1

��

4

2
b // 3

c =⇒

OO 1
ρ∗1

ρ∗2 +3 4

2
b //

a∗1a∗2

KS

3

c

OO

〈R〉 = 〈a1bc, a2bc〉 〈R′〉 = 〈a∗1ρ∗1+bc, a∗2ρ
∗
2+bc, a∗1ρ

∗
2, a

∗
2ρ

∗
1〉.

(2) (i)

1
a1 //

b1

��

2
a1 // 3

a3 =⇒
��

4
b2

// 5
b3

// 6

1

ρ∗

))SSS
SSS

SSS
SSS

SSS
SSS

SSS
S 2

a2 //a1∗oo 3

a3

��
4

b2

//

b1
∗

OO

5
b3

// 6

〈R〉 = 〈a1a2a3〉 〈R′〉 = 〈a2a3 + a1
∗ρ∗, b1

∗ρ∗〉.
(ii)

1
a1 //

b1

��

2
a1 // 3

a3 =⇒
��

4
b2

// 5
b3

// 6

1

ρ∗

))SS
SSS

SSS
SSS

SSS
SSS

SSS
SS 2

a2 //a1∗oo 3

a3

��
4

b2

//

b1
∗

OO

5
b3

// 6

〈R〉 = 〈a1a2a3 = b1b2b3〉 〈R′〉 = 〈a2a3 + a1
∗ρ∗, b2b3 + b1

∗ρ∗〉.
As examples show, we interpret the degree 1 arrows as relations.

References

[1] C. Amiot, S. Oppermann, Cluster equivalence and graded derived equivalence, preprint (2010),
arXiv:1003.4916.

[2] C. Amiot, S. Oppermann, Algebras of tame acyclic cluster type, preprint (2010), arXiv:1009.4065.
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THE EXAMPLE BY STEPHENS

KAORU MOTOSE

Abstract. Concerning the Feit-Thompson Conjecture, Stephens found the serious
example. Using Artin map (see [9]), we shall show that numbers 17 and 3313 in the
example by Stephen are common index divisors of some subfields of a cyclotomic field

Q(ζr) where r = 112643 and ζr = e
2πi
r , and some results in [7, 8] shall be again proved.

Key Words: Artin map, common index divisors, Gauss sums.
2000 Mathematics Subject Classification: Primary 11A15, 11R04; Secondary 20D05.

Let p < q be primes and we set

f :=
qp − 1

q − 1
and t :=

pq − 1

p− 1
.

Feit and Thompson [3] conjectured that f never divides t. If it would be proved,
the proof of their odd order theorem [4] would be greatly simplified (see [1] and [5]).
Throughout this note, we assume that r is a common prime divisor of f and t.

Using computer, Stephens [10] found the example about r as follows: for p = 17 and
q = 3313, r = 112643 = 2pq + 1 is the greatest common divisor of f and t. This example
is so far the only one.
In this note, using the Artin map, we shall show that both 17 and 3313 are common

index divisors (gemeinsamer ausserwesentlicher Discriminantenteiler) of some subfields of

a cyclotomic field Q(ζr) where r = 112643 and ζr = e
2πi
r , and some results in [7, 8] shall

be again proved from our Theorem.
The assumption on r yields from [7, Lemma, (1) and (3)] that p and q are orders of

q mod r and p mod r, respectively. Thus r ≡ 1 mod 2pq since r is odd.
We set q∗q := r − 1 and ζ = e

2πi
r . Let n be a divisor of q∗, let Ln be a subfield of

K = Q(ζ) with [Ln : Q] = n and let On be the algebraic integer ring of Ln. Using the
exact sequence by the Artin map (see [9, p.99 and section 2.16] ) and Kummer’s theorem.
We have d(µ) = I(µ)2d(Ln) for µ ∈ On where I(µ) ∈ Z, d(µ) and d(Ln) are discrimi-

nants of µ and of the field Ln, respectively.

The example by Stephens shows from the next Theorem that p = 17 and q = 3313 are
common index divisors of L34 and of L6626, respectively, since we can exchange p for q.

The detailed version of this paper will be submitted for publication elsewhere.

–121–



Theorem. Assume r is a common prime divisor of f and t, and n is a divisor of q∗,
where q∗q = r − 1. Then p splits completely in On and if there exists µ ∈ On such that p
does not divide I(µ), then n 5 p. In particular, for n > p, p is a common index divisor of
On namely, p divides I(γ) for all γ ∈ On.

Let c be a primitive root for r, let χ be a character of order n defined by χ(c) = ω

where ω = e
2πi
n and let g(χ) =

∑
a∈Fr

χ(a)ζa be the Gauss sum of χ where Fr is a finite
field of order r. Let σ(ζ) = ζc be a generator of the Galois group G of K over Q and set
Tn := 〈σn〉.
For simplicity, we set g0 = −1, gk = g(χk) for n > k > 0 and θk = θσ

k
for n > k = 0

where θ =
∑

τ∈Tn
ζτ is a trace of ζ.

It is known that Ln = Q(θ) and θ is a normal basis element of On over Z (see [9, p.61,
p.74])

The next Lemma is useful to our object. It only needs to assume r is prime and n is a
divisor of r − 1 in this Lemma. This proof is essentially in the first equation of (1) due
to [9, p.62]. This idea of classifying primitive roots goes back to Gauss; the regular 17
polygon construction by ruler and compass.

Lemma.

(1) gk =
∑n−1

s=0 ω
ksθs for 0 5 k < n and nθk =

∑n−1
s=0 ω̄

ksgs for 0 5 k < n where ω̄ is
the complex conjugate of ω.

(2) Using (1), determinants of cyclic matrices An, Bn are given by

|An| :=

∣∣∣∣∣∣∣∣
θ0 θ1 . . . θn−1

θn−1 θ0 . . . θn−2
...

...
. . .

...
θ1 θ2 . . . θ0

∣∣∣∣∣∣∣∣ =
n−1∏
k=0

gk and |Bn| :=

∣∣∣∣∣∣∣∣
g0 g1 . . . gn−1

gn−1 g0 . . . gn−2
...

...
. . .

...
g1 g2 . . . g0

∣∣∣∣∣∣∣∣ = nn

n−1∏
k=0

θk.

(3) We have

d(Ln) =

{
rn−1 if n is odd,

(−1)
r−1
2 rn−1 if n is even.

Some results in [7, 8] are proved again in the next

Corollary. Let r be a common prime divisor of f and t. Then we have
(1) p ≡ 1 or r ≡ 1 mod 4 (see [7, Lemma, (4) ]).

(2) q ≡ −1 mod 9 in case p = 3 and f divides t (see [8, Corollary, (a)]).
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Proof of (2). We consider the case n = p = 3. If f is composite, then f does not
divide t. Thus we may assume f is prime and so r = f (see [7]). f has a primary prime

decomposition f = ηη̄ in Z[ω] where ω = e
2πi
3 and η = ω(ω− q), (see [6, 8]). In this case,

we set χ is the cubic residue character modulo η. Let h(x) be the minimal polynomial of
θ over Q.

h(x) := x3 + a1x
2 + a2x+ a3 = (x− θ0)(x− θ1)(x− θ2).

where a1 = −θ0 − θ1 − θ2 = 1. If 3 does not divide I(θ), then h(x) ≡ x3 − x mod 3 by
Kummer’s theorem and our Theorem. This contradicts to a1 = 1. Thus d(θ) ≡ 0 mod 3.
Using g1g2 = g1ḡ1 = |g1|2 = r, we have

f = r = −|A3| = −(θ0 + θ1 + θ2)

∣∣∣∣∣∣
1 θ1 θ2
1 θ0 θ1
1 θ2 θ0

∣∣∣∣∣∣ = θ20 + θ21 + θ22 − a2 = 1− 3a2.

Thus we obtain 3a2 = 1− f = −q(q + 1). On the other hand, using g2 = ḡ1, f = ηη̄ and
the Stickelberger relation g31 = rη = fη (see [6]), we have

−27a3 = 27θ0θ1θ2 = |B3| =

∣∣∣∣∣∣
g0 g1 g2
g2 g0 g1
g1 g2 g0

∣∣∣∣∣∣ = g30 + g31 + g32 − 3g0g1g2

= −1 + f(η + η̄) + 3f = −1 + f(q − 1) + 3f = (q + 1)3.

Thus we have 33q3a3 = (−q(q + 1))3 = 33a32 and so a2 + a3 ≡ a32 − q3a3 = 0 mod 3.
Noting h′(θ) ≡ a2 − θ mod 3 where h′(x) is the derivation of h(x), we obtain

0 ≡ −d(θ) = NL3/Q(h
′(θ)) ≡ h(a2) ≡ a2 − a22 + a3 ≡ −a22 mod 3.

Thus we have 0 ≡ 3a2 = −q(q + 1) mod 9. 2

Remark. Using only the quadratic reciprocity law, we can prove

q ≡ −1 mod 8 in case p = 3 and f divides t.

It simplifies the proof of Proposition 3.2 by Lemma 3.3 on p.172 in the paper
K. Dilcher and J. Knauer, On a conjecture of Feit and Thompson, pp.169-178 in the book,
High primes and misdemeanours, edited by A. van der Poorten, A. Stein, Fields Institute
Communications 41, Amer. Math. Soc., 2004.

We can understand their proof through the next some results in this order :

• Ex. 11 on p.231, and p.103 in the book, B. C. Berndt, R.J. Evans, K. S. Williams,
Gauss and Jacobi Sums, Wiley, New York, 1998.

• Proof of Theorem 2 on p.139 in the paper, R. Hudson and K. S. Williams, Some
new residuacity criteria, Pacific J. of Math. 91(1980), 135-143.

• The tables for the cyclotomic numbers of order 6 and p.68 in the paper, A. L.
Whiteman, The cyclotomic numbers of order twelve, Acta. Arithmetica 6 (1960),
53-76.
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HOM-ORTHOGONAL PARTIAL TILTING MODULES
FOR DYNKIN QUIVERS

HIROSHI NAGASE AND MAKOTO NAGURA

Abstract. We count the number of the isomorphic classes of basic hom-orthogonal
partial tilting modules for an arbitrary Dynkin quiver. This number is independent on
the choice of an orientation of arrows, and the number for An or Dn-type can be expressed
as a special value of a hypergeometric function. As a consequence of our theorem, we
obtain a minimum value of the number of basic relative invariants of corresponding
regular prehomogeneous vector spaces.

Introduction

Let Q = (Q0, Q1) be a Dynkin quiver having n vertices (i.e., its base graph is one of
Dynkin diagrams of type An with n ≥ 1, Dn with n ≥ 4, or En with n = 6, 7, 8), where Q0,
Q1 is the set of vertices, arrows of Q, respectively. We denote by Λ = KQ its path algebra
over an algebraically closed field K of characteristic zero, and by modΛ the category of
finitely generated right Λ-modules.

Let X ∼=
⊕s

k=1mkXk be the decomposition of X ∈ modΛ into indecomposable direct
summands, where mkXk means the direct sum of mk copies of Xk, and the Xk’s are
pairwise non-isomorphic. Then X is called basic if mk = 1 for all indices k. We call X
to be hom-orthogonal if HomΛ(Xi, Xj) = 0 for all i 6= j. This notion is equivalent to that
X is locally semi-simple in the sense of Shmelkin [8] when Q is a Dynkin quiver. In the
case where X is indecomposable, we will say that X itself is hom-orthogonal. Since Λ is
hereditary, we say thatX ∈ modΛ is a partial tilting module if it satisfies Ext1Λ(X,X) = 0.

Each X ∈ modΛ with dimension vector d = dimX can be regarded as a representa-
tion of Q; that is, a point of the variety Rep(Q,d) that consists of representations with
dimension vector d = (d(i))i∈Q0 ∈ Zn

≥0. Then the direct product GL(d) =
∏

i∈Q0
GL(d(i))

acts naturally on Rep(Q, d); see, for example, [3, §2]. Since Λ is representation-finite,
Rep(Q,d) has a unique dense GL(d)-orbit; thus (GL(d), Rep(Q,d)) is a prehomoge-
neous vector space (abbreviated PV). It follows from the Artin–Voigt theorem [3, Theo-
rem 4.3] that the condition that X is a partial tilting module can be interpreted to that
the GL(d)-orbit containing X is dense in Rep(Q,d); On the other hand, the condition
that X is hom-orthogonal corresponds to that the isotropy subgroup (or, stabilizer) at
X ∈ Rep(Q,d) is reductive. Therefore we are interested in hom-orthogonal partial tilting
Λ-modules, because they correspond to generic points of regular PVs associated with Q;
see [5, Theorem 2.28].

In this paper, we count up the number of the isomorphic classes of basic hom-orthogonal
partial tilting Λ-modules for an arbitrary Dynkin quiver Q. In other words, this is nothing

The detailed version of this paper has been submitted for publication elsewhere.
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e(n, s) n = 6 7 8
s = 1 36 63 120

2 108 315 945
3 72 336 1575
4 0 63 675

e0(n, s) n = 6 7 8
s = 1 7 16 44

2 35 120 462
3 35 170 924
4 0 40 462

Table 0.1. The values of e(n, s) and e0(n, s)

but essentially counting the number of regular PVs associated with. Our main theorem
is the following:

Theorem 0.1. Let Q be a quiver of type An with n ≥ 1 (resp. Dn with n ≥ 4, En with
n = 6, 7, 8). Then the number a(n, s) (resp. d(n, s), e(n, s)) of the isomorphic classes of
basic hom-orthogonal tilting KQ-modules having s pairwise non-isomorphic indecompos-
able direct summands is given explicitely by the following:

a(n, s) =
(n+ 1)!

s! (s+ 1)! (n+ 1− 2s)!
(0.1)

= Cs · ( n+1
2s )(0.2)

if 1 ≤ s ≤ (n + 1)/2, and a(n, s) = 0 if otherwise. Here Cs = ( 2s
s ) /(s + 1) denotes the

s-th Catalan number.

d(n, s) =
(n− 1)!

(s!)2 (n+ 2− 2s)!
·
{
s2(s− 1) + n(n+ 1− 2s)(n+ 2− 2s)

}
if 1 ≤ s ≤ (n + 2)/2, and d(n, s) = 0 if otherwise. The values of e(n, s) for 1 ≤ s ≤
(n+ 1)/2 are given in Table 0.1, and we have e(n, s) = 0 if otherwise.

Our approach to this theorem, which was inspired by Seidel’s paper [7], is based on
an observation of perpendicular categories introduced by Schofield [6]. Here we point
out that the totality of a(n, s) or d(n, s) for fixed n can be expressed as a special value
of a hypergeometric function. As mentioned in Remark 2.4, the formula (0.2) has a
combinatorial interpretation.

According to Happel [4], if a Λ-module corresponding to a point contained in the dense
orbit of a PV (GL(d), Rep(Q, d)) has s pairwise non-isomorphic indecomposable direct
summands, then the PV has exactly n − s basic relative invariants. Thus we obtain a
consequence of Theorem 0.1.

Corollary 0.2. Each regular PV associated with a quiver of type An (resp. Dn, E6, E7,
and E8) has at least (n− 1)/2 (resp. (n− 2)/2, 3, 3, and 4) basic relative invariants.

We say that X ∈ modΛ is sincere if its dimension vector dimX does not have zero en-
try. Sincere modules are fairly interesting to the theory of PVs, because (GL(d), Rep(Q,d))
with non-sincere dimension can be regarded as a direct sum of at least two PVs associated
with proper subgraphs of Q. So we have counted them:

Theorem 0.3. Let Q be a quiver of type An with n ≥ 1 (resp. Dn with n ≥ 4, En with
n = 6, 7, 8). Then the number a0(n, s) (resp. d0(n, s), e0(n, s)) of the isomorphic classes
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of basic sincere hom-orthogonal tilting KQ-modules having s pairwise non-isomorphic in-
decomposables is given explicitely by the following:

a0(n, s) =
(n− 1)!

s! (s− 1)! (n+ 1− 2s)!
= Cs−1 ·

(
n−1
2s−2

)
(0.3)

if 1 ≤ s ≤ (n+ 1)/2, and a0(n, s) = 0 if otherwise.

d0(n, s) =
(n− 2)!

s! (s− 1)! (n+ 2− 2s)!

×
{
n(n− 1− 2s)(n− 2s) + 2n(n− 2) + (s− 1)(s2 − 9s+ 4)

}
if 1 ≤ s ≤ (n + 2)/2, and d0(n, s) = 0 if otherwise. The values of e0(n, s) for 1 ≤ s ≤
(n+ 1)/2 are given in Table 0.1, and we have e0(n, s) = 0 if otherwise.

Now we will exceptionally define some values of a(m, t) for simplicity:

a(m, −1) = 0, a(m, 0) = 1, and a(l, t) = 0 for l ≤ 0 and t 6= 0.

Then we can express d(n, s), a0(n, s), and d0(n, s) as the following simpler forms:

d(n, s) = (n− 1) · a(n− 3, s− 2) + (s+ 1) · a(n− 1, s),(0.4)

a0(n, s) = a(n− 2, s− 1),

d0(n, s) = (s− 1) · a(n− 3, s− 2) + (n− 2) · a(n− 3, s− 1).(0.5)

As will be mentioned in §1, the numbers presented in Theorems 0.1 and 0.3 are inde-
pendent on the choice of an orientation of arrows of Q. Thus we may assume that its
arrows are conveniently oriented.

1. Preliminaries

Let Q be a Dynkin quiver having n vertices, Λ = KQ its path algebra. For an inde-
composable Λ-module M , its right perpendicular category M⊥ is defined by

M⊥ = {X ∈ modΛ; HomΛ(M,X) = 0 and Ext1Λ(M,X) = 0}.
The left perpendicular category ⊥M is also defined similarly. To investigate hom-orthogonal
partial tilting modules (or, regular PVs), we are interested in their intersection PerM =
⊥M ∩ M⊥; we will simply call it the perpendicular category of M . Now we recall the
Ringel form, which is defied on the Grothendieck group K0(Λ) ∼= Zn:

〈dimX, dimY 〉 = dimHomΛ(X, Y )− dimExt1Λ(X,Y )

= t(dimX) ·RQ · (dimY )

for X, Y ∈ modΛ, where RQ = (rij)i,j∈Q0 is the representation matrix with respect to the
basis e1, e2, . . . , en of K0(Λ) ∼= Zn (here we put ek = dimS(k), which is the dimension
vector of a simple module corresponding to a vertex k ∈ Q0). This is defined as rii = 1
for all i ∈ Q0; rij = −1 if there exists an arrow i → j in Q; and rij = 0 if otherwise.

Lemma 1.1. For indecomposable Λ-modules X and Y , we have 〈dimX, dimY 〉 = 0 if
and only if HomΛ(X, Y ) = 0 and Ext1Λ(X, Y ) = 0.
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Now we will show that the numbers that are presented in our theorems do not depend
on the choice of an orientation of arrows of Q. To do this, we need the following lemma:

Lemma 1.2. For any sink a ∈ Q0 and any Λ-module M , if HomΛ(S(a),M) = 0 and
Ext1Λ(M,S(a)) = 0, then we have HomΛ(P (tα),M) = 0 for any arrow α : tα → a in Q.

Let σ = σa be the reflection functor (with the APR-tilting module T , see [2, VII Theo-
rem 5.3]) at a sink a ∈ Q0, and Q′ the quiver obtained by reversing all arrows connecting
with a in Q. For a basic hom-orthogonal partial tilting Λ-module X ∼=

⊕s
k=1Xk, we

define a Λ′-module as follows (here we put Λ′ = KQ′):

σX := S(a)Λ′ ⊕ σX2 ⊕ · · · ⊕ σXs

if X has a direct summand (say, X1) isomorphic to the simple module S(a)Λ; and

σX := σX1 ⊕ σX2 ⊕ · · · ⊕ σXs

if X does not, where we put σXk = HomΛ(T,Xk) for each indecomposable Xk. Let R,
R′ be the set of the isomorphic classes of basic hom-orthogonal partial tilting Λ-modules,
Λ′-modules, having exactly s indecomposable direct summands, respectively. Then we
have the following:

Proposition 1.3. For a basic hom-orthogonal partial tilting Λ-module X having s inde-
composable direct summands, so is Λ′-module σX. The correspondence [X] 7→ [σX] gives
a bijection from R to R′. In particular, the numbers that are presented in Theorem 0.1
do not depend on the choice of an orientation of arrows.

Proof. Let RQ, RQ′ be the representation matrix of the Ringel form of Λ, Λ′, respectively.
Let r = ra be the simple reflection on Zn corresponding to the vertex a (we also denote by
the same r its representation matrix). Then we have RQ′ = tr ·RQ · r. On the other hand,
we have dimσXk = r ·(dimXk) for Xk that is not isomorphic to S(a)Λ, and r(ea) = −ea.
Hence, by calculating with the Ringel form (recall Lemma 1.1), we see that σX is also
a basic hom-orthogonal partial tilting Λ′-module. This correspondence [X] 7→ [σX] is
obviously a bijection. �

Next we define two subsets of R as follows:

R1 =
{
[X] ∈ R; X is sincere, but σX is not sincere

}
,

R2 =
{
[X] ∈ R; X is not sincere, but σX is sincere

}
.

It follows from Lemma 1.2 that the condition “sincere” implies that any representative of
each class of R1 or R2 does not have a direct summand isomorphic to the simple module
S(a)Λ.

Proposition 1.4. We have ]R1 = ]R2. In particular, the numbers for sincere modules
that are presented in Theorem 0.3 do not depend on the choice of an orientation of arrows.

Proof. Take the isomorphic class [X] ∈ R1 and let X ∼=
⊕s

k=1Xk be its indecomposable
decomposition. Then, since σX is not sincere, only the a-th entry of dimσX = r·(dimX)
is zero. Hence so is the a-th entry of each r(αk), where we put αk = dimXk. On
the other hand, since σX is a basic hom-orthogonal partial tilting Λ′-module, we have
tr(αi)·RQ′ ·r(αj) = 0 for any pair of distinct indices. Then we see that tr(αi)·RQ ·r(αj) =
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0, because RQ and RQ′ are identical other than the a-th row and the a-th column. Let X̃
be a Λ-module corresponding to the sum of positive roots

∑s
k=1 r(αk); this is not sincere,

but σX̃ is sincere. Thus we see that the correspondence [X] 7→ [X̃] gives a bijection from
R1 to R2. �

2. An-type

Let Q be the equi-oriented quiver
1◦ −→ 2◦ −→ · · · −→ n◦ of An-type. In the following,

we will sometimes consider the corresponding things of “A0-type” or “A−1-type” to be
trivial for simplicity; for example, “An−2×A−1-type” means just “An−2-type”, and so on.

Proposition 2.1. For each k = 1, 2, . . . , n, the perpendicular category Per I(k) is equiv-
alent to the module category of a path algebra of type Ak−2 × An−1−k.

Proposition 2.2. Let n and s be positive integers. The number a(n, s) satisfies the
following recurrence formula:

(2.1) a(n, s) = a(n− 1, s) +
s−1∑
t=0

n−2∑
m=−1

a(m, t) · a(n− 3−m, s− 1− t).

Proof. Let X =
⊕s

j=1Xj be a basic hom-orthogonal partial tilting Λ-module having
s distinct indecomposable summands. Note that X has at most one injective direct
summand. If X does not have any injective, then the first entry of dimX is zero;
that is, it is a sum of positive roots that come from An−1-type. So the number for
such modules is equal to a(n − 1, s). Assume that X has just one injective summand,
say I(k). Then, according to Proposition 2.1, X has t and s − 1 − t direct summands
that come from Ak−2-type and An−1−k-type, respectively. Thus we see that there exist∑s−1

t=0 a(k−2, t) ·a(n−1−k, s−1− t) such modules. Since k runs from 1 to n, we obtain
our assertion. �

By using the recurrence formula above, we prove Theorem 0.1 for An-type. Here we
notice that the generating function of a(n, s) = Cs · ( n+1

2s ) can be immediately obtained
from the generalized binomial expansion.

Lemma 2.3. The generating function Fs(x) =
∑∞

n=0 a(n, s)x
n of a(n, s) for fixed s is

given by

Fs(x) =
Cs · x2s−1

(1− x)2s+1
.

Proof of Theorem 0.1 for An-type. First we note that a(n, 1) is nothing but the number
of positive roots of An-type, which is equal to n(n + 1)/2 = C1 · ( n+1

2 ). In the case of
n = 1, our assertion is trivial. So we assume that the assertion (0.2) holds for all positive
integers less than n (≥ 2). In the recurrence formula (2.1), we note that a(m, t) (resp.
a(n − 3 −m, s − 1 − t)) is the coefficient of degree m (resp. n − 3 −m) of Ft(x) (resp.
Fs−1−t(x)). The coefficient of degree n− 3 of the Taylor expansion at the origin (x = 0)
of

Ft(x)× Fs−1−t(x) = Ct · Cs−1−t ·
x2s−4

(1− x)2s
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is equal to ( n
2s−1 ); hence we have

(2.2)
n−2∑

m=−1

a(m, t) · a(n− 3−m, s− 1− t) = Ct · Cs−1−t · ( n
2s−1 ) .

By the recurrence formula (2.1) and the assumption of induction, we have

a(n, s) = a(n− 1, s) + ( n
2s−1 )

s−1∑
t=0

Ct · Cs−1−t

= Cs · ( n
2s ) + ( n

2s−1 ) · Cs = Cs · ( n+1
2s ) .

Next we prove that a(n, s) = 0 if s > (n + 1)/2. Let s be such an integer. Then
we have a(n − 1, s) = 0 by the assumption of induction because s > n/2. Suppose that
t ≤ (m+1)/2 and s−1−t ≤ (n−3−m+1)/2 for fixed t. Then we have s−1 ≤ (n−1)/2;
a contradiction. Hence t > (m + 1)/2 or s − 1 − t > (n − 3 − m + 1)/2, and so that
a(m, t) = 0 or a(n−3−m, s−1− t) = 0. Thus we conclude a(n, s) = 0 by the recurrence
formula (2.1). Therefore we obtain our assertion for An-type. �
Remark 2.4. The formula (0.2) has a combinatorial interpretation. According to Araya
[1, Lemma 3.2], for distinct indecomposables X,Y ∈ modΛ, their direct sum X ⊕ Y is a
hom-orthogonal partial tilting module (or, both (X,Y ) and (Y,X) are exceptional pairs)
if and only if the corresponding codes of a circle with n+1 points do not meet each other.
It follows from a well-known combinatorics on codes that the number of such codes is
equal to C2 · ( n+1

4 ) = a(n, 2). The formula for general s ≥ 2 can be similarly obtained.

Proposition 2.5. Let X be a basic sincere hom-orthogonal partial tilting Λ-module. Then
X has exactly one direct summand isomorphic to I(n).

Proof of Theorem 0.3 for An-type. LetX be a basic sincere hom-orthogonal partial tilting
Λ-module. In the case of s = 1 (that is, X itself is indecomposable), it must be isomorphic
to I(n). Hence we have a0(n, 1) = 1 for any n. If n = 1 or n = 2, our assertion can
be proved directly. So let n ≥ 3 and s ≥ 2. By Propositions 2.2 and 2.5, the other
summands of X should be taken from a module category of An−2-type. The number of
such candidates is equal to a(n− 2, s− 1). We can prove a0(n, s) = 0 for s > (n + 1)/2
by a similar manner to the proof of Theorem 0.1. �

Theorems for Dn-type and En-type are shown in a similar way. The detailed proof is
given in our paper which has been submitted for publication elsewhere
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THE NOETHERIAN PROPERTIES OF THE RINGS OF
DIFFERENTIAL OPERATORS ON CENTRAL 2-ARRANGEMENTS

NORIHIRO NAKASHIMA

Abstract. P. Holm began to study the ring of differential operators of the coordinate
ring of a hyperplane arrangement. In this paper, we introduce Noetherian properties of
the ring differential operators of the coordinate ring of a central 2-arrangement and its
graded ring associated to the order filtration.

Key Words: Ring of differential operators, Noetherian property, Hyperplane ar-
rangement.
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1. Introduction

For a commutative algebra R over a field K of characteristic zero, define vector spaces
inductively by

D0(R) := {θ ∈ EndK(R) | a ∈ R, θa− aθ = 0},
Dm(R) :=

{
θ ∈ EndK(R) | a ∈ R, θa− aθ ∈ Dm−1(R)

}
(m ≥ 1).

We define the ring D(R) :=
∪

m≥0 Dm(R) of differential operators of R.
Let S := K[x1, . . . , xn] be the polynomial ring. The ring D(S) is the n-th Weyl algebra

K[x1, . . . , xn]〈∂1, . . . , ∂n〉 where ∂i :=
∂
∂xi

(see for example [3]). We use the multi-index

notetions, for example, ∂α := ∂α1
1 · · · ∂αn

n and |α| := α1 + · · ·+ αn for α = (α1, . . . , αn) ∈
Nn. Define D (m)(S) :=

⊕
|α|=m. Then D(S) =

⊕
m≥0 D (m)(S). It is well known D(R)

that D(R) is Noetherian, if R is a regular domain (see [3]).
Holm [2] showed that D(R) is finitely generated as a K-algebra when R is a coordinate

ring of a generic hyperplane arrangement. Holm [1] also proved that the ring of differential
operators of a central 2-arrangement is a free S-module, and gave a basis of it. We can
write any ellement in D(R) as a linearly combination of this basis ellements.

In this paper, we introduce the Noetherian property of D(R) when R is the coordinate
ring of a central arrangement. In particular, the case n = 2, D(R) is a Noetherian ring .
We give an example of a finitely generated ideal in the end of this paper.

The details of this note are in [4].

2. Hyperplane arrangement

In this section, we fix some notation, and we introduce some properties of the ring of
differential operators of a central arrangement. Let A = {Hi | i = 1, . . . , r} be a central
(hyperplane) arrangement (i.e., every hyperplane in A contains the origin) in Kn. Fix a

The detailed version of this paper will be submitted for publication elsewhere.

–132–



polynomial pi with ker(pi) = Hi, and put Q := p1 · · · pr. Thus Q is a product of certain
homogeneous polynomials of degree 1. Let I denote the principal ideal of S generated by
Q. Then S/I is the coordinate ring of the hyperplane arrangement defined by Q.

For any ideal J of S, we define an S-submodule D (m)(J) of D (m)(S) and a subring
D(J) of D(S) by

D (m)(J) := {θ ∈ D (m)(S) | θ(J) ⊆ J},
D(J) := {θ ∈ D(S) | θ(J) ⊆ J}.

Holm [2] proved the following proposition.

Proposition 1 (Proposition 4.3 in [2]).

D(I) =
⊕
m≥0

D (m)(I).

There is a ring isomorphism D(S/J) ' D(J)/JD(S) (see [3, Theorem 15.5.13]). Thus
we can express D(S/J) as a subquotient of Weyl algebra.

We can prove that D(J)/JD(S) is right Noetherian if and only if D(J)/JD(S) is left
Noetherian when J 6= 0 is a principal ideal. Therefore we conclude that D(S/I) is right
Noetherian if and only if D(S/I) is left Noetherian.

Theorem 2. Let h 6= 0 be a polynomial, and let J = hS. Then the ring D(J)/JD(S) is
right Noetherian if and only if D(J)/JD(S) is left Noetherian.

Corollary 3. Let I be the defining ideal of a central arrangement. Then the ring D(S/I)
is right Noetherian if and only if D(S/I) is left Noetherian.

To prove that D(S/I) is a Noetherian ring, we only need to prove that D(S/I) is a
right Noetherian ring.
The operator

εm :=
∑

|α|=m

m!

α!
xα∂α

is called the Euler operator of order m where α! = (α1!) · · · (αn!) for α = (α1, . . . , αn).
Then εm = ε1(ε1 − 1) · · · (ε1 −m+ 1) [2, Lemma 4.9].

3. n = 2

In this section, we assume n = 2 and S = K[x, y]. We introduce the Noetherian
property of the ring D(S/I) ' D(I)/ID(S). In contrast, the graded ring GrD(S/I)
associated to the order filtration is not Noetherian when r ≥ 2.

Put Pi :=
Q
pi

for i = 1, . . . , r, and define

δi :=

{
∂y if pi = ax (a ∈ K×)

∂x + ai∂y if pi = a(y − aix) (a ∈ K×).

Then δi(pj) = 0 if and only if i = j.
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Proposition 4 (Paper III, Proposition 6.7 in [1], Proposition 4.14 in [6]). For any m ≥ 1,
D (m)(I) is a free left S-module with a basis

{εm, P1δ
m
1 , . . . , Pmδ

m
m} if m < r − 1,

{P1δ
m
1 , . . . , Prδ

m
r } if m = r − 1,

{P1δ
m
1 , . . . , Prδ

m
r , Qη

(m)
r+1, . . . , Qη

(m)
m+1} if m > r − 1,

where the set {δm1 , . . . , δmr , η
(m)
r+1, . . . , η

(m)
m+1} forms a K-basis for

∑
|α|=mK∂α if m > r− 1.

By Proposition 1, we have

D(I) = S ⊕
( r−2⊕

m=1

(
Sεm ⊕ SP1δ

m
1 ⊕ · · · ⊕ SPmδ

m
m

))
⊕

( ⊕
m≥r−1

(
SP1δ

m
1 ⊕ · · · ⊕ SPrδ

m
r ⊕ SQη

(m)
r+1 ⊕ · · · ⊕ SQη

(m)
m+1

))
.

For i = 1, . . . , r, we define an additive group

Li := D(I) ∩ (p1 · · · pi)D(S).

Proposition 5. For i = 1, . . . , r, the additive group Li is a two-sided ideal of D(I).

We consider a sequence

ID(S) = Lr ⊆ Lr−1 ⊆ · · · ⊆ L1 ⊆ L0 = D(I)(3.1)

of two-sided ideals of D(I). If Li−1/Li is a right Noetherian D(I)-module for any i, then
D(I)/ID(S) is a right Noetherian ring. By proving that Li−1/Li is right Noetherian for
all i, we obtain the following main theorem.

Theorem 6. The ring D(S/I) ' D(I)/ID(S) of differential operators of the coordinate
ring of a central 2-arrangement is Noetherian (i.e., D(S/I) is right Noetherian and left
Noetherian).

In contrast, GrD(S/I) is not Noetherian when r ≥ 2.

Remark 7. The graded ring GrD(S/I) associated to the order filtration is a commutative
ring. We consider the ideal M := 〈P1δm1 | m ≥ 1〉 of GrD(S/I).

Assume that M is finitely generated with generators η1, . . . , η`. Then there exists a
positive integer m such that

M = 〈η1, . . . , η`〉 ⊆ 〈P1δ1, . . . , P1δ
m−1
1 〉.

Since P1δm1 ∈ M , we can write

P1δm1 = P1δ1 · θ1 + · · ·+ P1δ
m−1
1 · θm−1(3.2)

for some θ1, . . . , θm−1 ∈ D(I).
If θ ∈ D(I) with ord(θ) ≤ 1, then the polynomial degree of θ is greater than or equal

to 1 by Proposition 4. Since the order of the LHS of (3.2) is m, there exists at least one
θj such that the order of θj is greater than or equal to 1. Thus the polynomial degree of
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the RHS of (3.2) is greater than r − 1. However, the polynomial degree of the LHS of
(3.2) is exactly r − 1. This is a contradiction.

Hence M is not finitely generated, and thus we have proved that GrD(S/I) is not
Noetherian.

4. Exaple

Let n = 2 and S = K[x, y]. Let Q = xy(x− y) and I = QS. Put p1 = x, p2 = y, p3 =
x− y. Then P1 = y(x− y) and δ1 = ∂y. We consider the right ideal 〈y(x− y)∂m

y | m ≥ 1〉
of D(I).

For ` ≥ 4, we have

y(x− y)∂y · y(x− y)∂`+1
y = y2(x− y)2∂`+2

y + y(x− 2y)∂`+1
y ,

y(x− y)∂2
y · y(x− y)∂`

y = y2(x− y)2∂`+2
y + 2y(x− 2y)∂`+1

y − 2y(x− y)∂`
y,

y(x− y)∂3
y · y(x− y)∂`−1

y = y2(x− y)2∂`+2
y + 3y(x− 2y)∂`+1

y − 6y(x− y)∂`
y.

Thus we obtain

y(x−y)∂y ·y(x−y)∂`+1
y −2y(x−y)∂2

y ·y(x−y)∂`
y+y(x−y)∂3

y ·y(x−y)∂`−1
y = −2y(x−y)∂`

y.

This leads to
y(x− y)∂`

y ∈ 〈y(x− y)∂m
y | m = 1, 2, 3〉

since y(x− y)∂m
y ∈ D(I) for any m ≥ 1. We have the identity

〈y(x− y)∂m
y | m ≥ 1〉 = 〈y(x− y)∂m

y | m = 1, 2, 3〉
as right ideals. Hence the right ideal 〈y(x− y)∂m

y | m ≥ 1〉 is finitely generated.

In contrast, the right ideal 〈y(x− y)∂m
y | m ≥ 1〉 of GrD(S/I) is not finitely generated

by Remark 7.
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HOCHSCHILD COHOMOLOGY OF QUIVER ALGEBRAS DEFINED

BY TWO CYCLES AND A QUANTUM-LIKE RELATION

DAIKI OBARA

Abstract. This paper is based on my talk given at the Symposium on Ring Theory
and Representation Theory held at Okayama University, Japan, 25–27 September 2011.
In this paper, we consider quiver algebras Aq over a field k defined by two cycles and
a quantum-like relation depending on a non-zero element q in k. We determine the
ring structure of the Hochschild cohomology ring of Aq modulo nilpotence and give a
necessary and sufficient condition for Aq to satisfy the finiteness condition given in [19].

1. Introduction

Let A be an indecomposable finite dimensional algebra over a field k. We denote by Ae

the enveloping algebra A⊗kA
op of A, so that left Ae-modules correspond to A-bimodules.

The Hochschild cohomology ring is given by HH∗(A) = Ext∗Ae(A,A) = ⊕n≥0Ext
n
Ae(A,A)

with Yoneda product. It is well-known that HH∗(A) is a graded commutative ring, that
is, for homogeneous elements η ∈ HHm(A) and θ ∈ HHn(A), we have ηθ = (−1)mnθη. Let
N denote the ideal of HH∗(A) which is generated by all homogeneous nilpotent elements.
Then N is contained in every maximal ideal of HH∗(A), so that the maximal ideals of
HH∗(A) are in 1-1 correspondence with those in the Hochschild cohomology ring modulo
nilpotence HH∗(A)/N .

Let q be a non-zero element in k and s, t integers with s, t ≥ 1. We consider the quiver
algebra Aq = kQ/Iq defined by the two cycles Q with s+ t− 1 vertices and s+ t arrows
as follows:

a3
α2←− a2 b2 · · · · · ·

α3 ↙ ↖α1 β1 ↗ . . .
a4 1 bt−2

. . . ↗αs βt ↖ ↙βt−2

· · · · · · as bt
βt−1←− bt−1

and the ideal Iq of kQ generated by

Xsa, XsY t − qY tXs, Y tb

for a, b ≥ 2 where we set X:= α1 + α2 + · · ·+ αs and Y := β1 + β2 + · · ·+ βt. We denote
the trivial path at the vertex a(i) and at the vertex b(j) by ea(i) and by eb(j) respectively.
We regard the numbers i in the subscripts of ea(i) modulo s and j in the subscripts of eb(j)
modulo t. In this paper, we describe the ring structure of HH∗(Aq)/N .

In [17], Snashall and Solberg used the Hochschild cohomology ring modulo nilpotence
HH∗(A)/N to define a support variety for any finitely generated module over A. This
led us to consider the structure of HH∗(A)/N . In [17], Snashall and Solberg conjectured
that HH∗(A)/N is always finitely generated as a k-algebra. But a counterexample to
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this conjecture was given by Snashall [16] and Xu [21]. This example makes us consider
whether we can give necessary and sufficient conditions on a finite dimensional algebra A
for HH∗(A)/N to be finitely generated as a k-algebra.

On the other hand, in the theory of support varieties, it is interesting to know when the
variety of a module is trivial. In [4], Erdmann, Holloway, Snashall, Solberg and Taillefer
gave the necessary and sufficient conditions on a module for it to have trivial variety under
some finiteness conditions on A. In [19], Solberg gave a condition which is equivalent to
the finiteness conditions. In the paper, we show that Aq satisfies the finiteness condition
given in [19] if and only if q is a root of unity.

The content of the paper is organized as follows. In Section 1 we deal with the definition
of the support variety given in [17] and precedent results about the Hochschild cohomol-
ogy ring modulo nilpotence. In Section 2, we describe the finiteness condition given in
[19] and introduce precedent results about this condition. In Section 3, we determine
the Hochschild cohomology ring of Aq modulo nilpotence and show that Aq satisfies the
finiteness condition if and only if q is a root of unity.

2. Support variety

In [17], Snasall and Solberg defined the support variety of a finitely generated A-module
M over a noetherian commutative graded subalgebra H of HH∗(A) with H0 = HH0(A).
In this paper, we consider the case H = HH∗(A).

Definition 1 ([17]). The support variety of M is given by

V (M) = {m ∈ MaxSpecHH∗(A)/N|AnnExt∗A(M,M) ⊆ m′}

where AnnExt∗A(M,M) is the annihilator of Ext∗A(M,M), m′ is the pre-image of m for
the natural epimorphism and the HH∗(A)-action on Ext∗A(A,A) is given by the graded

algebra homomorphism HH∗(A)
−⊗M−→ Ext∗A(M,M).

Since A is indecomposable, we have that HH0(A) is a local ring. Thus HH∗(A)/N has a
unique maximal graded ideal mgr = 〈radHH∗(A),HH≥1(A)〉/N . We say that the variety
of M is trivial if V (M) = {mgr}.

In [16], Snashall gave the following question.
Question ([16]). Whether we can give necessary and sufficient conditions on a finite di-
mensional algebra for the Hochschild cohomology ring modulo nilpotence to be finitely
generated as a k-algebra.

With respect to sufficient condition, it is shown that HH∗(A)/N is finitely generated
as a k-algebra for various classes of algebras by many authors as follows:

(1) In [6], [20], Evens and Venkov showed that HH∗(A)/N is finitely generated for
any block of a group ring of a finite group.

(2) In [7], Friedlander and Suslin showed that HH∗(A)/N is finitely generated for any
block of a finite dimensional cocommutative Hopf algebra.

(3) In [9], Green, Snashall and Solberg showed that HH∗(A)/N is finitely generated
for finite dimensional self-injective algebras of finite representation type over an
algebraically closed field.
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(4) In [10], Green, Snashall and Solberg showed that HH∗(A)/N is finitely generated
for finite dimensional monomial algebras.

(5) In [11], Happel showed that HH∗(A)/N is finitely generated for finite dimensional
algebras of finite global dimension.

(6) In [15], Schroll and Snashall showed that HH∗(A)/N is finitely generated for the
principal block of the Heche algebra Hq(S5) with q = −1 defined by the quiver

a−→
ε� ε

	1 2←−
a

and the ideal I of kQ generated by

αε̄, ᾱε, ε̄ᾱ, ε2 − αᾱ, ε̄2 − ᾱα.

(7) In [18], Snashall and Taillefer showed that HH∗(A)/N is finitely generated for a
class of special biserial algebras.

(8) In [12], Koenig and Nagase produced many examples of finite dimensional algebras
with a stratifying ideal for which HH∗(A)/N is finitely generated as a k-algebra.

(9) In [16] and [21], Snashall and Xu gave the example of a finite dimensional algebra
for which HH∗(A)/N is not a finitely generated k-algebra.

Example 2. ([16, Example 4.1]) Let A = kQ/I where Q is the quiver
a �

1
c−→ 2

	
b

and I = 〈a2, b2, ab − ba, ac〉. Then HH∗(A)/N is not finitely generated as a k-
algebra.

Xu showed this in the case char k = 2 in [21].

3. Finiteness condition

In [4], Erdmann, Holloway, Snashall, Solberg and Taillefer gave the following two con-
ditions (Fg1) and (Fg2) for an algebra A and a graded subalgebra H of HH∗(A).

(Fg1) H is a commutative Noetherian algebra with H0 = HH0(A).
(Fg2) Ext∗A(A/radA,A/radA) is a finitely generated H-module.

In [19], Solberg showed that the finiteness conditions are equivalent to the following
condition.

(Fg) HH∗(A) is Noetherian and Ext∗A(A/radA,A/radA) is a finitely generated
HH∗(A)-module.

In [4], under the finiteness condition (Fg), some geometric properties of the support vari-
ety and some representation theoretic properties are related. In particular, the following
theorem hold.

Theorem 3 ([4, Theorem 2.5]). Suppose that A satisfies (Fg).

(a) A is Gorenstein, that is, A has finite injective dimension both as a left A-module
and as a right A-module.
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(b) The following are equivalent for an A-module M .
(i) The variety of M is trivial.
(ii) The projective dimension of M is finite.
(iii) The injective dimension of M is finite.

There are some papers which deal with the finiteness condition (Fg) as follows.

(1) In [2], Bergh and Oppermann show that a codimension n quantum complete in-
tersection satisfies (Fg) if and only if all the commutators qij are roots of unity.

Definition 4. Let n be integer with n ≥ 1, ai integer with ai ≥ 2 for 1 ≤ i ≤ n,
and qij a non-zero element in k for every 1 ≤ i < j ≤ n. A codimension n quantum
complete intersection is defined by

k〈x1, . . . , xn〉/I

where I generated by

xai
i , xjxi − qijxixj for 1 ≤ i < j ≤ n.

(2) In [5], Erdmann and Solberg gave the necessary and sufficient conditions on a
Koszul algebra for it to satisfy (Fg).

Theorem 5 ([5, Theorem 1.3]). Let A be a finite dimensional Koszul algebra over
an algebraically closed field, and let E(A) = Ext∗A(A/radA,A/radA). A satisfies
(Fg) if and only if Zgr(E(A)) is Noetherian and E(A) is a finitely generated
Zgr(E(A))-module.

(3) In [8], Furuya and Snashall provided examples of (D,A)-stacked monomial alge-
bras which are not self-injective but satisfy (Fg).

Example 6. ([8, Example 3.2]) Let Q be the quiver

1
α−−−→ 2

δ

x yβ

4 ←−−−
γ

3

and I the ideal of kQ generated by

αβγδαβ, γδαβγδ.

Then, A = kQ/I is not self-injective but satisfies (Fg).

(4) In [15], Schroll and Snashall show that (Fg) hold for the principal block of the
Heche algebra Hq(S5) with q = −1.
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4. Quiver algebras defined by two cycles and a quantum-like relation

In this section, we consider the quiver algebras Aq = kQ/Iq defined by the quiver Q as
follows:

a3
α2←− a2 b2 · · · · · ·

α3 ↙ ↖α1 β1 ↗ . . .
a4 1 bt−2

. . . ↗αs βt ↖ ↙βt−2

· · · · · · as bt
βt−1←− bt−1

and the ideal Iq of kQ generated by

Xsa, XsY t − qY tXs, Y tb

for a, b ≥ 2 where we set X:= α1 + α2 + · · · + αs and Y := β1 + β2 + · · · + βt, and q is
non-zero element in k. Paths are written from right to left.

In the case s = t = 1, Aq is called a quantum complete intersection (cf. [1]). In this
case, when a = b = 2, the Hochschild cohomology ring HH∗(Aq) of Aq was described by
Buchweitz, Green, Madsen and Solberg [3] for any q ∈ k. Moreover, in the case where
s = t = 1, a, b ≥ 2, Bergh and Erdmann [1] determined HH∗(Aq) if q is not a root of
unity. And in the same case, Bergh and Oppermann [2] show that Aq satisfies (Fg) if
and only if q is a root of unity. In [4], Erdmann, Holloway, Snashall, Solberg and Taillefer
describe that if an algebra A satisfies (Fg) then HH∗(A) is a finitely generated k-algebra.
Therefore, we consider the case where s ≥ 2 or t ≥ 2.

In this paper, we determine the Hochschild cohomology ring of Aq modulo nilpotence
HH∗(Aq)/N and show that Aq satisfies (Fg) if and only if q is a root of unity.

In [13] and [14], we determined the ring structure of HH∗(Aq) by means of generators
and Yoneda product. By this ring structure of HH∗(Aq), we have the following results.

Theorem 7. In the case where q is a root of unity, HH∗(Aq) is finitely generated as a
k-algebra.

Theorem 8. In the case where q is a root of unity, HH∗(Aq)/N is isomorphic to the
polynomial ring of two variables. In the case s, t ≥ 2, r ≥ 1, we have

HH∗(Aq)/N ∼=


k[W 2r

0,0,0,W
2r
2r,0,0] if s, t ≥ 2, ā 6= 0, b̄ 6= 0,

k[W 2r
0,0,0,W

2
2,0,0] if s, t ≥ 2, ā = 0, b̄ 6= 0,

k[W 2
0,0,0,W

2r
2r,0,0] if s, t ≥ 2, ā 6= 0, b̄ = 0,

k[W 2
0,0,0,W

2
2,0,0] if s, t ≥ 2, ā = b̄ = 0,

where for any integer z, z̄ is the remainder when we divide z by r, and for n ≥ 1,

W 2n
0,l,l′ := XslY tl′e2nb(1) +

t∑
j=2

Y j−1XslY t(l′−1)+t−j+1e2nb(j) for 0 ≤ l ≤ a− 1 and 0 ≤ l′ ≤ b,

W 2n
2n,l,l′ := XslY tl′e2na(1) +

s∑
i=2

Xs(l−1)+i−1Y tl′Xs−i+1e2na(i) for 0 ≤ l ≤ a and 0 ≤ l′ ≤ b− 1.

In the case where s = 1 or t = 1, we have similar results.
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Theorem 9. In the case where q is not a root of unity, HH∗(Aq) is not a finitely generated
k-algebra.

Theorem 10. In the case where q is not a root of unity, HH∗(Aq)/N ∼= k.

There exists an example of our algebra Aq which is not self-injective, monomial or Koszul.
Moreover this example of Aq have no stratifying ideal.

Example 11. In the case where s = 2, t = 1 and a = b = 2, Aq is not self-injective,
monomial or Koszul. Moreover Aq have no stratifying ideal.

Therefore Aq is new example of a class of algebras for which the Hochschild cohomology
ring modulo nilpotence is finitely generated as a k-algebra.

Next, we give the necessary and sufficient condition for A to satisfy (Fg). Now, we
consider the case where q is an r-th root of unity for r ≥ 1, s, t ≥ 2 and ā, b̄ 6= 0.

Let ϕ: HH∗(Aq) → E(Aq) := ⊕n≥0Ext
n
Aq
(Aq/radAq, Aq/radAq) be a homomorphism

of graded rings given by ϕ(η) = η ⊗Aq Aq/radAq. Then it is easy to see that E(Aq)
n:=

ExtnAq
(Aq/radAq, Aq/radAq) '

∐n
l=0 ke

n
1 ⊕

∐t
j=2 ke

n
b(j) ⊕

∐s
i=2 ke

n
a(i), and that the image

of ϕ is precisely the graded ring k[x, y] where x :=
∑t

j=1 e
2r
b(j) and y :=

∑s
i=1 e

2r
a(i) in degree

2r. Then, we have the following proposition.

Proposition 12. E(Aq) is a finitely generated left k[x, y]-module.

In the other cases, we have same results as Proposition 12. Then we have the following
immediate consequence of Proposition 12.

Theorem 13. In the case where s ≥ 2 or t ≥ 2, if q is a root of unity then Aq satisfies
(Fg).

By [2], Theorem 9 and 13, we have the necessary and sufficient condition for Aq to
satisfy (Fg).

Theorem 14. Aq satisfies (Fg) if and only if q is a root of unity.

Remark 15. By Theorem 2.5 in [4] and Theorem 14, in the case where q is a root of unity,
we have the following properties

(1) Aq is Gorenstein.
(2) The support variety of an Aq-module M is trivial if and only if the projective

dimension of M is finite.
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ALTERNATIVE POLARIZATIONS OF BOREL FIXED IDEALS AND
ELIAHOU-KERVAIRE TYPE RESOLUTION

RYOTA OKAZAKI AND KOHJI YANAGAWA

1. Introduction

Let S := k[x1, . . . , xn] be a polynomial ring over a field k. For a monomial ideal
I ⊂ S, G(I) denotes the set of minimal (monomial) generators of I. We say a monomial
ideal I ⊂ S is Borel fixed (or strongly stable), if m ∈ G(I), xi|m and j < i imply
(xj/xi) ·m ∈ I. Borel fixed ideals are important, since they appear as the generic initial
ideals of homogeneous ideals (if char(k) = 0).

A squarefree monomial ideal I is said to be squarefree strongly stable, if m ∈ G(I),
xi|m, xj ̸ |m and j < i imply (xj/xi) ·m ∈ I. Any monomial m ∈ S with deg(m) = e has
a unique expression

(1.1) m =
e∏

i=1

xαi
with 1 ≤ α1 ≤ α2 ≤ · · · ≤ αe ≤ n.

Now we can consider the squarefree monomial

msq =
e∏

i=1

xαi+i−1

in the “larger” polynomial ring T = k[x1, . . . , xN ] with N ≫ 0. If I ⊂ S is Borel fixed,
then Isq := (msq | m ∈ G(I) ) ⊂ T is squarefree strongly stable. Moreover, for a Borel
fixed ideal I and all i, j, we have βS

i,j(I) = βT
i,j(I

sq). This operation plays a role in the
shifting theory for simplicial complexes (see [1]).

A minimal free resolution of a Borel fixed ideal I has been constructed by Eliahou
and Kervaire [7]. While the minimal free resolution is unique up to isomorphism, its
“description” depends on the choice of a free basis, and further analysis of the minimal
free resolution is still an interesting problem. See, for example, [2, 9, 10, 11, 13]. In this
paper, we will give a new approach which is applicable to both I and Isq. Our main tool
is the “alternative” polarization b-pol(I) of I.

Let

S̃ := k[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ d ]

be the polynomial ring, and set

Θ := {xi,1 − xi,j | 1 ≤ i ≤ n, 2 ≤ j ≤ d } ⊂ S̃.

The first author is partially supported by JST, CREST.
The second author is partially supported by Grant-in-Aid for Scientific Research (c) (no.22540057).
The detailed versions of this paper will be submitted for publication elsewhere.
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Then there is an isomorphism S̃/(Θ) ∼= S induced by S̃ ∋ xi,j 7−→ xi ∈ S. Throughout

this paper, S̃ and Θ are used in this meaning.
Assume that m ∈ G(I) has the expression (1.1). If deg(m) (= e) ≤ d, we set

(1.2) b-pol(m) =
e∏

i=1

xαi,i ∈ S̃.

Note that b-pol(m) is a squarefree monomial. If there is no danger of confusion, b-pol(m)
is denoted by m̃. If m =

∏n
i=1 x

ai
i , then we have

m̃ (= b-pol(m)) =
∏

1≤i≤n
bi−1+1≤j≤bi

xi,j ∈ S̃, where bi :=
i∑

l=1

al.

If deg(m) ≤ d for all m ∈ G(I), we set

b-pol(I) := (b-pol(m) | m ∈ G(I)) ⊂ S̃.

The second author ([16]) showed that if I is Borel fixed, then Ĩ := b-pol(I) is a “polar-

ization” of I, that is, Θ forms an S̃/Ĩ-regular sequence with the natural isomorphism

S̃/(Ĩ + (Θ)) ∼= S/I.

Note that b-pol(−) does not give a polarization for a general monomial ideal, and is
essentially different from the standard polarization. Moreover,

Θ′ = {xi,j − xi+1,j−1 | 1 ≤ i < n, 1 < j ≤ d } ⊂ S̃

forms an S̃/Ĩ-regular sequence too, and we have S̃/(Ĩ + (Θ′)) ∼= T/Isq through S̃ ∋
xi,j 7−→ xi+j−1 ∈ T (if we adjust the value of N = dimT ). The equation βS

i,j(I) = βT
i,j(I

sq)
mentioned above easily follows from this observation.

In this paper, we will construct a minimal S̃-free resolution P̃• of S̃/Ĩ, which is analogous
to the Eliahou-Kervaire resolution of S/I. However, their description can not be lifted to

Ĩ, and we need modification. Clearly, P̃• ⊗S̃ S̃/(Θ) and P̃• ⊗S̃ S̃/(Θ′) give the minimal
free resolutions of S/I and T/Isq respectively.

Under the assumption that a Borel fixed ideal I is generated in one degree (i.e., all

elements of G(I) have the same degree), Nagel and Reiner [13] constructed Ĩ = b-pol(I),

and described a minimal S̃-free resolution of Ĩ explicitly. Their resolution is equivalent
to our description. In this sense, our results are generalizations of those in [13].

In [2], Batzies and Welker tried to construct a minimal free resolutions of monomial
ideals J using Forman’s discrete Morse theory ([8]). If J is shellable (i.e., has linear
quotients, in the sense of [9]), their method works, and we have a Batzies-Welker type
minimal free resolution. However, it is very hard to compute their resolution explicitly.

A Borel fixed ideal I and its polarization Ĩ = b-pol(I) is shellable. We will show that

our resolution P̃• of S̃/Ĩ and the induced resolutions of S/I and T/Isq are Batzies-Welker
type. In particular, these resolutions are cellular. As far as the authors know, an explicit
description of a Batzies-Welker type resolution of a general Borel fixed ideal has never

been obtained before. Finally, we show that the CW complex supporting P̃• is regular.
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2. The Eliahou-Kervaire type resolution of S̃/ b-pol(I)

Throughout the rest of the paper, I is a Borel fixed monomial ideal with degm ≤ d
for all m ∈ G(I). For the definitions of the alternative polarization b-pol(I) of I and
related concepts, consult the previous section. For a monomial m =

∏n
i=1 x

ai
i ∈ S, set

µ(m) := min{ i | ai > 0 } and ν(m) := max{ i | ai > 0 }. In [7], it is shown that any
monomial m ∈ I has a unique expression m = m1 ·m2 with ν(m1) ≤ µ(m2) and m1 ∈ G(I).
Following [7], we set g(m) := m1. For i with i < ν(m), let

bi(m) = (xi/xk) ·m, where k := min{ j | aj > 0, j > i}.
Since I is Borel fixed, m ∈ I implies bi(m) ∈ I.

Definition 1 ([14, Definition 2.1]). For a finite subset F̃ = { (i1, j1), (i2, j2), . . . , (iq, jq) }
of N × N and a monomial m =

∏e
i=1 xαi

=
∏n

i=1 x
ai
i ∈ G(I) with 1 ≤ α1 ≤ α2 ≤ · · · ≤

αe ≤ n, we say the pair (F̃ , m̃) is admissible (for b-pol(I)), if the following are satisfied:

(a) 1 ≤ i1 < i2 < · · · < iq < ν(m),

(b) jr = max{ l | αl ≤ ir }+ 1 (equivalently, jr = 1 +
∑ir

l=1 al) for all r.

For m ∈ G(I), the pair (∅, m̃) is also admissible.

The following are fundamental properties of admissible pairs.

Lemma 2. Let (F̃ , m̃) be an admissible pair with F̃ = { (i1, j1), . . . , (iq, jq) } and m =∏
xai
i ∈ G(I). Then we have the following.

(i) j1 ≤ j2 ≤ · · · ≤ jq.
(ii) xk,jr · b-pol(bir(m)) = xir,jr · b-pol(m), where k = min{ l | l > ir, al > 0 }.

For m ∈ G(I) and an integer i with 1 ≤ i < ν(m), set m⟨i⟩ := g(bi(m)) and m̃⟨i⟩ :=
b-pol(m⟨i⟩). If i ≥ ν(m), we set m⟨i⟩ := m for the convenience. In the situation of Lemma 2,
m̃⟨ir⟩ divides xir,jr · m̃ for all 1 ≤ r ≤ q.

For F̃ = { (i1, j1), . . . , (iq, jq) } and r with 1 ≤ r ≤ q, set F̃r := F̃ \ { (ir, jr) }, and for

an admissible pair (F̃ , m̃) for b-pol(I),

B(F̃ , m̃) := { r | (F̃r, m̃⟨ir⟩) is admissible }.

Lemma 3. Let (F̃ , m̃) be as in Lemma 2.

(i) For all r with 1 ≤ r ≤ q, (F̃r, m̃) is admissible.

(ii) We always have q ∈ B(F̃ , m̃).

(iii) Assume that (F̃r, m̃⟨ir⟩) satisfies the condition (a) of Definition 1. Then r ∈
B(F̃ , m̃) if and only if either jr < jr+1 or r = q.

(iv) For r, s with 1 ≤ r < s ≤ q and jr < js, we have bir(bis(m)) = bis(bir(m)) and
hence (m̃⟨ir⟩)⟨is⟩ = (m̃⟨is⟩)⟨ir⟩.

(v) For r, s with 1 ≤ r < s ≤ q and jr = js, we have bir(m) = bir(bis(m)) and hence
m̃⟨ir⟩ = (m̃⟨is⟩)⟨ir⟩.

Example 4. Let I ⊂ S = k[x1, x2, x3, x4] be the smallest Borel fixed ideal containing
m = (x1)

2x3x4. In this case, m′
⟨i⟩ = g(bi(m

′)) for all m′ ∈ G(I). Hence, we have m⟨1⟩ =

(x1)
3x4, m⟨2⟩ = (x1)

2x2x4 and m⟨3⟩ = (x1)
2(x3)

2. The following 3 pairs are all admissible.
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• (F̃ , m̃) = ({ (1, 3), (2, 3), (3, 4) }, x1,1 x1,2 x3,3 x4,4)

• (F̃2, m̃⟨2⟩) = ({ (1, 3), (3, 4) }, x1,1 x1,2 x2,3 x4,4)

• (F̃3, m̃⟨3⟩) = ({ (1, 3), (2, 3) }, x1,1 x1,2 x3,3 x3,4)

(For this F̃ , ir = r holds and the reader should be careful). However, (F̃1, m̃⟨1⟩) =
({ (2, 3), (3, 4) }, x1,1 x1,2 x1,3 x4,4) does not satisfy the condition (b) of Definition 1. Hence

B(F̃ , m̃) = {2, 3}.
The diagrams of (admissible) pairs are very useful for better understanding. To draw

a diagram of (F̃ , m̃), we put a white square in the (i, j)-th position if (i, j) ∈ F̃ and

a black square there if xi,j divides m̃. If F̃ is maximal among F̃ ′ such that (F̃ ′, m̃) is

admissible, then the diagram of (F̃ , m̃) forms a “right side down stairs” (see the leftmost

and rightmost diagrams of the table below). If (F̃ , m̃) is admissible but F̃ is not maximal,
then some white squares are removed from the diagram for the maximal case. If the pair
is admissible, there is a unique black square in each column and this is the “lowest” of
the squares in the column.

If (F̃ , m̃) is admissible and r ∈ B(F̃ , m̃), then we can get the diagram of (F̃r, m̃⟨ir⟩) from

that of (F̃ , m̃) by the following procedure.

(i) Remove the (sole) black square in the jr-th column.
(ii) Replace the white square in the (ir, jr)-th position by a black one.
(iii) If m⟨ir⟩ ̸= bir(m), erase some squares from the lower-right of the diagram. (This

step does not occur in the next table.)

i

j

4
3
2
1

1 2 3 4

i

j

4
3
2
1

1 2 3 4

i

j

4
3
2
1

1 2 3 4

i

j

4
3
2
1

1 2 3 4

(F̃ , m̃) (F̃1, m̃⟨1⟩) (F̃2, m̃⟨2⟩) (F̃3, m̃⟨3⟩)

admissible not admissible admissible admissible

Next let I ′ be the smallest Borel fixed ideal containing m = (x1)
2x3x4 and (x1)

2x2. For

F̃ = { (1, 3), (2, 3), (3, 4) }, (F̃ , m̃) is admissible again. However m̃⟨2⟩ = (x1)
2x2 in this

time, and (F̃2, m̃⟨2⟩) = ({ (1, 3), (3, 4) }, x1,1 x1,2 x2,3) is no longer admissible. In fact, it

does not satisfy (a) of Definition 1. Hence B(F̃ , m̃) = {3} for b-pol(I ′).

For F = {i1, . . . , iq} ⊂ N with i1 < · · · < iq and m ∈ G(I), Eliahou-Kervaire call the
pair (F,m) admissible for I, if iq < ν(m). In this case, there is a unique sequence j1, . . . , jq
such that (F̃ , m̃) is admissible for Ĩ, where F̃ = { (i1, j1), . . . , (iq, jq) }. In this way, there

is a one-to-one correspondence between the admissible pairs for I and those of Ĩ. As the
free summands of the Eliahou-Kervaire resolution of I are indexed by the admissible pairs

for I, our resolution of Ĩ are indexed by the admissible pairs for Ĩ.
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We will define a Zn×d-graded chain complex P̃• of free S̃-modules as follows. First, set

P̃0 := S̃. For each q ≥ 1, we set

Aq := the set of admissible pairs (F̃ , m̃) for b-pol(I) with #F̃ = q,

and
P̃q :=

⊕
(F̃ ,m̃)∈Aq−1

S̃ e(F̃ , m̃),

where e(F̃ , m̃) is a basis element with

deg
(
e(F̃ , m̃)

)
= deg

m̃×
∏

(ir,jr)∈F̃

xir,jr

 ∈ Zn×d.

We define the S̃-homomorphism ∂ : P̃q → P̃q−1 for q ≥ 2 so that e(F̃ , m̃) with F̃ =
{(i1, j1), . . . , (iq, jq)} is sent to∑

1≤r≤q

(−1)r · xir,jr · e(F̃r, m̃)−
∑

r∈B(F̃ ,m̃)

(−1)r · xir,jr · m̃
m̃⟨ir⟩

· e(F̃r, m̃⟨ir⟩),

and ∂ : P̃1 → P̃0 by e(∅, m̃) 7−→ m̃ ∈ S̃ = P̃0. Clearly, ∂ is a Zn×d-graded homomorphism.
Set

P̃• : · · ·
∂−→ P̃i

∂−→ · · · ∂−→ P̃1
∂−→ P̃0 −→ 0.

Theorem 5 ([14, Theorem 2.6]). The complex P̃• is a Zn×d-graded minimal S̃-free reso-

lution for S̃/ b-pol(I).

Sketch of Proof. Calculation using Lemma 3 shows that ∂ ◦ ∂(e(F̃ , m̃)) = 0 for each ad-

missible pair (F̃ , m̃). That is, P̃• is a chain complex.
Let I = (m1, . . . ,mt) with m1 ≻ · · · ≻ mt, and set Ir := (m1, . . . ,mr). Here ≻ is the

lexicographic order with x1 ≻ x2 ≻ · · · ≻ xn. Then Ir are also Borel fixed. The acyclicity

of the complex P̃ can be shown inductively by means of mapping cones. □
Remark 6. Herzog and Takayama [9] explicitly gave a minimal free resolution of a mono-
mial ideal with linear quotients admitting a regular decomposition function. A Borel fixed

ideal I satisfies this property. However, while Ĩ has linear quotients, the decomposition
function can not be regular. Hence the method of [9] is not applicable to our case.

3. Applications and Remarks

Let I ⊂ S be a Borel fixed ideal, and Θ ⊂ S̃ the sequence defined in Introduction. As

remarked before, there is a one-to-one correspondence between the admissible pairs for Ĩ

and those for I, and if (F̃ , m̃) corresponds to (F,m) then #F̃ = #F . Hence we have

(3.1) βS̃
i,j(Ĩ) = βS

i,j(I)

for all i, j, where S and S̃ are considered to be Z-graded. Of course, this equation is clear,

if one knows the fact that Ĩ is a polarization of I ([16, Theorem 3.4]). Conversely, we can
show this fact by the equation (3.1) and [13, Lemma 6.9].
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Corollary 7 ([16, Theorem 3.4]). The ideal Ĩ is a polarization of I.

The next result also follows from [13, Lemma 6.9].

Corollary 8. P̃• ⊗S̃ S̃/(Θ) is a minimal S-free resolution of S/I.

Remark 9. (1) The correspondence between the admissible pairs for I and those for Ĩ,

does not give a chain map between the Eliahou-Kervaire resolution and our P̃•⊗S̃ S̃/(Θ).
In this sense, two resolutions are not the same. See Example 21 below.

(2) The lcm lattice of I and that of Ĩ are not isomorphic in general. Recall that the
lcm-lattice of a monomial ideal J is the set LCM(J) := { lcm{m | m ∈ σ } | σ ⊂ G(J) }
with the order given by divisibility. Clearly, LCM(J) is a lattice. For the Borel fixed ideal
I = (x2, xy, xz, y2, yz), we have xy ∨ xz = xy ∨ yz = xz ∨ yz = xyz in LCM(I). However,

x̃y ∨ x̃z = x1y2z2, x̃y ∨ ỹz = x1y1y2z2 and x̃z ∨ ỹz = x1y1z2 are all distinct in LCM(Ĩ) .
(3) Eliahou and Kervaire ([7]) constructed minimal free resolutions of stable monomial

ideals, which form a wider class than Borel fixed ideals. However, b-pol(J) is not a
polarization for a stable monomial ideal J in general, and our construction does not
work.

Let a = {a0, a1, a2, . . . } be a non-decreasing sequence of non-negative integers with
a0 = 0, and T = k[x1, . . . , xN ] a polynomial ring with N ≫ 0. In his paper [12],
Murai defined an operator (−)γ(a) acting on monomials and monomial ideals of S. For a
monomial m ∈ S with the expression m =

∏e
i=1 xαi

as (1.1), set

mγ(a) :=
e∏

i=1

xαi+ai−1
∈ T,

and for a monomial ideal I ⊂ S,

Iγ(a) := (mγ(a) | m ∈ G(I)) ⊂ T.

If ai+1 > ai for all i, then Iγ(a) is a squarefree monomial ideal. Particularly in the case
ai = i for all i, (−)γ(a) is just (−)sq mentioned in Introduction.

The operator (−)γ(a) also can be described by b-pol(−) as is shown in [16]. Let La be

the k-subspace of S̃ spanned by {xi,j − xi′,j′ | i+ aj−1 = i′ + aj′−1}, and Θa a basis of La.
For example, we can take {xi,j − xi+1,j−1 | 1 ≤ i < n, 1 < j ≤ d} as Θa in the case ai = i

for all i. With a suitable choice of the number N , the ring homomorphism S̃ → T with

xi,j 7→ xi+aj−1
induces the isomorphism S̃/(Θa) ∼= T .

Proposition 10 ([16, Proposition 4,1]). With the above notation, Θa forms an S̃/Ĩ-

regular sequence, and we have (S̃/(Θa))⊗S̃ (S̃/Ĩ) ∼= T/Iγ(a).

Applying Proposition 10 and [5, Proposition 1.1.5], we have the following.

Corollary 11. The complex P̃• ⊗S̃ S̃/(Θa) is a minimal T -free resolution of T/Iγ(a). In
particular, a minimal free resolution of T/Isq is given in this way.

For a Borel fixed ideal I generated in one degree, Nagel and Reiner [13] constructed a

CW complex, which supports a minimal free resolution of Ĩ (or I, Isq).
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Proposition 12 ([14, Proposition 4.9]). Let I be a Borel fixed ideal generated in one

degree. Then Nagel-Reiner description of a free resolution of Ĩ coincides with our P̃•.

We do not give a proof of the above proposition here, but just remark that if I is

generated in one degree then m⟨i⟩ = bi(m) for all m ∈ G(I) and P̃• becomes simpler.

4. Relation to Batzies-Welker theory

In [2], Batzies and Welker connected the theory of cellular resolutions of monomial
ideals with Forman’s discrete Morse theory ([8]).

Definition 13. A monomial ideal J is called shellable if there is a total order < on G(J)
satisfying the following condition.

(∗) For any m,m′ ∈ G(J) with m = m′, there is an m′′ ∈ G(J) such that m ⊒ m′′,

deg
(

lcm(m,m′′)
m

)
= 1 and lcm(m,m′′) divides lcm(m,m′).

For a Borel fixed ideal I, let < be the total order on G(Ĩ) = { m̃ | m ∈ G(I) } such that
m̃′ < m̃ if and only if m′ ≻ m in the lexicographic order on S with x1 ≻ x2 ≻ · · · ≻ xn.
In the rest of this section, < means this order.

Lemma 14. The order < makes Ĩ shellable.

The following construction is taken from [2, Theorems 3.2 and 4.3]. For the background
of their theory, the reader is recommended to consult the original paper.

For ∅ ̸= σ ⊂ G(Ĩ), let m̃σ denote the largest element of σ with respect to the order <,
and set lcm(σ) := lcm{ m̃ | m̃ ∈ σ }.

Definition 15. We define a total order ≺σ on G(Ĩ) as follows. Set

Nσ := { (m̃σ)⟨i⟩ | 1 ≤ i < ν(mσ), (m̃σ)⟨i⟩ divides lcm(σ) }.

For all m̃ ∈ Nσ and m̃′ ∈ G(Ĩ) \Nσ, define m̃ ≺σ m̃′. The restriction of ≺σ to Nσ is set to

be <, and the same is true for the restriction to G(Ĩ) \Nσ.

Let X be the (#G(Ĩ) − 1)-simplex associated with 2G(Ĩ) (more precisely, 2G(Ĩ) \ {∅}).
Hence we freely identify σ ⊂ G(Ĩ) with the corresponding cell of the simplex X. Let

GX be the directed graph defined as follows. The vertex set of GX is 2G(Ĩ) \ {∅}. For

∅ ̸= σ, σ′ ⊂ G(Ĩ), there is an arrow σ → σ′ if and only if σ ⊃ σ′ and #σ = #σ′ + 1. For
σ = { m̃1, m̃2, . . . , m̃k } with m̃1 ≺σ m̃2 ≺σ · · · ≺σ m̃k (= m̃σ) and l ∈ N with 1 ≤ l < k, set
σl := { m̃k−l, m̃k−l+1, . . . , m̃k } and

u(σ) := sup{ l | ∃m̃ ∈ G(Ĩ) s.t. m̃ ≺σ m̃k−l and m̃| lcm(σl) }.
If u := u(σ) ̸= −∞, we can define ñσ := min≺σ{ m̃ | m̃ divides lcm(σu) }. Let EX be the
set of edges of GX . We define a subset A of EX by

A := {σ ∪ {ñσ} → σ | u(σ) ̸= −∞, ñσ ̸∈ σ }.
It is easy to see that A is a matching, that is, every σ occurs in at most one edges of A.

We say ∅ ̸= σ ⊂ G(Ĩ) is critical, if it does not occurs in any edge of A.
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We have the directed graph GA
X with the vertex set 2G(Ĩ) \ {∅} (i.e., same as GX) and

the set of edges (EX \A)∪ { σ → τ | (τ → σ) ∈ A }. By the proof of [2, Theorem 3.2], we
see that the matching A is acyclic, that is, GA

X has no directed cycle. A directed path in
GA

X is called a gradient path.
Forman’s discrete Morse theory [8] guarantees the existence of a CW complex XA with

the following conditions.

• There is a one-to-one correspondence between the i-cells of XA and the critical

i-cells of X (equivalently, the critical subsets of G(Ĩ) consisting of i+1 elements).
• XA is contractible, that is, homotopy equivalent to X.

The cell of XA corresponding to a critical cell σ of X is denoted by σA. By [2, Proposi-
tion 7.3], the closure of σA contains τA if and only if there is a gradient path from σ to τ .
See also Proposition 18 below and the argument before it.

Assume that ∅ ̸= σ ⊂ G(Ĩ) is critical. Recall that m̃σ denotes the largest element of σ
with respect to <. Take mσ =

∏n
l=1 x

al
l ∈ G(I) with m̃σ = b-pol(mσ), and set q := #σ−1.

Then there are integers i1, . . . , iq with 1 ≤ i1 < . . . < iq < ν(mσ) and

(4.1) σ = { (m̃σ)⟨ir⟩ | 1 ≤ r ≤ q } ∪ {m̃σ}
(see the proof of [2, Proposition 4.3]). Equivalently, we have σ = Nσ ∪ {m̃σ}. Set

jr := 1 +
∑ir

l=1 al for each 1 ≤ r ≤ q, and F̃σ := { (i1, j1), . . . , (iq, jq) }. Then (F̃σ, m̃σ)

is an admissible pair for Ĩ. Conversely, any admissible pair comes from a critical cell

σ ⊂ G(Ĩ) in this way. Hence there is a one-to-one correspondence between critical cells
and admissible pairs.

Let X i
A denote the set of all the critical subset σ ⊂ G(Ĩ) with #σ = i+1, and for (not

necessarily critical) subsets σ, τ of G(Ĩ), let Pσ,τ denote the set of all the gradient paths
from σ to τ . For σ ∈ Xq

A of the form (4.1), e(σ) denotes a basis element with degree
deg(lcm(σ)) ∈ Zn×d. Set

Q̃q =
⊕
σ∈Xq

A

S̃ e(σ) (q ≥ 0).

The differential map Q̃q → Q̃q−1 sends e(σ) to
q∑

r=1

(−1)rxir,jr · e(σ \ {(m̃σ)⟨ir⟩})− (−1)q
∑

τ∈Xq−1
A

P∈Pσ\{m̃σ},τ

m(P) · lcm(σ)

lcm(τ)
· e(τ),

(4.2)

where m(P) = ±1 is the one defined in [2, p.166].
The following is a direct consequence of [2, Theorem 4.3] (and [2, Remark 4.4]).

Proposition 16 (Batzies-Welker, [2]). Q̃• is a minimal free resolution of Ĩ, and has a
cellular structure supported by XA.

Theorem 17 ([14, Theorem 5.11]). Our description of P̃• (more precisely, the truncation

P̃≥1) coincides with the Batzies-Welker resolution Q̃•. That is, P̃• is a cellular resolution
supported by a CW complex XA, which is obtained by discrete Morse theory.

First, note that the following hold.
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(1) If σ is critical, so is σ \ { (m̃σ)⟨ir⟩ } for 1 ≤ r ≤ q.
(2) Let σ and τ be (not necessarily critical) cells with Pσ,τ ̸= ∅. Then lcm(τ) divides

lcm(σ).
(3) Let σ ∈ Xq

A , τ ∈ Xq−1
A and assume that there is a gradient path σ → σ \ {m̃} =

σ0 → σ1 → · · · → σl = τ . Then #σl−1 = #τ + 1 = q + 1, #σi = q or q + 1 for
each i, and σi is not critical for all 0 ≤ i < l. Hence, if l > 1, then m̃ must be m̃σ.

Next, we will show the following.

Proposition 18. Let σ, τ be critical cells with #σ = #τ + 1, and (F̃σ, m̃σ) and (F̃τ , m̃τ )

the admissible pairs corresponding to σ and τ respectively. Set F̃σ = { (i1, j1), . . . , (iq, jq) }
with i1 < · · · < iq. Then Pσ\{m̃σ},τ ̸= ∅ if and only if there is some r ∈ B(F̃σ, m̃σ) with

(F̃τ , m̃τ ) = ((F̃σ)r, (m̃σ)⟨ir⟩). If this is the case, we have #Pσ\{m̃σ},τ = 1.

Sketch of Proof. Only if part follows from the above remark. Note that the second index

j of each xi,j ∈ S̃ restricts the choice of paths and it makes the proof easier.

Next, assuming F̃τ = (F̃σ)r and m̃τ = (m̃σ)⟨ir⟩ for some r ∈ B(F̃σ, m̃σ), we will construct
a gradient path from σ \ {m̃σ} to τ . For short notation, set m̃[s] := (m̃σ)⟨is⟩ and m̃[s,t] :=
((m̃σ)⟨is⟩)⟨it⟩. By (4.1), we have σ0 := (σ \ {m̃σ}) = { m̃[s] | 1 ≤ s ≤ q } and τ =
{ m̃[r,s] | 1 ≤ s ≤ q, s ̸= r } ∪ {m̃[r]}. We can inductively construct a gradient path
σ0 → σ1 → · · · → σt → · · · σ2(q−r+1)r−2 as follows. Write t = 2pr + λ with t ̸= 0,
0 ≤ p ≤ q − r, and 0 ≤ λ < 2r. For 0 < t ≤ 2(q − r), we set

σt =


σt−1 ∪ { m̃[q−p,s] } if λ = 2s− 1 for some 1 ≤ s ≤ r;

σt−1 \ { m̃[q−p+1,s] } if λ = 2s for some 0 < s < r;

σt \ { m̃[q−p+1] } if λ = 0,

where we set m̃[q+1,s] = m̃[s] for all s. In the case m̃[s,t] = m̃[s+1,t], it seems to cause a
problem, but skipping the corresponding part of path, we can avoid the problem. Since

r ∈ B(F̃σ, m̃σ), we have m̃[s,r] = m̃[r,s] for all s > r by Lemma 3 (iv). Hence

σ2(q−r) = { m̃[r+1,s] | 1 ≤ s < r } ∪ { m̃[r] } ∪ { m̃[r,s] | r < s ≤ q }.
Now for s with 0 < s ≤ r − 1, set σt with 2(q − r)r < t ≤ 2(q − r + 1)r − 2 to be
σt−1 ∪{ m̃[r,s] } if s is odd and otherwise σt−1 \ { m̃[r+1,s] }. Then we have σ2(q−r+1)r−2 = τ ,
and the gradient path σ ; τ .

The uniqueness of the path follows from elementally (but lengthy) argument. □
Sketch of Proof of Theorem 17. Recall that there is the one-to-one correspondence be-

tween the critical cells σ ⊂ G(Ĩ) and the admissible pairs (F̃σ, m̃σ). Hence, for each q, we

have the isomorphism Q̃q → P̃q induced by e(σ) 7−→ e(F̃σ, m̃σ).

By Proposition 18, if we forget “coefficients”, the differential map of Q̃• and that of P̃•
are compatible with the maps e(σ) 7−→ e(F̃σ, m̃σ). So it is enough to check the equality
of the coefficients. But it follows from direct computation. □

Corollary 19 ([14, Corollary 5.12]). The free resolution P̃•⊗S̃ S̃/(Θ) (resp. P̃•⊗S̃ S̃/(Θa))

of S/I (resp. T/Iγ(a)) is also a cellular resolution supported by XA. In particular, these
resolutions are Batzies-Welker type.
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We say a CW complex is regular, if for all i the closure σ of any i-cell σ is homeomorphic
to an i-dimensional closed ball, and σ \ σ is the closure of the union of some (i− 1)-cells.
This is a natural condition especially in combinatorics.

Mermin [11] (see also Clark [6]) showed that the Eliahou-Kervaire resolution is cellular
and supported by a regular CW complex. Hence it is a natural question whether the CW

complexXA supporting our P̃• is regular. (Since the discrete Morse theory is an “existence
theorem” and XA might not be unique, the correct statement is “can be regular”. This is
a non-trivial point, but here we do not show how to avoid it).

Theorem 20 ([15]). The CW complex XA of Theorem 17 is regular. In particular, our

resolution P̃• is supported by a regular CW complex.

Sketch of Proof. We basically follow Clark [6], which proves the corresponding statement
for the Eliahou-Kervaire resolution.

We define a finite poset PA as follows:

(i) As the underlying set, PA = (the set of the cells of XA) ∪ {0̂}. Here 0̂ is the least
element.

(ii) For cells σ and τ of XA, σ ⪰ τ in PA if and only if the closure of σ contains τ .

It suffices to show that PA is a CW poset in the sense of [4], and we can use [4,

Proposition 5.5]. By the behavior of the differential map of P̃•, we can check that PA

satisfies the following condition.

• For σ, τ ∈ PA with σ ≻ τ and rank(σ) = rank(τ) + 2, there are exactly two
elements between σ and τ .

Now it remains to show that the interval [ 0̂, σ ] is shellable for all σ, but we can imitate
the argument of Clark [6]. In fact, [ 0̂, σ ] is EL shellable in the sense of [3]. □
Example 21.
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Figure 2

Consider the Borel fixed ideal I = (x2, xy2, xyz, xyw, xz2, xzw). Then b-pol(I) =
(x1x2, x1y2y3, x1y2z3, x1y2w3, x1z2z3, x1z3w3), and easy computation shows that the CW

complex XA, which supports our resolutions P̃• of S̃/Ĩ and P̃• ⊗S̃ S̃/(Θ) of S/I, is the
one illustrated in Figure 1.
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The complex consists of a square pyramid and a tetrahedron glued along trigonal faces
of each. For a Borel fixed ideal generated in one degree, any face of the Nagel-Reiner CW
complex is a product of several simplices. Hence a square pyramid can not appear in the
case of Nagel and Reiner.

We remark that the Eliahou-Kervaire resolution of I is supported by the CW complex
illustrated in Figure 2. This complex consists of two tetrahedrons glued along edges of
each. These figures show visually that the description of the Eliahou-Kervaire resolution
and that of ours are really different.
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SHARP BOUNDS FOR HILBERT COEFFICIENTS OF PARAMETERS

KAZUHO OZEKI

Abstract. Let A be a Noetherian local ring with d = dimA > 0. This paper shows
that the Hilbert coefficients {eiQ(A)}1≤i≤d of parameter ideals Q have uniform bounds if
and only if A is a generalized Cohen-Macaulay ring. The uniform bounds are huge; the
sharp bound for e2Q(A) in the case where A is a generalized Cohen-Macaulay ring with
dimA ≥ 3 is given.

Key Words: commutative algebra, generalized Cohen-Macaulay local ring, Hilbert
coefficient, Castelnuovo-Mumford regularity.
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1. Introduction

This is based on [5] a joint work with Shiro Goto.
The purpose of this paper is to study the problem of when the Hilbert coefficients of

parameter ideals in a Noetherian local ring have uniform bounds, and when this is the
case, to ask for their sharp bounds.

To state the problem and the results also, let us fix some notation. In what follows,
let A be a commutative Noetherian local ring with maximal ideal m and d = dimA > 0
denotes the Krull dimension of A. For simplicity, we assume that the residue class field
A/m of A is infinite. Let `A(M) denote, for an A-module M , the length of M . Then for
each m-primary ideal I in A, we have integers {eiI(A)}0≤i≤d such that the equality

`A(A/I
n+1) = e0I(A)

(
n+ d

d

)
− e1I(A)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)dedI(A)

holds true for all n � 0, which we call the Hilbert coefficients of A with respect to I.
With this notation our first purpose is to study the problem of when the sets

Λi(A) = {eiQ(A) | Q is a parameter ideal in A}
are finite for all 1 ≤ i ≤ d.

Then the first main result is stated as follows. We say that our local ring is a generalized
Cohen-Macaulay ring, if the local cohomology modules Hi

m(A) are finitely generated for
all i 6= d.

Theorem 1. Let A be a commutative Noetherian local ring with d = dimA ≥ 2. Then
the following conditions are equivalent.

(1) A is a generalized Cohen-Macaulay ring.
(2) The set Λi(A) is finite for all 1 ≤ i ≤ d.

The detailed version of this paper has been submitted for publication elsewhere.
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Although the finiteness problem of Λi(A) is settled affirmatively, we need to ask for the
sharp bounds for the values of eiQ(A) of parameter ideals Q, which is our second purpose

of the present research. Let hi(A) = `A(H
i
m(A)) for each i ∈ Z.

When A is a generalized Cohen-Macaulay ring with d = dimA ≥ 2, one has the
inequalities

0 ≥ e1Q(A) ≥ −
d−1∑
i=1

(
d− 2

i− 1

)
hi(A)

for every parameter ideal Q in A ([9, Theorem 8], [3, Lemma 2.4]), where the equality

e1Q(A) = −
∑d−1

i=1

(
d−2
i−1

)
hi(A) holds true if and only if Q is a standard parameter ideal in A

([10, Korollar 3.2], [4, Theorem 2.1]), provided depthA > 0. The reader may consult [2]
for the characterization of local rings which contain parameter ideals Q with e1Q(A) = 0.

Thus the behavior of the first Hilbert coefficients e1Q(A) for parameter ideals Q are rather
satisfactorily understood.

The second purpose is to study the natural question of how about e2Q(A). First, we will
show that in the case where dimA = 2 and depthA > 0, even though A is not necessarily
a generalized Cohen-Macaulay ring, the inequality

−h1(A) ≤ e2Q(A) ≤ 0

holds true for every parameter ideal Q in A. We will also show that e2Q(A) = 0 if and
only if the ideal Q is generated by a system a, b of parameters which forms a d-sequence
in A in the sense of C. Huneke [7]. When A is a generalized Cohen-Macaulay ring with
dimA ≥ 3, we shall show that the inequality

−
d−1∑
j=2

(
d− 3

j − 2

)
hj(A) ≤ e2Q(A) ≤

d−2∑
j=1

(
d− 3

j − 1

)
hj(A)

holds true for every parameter ideal Q (Theorem 13). The following theorem which is the

second main result of this paper shows that the upper bound e2Q(A) ≤
∑d−2

j=1

(
d−3
j−1

)
hj(A)

is sharp, clarifying when the equality e2Q(A) =
∑d−2

j=1

(
d−3
j−1

)
hj(A) holds true.

Theorem 2. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥ 3
and depthA > 0. Let Q be a parameter ideal in A. Then the following two conditions are
equivalent.

(1) e2Q(A) =
∑d−2

j=1

(
d−3
j−1

)
hj(A).

(2) There exist elements a1, a2, · · · , ad ∈ A such that
(a) Q = (a1, a2, · · · , ad),
(b) the sequence a1, a2, · · · , ad is a d-sequence in A, and
(c) Q·Hj

m(A/(a1, a2, · · · , ak)) = (0) for all j ≥ 1 and k ≥ 0 with j + k ≤ d− 2.

When this is the case, we furthermore have the following :

(i) (−1)i·eiQ(A) =
∑d−i

j=1

(
d−i−1
j−1

)
hj(A) for 3 ≤ i ≤ d− 1 and

(ii) edQ(A) = 0.

At this moment we do not know the sharp uniform bound for e3Q(A) for parameter
ideals Q in a generalized Cohen-Macaulay ring A with dimA ≥ 3.
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Let us briefly note how this paper is organized. We shall prove Theorem 1 in Section 2.
Theorem 2 will be proven in Section 4. Section 3 is devoted to some preliminary steps for
the proof of Theorem 2. We will closely study in Section 3 the problem of when e2Q(A) = 0
in the case where dimA = 2.

In what follows, unless otherwise specified, for each m-primary ideal I in A, we put

R(I) = A[It], R′(I) = A[It, t−1], and G(I) = R′(I)/t−1R′(I),

where t is an indeterminate over A. Let M = mR + R+ be the unique graded maximal
ideal in R = R(I). We denote by Hi

M(∗) (i ∈ Z) the ith local cohomology functor of R(I)
with respect to M. Let L be a graded R-module. For each n ∈ Z let [Hi

M(L)]n stand
for the homogeneous component of Hi

M(L) with degree n. We denote by L(α), for each
α ∈ Z, the graded R-module whose grading is given by [L(α)]n = Lα+n for all n ∈ Z.

2. Proof of Theorem 1

In this section, we shall prove Theorem 1.
The heart of the proof of the implication (1) ⇒ (2) is, in the case where A is a

generalized Cohen-Macaulay ring, the existence of uniform bounds of the Castelnuovo-
Mumford regularity regG(Q) of the associated graded rings G(Q) of parameter ideals Q.
So, let us briefly recall the definition of the Castelnuovo-Mumford regularity.

Let Q be a parameter ideal in A and let

R(Q) = A[Qt], R′(Q) = A[Qt, t−1], and G(Q) = R′(Q)/t−1R′(Q)

respectively, denote the Rees algebra, the extended Rees algebra, and the associated
graded ring of Q. Let M = mR+R+ be the unique graded maximal ideal in R = R(Q).
For each i ∈ Z let

ai(G(Q)) = max{n ∈ Z | [Hi
M(G(Q))]n 6= (0)}

and put
regG(Q) = max{ai(G(Q)) + i | i ∈ Z},

which we call the Castelnuovo-Mumford regularity of the graded ring G(Q).
Let us now note the following result of Linh and Trung [8], which gives a uniform bound

for regG(Q) for parameter ideals Q in a generalized Cohen-Macaulay ring.

Theorem 3 ([8], Theorem 2.3). Suppose that A is a generalized Cohen-Macaulay ring
and let Q be a parameter ideal in A. Then

(1) regG(Q) ≤ max{I(A)− 1, 0}, if d = 1.
(2) regG(Q) ≤ max{(4I(A))(d−1)! − I(A)− 1, 0}, if d ≥ 2.

Thus, the following result is the key for our proof of the implication (1) ⇒ (2) in

Theorem 1, where hi(A) = `A(H
i
m(A)) and I(A) =

∑d−1
j=0

(
d−1
j

)
hj(A).

Theorem 4. Suppose that A is a generalized Cohen-Macaulay ring. Let Q be a parameter
ideal in A and put r = regG(Q). Then

(1) |e1Q(A)| ≤ I(A).

(2) |eiQ(A)| ≤ 3 · 2i−2(r + 1)i−1I(A) for 2 ≤ i ≤ d.

Proof. See [5, Section 2]. �
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Therefore, thanks to the uniform bounds [8, Theorem 2.3] of regG(Q) for parameter
ideals Q in a generalized Cohen-Macaulay ring A, we readily get the finiteness in the set
Λi(A) for all 1 ≤ i ≤ d.

We are now in a position to finish the proof of Theorem 1.

Proof of Theorem 1. We may assume that A is complete. Also we may assume A is not
unmixed, because Λ1(A) is a finite set (cf. [2, Proposition 4.2]). Let U denote the unmixed
component of the ideal (0) in A. We put B = A/U and t = dimA U (≤ d− 1). We must
show that B is a generalized Cohen-Macaulay ring and t = 0.

Let Q be a parameter ideal in A. We then have

`A(A/Q
n+1) = `A(B/Qn+1B) + `A(U/Q

n+1 ∩ U)

for all integers n ≥ 0. Therefore, the function `A(U/Q
n+1 ∩ U) is a polynomial in n � 0

with degree t and there exist integers {siQ(U)}0≤i≤t with s0Q(U) = e0Q(U) such that

`A(U/Q
n+1 ∩ U) =

t∑
i=0

(−1)isiQ(U)

(
n+ t− i

t− i

)
for all n � 0, whence

`A(A/Q
n+1) =

d∑
i=0

(−1)ieiQ(B)

(
n+ d− i

d− i

)
+

t∑
i=0

(−1)isiQ(U)

(
n+ t− i

t− i

)
.

Consequently

(−1)d−ied−i
Q (A) =

{
(−1)d−ied−i

Q (B) + (−1)t−ist−i
Q (U) if 0 ≤ i ≤ t,

(−1)d−ied−i
Q (B) if t+ 1 ≤ i ≤ d.

Therefore, if t < d − 1, we have e1Q(A) = e1Q(B), so that Λ1(B) = Λ1(A) is a finite

set. If t = d − 1, we get −e1Q(A) = −e1Q(B) + s0Q(U). Since e1Q(A), e
1
Q(B) ≤ 0 and

s0Q(U) = e0Q(U) ≥ 1, Λ1(B) is a finite set also in this case. Thus the set Λ1(B) is finite in
any case, so that the ring B a generalized Cohen-Macaulay ring.

We now assume that t ≥ 1 and choose a system a1, a2, · · · , ad of parameters in A so
that (at+1, at+2, · · · , ad)U = (0). Let ` ≥ 1 be an integer such that m` is standard for the
ring B and choose integers n ≥ `. We look at parameter ideals Q = (an1 , a

n
2 , · · · , and) of A.

Then

(−1)d−ted−t
Q (B) =

t∑
j=1

(
t− 1

j − 1

)
hj(B)

by [10, Korollar 3.2], which is independent of the integers n ≥ `. Therefore, since

s0Q(U) = e0(an1 ,an2 ,··· ,ant )(U) = nt·e0(a1,a2,··· ,at)(U) ≥ nt,

we see

(−1)d−ted−t
Q (A) = (−1)d−ted−t

Q (B) + s0Q(U)

=
t∑

j=1

(
t− 1

j − 1

)
hj(B) + nt·e0(a1,a2,··· ,at)(U) ≥ nt,
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whence the set Λd−t(A) cannot be finite. Thus t = 0 and A a generalized Cohen-Macaulay
ring. �

3. The second Hilbert coefficients e2Q(A) of parameters

In this section we study the second Hilbert coefficients e2Q(A) of parameter ideals Q.

The purpose is to find the sharp bound for e2Q(A). The bound |e2Q(A)| ≤ 3(r + 1)I(A)
given by Theorem 1 is too huge in general and far from the sharp bound.

Let us begin with the following.

Lemma 5. Suppose that d = 2 and depthA > 0. Let Q = (x, y) be a parameter ideal in
A and assume that x is superficial with respect to Q. Then

e2Q(A) = −`A

(
[(x`) : y`] ∩Q`

(x`)

)
≤ 0

for all ` � 0.

Proof. Let ` � 0 be an integer which is sufficiently large and put I = Q`. Let G = G(I)
and R = R(I) be the associated graded ring and the Rees algebra of I, respectively. We
put M = mR + R+. Then [Hi

M(G)]n = (0) for all integers i ∈ Z and n > 0, thanks to
[6, Lemma 2.4]. We put a = x` and b = y`. Then the element a remains superficial with
respect to I and the equality I2 = (a, b)I holds true, whence a2(G) < 0.

We furthermore have the following.

Claim 6. [Hi
M(R)]0 ∼= [Hi

M(G)]0 as A-modules for all i ∈ Z. Hence H0
M(G) = (0), so

that f = at ∈ R is G-regular.

Proof of Claim 6. Let L = R+ and apply the functors Hi
M(∗) to the following canonical

exact sequences

0 → L → R
p→ A → 0 and 0 → L(1) → R → G → 0,

where p denotes the projection, and get the exact sequences

(1) · · · → Hi−1
m (A) → Hi

M(L) → Hi
M(R) → Hi

m(A) → · · · and

(2) · · · → Hi−1
M (G) → Hi

M(L)(1) → Hi
M(R) → Hi

M(G) → Hi+1
M (L)(1) → · · ·

of local cohomology modules. Then by exact sequence (2) we get the isomorphism

[Hi
M(L)]n+1

∼= [Hi
M(R)]n

for n ≥ 1, because [Hi−1
M (G)]n = [Hi

M(G)]n = (0) for n ≥ 1, while we have the isomorphism

[Hi
M(L)]n+1

∼= [Hi
M(R)]n+1

for n ≥ 1, thanks to exact sequence (1). Hence [Hi
M(R)]n ∼= [Hi

M(R)]n+1 for n ≥ 1, which
implies [Hi

M(R)]n = (0) for all i ∈ Z and n ≥ 1, because [Hi
M(R)]n = (0) for n � 0. Thus

by exact sequence (1) we get [Hi
M(L)(1)]n = (0) for all i ∈ Z and n ≥ 0, so that by exact

sequence (2) we see [Hi
M(R)]0 ∼= [Hi

M(G)]0 as A-modules for all i ∈ Z. Considering the
case where i = 1 in exact sequence (2), we have the embedding

0 → H0
M(G) → H1

M(L)(1),
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so that [H0
M(G)]0 = (0), because [H1

M(L)(1)]0 = [H0
M(L)]1 = (0). Hence H0

M(G) = (0),
so that f is G-regular, because (0) :G f is finitely graded. �

Thanks to Serre’s formula (cf. [1, Theorem 4.4.3]), Claim 6 shows that

e2Q(A) =
2∑

i=0

(−1)i`A([H
i
M(G)]0) = −`A([H

1
M(G)]0),

since a2(G) < 0. Therefore to prove

e2Q(A) = −`A

(
[(x`) : y`] ∩Q`

(x`)

)
,

it is suffices to check that

[H1
M(G)]0 ∼=

[(a) : b] ∩ I

(a)

as A-modules.
Let A = A/(a) and I = IA. Then G/fG ∼= G(I), because f = at is G-regular (cf.

Claim 6). We now look at the exact sequence

0 → H0
M(G(I)) → H1

M(G)(−1)
f→ H1

M(G)

of local cohomology modules which is induced from the exact sequence

0 → G(−1)
f→ G → G(I) → 0

of graded G-modules. Then, since [H1
M(G)]n = (0) for all n ≥ 1, we have an isomorphism

[H0
M(G(I))]1 ∼= [H1

M(G)]0

of A-modules and the vanishing [H0
M(G(I)]n = (0) for n ≥ 2.

Look now at the homomorphism

ρ :
[(a) : b] ∩ I

(a)
→ [H0

M(G(I))]1

of A-modules defined by ρ(x) = xt for each x ∈ [(a) : b] ∩ I, where x and xt denote
the images of x in A and xt ∈ [R(I)]1 in G(I), respectively. We will show that the
map ρ is an isomorphism. Take ϕ ∈ [H0

M(G(I))]1 and write ϕ = xt with x ∈ I. Since

[H0
M(G(I))]2 = (0), we have bt · xt = bxt2 = 0 in G(I), whence bx ∈ [(a) + I3] ∩ I2 =

[(a)∩ I2] + I3 = aI + bI2 (recall that I2 = (a, b)I and that a is super-regular with respect
to I). So, we write bx = ai + bj with i ∈ I and j ∈ I2. Then, since b(x − j) = ai ∈ (a),

we have x− j ∈ [(a) : b] ∩ I, whence ϕ = xt = (x− j)t. Thus the map ρ is surjective.
To show that the map ρ is injective, take x ∈ [(a) : b]∩I and suppose that ρ(x) = xt = 0

in G(I). Then

x ∈ [(a) : b] ∩ [(a) + I2] = (a) + [((a) : b) ∩ I2].

To conclude that x ∈ (a), we need the following.

Claim 7. Let n ≥ 2 be an integer. Then [(a) : b] ∩ In ⊆ (a) + [((a) : b) ∩ In+1].
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Proof of Claim 7. Take y ∈ [(a) : b]∩In. Then, since by ∈ (a), we see bt ·ytn = bytn+1 = 0
in G(I). Hence ytn ∈ [H0

M(G(I))]n, because bt is a homogeneous parameter for the graded
ring G(I). Recall now that n ≥ 2, whence [H0

M(G(I))]n = (0), so that ytn = 0. Thus
y ∈ (a) + In+1, whence y ∈ (a) + [((a) : b) ∩ In+1], as claimed. �

Since x ∈ (a) + [((a) : b) ∩ I2], thanks to Claim 7, we get x ∈ (a) + In+1 for all n ≥ 1,
whence x ∈ (a), so that the map ρ is injective. Thus

[H1
M(G)]0 ∼=

[(a) : b] ∩ I

(a)

as A-modules. �

Theorem 8. Suppose that d = 2 and depthA > 0. Let Q = (x, y) be a parameter ideal
in A and assume that x is superficial with respect to Q. Then

−h1(A) ≤ e2Q(A) ≤ 0

and the following three conditions are equivalent.

(1) e2Q(A) = 0.
(2) x, y forms a d-sequence in A.
(3) x`, y` forms a d-sequence in A for all integers ` ≥ 1.

Proof. By Lemma 5 we have

e2Q(A) = −`A

(
[(x`) : y`] ∩ (x, y)`

(x`)

)
≤ 0

for all integers ` � 0. To show that −h1(A) ≤ e2Q(A), we may assume that H1
m(A) is

finitely generated. Take the integer ` � 0 so that the system a = x`, b = y` of parameters
of A is standard. Then since

[(a) : b] ∩Q`

(a)
⊆ (a) : b

(a)
∼= H0

m(A/(a))
∼= H1

m(A),

we get −h1(A) ≤ e2Q(A).
Let us consider the second assertion.
(1) ⇒ (3). Take an integer N ≥ 1 so that

e2Q(A) = −`A

(
[(x`) : y`] ∩ (x, y)`

(x`)

)
for all ` ≥ N (cf. Lemma 5); hence

[(x`) : y`] ∩ (x, y)` = (x`).

Claim 9. [(x`) : y`] ∩ (x, y)` = (x`) for all ` ≥ 1.

Proof of Claim 9. We may assume that 1 ≤ ` < N . Take τ ∈ [(x`) : y`] ∩ (x, y)`. Then,
since yN(xN−`τ) = yN−`xN−`(y`τ) ∈ (xN), we have xN−`τ ∈ [(xN) : yN ]∩ (x, y)N = (xN).
Thus τ ∈ (x`), because x is A-regular (recall that depthA > 0 and x is superficial with
respect to Q). �
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Since x` is A-regular and [(x`) : y`] ∩ (x`, y`) = (x`) by Claim 9, we readily see that
x`, y` is a d-sequence in A.

(3) ⇒ (2) This is clear.
(2) ⇒ (1) It is well-known that e2(x,y)(A) = 0, if depthA > 0 and the system x, y of

parameters forms a d-sequence in A; see Proposition 11 below. �
Passing to the ring A/H0

m(A), thanks to Theorem 8, we readily get the following.

Corollary 10. Suppose that d = 2 and let Q be a parameter ideal in A. Then

h0(A)− h1(A) ≤ e2Q(A) ≤ h0(A).

The results in the following proposition are, more or less, known.

Proposition 11. ([5, Proposition 3.4]) Suppose that d > 0 and let Q = (a1, a2, · · · , ad)
be a parameter ideal in A. Let G = G(Q) and R = R(Q). Let fi = ait ∈ R for 1 ≤ i ≤ d.
Assume that the sequence a1, a2, · · · , ad forms a d-sequence in A. Then we have the
following, where Qi = (a1, a2, · · · , ai) for 0 ≤ i ≤ d.

(1) e0Q(A) = `A(A/Q)− `A ([Qd−1 : ad]/Qd−1).

(2) (−1)ieiQ(A) = h0(A/Qd−i) − h0(A/Qd−i−1) for 1 ≤ i ≤ d − 1 and (−1)dedQ(A) =

h0(A).

(3) `A(A/Q
n+1) =

∑d
i=0(−1)ieiQ(A)

(
n+d−i
d−i

)
for all n ≥ 0, whence `A(A/Q) =

∑d
i=0(−1)ieiQ(A).

(4) f1, f2, · · · , fd forms a d-sequence in G.
(5) H0

M(G) = [H0
M(G)]0 ∼= H0

m(A), where M = mR +R+

(6) [Hi
M(G)]n = (0) for all n > −i and i ∈ Z, whence regG = 0.

Let us note one example of local rings A which are not generalized Cohen-Macaulay
rings but every parameter ideal in A is generated by a system of parameters that forms
a d-sequence in A.

Example 12. Let R be a regular local ring with the maximal ideal n and d = dimR ≥ 2.
LetX1, X2, · · · , Xd be a regular system of parameters ofR. We put p = (X1, X2, · · · , Xd−1)
and D = R/p. Then D is a DVR. Let A = R nD denote the idealization of D over R.
Then A is a Noetherian local ring with the maximal ideal m = n × D, dimA = d, and
depthA = 1. We furthermore have the following.

(1) Λi(A) = {0} for all 1 ≤ i ≤ d such that i 6= d− 1.
(2) Λ0(A) = {n | 0 < n ∈ Z} and Λd−1(A) = {(−1)d−1n | 0 < n ∈ Z}.
(3) After renumbering, every system of parameters in A forms a d-sequence.

The ring A is not a generalized Cohen-Macaulay ring, because H1
m(A) (

∼= H1
n(D)) is not a

finitely generated A-module.

In the rest of Section 3 let us consider the bound for e2Q(Q) in higher dimensional cases.
In the case where dimA ≥ 3 we have the following.

Theorem 13. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥ 3.
Let Q = (a1, a2, · · · , ad) be a parameter ideal in A. Then

−
d−1∑
j=2

(
d− 3

j − 2

)
hj(A) ≤ e2Q(A) ≤

d−2∑
j=1

(
d− 3

j − 1

)
hj(A).
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We have Q·Hj
m(A/(a1, a2, · · · , ak)) = (0) for all k ≥ 0 and j ≥ 1 with j + k ≤ d − 2, if

e2Q(A) =
∑d−2

j=1

(
d−3
j−1

)
hj(A) and if a1, a2, · · · , ad forms a superficial sequence with respect

to Q.

Proof. See [5, Theorem 3.6]. �

The following result guarantees the implication (2) ⇒ (1) and the last assertion in
Theorem 2.

Proposition 14. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥
3 and let Q = (a1, a2, · · · , ad) be a parameter ideal in A. Assume that the sequence
a1, a2, · · · , ad forms a d-sequence in A and Q·Hj

m(A/(a1, a2, · · · , ak)) = (0) for all k ≥ 0
and j ≥ 1 with j + k ≤ d− 2. Then

(−1)ieiQ(A) =
d−i∑
j=1

(
d− i− 1

j − 1

)
hj(A)

for 2 ≤ i ≤ d− 1 and (−1)dedQ(A) = h0(A).

Proof. See [5, Proposition 3.7]. �

4. Proof of Theorem 2

The purpose of this section is to prove Theorem 2. Thanks to Proposition 11 and 14,
we have only to show the following.

Theorem 15. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥ 3
and depthA > 0. Let Q be a parameter ideal in A and assume that e2Q(A) =

∑d−2
j=1

(
d−3
j−1

)
hj(A).

Then Q is generated by a system of parameters which forms a d-sequence in A.

For each ideal a in A (a 6= A) let U(a) denote the unmixed component of a. When
a = (a) with a ∈ A, we write U(a) simply by U(a). We have

U(a) =
∪
n≥0

[(a) :A mn] ,

if A is a generalized Cohen-Macaulay ring with dimA ≥ 2 and a is a part of a system
of parameters in A (cf. [11, Section 2]). The following result is the key in our proof of
Theorem 15.

Proposition 16. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥
2 and depthA > 0. Let Q = (a1, a2, · · · , ad) be a parameter ideal in A. Assume that
adH

1
m(A) = (0) and that the sequence a1, a2, · · · , ad−1 forms a d-sequence in the generalized

Cohen-Macaulay ring A/U(ad). Then

U(a1) ∩ [Q+U(ad)] = (a1).

Proof. See [5, Proposition 4.2]. �

We are now ready to prove Theorem 15.
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Proof of the Theorem 15. We proceed by induction on d. Choose a1, a2, · · · , ad ∈ A so
thatQ = (a1, a2, · · · , ad) and for each 1 ≤ i ≤ d−2, the i+2 elements a1, a2, · · · , ai, ad−1, ad
form a superficial sequence with respect toQ. We will show that there exist b2, b3, · · · , bd ∈
A such that b1 = ad−1, b2, b3, · · · , bd forms a d-sequence in A and Q = (b1, b2, · · · , bd). We
put A = A/(a1), Q = QA, and C = A/H0

m(A) (= A/U(a1)).
Suppose that d = 3. Then

e2QC(C) = e2
Q
(A)− h0(A) = e2Q(A)− h0(A) = h1(A)− h0(A) = 0,

because h1(A) = h0(A) (recall that QH1
m(A) = (0) by Proposition 13). Hence, thanks

to Proposition 8, a2, a3 forms a d-sequence in C, because a2 is superficial for the ideal
QC = (a2, a3)C. Therefore, since a1H

1
m(A) = (0), we have

U(a2) ∩ [Q+U(a1)] = (a2),

by Proposition 16. Let Q = (a2, a3, b3) and B = A/U(a2). Then since e2QB(B) = 0, by
Proposition 8 the sequence b2 = a3, b3 forms a d-sequence in B, because b2 is superficial
for QB. Therefore, since U(a2) ∩ Q ⊆ U(a2) ∩ [Q + U(a1)] = (a2), the sequence b2, b3
forms a d-sequence in A/(a2), so that b1 = a2, b2, b3 forms a d-sequence in A, because b1
is A-regular.

Assume that d ≥ 4 and that our assertion holds true for d−1. Then, thanks to Theorem
13 and its proof, we have

e2Q(A) = e2
Q
(A) = e2QC(C) ≤

d−3∑
j=1

(
d− 4

j − 1

)
hj(C)

=
d−3∑
j=1

(
d− 4

j − 1

)
hj(A)

=
d−2∑
j=1

(
d− 3

j − 1

)
hj(A) = e2Q(A),

because Q·Hj
m(A) = (0) for 1 ≤ j ≤ d− 3. Hence

e2QC(C) =
d−3∑
j=1

(
d− 4

j − 1

)
hj(C).

Therefore, because QC = (a2, a3, · · · , ad)C and the sequence a2, a3, · · · , ai, ad−1, ad is su-
perficial in the ideal QC for all 1 ≤ i ≤ d− 2 where aj denotes the image of aj in C, the
hypothesis of induction on d yields that there exist γ2, γ3, · · · , γd−1 ∈ C such that the se-
quence γ1 = ad−1, γ2, γ3, · · · , γd−1 forms a d-sequence in C and QC = (γ1, γ2, · · · , γd−1)C.
Let us write γj = cj for each 2 ≤ j ≤ d − 1 with cj ∈ Q, where cj denote the image
of cj in C. We put q = (a1, ad−1, c2, c3, · · · , cd−1). Then q is a parameter ideal in A,
a1H

1
m(A) = (0), and ad−1, c2, c3, · · · , cd−1 forms a d-sequence in C. Therefore

U(ad−1) ∩ [Q+U(a1)] = U(ad−1) ∩ [q+U(a1)] = (ad−1)

by Proposition 16, whence U(ad−1) ∩Q = (ad−1).
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Let B = A/U(ad−1). We then have

e2QB(B) =
d−3∑
j=1

(
d− 4

j − 1

)
hj(B)

for the same reason as for the equality e2QC(C) =
∑d−3

j=1

(
d−4
j−1

)
hj(C) (in fact, to show

e2QC(C) =
∑d−3

j=1

(
d−4
j−1

)
hj(C), we only need that a1 is superficial with respect to Q). There-

fore, by the hypothesis of induction on d, we may choose elements β2, β3, · · · , βd ∈ B so
that QB = (β2, β3, · · · , βd)B and the sequence β2, β3, · · · , βd forms a d-sequence in B.
We put b1 = ad−1 and write βj = bj with bj ∈ Q for 2 ≤ j ≤ d, where bj denotes the
image of bj in B. We now put q′ = (b1, b2, · · · , bd). Then q′ is a parameter ideal in A and
because U(b1) ∩Q = (b1), we get

Q ⊆ [q′ +U(b1)] ∩Q = q′ + [U(b1) ∩Q] ⊆ q′ + (b1) = q′;

hence Q = q′. Thus the sequence b2, b3, · · · , bd forms a d-sequence in A/(b1), so that
b1, b2, · · · , bd forms a d-sequence in A, because b1 is A-regular. This complete the proof
of Theorem 15 and that of Theorem 2 as well. �
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PREPOJECTIVE ALGEBRAS

AND CRYSTAL BASES OF QUANTUM GROUPS

YOSHIHISA SAITO

Abstract. At the end of the last century, Kashiwara and the author ([10]) made a bride
between representation theory of quantum groups and one of quivers. More precisely,
consider the variety X(d) of representations of a double quiver, with a fixed dimension
vector d. It is known that there is a nice Lagrangian subvariety Λ(d) of X(d). In a
geometric point of view, Λ(d) is defines as the variety of zero points of the moment
map for the action of a certain reductive group on X(d). Let IrrΛ(d) be the set of all
irreducible components of Λ(d). We proved that tdIrrΛ(d) is isomorphic to the “crystal
basis” B(∞) of the negative half of a quantum group. This is one of the main results in
[10].

On the other hand, in a representation theoretical point of view, the variety Λ(d) is
nothing but the variety of nilpotent representations of the corresponding preprojective
algebra. Namely, the results of [10] tell us that there is a “nice” correspondence between
preprojective algebras and crystal basis of quantum groups. In this note, we try to
explain what is the meaning of this correspondence. Adding to that, we also discuss
resent progress around this area.

1. Introduction

この小論の目的は，Kashiwara-S [10]を解説することである．この論文は 1997年に出
版されたものであり，「なぜ今さらわざわざ古い話をするのか？」と疑問に思われる方も
多いと思う．筆者は Lie代数や量子群等，いわゆる Lie theoreticな表現論の出身で，論文
を書いた当時は多元環の表現論については殆ど何も知らなかった．後になって，実は自分
のやっていたことが preprojective algebraという多元環の表現論と密接な関わりがあるこ
とを知り，大きな衝撃を受けたことを覚えている．そこで今回はこの事実を逆手に取り，
[10]を preprojective algebraの表現論の立場から見直すことによって，その再解釈を行い
たい．これが「わざわざ古い話を持ち出す理由」である．
さらに付け加えるなら，近年の Geiss-Leclerc-Schöerによる一連の研究（[4]～[7]）等，

このような視点に立った研究が現在でも活発に行われている．今回の研究会でも，例えば
Demonetさん，木村さんによる講演などは，その一例ある．
そもそも良い数学というものは，黙っていても勝手にいろいろな分野に結びついてい

くものである．純粋に多元環の表現論的な興味から考案された preprojective algebra とい
う概念が，量子群の表現論という全く違うコンテクストから自然に現れたということは，
preprojective algebraの定義の “正しさ”を物語っているのかも知れない．この機会に，両
者の不思議な結びつきに少しでも興味を持って頂ければ幸いに思う1．

• 謝辞 筆者のような門外漢に講演の機会を与えてくださったオーガナイザーの方々に感
謝します．特にプログラム責任者の名古屋大学の伊山修さんには準備の段階から相談に

1筆者は以前研究集会「環論とその周辺」で，今回とほぼ同じ内容を，別の側面から紹介させて頂いた
[16]．手前ミソだが，こちらも併せて参照して頂ければ幸いである．

–165–



乗って頂き，貴重なご意見を頂きました．この場を借りて感謝します．

• 記号に関する注意 この小論では quiverをΓ = (I,Ω)なる記号で表す．ここに Iは頂点
集合，Ωは矢印の集合である．また頂点 i ∈ Iから頂点 j ∈ Iへ向かう矢印 τ ∈ Ωがある
時，i = out(τ)，j = in(τ)と表すことにする．また τ ∈ Ωに対し，向きをひっくり返して
得られる新たな矢印を τ で表す．ei

‖
out(τ)

e j
‖

in(τ)

-τ

⇒
ei

‖
in(τ)

e j
‖

out(τ)

�τ

３つの頂点 i, j, k ∈ Iと，iから jへの矢印 τ，jから kへの矢印 σがあったとする．こ
のとき τ と σを合成して長さ２の pathが定義されるが，この pathは（τσではなく）στ
と表すことにする． e

i
e
j

e
k

- -τ σ ⇒ e
i

e
k

-στ

また，algebra Aに対してA-moduleとは常に left moduleを表すこととし，以後一切断
らない．τ と σの合成を στ と表すのは，このためであると言っても良い．

これらの記法は多くの多元環の文献で用いられているものとは異なるので読みにくい
かも知れないが，筆者が慣れている記法を用いないと間違い得てしまいそうなので，今回
は御容赦願いたい．

2. Varieties of Representations

2.1. Quiverの表現のなす空間.

Kを体，Γ = (I,Ω)を有限 quiverとする．このとき，Γの（有限次元）表現V = (V,B)
とは，次のようなものである：
• V = ⊕i∈IViは有限次元 I-graded vector space,

• B = (Bτ )τ∈ΩはK-linear maps Bτ ∈ HomK(Vout(τ), Vin(τ))の組．
与えられた Γの表現V = (V,B)に対し，

dimV := (dimK Vi)i∈I ∈ ZI
≥0

を Vの dimension vectorと呼ぶ．また，（B を伴わない）単独の I-graded vector space
V = ⊕i∈IViに対しても，同様に dimension vector dimV を定義する．

２つの Γの表現V = (V,B)とV′ = (V ′, B′)に対し，VからV′への射 (morphism)φ =
(φi)i∈I とは，K-linear maps φi : Vi → V ′

i (i ∈ I)の組であって，任意の τ ∈ Ωに対して、

φin(τ)Bτ = B′
τφout(τ) (2.1.1)

が成り立つもののことを言う．特に ϕ = (ϕi)i∈I が I-graded vector spaceの同型写像であ
る時，VとV′は同型であるという．
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d = (di)i∈I ∈ ZI
≥0を１つ指定すれば，dimV = dなる I-graded vector spaceは一意的

に定まる2．これを V (d)と書くことにし，次の vector spaceを考えよう：

EΩ(d) := ⊕
τ∈Ω

HomK(V (d)out(τ), V (d)in(τ)).

B ∈ EΩ(d)に対し組V = (V (d), B)を考えれば，これは dimV = dなる Γの表現である．
逆に dimV = dなる Γの表現は，必ずこの形で書かれる．すなわち，EΩ(d)は dim = d
となる Γの表現を全てかきあつめたものに他ならない．すなわち EΩ(d)とは，dim = d
の Γの表現全体のなす空間（多様体）である．

EΩ(d)には群G(d) :=
∏

i∈I GL(V (d)i)が

B = (Bτ ) 7→ gB =
(
gin(τ)Bτg

−1
out(τ)

) (
g = (gi)i∈I ∈ G(d)

)
で作用する．quiverの表現の射φ = (φi)が同型写像であるということは，各φiがGL(V (d)i)
の元であることに他ならない．このことと (2.1.1)に注意すれば，

２つの Γの表現が同型 ⇔ 対応するEΩ(d)の元が
同じG(d)-orbitに含まれる

となることは明らかであろう．すなわち，次の１対１対応が得られる：{
dim = dなる

Γの表現の同型類

}
1 : 1←→ {EΩ(d)のG(d)-orbit}

よく知られているように，Γの表現を考えるということは，対応する path algebra K[Γ]
上のmoduleを考えるということに他ならない．したがって{

dim = dなる
K[Γ]-moduleの同型類

}
1 : 1←→

{
dim = dなる

Γの表現の同型類

}
1 : 1←→ {EΩ(d)のG(d)-orbit}

という１対１対応が得られる．その対応は以下の通り：B = (Bτ )τ∈Ω ∈ EΩ(d)が与えられた
とする．このとき，I-graded vector space V (d)上のK[Γ]-module structureが，τ ∈ K[Γ]
の作用をBτ で与えることによって，得られる．逆の対応は明らかであろう．

2.2. Relation付き quiverの場合.

前節の議論では Γ = (I,Ω)の表現= K[Γ]-modulesしか扱うことが出来なかった．これ
は多元環の表現論としては，いささか適用範囲が狭い．そこで議論を relation付き quiver
の場合に拡張しよう．

A = K[Γ]/J なる多元環を考える．ただし J は relations ρ1, · · · , ρl で生成される両側
idealとする．V を A-moduleで dimV = dなるものとしよう．このとき，Aにおける単
位元 1Aの原始ベキ等元分解 1A =

∑
i∈I eiは，V 上に I-graded vector spaceの構造を定め

る．すなわち Vi := eiV とおくことで，直和分解 V = ⊕i∈IViが得られる．τ ∈ Ωの V へ
の作用は，linear map Bτ ∈ HomK(Vout(τ), Vin(τ))を定め，こうして Γの表現V = (V,B)

2本来は「同型を除いて一意的」と言うべきところだが，あまりこだわると記述がややこしくなるばかり
なので，今回はこの程度で止めておく．
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が得られる．さらに，今の場合にはB = (Bτ )が relations ρ1, · · · , ρlを満たしていなけれ
ばならない．各 ρjが具体的に

ρj =
∑

ak1,k2,··· ,kjτk1τk2 · · · τkj (1 ≤ j ≤ l, ak1,k2,··· ,kj ∈ K)

と書かれていたとすれば，B = (Bτ )は関係式

ρj(B) :=
∑

ak1,k2,··· ,kjBτk1
Bτk2
· · ·Bτkj

= 0 (1 ≤ j ≤ l) (2.2.1)

を満たさなければならない．言い換えれば，Bは

ΛA(d) := {B ∈ EΩ(d) | Bは (2.2.1)を満たす }
なる EΩ(d)の部分代数多様体の点を与えるている，ということになる．この ΛA(d)を
variety of A-modules (of dimension vector d) と呼ぶことにしよう．
ここまでいけば，後の議論は前節と同じである．すなわち，１対１対応{

dim = dなる
A-moduleの同型類

}
1 : 1←→ {ΛA(d)のG(d)-orbit}

が得られるわけである．

以上の話を標語的に言えば，

多元環Aの表現論 “=”
代数多様体ΛA(d)上の
G(d)-orbitの幾何学

ということになるだろう．このような議論は体Kがどんなものであっても考えることが
できるし，そういうことが可能というのが代数幾何の強みでもあるのだが，簡単のために
以下K = Cと仮定しよう．
例えばAが finite representation typeであるとしよう．このときΛA(d)は必ず有限個の

G(d)-orbitを持つ．これは商空間G(d)\ΛA(d)が必ず有限個の点集合になってしまうこと
を意味し，非常に扱いやすい．もちろん，一般にはAはwildになってしまうわけで，こ
んな話はほとんどの場合成り立たない．それどころか，商空間G(d)\ΛA(d)は一般には代
数多様体の構造を持たず，その扱いは非常に難しい3．

ではどうしたらいいのだろうか？このような場合，表現論の世界では「考えるmodule
の範囲を制限する」ということをしばしば行う．与えられた多元環Aに対し，A-module
全体の categoryを考えるのではなく，その中からうまい subcategoryを取り出して，そち
らを調べようという考え方である．このことは，対応する幾何の言葉では『空間をうま
く制限して，orbitの空間を調べやすくしているということ』と言っても良いだろう．制
限と言っても「ここからここまで」というタイプのものではなく，むしろ「スカスカにす
る」と言った方がいいかも知れない．空間をスカスカにしたとしても，２つの表現が同値
であるという概念は全く同様に定義されるので，orbitそのものは意味を持つことになる．

3商集合をいつでも考えることが出来るのは明らかである．問題は「どうやって空間の構造（例えば位相
や多様体の構造など）を入れるか？」ということで，これをしないと幾何学的に考える意味が無い．

G(d)\ΛA(d)を空間として扱う道具として，stack と呼ばれる概念がある．「空間としてきちんと定式化
する」ということにはもちろんそれなりのメリットもあるが，定式化出来たからといって話が簡単になるわ
けではない．wildな表現論を扱う難しさは，当然対応する stackの空間としての難しさに遺伝することにな
る．
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他方，本小論で紹介したいのは，これとは別の考え方である．上に述べた variety of A-
module ΛA(d)は代数多様体であり，これを点集合とみなした場合に比べ，はるかに多く
の情報を持っている．例えば ΛA(d)には位相が入っている．このことは実は非常に大き
い．位相が入っていることで，ΛA(d)内の２点（=２つの表現）に対し，それらが「近い
or 遠い」，「つながっている or 離れている」等の議論が可能となる．

ΛA(d)が持っている幾何学的情報のうち，今回は特に

IrrΛA(d) := ΛA(d) の（代数多様体としての）既約成分の全体の集合

に着目したい．各既約成分はG(d)の作用に関して不変ではあるけれども，単独の orbit
にはなっていない．つまり１つの既約成分には同型でないような表現がたくさん（一般に
は無限個）含まれてしまうわけで，既約成分を考えるということは，通常の表現論で行わ
れている仕分け（=同値類による分類）よりも．はるかに目の粗いことをやっていること
になる．しかし，今考えているのは『A-moduleの作る代数多様体』なのだから，『その既
約成分もAの表現に関する某かの情報を担っているはず』と考えても，そんなに的外れ
ではないのではないだろうか？
さらに，我々が興味があるのは特定のdimension vectorを持つmoduleではなく，module

全体の持つ構造である．したがって，調べるべきは個々の IrrΛA(d)ではなく，dimension
vector の可能性を全て走らせた ⊔

d∈ZI
≥0

IrrΛA(d)

ということになる．

一般のAに対してこのような考え方がどの程度有効なものなのかは，実は筆者は知らな
い．しかしAが preprojective algebraの場合には，この考え方は有効である．詳しいこと
は次節に譲るが，preprojective algebraはごく一部の例外を除いて，ほとんどの場合wild
である．したがって，A-module の同型類全体=orbit全体の全体像を把握することは，ま
ず不可能である．それにも関わらず，既約成分全体td∈ZI

≥0
IrrΛA(d) には常に “crystal”と

呼ばれる特殊な構造が入り，それによって td∈ZI
≥0
IrrΛA(d) はコントロール可能となるの

である．これが，Introductionに述べた「筆者と柏原による共著論文 [10]を preprojective
algebraの表現論を用いて再解釈した結果」である．具体的な内容については，次節以降
で詳しく述べていく予定である．
さらには，単に全体像が把握出来るだけでなく，本来の問題であった preprojective al-

gebra Aの表現論に関する情報もそれなりに引き出すことが出来る．多元環の表現論の立
場からすれば，この部分が最も興味がある部分であろうとも思うが，かなりの紙数を必要
とするので，今回の小論で解説することはしない．詳しくはGeiss-Leclerc-Schröerによる
一連の論文 [4],[5],[6],[7]や，Kimuraの論文4[11]，およびそれらの中の参考文献を参照し
て頂きたい．

3. Preprojective algebras

3.1. 定義と性質.

以下Γ = (I,Ω)は loopを持たないと仮定する．さらにH := ΩtΩとし，double quiver

Γ̃ := (I,H)を考える．
4おそらく本報告集にも解説が掲載されることと思う．
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Definition 1. double quiver Γ̃の path algebra C[Γ̃]の中で，|I| = n個の relations

µi :=
∑
τ∈H

out(τ)=i

ε(τ)ττ (i ∈ I)

で生成される両側イデアルをJとする．ただし，ε(τ) =

{
1 (τ ∈ Ω)

−1 (τ ∈ Ω)
である．このとき，

P (Γ) := C[Γ̃]/J

をΓに付随するPreprojective algebraと呼ぶ．また，Jを生成するµiたちを preprojective
relationsと呼ぶ．

P (Γ)について知られていることを列挙しておく．

Proposition 2.

(1) P (Γ)がC上の有限次元代数 ⇔ ΓはDynkin quiver．
(2) P (Γ)が finite representation type ⇔ ΓはAn (n = 1, 2, 3, 4)型．
(3) P (Γ)が tame representation type ⇔ ΓはA5 or D4型．

つまり，Γが上記以外の場合には P (Γ)はwildになってしまうわけである．

3.2. Varieties of nilpotent representations.

Proposition 2 (1)から，Γが non-Dynkinの場合は，P (Γ)は無限次元になってしまう．
この場合には，有限次元表現のなす代数多様体を考えるのではなく，以下に述べる表現の
ベキ零性を仮定することにする．

Definition 3. B ∈ Ed,Ωがベキ零 (nilpotent)であるとは，非負整数N が存在して，長さ
がN 以上の任意の path σに対して，Bσ = 0なることをいう．

これはmoduleの言葉で言えば「Bに対応する有限次元 P (Γ)-moduleを VB とする時，
長さがN 以上の任意の path σに対して，σV = {0}が成り立つ」ということになる．　
さて，今の場合に考える多様体の定義を与えよう．d ∈ ZI

≥0 に対して，

X(d) := ⊕
τ∈H

HomC(V (d)out(τ), V (d)in(τ))

とし，
Λ(d) := {B ∈ X(d) | µi(B) = 0 (∀ i ∈ I) かつ B は nilpotent}

なるX(d)の部分代数多様体を考える．これは dimension vectorが dの，nilpotent P (Γ)-
modules全体のなす代数多様体に他ならない．

Remark 4. (1) ΓがDynkin quiverの場合には，B ∈ EΩ(d)が µi(B) = 0 (∀ i ∈ I)を満た
せば，自動的にBは nilpotentとなることが知られている ([9])．したがって，この場合に
はΛ(d)は dimension vector = dの P (Γ)-module全体を考えていることになる．
(2)上では，始めから “preprojective algebraありき”という立場で代数多様体Λ(d)を導入
した．ところが，実はΛ(d)は（preprojective algebraを全く知らなくても）quiverの幾何
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学だけから自動的に現れる，非常に自然な対象である．別の言い方をすれば『preprojective
relationsは，もともと幾何が知っているもの』ということになる5

P (Γ)-nilpをnilpotentな有限次元P (Γ)-module全体のなす categoryとする．前節の『表
現の同値類 = orbit』の対応を今の場合に書けば，{

dim = dなる
P (Γ)-nilpの objectの同型類

}
1 : 1←→ {Λ(d)のG(d)-orbit}

ということになる．
Proposition 2で述べたように，ごく少数の例外を除いてほぼ全ての場合にP (Γ)はwild

になってしまう．したがって，“G(d)-orbitの幾何”を考えるのは非常に難しい．そこで，
前述のように Γ(d)の既約成分を考えることにする．すなわち

IrrΛ(d) := Λ(d)の（代数多様体としての）既約成分全体のなす集合

とし，可能な dimension vectorを全て走らせたもの

B :=
⊔

d∈ZI
≥0

IrrΛ(d)

を考える．『このBに “crystal”と呼ばれる構造が入り，それによってBを詳しく調べるこ
とが出来るようになる』というのが，[10]の主結果（の一つ）である．

4. A crystal structure on B

4.1. Root datum.

crystalを定義するには，その前提として root datumと呼ばれるある種のデータを fixす
る必要がある．今の場合，それは『dimension vectorsが住んでいる lattice ZI上に，quiver
から定まるCartan matrixを使って bilinear formを定める』ということになる．

ところが，この“Cartan matrix”というのがちょっと曲者で，多元環の表現論とLie theory
では，その意味が異なる6．ただ，肝心なのはZI上に定まる bilinear formの方であり，こ
ちらはCartan matrixの意味をどちらに取ったとしても同じものを定める．したがって問
題が無いと言えば無いのだが，何も知らずに文献を読むと誤解を招く恐れがある．そこで
本節では，無用の混乱を避けるために両者の違いをはっきりさせておく．

5Λ(d)の幾何学的な意味は次の通り．一般に，symplectic多様体 (X,ω)上に Lie群Gが symplectic form
ωを保つように作用していると，運動量写像 (moment map)と呼ばれる写像 µ : X → Lie(G)∗ が定義出来
る．ここに Lie(G)は Gの Lie algebra，Lie(G)∗はその dual spaceである．これらは symplectic幾何学と
呼ばれる分野の用語である．symplectic幾何学ではmoment mapによる 0の逆像 Λ := µ−1(0)がしばしば
重要な役割を果たす．“運動量”という用語からもわかるように，これらの概念は物理学と非常に関係が深
いが，この Λ = µ−1(0)は物理的にも重要な意味を持つことが知られている．
話を Λ(d) に戻そう．X(d) = EΩ(d) ⊕ EΩ(d) なる分解を１つ固定し，X(d) 上の bilinear form ω を

ω(B,B′) :=
∑

τ∈H ε(τ)tr(BτB
′
τ ) によって定める．このとき，ω は X(d) 上の非退化な skew-symmetric

bilinear form (symplectic form) を定める．さらに G(d) の X(d) への作用はこの symplectic form を保
つ．そうすると，上に述べた symplectic幾何学の一般論から moment map µ : X(d) → Lie(G(d))∗ を考
えることが出来る．この settingで µによる 0の逆像 Λ = µ−1(0)を考えると，丁度 variety of nilpotent
representations Λ(d)と一致する．

6筆者は多元環に関しては門外漢なので断言してしまうのは危険だが，少なくとも調べた限り (Ringel [13]
や Assem et. al. [1]など)では，「違う」と言って良いようである．
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◦ 多元環 side

本節に限って，しばらく Γ = (I,Ω)は cycleを持たない (acyclic)と仮定する．このとき
C[Γ]は有限次元代数となる．S(i)を頂点 i ∈ Iに対応する simple C[Γ]-module, P (i)をそ
の projective coverとする．また I = {1, 2, · · · , n}とする．

Definition 5. n次正方行列CΓ = (ci,j)i,j∈I を次のように定める：

ci,j := dimC[Γ](P (i), P (j)) (i, j ∈ I).

このCΓを path algebra C[Γ]のCartan matrixと呼ぶ．

次のことは大事なので，強調しておく．
(i) 一般にはCartan matrix CΓは非対称行列である．
(ii) Cartan matrix CΓの行列成分 ci,jは常に非負整数である．
(iii) Cartan matrix CΓは常に正則行列であり，しかもその逆行列も整係数となる．

筆者のようなLie theory出身の人間から見ると，これらはどれも「え？」と思ってしま
う性質である．上述の通り，誤解の原因は「Cartan matrixの定義が違う」ということに
ある．(i)と (ii)は定義から明らかなので，(iii)のみ復習しておこう．

Ringel [13]にならって，ZI をヨコベクトルの空間と見なす．このとき s(i) := dimS(i),
p(i) := dimP (i)とすれば，

p(i) = s(i)tCΓ (4.1.1)

が成り立つ．s(i)は，第 i成分のみ 1で残りが 0であるような（ヨコ）ベクトルだから，
(4.1.1)は「p(i)は行列 tCΓの第 i行である」と言っていることになる．

C[Γ]-modをC[Γ]-modulesのなす abelian category，K(C[Γ]) := K(C[Γ]-mod)をその
Grothendieck群とする．このとき，自然な対応

K(C[Γ]) 3 [V ] 7→ dimV ∈ ZI

は Z-moduleの同型
ΦΓ : K(C[Γ]) ∼→ ZI

を誘導する．ここに [V ]はC[Γ]-module V のK(C[Γ])における同値類を表す．
C[Γ]は hereditaryだから，各 S(i)は高々長さ１の projective resolution を持つ．した

がってK(C[Γ])の中で [S(i)]は [P (j)] (j ∈ I)たちの１次結合で書ける．同型 ΦΓで話を
ZI の中に移行すれば，これは整係数 n次正則行列 P ′が存在して，

En =


s(1)
s(2)
...

s(n)

 =


p(1)
p(2)
...

p(n)

P ′ (Enは n次単位行列)

と書ける，ということに他ならない．(4.1.1)より P ′ = tC−1
Γ であり，(iii)が従う．

CΓを用いて ZI 上の bilinear formを

〈〈x,y〉〉 := x
(
tC−1

Γ

)
ty (x,y ∈ ZI)
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で定め，これを Euler formと呼ぶ7．上記 (i),(ii),(iii)の帰結として次が従う：
• Euler form 〈〈·, ·〉〉は対称ではない．
• Euler form 〈〈·, ·〉〉は Zに値を持ち，しかも常に非退化である．

Euler formは一般の有限次元代数Aに対しても，同様の方法で定義出来る（ただし非
退化性には，Aに対する某かの制約が必要となる8）．V を projective dimensionが有限の
A-module, W を injective dimensionが有限のA-moduleとすれば，

〈〈dimV, dimW 〉〉 =
∑
l≥0

dimC Ext
l
A(V,W )

となる．特にA = C[Γ]の場合には，
〈〈dimV, dimW 〉〉 = dimC HomC[Γ](V,W )− dimC ExtC[Γ](V,W )

となる．さらに V,W を simple moduleにとると

〈〈s(i), s(j)〉〉 = δi,j − dimC ExtC[Γ](S(i), S(j))

=

{
1 (i = j),
−(Ωの中で iから jに向かう arrowの本数) (i 6= j)

という，“おなじみの”式が得られる．

Euler formを対称化して，

(x,y)alg :=
1

2
x
(
C−1

Γ + tC−1
Γ

)
ty (x,y ∈ ZI)

なる ZI 上の symmetric bilinear formを考える．Γ = (I,Ω)の arrowをひっくり返して得
られる quiverを Γ := (I,Ω) と書こう．このとき，

CΓ = tCΓ

であるので，symmetric bilinear form (·, ·)algは，

対称行列
1

2

(
tC−1

Γ
+ tC−1

Γ

)
から定まる symmetric bilinear form

と言って良い．上の計算と併せれば，

(s(i), s(j))alg =

{
1 (i = j),
−(H = Ω ∪ Ωの中で iから jに向かう arrowの本数)/2 (i 6= j)

となることは明らかであろう．

◦ Lie theory side

以下，quiver Γ = (I,Ω)は cycleを持っても良いけれど loopは持たないこととし，Γ
から arrowの向きを無視して得られる有限グラフ ΓDyn を考える．ΓDyn を quiver Γの
(underlying) Dynkin diagramと呼ぶ9．

7普通なら 〈·, ·〉 と書くところだが，今回は 〈·, ·〉は別の意味に使いたいので記号を替えた．
8例えば Aの global dimensionが有限であることなど．
9“Dynkin”という言葉の使い方も，多元環と Lie theoryで異なっている．多元環では C[Γ]が有限表現型

を持つ場合を “Dynkin case”，そうでないときを “non-Dynkin case”と呼ぶが，Lie theoryでは C[Γ]が有
限表現型を持つかどうかに関わらず，グラフ ΓDynのことを “Dynkin diagram”と呼ぶ．ただし，この言い
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Definition 6. n× n行列A(ΓDyn) = (ai,j)1≤i,j≤nを次のように定める：

ai,j :=

{
2 (i = j),
−(ΓDynの中で iと jを結ぶ辺の本数) (i 6= j).

このA(ΓDyn) = (ai,j)を（Dynkin diagram ΓDynに付随する）Cartan matrixと呼ぶ10．

（Lie theoreticな）Cartan matrix A(ΓDyn)の性質を列挙しておこう．
(i)’ Cartan matrix A(ΓDyn)は常に対称行列である．
(ii)’ Cartan matrix A(ΓDyn)の行列成分 ai,jは常に整数であるが，非負であるとは限ら

ない（対角成分は常に 2だが，非対角成分は必ず非正）．
(iii)’ Cartan matrix A(ΓDyn)は正則行列とは限らない11．

多元環 sideのCartan matrix CΓの性質 (i)∼(iii)と比較すれば，両者の違いを理解して
頂けると思う．つまり，全く違うものを同じ名前で呼んでいるわけである12．ただし，両
者の間に全く関係が無いわけではない．

A = A(ΓDyn)に対し，ZI 上の bilinear formを

(x,y)Lie := xAty (x,y ∈ ZI)

で定める．A(ΓDyn)は対称行列だから，これは symmetric bilinear formである．さらに
A(ΓDyn)の定義から，次は明らかであろう：

(s(i), s(j))Lie =

{
2 (i = j),
−(ΓDynの中で iと jを結ぶ辺の本数) (i 6= j)

「H = Ω∪Ωの中で iから jに向かう arrowの本数」と「ΓDynの中で iと jを結ぶ辺の
本数」は等しいので，

(s(i), s(j))Lie = 2(s(i), s(j))alg

となり，定数倍の差しかない．この関係をCartan matrixの言葉で書き直せば，

A(ΓDyn) = 2 · 1
2

(
tC−1

Γ
+ tC−1

Γ

)
ということになる．２つのCartan matrixはこの関係で結ばれているわけである．

以下，このノートでは ZI 上の symmetric bilinear formとして (·, ·)Lieを採用すること
とし，簡単のために添字を省略して (·, ·) と書く13．

Remark 7. Lie theoryでは，与えられた Cartan matrix A(ΓDyn)に対して Lie algebra を
構成する．こうして出来る Lie algebraはKac-Moody Lie algebraと呼ばれるものの一部

方は正確ではない．Lie theoryで “Dynkin diagram”と呼んでいるものは，実はもっと広い概念で，今の方
法で得られる ΓDyn は Dynkin diagramの中で symmetricと呼ばれる特別な場合になっている．

10この定義だと，loopさえ無ければ，Γに cycleがあっても何の問題もない．
11例えば Γが extended Dynkin（Lie theoryでは affine型という）の場合には，A(ΓDyn)は corank 1に

なる．
12手前ミソになってしまうし，多元環の方々にケンカを売るつもりも毛頭無いのだが，歴史的には Lie

theoreticな定義の方が先であると思う．
13「たかが２倍の差じゃないか」と思われるかもしれないが，Lie theoreticにはこの “2”に大きな意味

があって，ちょっと譲れない．申し訳ないが，この点は御容赦頂きたい．
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（symmetric Kac-Moody Lie algebra）になっている14．出来上がる Lie algebraは一般に
は無限次元になるが，これが有限次元になることと，ΓDynが A,D,E型（多元環でいう
ところのDynkin case）になることは同値になる．

Definition 8. Γ = (I,Ω)を loopのない有限 quiverとする．(ZI) ⊗ Q = QI とその基底
{s(i)|i ∈ I}, およびその上の bilinear form (·, ·)の組

(
QI , {s(i)}, (·, ·)

)
をDynkin diagram

ΓDynに付随する root datumと呼ぶ．ただし，(·, ·)は上で構成した ZI 上の bilinear form
を自明な方法でQI 上に拡大したものである．

Remark 9. この定義は，Lie theoryにおける通常の root datumの定義とは異なっている
ので，注意が必要．あくまで『このノートだけのもの』と思っておいて頂きたい15．Lie
theoryにおける root datumが別の形の定義を採用する理由の１つには『Cartan matrixが
symmetricでない場合も扱いたい』というものがある．他方，我々の場合には話を quiver
から出発させているので，Cartan matrixは symmetricなものしか出てこない．Cartan
matrixが symmetricな場合に限定すれば，この定義でも差し支えない．

4.2. Crystalの定義（暫定版）.
そもそも「crystalとは何か？」がはっきりしないと話を始めづらいので，まず最初に

crystalの定義を与えてしまうことにする．定義だけ見ても「意味不明」に思えるに違い
ないが，とりあえずは “そんな感じのもの”という程度に認識して頂ければ十分である．

前節のように root datum
(
QI , {s(i)}, (·, ·)

)
を fixしよう．基底 {s(i)}で張られるQIの

Z-submoduleを
Q := ⊕

i∈I
Zs(i)

と書き，これを root latticeと呼ぶ．もちろんQ ∼= ZI である．さらに次を満たす P を１
つ固定する:

(a) P はQI の rank n = |I|の Z-submoduleである．
(b) (z, Q) ⊂ Z for every z ∈ P.

(c) s(i) ∈ P for every i ∈ I.

(c)から，常にQ ⊂ P であることに注意されたい．

Remark 10. (1) bilinear form (·, ·)が非退化である場合（例えば ΓがA,D,Eの場合）に
は，上記 (a), (b), (c)を満たすものの中で一番大きなものが canonicalに存在するので，こ
れを P とおくことにする．すなわち，

P := {z ∈ QI | (z, Q) ⊂ Z}

と定める．これは lattice（格子）の理論で言うところの，（Qの）dual latticeと呼ばれる
ものに他ならない．
一方，(·, ·)が退化している場合（例えば Γが extended Dynkinの場合）に上のように

定義をすると，P が Z上有限生成でなくなってしまい (a)を満たさない．この場合には
canonicalな P の choiceというのは存在せず，不定性がある．「１つ固定する」と言ってい

14symmetricと呼ばれるのは，A(ΓDyn)が必ず対称行列になるからである．一般の場合の Kac-Moody
Lie algebraは，対称とは限らない Cartan matrixから出発して構成される．

15これが定義だと思って Lie theoryの文献を見ると，おそらく混乱する．
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るのは，このためである．
(2) P は，Lie theoryでweight latticeと呼ばれているもの．

随分準備に時間が掛かってしまったが，以下 crystalの定義（暫定版）を与えよう16．

Definition 11. 集合 Bと写像たち
wt : B → P, εi : B → Z t {−∞}, ϕi : B → Z t {−∞},

ẽi : B → B t {0}, f̃i : B → B t {0} (i ∈ I)

が以下の公理を満たすとき，組
(
B; wt, εi, ϕi, ẽi, f̃i

)
を root datum

(
QI , {s(i)}, (·, ·)

)
に付

随する crystalと呼ぶ．
(C1) 任意の i ∈ I, b ∈ Bに対し，

ϕi(b) = εi(b) + (s(i),wt(b)).

(C2) b ∈ Bかつ ẽib ∈ Bならば，
wt(ẽib) = wt(b) + s(i), εi(ẽib) = εi(b)− 1, ϕi(ẽib) = ϕi(b) + 1.

(C2)’ b ∈ Bかつ f̃ib ∈ Bならば，

wt(f̃ib) = wt(b)− s(i), εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b)− 1.

(C3) b, b′ ∈ Bに対して，
b′ = ẽib ⇔ b = f̃ib

′.

(C4) b ∈ Bに対して，ϕi(b) = −∞ならば，

ẽib = f̃ib = 0.

少し説明が必要だろう．写像の定義に現れる “−∞”や “0”は，それぞれ「Zに含まれ
ない extraな元」，「Bに含まれない extraな元」と言っているだけで，基本的にそれ以上
の意味はない．ただし，−∞に関しては，Zの元との “加法”が

(−∞) + a = a+ (−∞) = −∞ (a ∈ Z)
によって定まっているものとする17．このことから，例えば次が従う：

ϕi(b) = −∞ ⇔ εi(b) = −∞.

実際，b ∈ Bに対して，wt(b) ∈ P なのであった．よって (s(i),wt(b)) ∈ Zである．そうす
ると，公理 (C1)と “加法”の定義によって，ϕi(b) = −∞と εi(b) = −∞は同値であるこ
とが従う．

正確には crystalというのは組
(
B; wt, εi, ϕi, ẽi, f̃i

)
のことであるのだが，いちいち書く

と大変なので，以後写像を省略して「crystal B」のように書くことにする．

crystalを考えるとき，その構造を図示したもの（crystal graph）を考えると便利である．
16“暫定版”と言っているのは，root datumの与え方が（全ての話を quiver から出発させているために）

通常のものとは異なってしまっているからである．root datum以外の部分はこれで良い．
17１年生の微積分でこんなことをやったら先生に怒られそうだが，ナイーブには「−∞という数がある」

と思っているわけである．
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Definition 12. Bを crystalとする．このときBを頂点集合とする色付き有向グラフを以
下のルールで定め，これを Bの crystal graphと呼ぶ．

ルール：b′ = f̃ibであるとき，bから b′に向かって i ∈ Iで色付けされた矢印を引く．

b b′-i

Example 13. ΓをAn型の quiverとし（orientationはどうでも良い），ω1 ∈ P を

(ω1, s(i)) = δ1,i

で定める．また n+ 1個の元からなる集合

B(ω1) := {b0, b1, · · · , bn}

に対して，写像wt, εi, ϕi, ẽi, f̃iを次のように定める．

wt(bk) := ω1 −
k∑

i=1

s(i) (0 ≤ k ≤ n),

εi(bk) :=

{
1 (i = k),

0 (otherwise),
ϕi(bk) :=

{
1 (i = k + 1),

0 (otherwise),

ẽibk :=

{
bk−1 (i = k),

0 (otherwise),
f̃ibk :=

{
bk+1 (i = k + 1),

0 (otherwise).

このとき B(ω1)は crystalである．その crystal graphは以下のようになる．

b0 -1 b1 -2
b2 -3 · · · -n

bn

この B(ω1)は「An型量子群の vector表現の crystal basis」というもので，crystalの理論
では基本的である．ただし，その意味を述べようとすると量子群の表現論が必要になって
しまうので，詳しい説明は割愛する．

Example 14. Γを loopがない勝手な quiverとする．また j ∈ Iを１つ固定する．Zでパ
ラメトライズされる集合

Bj := {bj(k) | k ∈ Z}
に対して，写像wt, εi, ϕi, ẽi, f̃iを次のように定める．

wt(bj(k)) := ks(j) (k ∈ Z),

εi(bj(k)) :=

{
−k (i = j),

−∞ (i 6= j),
ϕi(bj(k)) :=

{
k (i = j),

−∞ (i 6= j),

ẽibj(k) :=

{
bj(k + 1) (i = j),

0 (i 6= j),
f̃ibj(k) :=

{
bj(k − 1) (i = j),

0 (i 6= j).

このとき Bjは crystalとなる．その crystal graphは以下のようになる．

· · · -j e
bj(k − 1)

-j e
bj(k)

-j e
bj(k + 1)

-j e
bj(k + 2)

-j
· · ·
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Example 15. Γを loopがない勝手な quiverとし，λ ∈ P を固定する．１点からなる集合

Tλ := {tλ}

写像wt, εi, ϕi, ẽi, f̃iを次のように定める．

wt(tλ) := λ, εi(tλ) = ϕi(tλ) := −∞, ẽitλ = f̃itλ := 0 (∀ i ∈ I).

このとき Tλは crystalである．crystal graphは１点のみからなるグラフ（矢印無し）に
なる．

4.3. Bの場合.

B =
⊔

IrrΛ(d)上に
(
QI , {s(i)}, (·, ·)

)
root datumとする crystalの構造を定めよう．

◦ wtの定義：Λ ∈ IrrΛ(d)に対し，

wt(Λ) := −d.

◦ εiの定義：B ∈ Λ(d)に対して，εi(B) ∈ Z≥0を次のように定める：

εi(B) := dimCCoker

(
⊕

τ∈H;in(τ)=i
V (d)out(τ)

⊕Bτ−→ V (d)i

)
.

B = (Bτ )τ∈H ∈ Λ(d)によって，I-graded vector space V (d)を P (Γ)-moduleとみなす
ことが出来ることに注意しよう．このとき，上で与えた εi(B)は，頂点 i ∈ I に関する
P (Γ)-module V (d)の top (i-th top)の次元に他ならない．
さらにΛ ∈ IrrΛ(d)に対して，Λの genericな点B ∈ Λを取り，

εi(Λ) := εi(B)

と定義する．

◦ ϕiの定義：wtと εiが決まると，公理 (C1)によって ϕiは自動的に定まる：

ϕi(Λ) := εi(Λ) + (s(i),wt(Λ)).

◦ ẽiの定義：まず (
IrrΛ(d)

)
i,p

:=
{
Λ ∈ IrrΛ(d) | εi(Λ) = p

}
とおく．このとき IrrΛ(d)は

(
IrrΛ(d)

)
i,p
たちの有限個 disjoint unionに分かれる：

IrrΛ(d) =
(
IrrΛ(d)

)
i,0
t
(
IrrΛ(d)

)
i,1
t
(
IrrΛ(d)

)
i,2
t · · · t

(
IrrΛ(d)

)
i,dimC V (d)i

.

もちろん，
(
IrrΛ(d)

)
i,p

(0 ≤ p ≤ dimC V (d)i)は空集合になり得ることを注意しておく．
さて，Λ ∈

(
IrrΛ(d)

)
i,l
とし，Λの中から genericな点Bを取ろう．このとき，

l = εi(B) = P (Γ)-module V (d)の i-th topの次元

なのであった．したがって
V (d)の P (Γ)-submodule V ′′が存在して，V (d)/V ′′ ∼= S(i)⊕l (i-th top of V (d))
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となる．すなわち，V ′′は i-th radicalということになる．
I-graded vector spaceとしては，V ′′ ∼= V (d′′)である．ただし d′′ := d − ls(i)とした．

上で述べたことは，『I-graded vector space V (d′′)上に P (Γ)-module structureを定めて，

0→ V (d′′)
φ′′
−→ V (d)

φ′
−→ S(i)⊕l → 0 (4.3.1)

が P (Γ)-moduleの完全列となるように出来る』ということに他ならない．
P (Γ)-module V (d′′)に対応するΛ(d′′)の元をB′′と書こう．こうして対応

Λ(d) 3 B → B′′ ∈ Λ(d′′)

が得られる．繰り返しになるが，この対応の意味するところは，ナイーブには
『V (d)に対して，その i-th radicalを取れ』

ということである．
ただし，対応B → B′′は写像にはなっていない．実際，V ′′ ∼= V (d′′)は i-th radicalだ

から，それは同型を除いて一意的に定まる．しかし，V (d′′)上の P (Γ)-module structure
を定めるB′′ ∈ Λ(d′′)の選び方には不定性があり，一意的には決まらない．

そこで，もう少しまじめに考えてみよう．まず (4.3.1)を単なる I-graded vector space
の完全列と思うことにする．V (d)上に P (Γ)-module structureを定めるということは，
B ∈ Λ(d)を決めることに他ならないので，これを１つ指定しよう．
同様に，V (d′′)上に P (Γ)-module structureを定めるためには，B′′ ∈ Λ(d′′)を指定す

れば良いわけだが，いい加減に取ってしまうと φ′′ : V (d′′) → V (d)が P (Γ)-moduleの射
にならない．P (Γ)-moduleの射になるためには，Imφ′′がB-stableになっていることが必
要十分である18．このとき，商空間 V (d)/V (d′′) ∼= S(i)⊕lには自然に P (Γ)-module の構
造が入る．すなわち，これだけデータを与えておけば，φ′ : V (d) → S(i)⊕lは自動的に
P (Γ)-moduleの射になる．

話を整理しよう．まずデータとして組 (B, φ′, φ′′)であって，B ∈ Λ(d) かつ Imφ′′がB-
stableとなっているようなものを取る．このような組 (B, φ′, φ′′)の全体をΛ(d;d′′)と書こ
う．Λ(d;d′′)からΛ(d)，Λ(d′′)にはそれぞれ

q1 : Λ(d;d
′′) 3 (B, φ′, φ′′) 7→ B ∈ Λ(d), q2 : Λ(d;d

′′) 3 (B, φ′, φ′′) 7→ B′′ ∈ Λ(d′′)

なる写像が定義される．こうして図式

Λ(d′′)
q2←− Λ(d;d′′)

q1−→ Λ(d) (4.3.2)

が得られる．q1, q2は単射ではなく，したがって対応B → B′′は写像ではない．

このとき次が成り立つ．

Proposition 16 (Kashiwara-S [10]). 図式 (4.3.2)は，全単射(
IrrΛ(d)

)
i,l

∼→
(
IrrΛ(d′′)

)
i,0

18φ′′ は I-graded vector spaceの射だったので，Imφ′′ は V (d)の I-graded vector subspaceである．す
なわち Imφ′′ = ⊕i∈I

(
Imφ′′)

i
なる分解を持っている．任意の τ ∈ H に対して，

Bτ

(
Imφ′′)

out(τ) ⊂
(
Imφ′′)

in(τ)

となるとき，Imφ′′ は B-stableであるという．
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を誘導する．

つまり，『与えられた P (Γ)-moduleに対して，その i-th radicalを取れ』という写像は，
B → B′′という意味では well-definedにならないが，既約成分間の対応という意味では
well-definedであり，しかも全単射を与える，というわけである．
証明は q1, q2の幾何学的な性質によっており，自明ではない．詳しくは原論文 ([10])を

参照されたい．

上の全単射を
ẽmax
i :

(
IrrΛ(d)

)
i,l

∼→
(
IrrΛ(d′′)

)
i,0

と書こう．この記法は，あたかも『ẽiなる写像がある』ことを想定しているかのように読
めるが，実際その通りで，写像 ẽiは以下のように定義される：

ẽi :

{ (
Λ(d)

)
i,l

ẽmax
i−→

(
Λ(d− ls(i))

)
i,0

(ẽmax
i )−1

−→
(
Λ(d− s(i))

)
i,l−1

if l > 0,(
Λ(d)

)
i,0
−→ {0} if l = 0.

これまでの説明から ẽiの “意味”は明らかであろう．つまり，ẽiとは
『与えられた P (Γ)-moduleの i-th topを genericに１次元削れ』

という操作に他ならない19．特に２行目は『i-th topが 0次元のとき（l = 0のとき）は１
次元削ることは出来ないから，その場合には行き先を 0にせよ』 というわけである．

B =
⊔

d∈ZI
≥0

IrrΛ(d)であったことを思い出そう．各 component毎に定義された ẽiたち

を束ねて，
ẽi : B→ B t {0}

がwell-definedに定まるのは，言うまでもない．

◦ f̃iの定義：これも前出の ẽmax
i を使って構成する：

f̃i :
(
Λ(d)

)
i,l

ẽmax
i−→

(
Λ(d− ls(i))

)
i,0

(ẽmax
i )−1

−→
(
Λ(d+ s(i))

)
i,l+1

.

今度の場合は lが 0になるかどうかの場合わけは必要ない．f̃iの “意味”は，
『与えられた P (Γ)-moduleの i-th topを genericに１次元増やせ』

ということなので，lの値に関わらず操作を行うことが出来るからである．
したがって，今度の場合は『f̃iを施せない』ということはなく，全てを束ねて得られる

写像は
f̃i : B→ B

となる．

19「だったら面倒なことはせずに，最初から『与えられた P (Γ)-moduleの i-th topを genericに１次元
削る』ということを ẽi の定義にすればいいんじゃないか？」と思われるかもしれない．確かにその通りな
のであるが，このことを幾何的にちゃんと言おうとすると，全単射(

IrrΛ(d)
)
i,l

∼→
(
IrrΛ(d− s(i))

)
i,l−1

の存在を示さなければならない．結論としてはもちろん正しいのだけれど，少なくとも我々は
(
IrrΛ(d′′)

)
i,0

を経由する方法しか，その証明を知らない．
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以上で，必要な写像が全て定義出来た．このとき主張は以下の通り．

Proposition 17 ([10]). 組
(
B; wt, εi, ϕi, ẽi, f̃i

)
は，root datum

(
QI , {s(i)}, (·, ·)

)
に付随す

る crystalである．

Proof. 公理 (C1)～(C4)を確かめれば良いが，定義から (C1)～(C3)は明らかである．ま
た (C4)についても，ϕi(Λ) = −∞となるΛ ∈ Bは存在しないので，OK． �

4.4. その特徴付け.

前節でB =
⊔

d∈ZI
≥0

IrrΛ(d)上に crystal structureが入ること，およびその preprojective

algebraの表現論的な意味を説明した．「定義に現れる各写像が，ちゃんと意味を持ってい
る」ということについては，多少は納得してもらえたのではないかと思う．ただし，

Q：crystal structureが入ったからといって，何がうれしいのか？

という問いに対しては，何も答えてはいない．

この問いを preprojective algebraの表現論だけから説明するのは非常に難しいのだが，
crystalの一般論の立場からは次のように説明される．

Theorem 18 (Kashiwara-S [10]). crystalとして BはB(∞)と同型である20.

ここにB(∞)とは，“量子群のベキ零部分の crystal basis”と呼ばれる crystalで，その
構造が非常によく調べられているものである．このノートでは「量子群の表現論に関す
る事実は一切使わない」ことにしているので，“量子群のベキ零部分の crystal basis”が何
か？ということには触れないが，強調しておきたいのは『Theorem 18が上の問いに対す
る１つの解答を与えている』ということである．すなわち，

A：crystalの一般論で知られている結果を用いることによって，preprojective
algebraの nilpotentな表現全体のなす varietyの構造を調べることが出来る

ということである．これさえ頭に留めて頂ければ，このノートを書いた意味は半分以上達
成されていると言って良い．

ΓがDynkin caseの場合（特にA型の場合）については，5節に詳しい解説を書いたの
で，そちらを参照して頂きたい．

4.5. Another crystal structure on B.
4.3節で導入した crystal structureは，多元環の立場で言えば “表現の topをいじる”と

いう操作によって実現されたものであった．多元環の表現論においては，「topでうまくい
く」話というのは「socleでもうまくいく」ことが多い．では今の場合はどうか？という
と，実はOKで，topと socleの役割を入れ替えても B上に crystal structure を定義する
ことが出来る．ただし，こうして定義される B上の crystal structureは，4.3節で導入し
たものとは別物であることに注意されたい．

具体的に書いていこう．まず wtは 4.3節と共通に取る．次に εiだが，これは 4.3節と
は違うものを考えるので，区別のために右上に ∗を付けて ε∗i と書くことにしよう．

20「crystalの同型」を定義していないのでこの主張は意味をなさないけれども，感じはわかって頂ける
と思う．
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B ∈ Λ(d)に対して，

ε∗i (B) := dimCKer

(
V (d)i

⊕Bτ−→ ⊕
τ∈H;out(τ)=i

V (d)in(τ)

)
とおく．これは対応する P (Γ)-moduleの i-th socleの次元に他ならない．
そこで，Λ ∈ IrrΛ(d)に対してΛの genericな点B ∈ Λを取り，

ε∗i (Λ) := ε∗i (B)

と定義する．また
ϕ∗
i (Λ) := ε∗i (Λ) + (s(i),wt(Λ))

と定める．

4.3節では εi = i-th topの次元で IrrΛ(d)を分割したが，今度は ε∗i = i-th socleの次元
を使って同じことをやる．

IrrΛ(d) =
⊔
p≥0

(
IrrΛ(d)

)p
i
, where

(
IrrΛ(d)

)p
i
:=

{
Λ ∈ IrrΛ(d) | ε∗i (Λ) = p

}
.

そこで，4.3節と同様のアイデアで全単射

(ẽ∗i )
max :

(
IrrΛ(d)

)l
i

∼→
(
IrrΛ(d′)

)0
i

を構成する．ただし d′ := d − ls(i)である21．やり方はほぼ同じなので繰り返さないが
ちょっとだけ注意をしておくと，今回は topと socleの役割を取り替えているので，(4.3.1)
に当たる図式はmapの向きが反対になる：

0→ S(i)⊕l φ′′
−→ V (d)

φ′
−→ V (d′)→ 0. (4.5.1)

この図式を元に (4.3.2)に相当する図式を考えることが出来て，それが全単射 (ẽ∗i )
maxを誘

導する，というストーリーになっている．(ẽ∗i )
maxの意味は『i-th cosocleを取れ』という

ことである．
全単射 (ẽ∗i )

maxを用いて，写像

ẽ∗i : B→ B t {0}, f̃ ∗
i : B→ B

を同様の方法で定める．このとき主張は以下の通り．

Theorem 19 ([10]). (1) 組
(
B; wt, ε∗i , ϕ∗

i , ẽ
∗
i , f̃

∗
i

)
は，root datum

(
QI , {s(i)}, (·, ·)

)
に付随

する crystalである．

(2) crystalとして
(
B; wt, ε∗i , ϕ∗

i , ẽ
∗
i , f̃

∗
i

)
とB(∞)は同型である．

(2)は注釈が必要だろう．Theorem 18とTheorem 19を併せると(
B; wt, εi, ϕi, ẽi, f̃i

) ∼= B(∞) ∼=
(
B; wt, ε∗i , ϕ∗

i , ẽ
∗
i , f̃

∗
i

)
ということになってしまい「全く違う定義をしたはずなのに，なぜ？」と思うかもしれな
い．しかし，よく考えると矛盾はしていない．上の同型はあくまで「抽象的な crystalと
しての同型」を与えているだけなので，例えば “εi = ε∗i ”ということを主張しているわけ
ではない．上の同型が主張するところは
『topを用いて定義した構造と，socleを用いて定義した構造が，抽象的には一致する』
21ベクトルとしては d′ = d′′ であるけれども，役割が違うので記号を替えた．
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ということだけであり，「topについて成り立つことは，socleに対しても成り立つ場合が
ある」という経験則からすれば，ある意味 “自然”かも知れない．

5. Dynkin case

5.1. 一般論.

本節では話をΓ = (I,Ω)がDynkin quiver（A,D,E）の場合に限定する．多元環 sideか
ら見た場合に，この条件は P (Γ)が有限次元代数であることと同値であることは既に述べ
た．実は幾何学的にも，この条件は大きな意味を持つ．

Proposition 20 (Lusztig [9]). Γ = (I,Ω)をDynkin quiverとする．このとき勝手に与え
られたΛ ∈ IrrΛ(d)に対して，EΩ(d)のG(d)-orbit OΩが一意的に存在して，

Λ = T ∗
OΩ

EΩ(d)

と書ける．逆に，与えられたEΩ(d)のG(d)-orbit OΩに対し，T ∗
OΩ

EΩ(d) ∈ IrrΛ(d)であ
る．したがって，次の１対１対応が得られる：{

EΩ(d)のG(d)-orbit
}
3 OΩ

∼←→ T ∗
OΩ

EΩ(d) ∈ IrrΛ(d). (5.1.1)

またしてもヘンな記号が現れたが，T ∗
OΩ

EΩ(d)は “OΩの conormal bundle”，T ∗
OΩ

EΩ(d)
は “その closure”という意味である．conormal bundleというのは，より一般的な setting
で定義される，幾何学的には基本的な概念であるが，幾何の言葉に不慣れな方も多いと思
う．話を今回の場合に限ってしまえば，以下のように考えてもらっても差し支えない．

まず
X(d) = ⊕

τ∈H
HomC(V (d)out(τ), V (d)in(τ)) = EΩ(d)⊕ EΩ(d)

に注意しよう．第１成分への射影 πd,Ω : X(d) → EΩ(d) とし，πd,Ωの Λ(d)への制限を
πΛ(d),Ω := πd,Ω|Λ(d)と記す．このとき πΛ(d),Ωは全射である．したがってΛ(d)の分割

Λ(d) =
⊔

OΩ;G(d)-orbit

π−1
Λ(d),Ω (OΩ)

が得られる．ΓはDynkin typeなので，右辺は有限個のdisjoint unionである．π−1
Λ(d),Ω (OΩ)

がΛ(d)のG(d)不変な部分集合となることは定義からすぐに解るけれども，単独のG(d)-
orbitになるとは限らない（一般にはなっていない）．

Proposition 21 ([9]). ΓがDynkin typeならば，

π−1
Λ(d),Ω (OΩ) = T ∗

OΩ
EΩ(d)

である．したがって次が成立する：

π−1
Λ(d),Ω (OΩ) = T ∗

OΩ
EΩ(d).

つまり，一般的な conormal bundleの定義を知らなくても，今の場合は π−1
Λ(d),Ω (OΩ) を

その定義と思ってもいいわけである．

Proposition 21の “意味”を考えてみよう．まず Λ ∈ IrrΛ(d)とし，Λの中から generic
に (Bτ )τ∈H をとる．このとき
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『I-graded vector space V (d)を，(Bτ )τ∈H によって
nilpotent P (Γ)-moduleと思う』

ことが出来る．また，射影 πΛ(d),Ω ((Bτ )τ∈H) = (Bτ )τ∈Ωをとるということは，

『与えられた P (Γ)-module V (d)を，τ ∈ Ω の作用を
忘れることによって，C[Γ]-moduleと思え』

ということに他ならない．したがって Proposition 21は

T ∗
OΩ

EΩ(d) =

{
V (d)上の P (Γ)-module structureであって，それを
C[Γ]-moduleと思ったときに同型になるようなもの

}
ということを意味していることになる．

話を先に進めよう．いま Γは Dynkin typeだったので，有名なGabrielの定理により，
直既約なC[Γ]-moduleの同型類は dimension vectorで一意的に定まり，しかもそれらは対
応するDynkin図形 ΓDynに付随する positive rootでパラメトライズされる．したがって，
上の手順で得られたC[Γ]-module V (d)は

V (d) = ⊕
β∈∆+

VΩ(β)
⊕aβ,Ω

の形に一意的に分解する．ただし∆+ = ∆+(ΓDyn)は positive root全体の集合，VΩ(β)は
β ∈ ∆+に対応する直既約C[Γ]-moduleである．こうして得られる非負整数の組を

aΩ := (aβ,Ω)β∈∆+ ∈ ZN
≥0 (N := |∆+|)

と書く．

整理すると，
(i) Λ ∈ IrrΛ(d)とし，Λの中から genericに (Bτ )τ∈H をとる；
(ii) πΛ(d),Ω ((Bτ )τ∈H) = (Bτ )τ∈Ωによって，V (d)をC[Γ]-moduleとみなす；
(iii) C[Γ]-module V (d)を直既約分解して，各直既約因子のmultiplicityを表す非負整

数の組 aΩ = (aβ,Ω)β∈∆+ ∈ ZN
≥0 を取り出す；

という操作によって，写像Ψd,Ω : IrrΛ(d) → ZN
≥0が定義されたことになる．(5.1.1)から

Ψd,Ω は単射であることに注意しよう．dimension vector dの可能性を全て走らせて，こ
れらを束ねると，全単射

ΨΩ : B ∼→ ZN
≥0

が得られる．また逆写像Ψ−1
Ω : ZN

≥0
∼→ Bは，a 7→ T ∗

Oa,Ω
EΩ(d) で与えられる．ここにOa,Ω

は，a ∈ ZN
≥0に対応するG(d)-orbitである．

「crystal structureを理解するためには crystal graphがわかれば良い」というのは以前
述べた通りなのだが，前節で構成したB上の crystal structureの情報だけでは，具体的に
graphの頂点集合として何を考えたらいいのか，全く解らなかった．ところがΓがDynkin
typeの場合には，『ZN

≥0を頂点集合とするグラフを描けば良い』ということがはっきりし
たわけである．あとは全単射ΨΩ : B ∼→ ZN

≥0を通じてBに入っている crystal structureを
ZN

≥0 上に移植させ，各格子点間に矢印を描いていけば良い
22．

22もちろん「ZN
≥0 を頂点集合とする graph」なんてものが，本当に絵に描けるわけではないが．
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また，全単射ΨΩ : B ∼→ ZN
≥0は orientation Ωの選び方に dependするので，Ω を変えれ

ば ZN
≥0に入る crystal structureも当然変わる．そこで『ZN

≥0上にどんな crystal structure
が入っているか？』を区別したい場合には，これを BΩと書くことにする．すなわち

BΩ :=
{
aΩ = (aβ,Ω)β∈∆+

∣∣ aβ,Ω ∈ Z≥0 for every β ∈ ∆+
}
.

5.2. A型の場合（その１）.
本節では Γ = (I,Ω)が An型の Dynkin quiverの場合に限定する．このとき，positive

rootの集合∆+ = ∆(An)
+は以下のようになる：

∆+ =

{
βi,j :=

j∑
k=i

s(i)

∣∣∣∣∣ 1 ≤ i ≤ j ≤ n

}
.

したがって，

N = |∆+| = n(n+ 1)

2
.

同型ΨΩ : B ∼→ ZN
≥0を指定するには orientation Ωを選ばなければならない．ここでは

次のようなものを取ろう：

Ω0 : � � � · · · � � �
1 2 3 n− 2 n− 1 n

e e e e e e.
記述を簡単にするために，

ai,j := aβi,j+1,Ω0 (1 ≤ i < j ≤ n+ 1),

BΩ0 = {a := (ai,j)1≤i<j≤n+1 | ai,j ∈ Z≥0}
と書くことにしよう23．このときBに入っている２つのcrystal structure

(
B; wt, εi, ϕi, ẽi, f̃i

)
および

(
B; wt, ε∗i , ϕ∗

i , ẽ
∗
i , f̃

∗
i

)
を同型ΨΩ0 : B

∼→ BΩ0 によってBΩ0
∼= ZN

≥0側に移植する．こ
こでは結果のみ記すこととし，どうしてそうなるか？という理由には一切触れない24．

◦ wtの定義：a ∈ ZN
≥0に対し，

wt(a) = −
∑
i∈I

dis(i), where di =
i∑

k=1

n+1∑
l=i+1

ak,l (i ∈ I).

◦ εi, ε∗i , ϕi, ϕ
∗
i の定義：i ∈ Iに対して

A
(i)
k (a) :=

k∑
s=1

(as,i+1 − as−1,i) (1 ≤ k ≤ i),

23普通に考えれば
ai,j := aβi,j (1 ≤ i ≤ j ≤ n)

とするのが自然だろう．ただし，既存の crystalの理論と比較するためには，２つめの添字 j の番号付けを
１つずらしておいた方が都合が良い．気持ち悪いかもしれないが，このノートでは「ずらした添字付け」を
採用する．

24説明の仕方はいろいろある．参考文献として Reineke [12], Savage [18], 筆者 [17]を挙げておくが，い
ずれにしてもそれなりに準備が必要で，結果は自明ではない．
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A
∗(i)
l (a) =

n+1∑
t=l+1

(ai,t − ai+1,t+1) (i ≤ l ≤ n)

とおく．ただし上式において a0,i = ai+1,n+2 = 0と思うことにする．このとき，

εi(a) := max
{
A

(i)
1 (a), · · · , A(i)

i (a)
}
, ϕi(a) := εi(a) +

(
s(i),wt(a)

)
,

ε∗i (a) := max
{
A

∗(i)
i (a), · · · , A∗(i)

n (a)
}
, ϕ∗

i (a) := ε∗i (a) +
(
s(i),wt(a)

)
.

◦ ẽi, f̃i, ẽ∗i , f̃ ∗
i の定義：

k+ := min
{
1 ≤ k ≤ i

∣∣∣ εi(a) = A
(i)
k (a)

}
, k− := max

{
1 ≤ k ≤ i

∣∣∣ εi(a) = A
(i)
k (a)

}
,

l+ := max
{
i ≤ l ≤ n

∣∣∣ ε∗i (a) = A
∗(i)
l (a)

}
, l− := min

{
i ≤ l ≤ n

∣∣∣ ε∗i (a) = A
∗(i)
l (a)

}
とおく．a ∈ ZN

≥0に対し，新たに４つの非負整数の組 a(p,\) =
(
a
(p,\)
k,l

)
∈ ZN

≥0 (\ = ±, p =

1, 2)を次で定義する：

a
(1,±)
k,l =

 ak±,i ± 1 (k = k±, l = i),
ak±,i+1 ∓ 1 (k = k±, l = i+ 1),
ak,l (otherwise).

a
(2,±)
k,l =

 ai,l±+1 ∓ 1 (k = i, l = l± + 1),
ai+1,l±+1 ± 1 (k = i+ 1, l = l± + 1),
ak,l (otherwise).

以上の記法の下に，

ẽia :=

{
0 (if εi(a) = 0),
a(1,+) (if εi(a) > 0),

f̃ia := a(1,+),

ẽ∗ia :=

{
0 (if ε∗i (a) = 0),
a(2,+) (if ε∗i (a) > 0),

f̃ ∗
i a := a(2,−)

と定める．

一応定義は書いたものの，これでは何が何やらわからない．もう少し噛み砕いて説明し
よう．そのために aの成分を行列のように並べて，

a =

a1,2 a1,3 a1,4 · · · a1,n a1,n+1

a2,3 a2,4 · · · a2,n a2,n+1

a3,4 · · · a3,n a3,n+1

. . .
...

...
an−1,n an−1,n+1

an,n+1

と書くことにする．

まず ẽiの作用というのは，基本的に
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• i+1列目25に並んでいる数字のどれかから 1を引いて，i列目の同じ行にある数字
に 1を足す．
• ただし i列目の同じ行に数字がないときは，i+ 1列目の数字から 1を引くだけ．

という操作である．問題は
「i+ 1列目に並ぶ i個の数のうち，何行目から 1を引くか？」

というということだが，これを指定しているのが k+であり，それは

「εi(a) = A
(i)
k を満たす 1 ≤ k ≤ iの中で，一番小さいもの」

である．

f̃iの作用は，
• i + 1列目に並んでいる数字のどれかに 1を足して，i列目の同じ行にある数字か
ら 1を引く．
• ただし i列目の同じ行に数字がないときは，i+ 1列目の数字から 1を足すだけ．

という操作で，
「i+ 1列目に並ぶ i個の数のうち，何行目に 1を足すか？」

という情報が k−，すなわち

「εi(a) = A
(i)
k を満たす 1 ≤ k ≤ iの中で，一番大きいもの」

で与えられる．

ẽ∗i ,f̃
∗
i については詳しくは書かないが，ほぼ「行と列の役割を入れ替えたもの」になっ

ている．

さて，以上のように BΩ0
∼= ZN

≥0上の写像たちを定義するとき，次が成り立つ．

Proposition 22 ([12],[18],[17]). (1)
(
BΩ0 ; wt, εi, ϕi, ẽi, f̃i

)
および

(
BΩ0 ; wt, ε

∗
i , ϕ

∗
i , ẽ

∗
i , f̃

∗
i

)
はともに crystalである．
(2) 集合としての全単射ΨΩ0 : B

∼→ BΩ0 は，crystalとしての同型

ΨΩ0 :
(
B; wt, εi, ϕi, ẽi, f̃i

) ∼→
(
BΩ0 ; wt, εi, ϕi, ẽi, f̃i

)
,

ΨΩ0 :
(
B; wt, ε∗i , ϕ∗

i , ẽ
∗
i , f̃

∗
i

) ∼→
(
BΩ0 ; wt, ε

∗
i , ϕ

∗
i , ẽ

∗
i , f̃

∗
i

)
を同時に与える．

5.3. A型の場合（その２）.
前節で一般的な公式を書き下してみたものの，ややこし過ぎてわかりづらい．そこで話

を n = 3に限定して，もう一度全てを書き直してみよう26．
この場合，N = 3(3+1)/2 = 6だから aは６個の非負整数の組である．これらを行列の

ように並べて表示すると見やすい．

a =
a1,2 a1,3 a1,4

a2,3 a2,4
a3,4

25これは成分の添字でカウントしていることに注意．例えば a1,2 は「２列目」と思っている．
26もちろん n = 1, 2の方がより簡単であるのだが，単純になり過ぎてかえって話が見えづらい．
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定義にしたがって計算すると

wt(a) = (−d1,−d2,−d3),

d1 = a1,2 + a1,3 + a1,4, d2 = a1,3 + a1,4 + a2,3 + a2,4, d3 = a1,4 + a2,4 + a3,4.

念のため aの意味を復習しておこう．5.1節によれば，aはC[Γ0]-module＝Γ0の表現の
直既約成分のmultiplicityを表すデータだった（ただし Γ0 := (I,Ω0)）．具体的には，以
下のような Γ0の表現を考えていることになる．

V(d) =

( C ← {0} ← {0})⊕a1,2

⊕
( C ← C ← {0})⊕a1,3

⊕
( C ← C ← C )⊕a1,4

⊕
({0} ← C ← {0})⊕a2,3

⊕
({0} ← C ← C )⊕a2,4

⊕
({0} ← {0} ← C )⊕a3,4

(ただし d := (d1, d2, d3) = −wt(a))

さらに，表現V(d)の同値類が EΩ0(d)のG(d)-orbit Oa,Ω0 であり，対応する既約成分が
Λa := Ψ−1

Ω0
(a) = T ∗

Oa,Ω0
EΩ0(d) なのであった．

話を元に戻そう．定義通りに計算すると

A
(1)
1 = a1,2,

A
(2)
1 = a1,3, A

(2)
2 = a1,3 + (a2,3 − a1,2),

A
(3)
1 = a1,4, A

(3)
2 = a1,4 + (a2,4 − a1,3), A

(3)
3 = a1,4 + (a2,4 − a1,3) + (a3,4 − a2,3),

A
∗(1)
3 = a1,4, A

∗(1)
2 = a1,4 + (a1,3 − a2,4), A

∗(1)
1 = a1,4 + (a1,3 − a2,4) + (a1,2 − a2,3),

A
∗(2)
3 = a2,4, A

∗(2)
2 = a2,4 + (a2,3 − a3,4),

A
∗(3)
3 = a3,4.

したがって

ε1(a) = a1,2,

ε2(a) = max{a1,3, a1,3 + (a2,3 − a1,2)},
ε3(a) = max{a1,4, a1,4 + (a2,4 − a1,3), a1,4 + (a2,4 − a1,3) + (a3,4 − a2,3)},
ε∗1(a) = max{a1,4, a1,4 + (a1,3 − a2,4), a1,4 + (a1,3 − a2,4) + (a1,2 − a2,3)},
ε∗2(a) = max{a2,4, a2,4 + (a2,3 − a3,4)},
ε∗3(a) = a3,4.

となる．この計算結果は，
Λaの中から genericに P (Γ0)-moduleを取ったとき，
その i-th top，i-th socleの次元が上の式で与えられる
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ということを意味している．

Kashiwara operators（ẽi,f̃i,ẽ
∗
i ,f̃

∗
i たちを総称してこう呼ぶ）の作用については，例を使っ

て説明したい．全部書くと大変なので，ẽ3と f̃3の場合だけ詳しく書く．

Example 23. aとして次のものを考える．

a =
4 1 1

2 3
2

◦ ẽ3の作用
今考えたいのは i = 3の場合なので，

A
(3)
1 = 1, A

(3)
2 = 1 + (3− 1) = 2, A

(3)
3 = 1 + (3− 1) + (2− 2) = 2.

したがって，
ε3(a) = max{1, 2, 2} = 2.

したがって ε3(a) = A
(3)
k となる kは 2または 3である．k+の定義は「このような kのう

ち，一番小さいもの」だったので，k+ = 2．ということは『２行目で 1が右から左に移動
する』ことになる．

4 1 1
2 3

2

ẽ37−→
4 1 1

3 2
2

◦ f̃3の作用

前述の通り ε3(a) = A
(3)
k となる kは 2または 3であるが，k−の定義は「このような kの

うち，一番大きいもの」だったので，k− = 3．よって今度は『３行目で 1が左から右に移
動する』ことになる．しかし a3,3という成分はないので，a3,4に 1が足されるのみとなる．

4 1 1
2 3

2

f̃37−→
4 1 1

2 3
3

ẽ∗i ,f̃
∗
i については省略するが，一番面倒な ẽ∗1と f̃ ∗

1 の場合の答だけ書いておくので，興
味のある方は自分でチェックされたい．

4 1 1
2 3

2

ẽ∗17−→
4 1 0

2 4
3

4 1 1
2 3

2

f̃∗
17−→

5 1 1
2 3

3

n = 3の場合を見れば，一般の場合も大体想像がつくことと思う．

5.4. A型の場合（その３）.
これまでの話は orientationとして，

Ω0 : � � � · · · � � �
1 2 3 n− 2 n− 1 n

e e e e e e
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という特別なものを選んだ場合の話であった．当然のことながら，『一般のΩのときはど
うなるのか？』という問題が頭に浮かぶことと思う．すなわち，

Q１：与えられたΩに対し，
(
BΩ; wt, εi, ϕi, ẽi, f̃i

)
および

(
BΩ; wt, ε∗i , ϕ∗

i , ẽ
∗
i , f̃

∗
i

)
の構造

を具体的に記述せよ．

集合としては BΩ ∼= ZN
≥0 であるので，上の問いは

Q１’：N 個の非負整数の組 aΩ = (aβ,Ω)β∈∆+ ∈ BΩに対し，各写像を具体的に記述せよ

ということに他ならない．

この問いに対する直接の解答は知られていないように思うが，“ある種の解答”は得ら
れている．
言葉を準備しよう．与えられた２つの orientation Ω, Ω′に対し，crystalの同型

RΩ′

Ω := ΨΩ′ ◦Ψ−1
Ω : BΩ

∼→ B ∼→ BΩ′

を BΩから BΩ′ への transition mapと呼ぶ．“crystalの同型”というと何やら仰々しいが，
これまでの話を組み合わせればいいだけなので，やっていることは決して難しいことでは
ない．この写像の多元環の表現論的意味は，

(i) 非負整数の組aΩを考え，それを直既約成分のmultiplicityとして持つC[Γ]-module
の同型類を考える；

(ii) 射影 πΛ(d),Ωの逆像をとり，上の同型類を P (Γ)-moduleに持ち上げる；
(iii) さらにその closureをとる；
(iv) 上記の closureの中から genericに点をとり，τ ∈ Ω′の作用を無視することで，こ

れをC[Γ′]-moduleと思う．ここに Γ′ := (I,Ω′)；
(v) 得られたC[Γ′]-moduleを直既約分解してmultiplicityのデータを取り出す；

という操作をしているだけである．

Remark 24. とはいえ，(iii)の「closureをとる」と (iv)の「genericに点をとる」という操
作は，多元環の表現論ではあまり用いない方法なのでわかりにくいかもしれない．話をや
やこしくしている１つの原因は次の点にある．与えられた aΩに対し，bΩ′ := RΩ′

Ω (aΩ)と
しよう．このとき，

π−1
Λ(d),Ω(Oa,Ω) = π−1

Λ(d),Ω′(Ob,Ω′)
(
⇔ T ∗

Oa,Ω
EΩ(d) = T ∗

Ob,Ω′EΩ′(d)
)

であったとしても，一般には

π−1
Λ(d),Ω(Oa,Ω) 6= π−1

Λ(d),Ω′(Ob,Ω′)

である．したがって「closureをとって，さらにその中から genericに点を選ぶ」という操
作は，どうしても行わざるを得ない．

特に重要なのは，RΩ
Ω0
と RΩ0

Ω =
(
RΩ

Ω0

)−1 である．特殊な orientation Ω0 に関しては，
crystal structure

(
BΩ0 ; wt, εi, ϕi, ẽi, f̃i

)
が完全にわかっているので，もしRΩ

Ω0
とRΩ0

Ω が具
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体的に書ければ，
(
BΩ; wt, εi, ϕi, ẽi, f̃i

)
を完全に記述することができる27．∗付きの crystal

structureについても同様である．したがって，話は

Q２：与えられたΩに対し，RΩ
Ω0
とRΩ0

Ω を具体的に記述せよ

という問題に還元される．

A型の場合，この問題は完全に解けている ([3],[17])が，答は非常にややこしいので具
体的な公式を述べることは止めておく．詳しくは原論文を参照されたい．

5.5. Open problems.

本節では，今回の話に関連する未解決問題をいくつか紹介しよう．

Problem 1：D型，E型での ZN
≥0の crystal structureの決定

すでに述べたように，B = tdIrrΛ(d)から ZN
≥0（ただしN = |∆+|）への全単射

Ψ : B ∼→ ZN
≥0

は『Γ = (I,Ω)がDynkin quiver』との仮定のもとに存在する．すなわち，A型でなくと
もD型，E型でもBの持つ crystal structureをΨΩを通じてZN

≥0に移植することが出来る
はずである．種々のデータは完全に与えられているので「あとは計算すればいいという状
態」と言えなくもないが，本当に実行するのはなかなか大変である．実際，A型以外の場
合では，ZN

≥0上の crystal structureを具体的に書き下した結果は知られていないと思う．

Problem 2：Tame case：
同型B ∼= B(∞)は，任意の loopがない quiver Γに対して成り立つ．Dynkin caseの次に

興味があるのは，tameの場合，すなわちΓが extended Dynkinの場合である．Lie theory
sideでは，これは “affine case”と呼ばれる．
話をこの場合に限定すると，B(∞)をパラメトライズする方法が数多く知られている

が，各種パラメトリゼーションと，Λ(d)の既約成分との対応を明示的に与える公式は殆
ど知られていない．

Problem 3：Rigid crystals

これまで

『variety of nilpotent representations Λ(d)のG(d)-軌道
（＝ dimension vector dの nilpotent P (Γ)-moduleの同型類）

を考える替わりに，
Λ(d)の代数多様体としての既約成分全体 IrrΛ(d)を考える』

27実際，例えば ẽi の作用に関しては，

ẽiaΩ =
(
RΩ

Ω0
◦ ẽi ◦RΩ0

Ω

)
(aΩ) (aΩ ∈ BΩ)

が成り立つ．したがって左辺を知りたければ右辺がわかればいいわけだが，左辺に現れる ẽiは「BΩ0 の ẽi」
なので，5.2節で explicit formulaを知っている．ゆえにRΩ

Ω0
とRΩ0

Ω の具体形がわかれば，全てを具体的に
計算出来る．
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という立場で議論を進めてきた．しかしながら，やはり本来の問題意識である “Λ(d)の
G(d)-軌道そのもの”に興味があるのは，言うまでもない．このことに注意して，次の概
念を導入しよう．

Definition 25. Λ ∈ IrrΛ(d)が稠密なG(d)-軌道Oを持つとき，Λは rigidであるという．

Λ ∈ IrrΛ(d)が rigidであれば，Λは P (Γ)-moduleの同型類と対応していると言って良
いだろう．多元環論的な特徴付けとして，次が知られている．

Proposition 26 ([5]). B ∈ Λ(d)とし，対応する P (Γ)-moduleを VBと書く．次は同値．
(a) Ext1P (Γ)(VB, VB) = 0.

(b) Bを通るΛ(d)のG(d)-軌道をO とするとき，O ∈ IrrΛ(d)．すなわち，Λ := Oは
rigid．

多元環の専門家の方々には，(a)の条件の方が “rigid”という感じが伝わるかも知れな
い．また，次も知られている．
• An (1 ≤ n ≤ 4)の場合には，任意のΛ ∈ B = tdIrrΛ(d)は rigidである．
• それ以外の場合には，rigidでない既約成分が必ず存在する．

そこで次の問題を考えよう．

Q3：rigidな既約成分を全てリストアップせよ．

これは問題としては非常に面白いと思う．ただし，話をAn型に限定したとしても，現
状では難しすぎる．dが小さいと既約成分は必ず rigidになる．n ≤ 4だと全ての既約成
分は rigidであり，この状況が最後まで続く．他方，n ≥ 5だと途中に rigidでないものが
現れ始め，dが大きくなるにつれて，ほとんどの既約成分は rigidでなくなってしまう．
以下に知られている rigidでない例の中で，（筆者が知る限り）最も次元の小さいもの

（A5型の場合）を紹介する．この問題は，多元環 side，Lie theory side双方で，それぞれ
の重要な問題に関係しているが，現状ではどうしたらいいか，全くわからない．具体例の
計算から情報を集めるだけでも意味があると思うので，興味のある方は実際に手を動かし
てみるといいだろう28．

Example 27. A5型の場合で，

Ω0 : � � � �
1 2 3 4 5

e e e e eτ1 τ2 τ3 τ4

なる orientationをとる．また，a ∈ BΩ0として，次のものを考える：

a =

0 1 0 0 0
0 0 1 0

1 0 0
0 1

0

.

このとき，対応する既約成分Λaは rigidではない．以下，このことを詳しく見てみよう．

28しかも『１つ１つの計算は，単なる行列の計算である』というところがミソ．
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aに対応する Γ0 = (I,Ω0)の表現は，

Va(d0) =

( C ← C ← {0} ← {0} ← {0})
⊕

({0} ← C ← C ← C ← {0})
⊕

({0} ← {0} ← C ← {0} ← {0})
⊕

({0} ← {0} ← {0} ← C ← C )

(ただし d0 := (1, 2, 2, 2, 1) = −wt(a)).

行列を使って書けば，（基底は適宜選ぶこととして）Ba = (Bτ1 , Bτ2 , Bτ3 , Bτ4) として，

Bτ1 =
(
1 0

)
, Bτ2 =

(
0 0
1 0

)
, Bτ3 =

(
1 0
0 0

)
, Bτ4 =

(
0
1

)
(5.5.1)

となる．Baを通るEΩ0(d0)のG(d0)-orbitをOa.Ω0と書く．このとき，

Λa = π−1
Λ(d0),Ω0

(Oa,Ω0) = G(d0) · π−1
Λ(d0),Ω0

(Ba)

に注意すると，

Λaが rigid．⇔ G(d0) · π−1
Λ(d0),Ω0

(Ba)が dense G(d0)-orbitを持つ．
⇔ π−1

Λ(d0),Ω0
(Ba)が dense G(d0)Ba-orbitを持つ．

ただし

G(d0)Ba := {g ∈ G(d0) | g ·Ba = Ba} (Baの stabilizer)

である．π−1
Λ(d0),Ω0

(Ba)とG(d0)Baは簡単に求めることが出来る．実際，

π−1
Λ(d0),Ω0

(Ba) =

(Bτ1 , Bτ2 , Bτ3 , Bτ4)

∣∣∣∣∣∣
Bτ1Bτ1 = 0, Bτ1Bτ1 = Bτ2Bτ2 ,

Bτ2Bτ2 = Bτ3Bτ3 , Bτ3Bτ3 = Bτ4Bτ4 ,
Bτ4Bτ4 = 0

 .

ここに，Bτ i (i = 1, 2, 3, 4)は

C
Bτ1←−− C2 Bτ2←−− C2 Bτ3←−− C2 Bτ4←−− C

なる行列で，右辺はpreprojective relationsを書き下したものに他ならない．ここに (5.5.1)
を代入し，連立方程式を解けば，

π−1
Λ(d0),Ω0

(Ba) =

{((
0
s

)
,

(
s 0
t 0

)
,

(
0 0
u v

)
,
(
u 0

)) ∣∣∣∣ s, t, u, v ∈ C
}
∼= C4

となる．また，stabilizerも簡単な計算から，

G(d0)Ba =
{
g = (g1, g2, g3, g4, g5) ∈ GL1(C)× (GL2(C))3 ×GL1(C)

∣∣ g ·Ba = Ba

}
=

{
g =

(
a,

(
a 0
b c

)
,

(
c 0
0 d

)
,

(
c 0
e f

)
, f

) ∣∣∣∣ a, c, d, f ∈ C×, b, e ∈ C
}
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となることがわかる．作用の具体形を書き下してみると，((
0
s

)
,

(
s 0
t 0

)
,

(
0 0
u v

)
,
(
u 0

))
g7−→

((
0

a−1cs

)
,

(
a−1cs 0
a−1dt 0

)
,

(
0 0

c−1fu d−1fv

)
,
(
c−1fu 0

))
となり，bと eの部分は自明に作用していることがわかる．すなわち，実際に “効く” の
は，a, c, d, f の部分のみで，これは

(
C×)4に同型．したがって考えるべき状況は，(
C×)4 y C4.

簡単のため s, t, u, vは generic （どれも 0ではない）として，比
su

tv
を考えよう．この

とき，
su

tv

g7−→ a−1cs · c−1fu

a−1dt · d−1fv
=

su

tv
.

すなわち，群G(d0)Baの π−1
Λ(d0),Ω0

(Ba) ∼= C4 への作用は，C4の３次元部分多様体
su

tv
= const

を不変に保ってしまう．したがって，orbitの次元は３を超えることが出来ず，dense orbit
は存在しない29．

それ以外だと，例えば，
0 2 0 0 0

0 0 2 0
2 0 0

0 2
0

,

0 1 0 1 0
0 1 0 1

0 1 0
0 1

0

などに対応する既約成分も rigidではない．左の例は，Example 27の aの各成分を全て２
倍したものになっている．その意味でこれを 2aと書くことにしよう．これを一般化して，
成分を k倍したものを kaと書くことにする．この記法の下に，一般に，

Λaが non-rigid ⇒ Λka (k ∈ Z>0)も non-rigid

ということは比較的容易にわかる．しかし，この系列（k倍していく系列）の一番最初に
あるもの（仮に primitiveな rigid componentとでも呼ぼう）を探し出すのはなかなか難
しく，一般的な解答は与えられていない．
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MATRIX FACTORIZATIONS, ORBIFOLD CURVES

AND
MIRROR SYMMETRY

ATSUSHI TAKAHASHI (高橋 篤史)

Abstract. Mirror symmetry is now understood as a categorical duality between alge-
braic geometry and symplectic geometry. One of our motivations is to apply some ideas
of mirror symmetry to singularity theory in order to understand various mysterious
correspondences among isolated singularities, root systems, Weyl groups, Lie algebras,
discrete groups, finite dimensional algebras and so on.

In my talk, I explained the homological mirror symmetry conjecture between orbifold
curves and cusp singularities via Orlov type semi-orthogonal decompositions. I also gave
a summary of our results on categories of maximally-graded matrixfactorizations, in par-
ticular, on the existence of full strongly exceptional collections which gives triangulated
equivalences to derived categories of finite dimensional modules over finite dimensional
algebras.

1. まえがき

ミラー対称性は複素代数幾何学とシンプレクティック幾何学の双対性と考えることがで
きる. ミラー対称性のアイデアを特異点理論に応用することで，特異点・ルート系・ワイ
ル群・リー環・有限次元代数. . .といった異なる数学的背景を持つ分野を結び付け，新た
な知見を得ることができる．ここでは，14個の例外型特異点に対するArnoldの「奇妙な
双対性」を可逆多項式という 3変数の重み付き斉次多項式のクラスに拡張し，その代数
的・幾何学的背景を明確にする．例えば，Arnoldの「奇妙な双対性」を述べるためには
Gablielov数という概念が必要であるが，Gablielov数は 14個の例外型特異点に対しての
み「実験的に」与えられたものであり，一般の特異点に対する定義は存在していなかった．
このことは，重み付き斉次多項式に対して系統的にカスプ特異点を対応させることで解決
されることになる．そして，重み付き射影直線とカスプ特異点のホモロジー的ミラー対称
性現象がArnoldの「奇妙な双対性」の真の姿であることがわかるのである．
より正確に述べることにしよう．f(x, y, z)を原点 0 ∈ C3にのみ孤立特異点を持つ多項

式とする．fのMilnorファイバーにおける消滅Lagrangian部分多様体の distinguish basis
は，有向深谷圏と呼ばれるA∞-圏Fuk→(f)に圏化される．とくに，その導来圏DbFuk→(f)
は，三角圏としては，さまざまな幾何的変形・選択によらないことが知られている．この
ようにして，f に対してシンプレクティック幾何学に対する不変量が得られる．とくに，
定義によりDbFuk→(f)は full exceptional collectionを持つことがわかる.
一方で，f(x, y, z)が重み付き斉次多項式ならば，極大次数付き行列因子化の圏と呼ばれ

る三角圏HMF
Lf

S (f)を構成することができる．ここで，S := C[x, y, z]，Lf は（後で定義
を述べる）fの極大次数である．なお，定義からでは明らかではないが，この圏HMF

Lf

S (f)
は，滑らかで固有な代数多様体の有界導来圏の重み付き斉次特異点に対する類似である．

Calabi–Yau多様体の位相的ミラー対は，特異点（物理学におけるLandau–Ginzburg軌
道体理論）のミラー対称性により，系統的に構成された．そこでは，良い性質を持つ重み
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付き斉次多項式に対するBerglund–Hübsch転置が重要であった．そこで，Calabi–Yau多
様体のホモロジー的ミラー対称性のアイデアを特異点に対して適用し，これらを合わせて
考察することで，次の予想が自然に期待されることとなる：

Conjecture 1 ([12][13]). f(x, y, z)を可逆多項式とする.

(1) 箙と関係式 (Q, I)で，三角同値

(1.1) HMF
Lf

S (f) ' Db(mod-CQ/I) ' DbFuk→(f t)

をもたらすものが存在する．
(2) 箙と関係式 (Q′, I ′)で，三角同値

(1.2) Dbcoh(CGf
) ' Db(mod-CQ′/I ′) ' DbFuk→(Tγ1,γ2,γ3)

をもたらすものが存在する．とくに，これは三角同値 (1.1)と整合的である．ここ
で，CGf

は f の極大可換対称性Gf に付随した重み付き射影直線，Tγ1,γ2,γ3 は「カ
スプ特異点」である.

これらの予想に対する多くの証拠が多くの研究者によりすでに発見されている．その
中でも最も重要なものは，(Q′, I ′)として後で述べる図形 T (γ1, γ2, γ3) に適切な向き付け
と 2重破線に対する関係式を与えたものがとれるということである．これにより，主定理
（Theorem 36）が証明されることになるのである．

2. 可逆多項式

f(x1, . . . , xn)を重み付き斉次多項式とする. つまり，正の整数 w1, . . . , wnおよび dで，
λ ∈ C∗に対して f(λw1x1, . . . , λ

wnxn) = λdf(x1, . . . , xn) が成り立つものとする．このと
き，(w1, . . . , wn; d)をウェイト系という. gcd(w1, . . . , wn, d) = 1ならば, ウエイト系は既
約であるという．ここでは，既約でないウエイト系も取り扱う．

Definition 2. 次の条件をみたす重み付き斉次多項式f(x1, . . . , xn)を可逆多項式でという：
(1) 変数の数 (= n)が f(x1, . . . xn)に現れる単項式の数に一致する，つまり，ai ∈ C∗

および非負整数Eij（i, j = 1, . . . , n）に対して，

f(x1, . . . , xn) =
n∑

i=1

ai

n∏
j=1

x
Eij

j

となる．
(2) ウェイト系 (w1, . . . , wn; d)は，f(x1, . . . , xn)によって（gcd(w1, . . . , wn; d)をのぞ
き）ただひととおりに決定される．つまり, 行列E := (Eij)は有理数体Q上可逆
である．

(3) f(x1, . . . , xn)および

f t(x1, . . . , xn) :=
n∑

i=1

ai

n∏
j=1

x
Eji

j ,

として定義される f(x1, . . . , xn)のBerglund–Hübsch 転置 f t(x1, . . . , xn)が原点
0 ∈ Cnに孤立特異点を持つ．言い換えれば，f, f tの Jacobi環 Jac(f), Jac(f t)

Jac(f) := C[x1, . . . , xn]

/(
∂f

∂x1

, . . . ,
∂f

∂xn

)
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Jac(f t) := C[x1, . . . , xn]

/(
∂f t

∂x1

, . . . ,
∂f t

∂xn

)
は，ともに複素数体 C上の有限次元代数となり，dimC Jac(f), dimC Jac(f

t) ≥ 1
である.

これらの性質をもつ多項式は，ミラー対称性研究の初期から長期間にわたり熱心に研
究されてきた．その代表例は，多項式とその多項式の対称性からなる組のミラー対を考え
ることによる，位相的ミラー対をなすCalabi–Yau多様体の大量構成である．なお，可逆
多項式という名前はKreuzer [9]によって導入された.

Definition 3. f(x1, . . . , xn) =
∑n

i=1 ai
∏n

j=1 x
Eij

j を可逆多項式とする. 方程式

E

w1
...
wn

 = det(E)

1
...
1

 , d := det(E).

の解として与えられるウェイト系 (w1, . . . , wn; d)を f の標準ウェイト系といい，Wf であ
らわす．

Remark 4. クラメルの公式から，標準ウェイト系にあらわれる数 w1, . . . , wnは正の整数
であることがすぐにわかる．

Definition 5. f(x1, . . . , xn)を可逆多項式，Wf = (w1, . . . , wn; d)をその標準ウェイト系
とする. このとき

cf := gcd(w1, . . . , wn, d)

と定義する．

Definition 6. f(x1, . . . , xn) =
∑n

i=1 ai
∏n

j=1 x
Eij

j を可逆多項式とする. 各変数 xi, i =

1, . . . , nに対する文字 ~xiおよび多項式 f に対する文字 ~f によって生成される自由アーベ
ル群⊕n

i=1Z~xi ⊕ Z~f を考える．このとき，可逆多項式 f の極大次数 Lf を，商

Lf :=
n⊕

i=1

Z~xi ⊕ Z~f /If

によって定義する．ここで，If は元

~f −
n∑

j=1

Eij ~xj, i = 1, . . . , n

により生成される部分群である．

Remark 7. Lf は階数 1のアーベル群である．ただし，必ずしも自由アーベル群ではない．

Definition 8. f(x1, . . . , xn)を可逆多項式，Lf をその極大次数とする．fの極大可換対称
性Gf を，

Gf := Spec(CLf )

で定義されるアーベル群とする．ここで，CLf で Lf の群環をあらわす．言い換えれば，

Gf =

{
(λ1, . . . , λn) ∈ (C∗)n

∣∣∣∣∣
n∏

j=1

λ
E1j

j = · · · =
n∏

j=1

λ
Enj

j

}
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である．

可逆多項式fはGfの変数への自然な作用により斉次である．つまり，(λ1, . . . , λn) ∈ Gf，
λ :=

∏n
j=1 λ

E1j

j = · · · =
∏n

j=1 λ
Enj

j に対して，

f(λ1x1, . . . , λnxn) = λf(x1, . . . , xn)

が成り立つ．

3. 行列因子化の圏とその性質

f を可逆多項式とする．多項式環C[x1, . . . , xn]を Sであらわし，環Rf をRf := S/(f)
で定義する．有限生成Lf -次数付きRf -加群の圏を grLf -Rf で，射影的加群のなす grLf -Rf

の部分圏を projLf -Rf であらわす．

Definition 9. 三角圏

(3.1) D
Lf

Sg (Rf ) := Db(grLf -Rf )/K
b(projLf -Rf )

を，極大次数付き特異点の圏という.

Remark 10. 環 Rf が正則であるならば，圏同値Db(grLf -Rf ) ' Kb(projLf -Rf )が得られ
るので，商D

Lf

Sg (Rf )は特異点 {f = 0}の複雑さを測っていると思える．f .

Remark 11. 特異点に台を持つ単純加群

C(~l) := (Rf/m)(~l) ∈ D
Lf

Sg (Rf ), ~l ∈ Lf ,

は，あとで重要な役割を果たすこととなる．

三角圏D
Lf

Sg (Rf )の定義は簡単で分かりやすいものであるが，実際にこの圏における射
の空間を計算するのは非常に難しい．また，この圏はミラー対称性の観点からも自然であ
るとは言い難いので，別の同値な三角圏に置き換えることを考える．

Definition 12. M ∈ grLf -Rf が

ExtiRf
(Rf/m,M) = 0, i < dimRf ,

をみたすとき，が極大次数付きCohen-MacauleyRf -加群であるという．

Rf は極大次数付きGorenstein環である， つまり，(~l)を ~l ∈ Lf による shiftとする
とき，

(3.2) KRf
' Rf (−~εf ), ~εf :=

n∑
i=1

~xi − ~f,

が成立する．ゆえに，次の結果が得られる：

Lemma 13 (Auslander). 極大次数付きCohen-Macauley Rf -加群の圏CMLf (Rf ) ⊂ grLf -Rf

はFrobenius圏である．つまり，十分豊富な射影的対象および入射的対象を持ち，射影
的対象と入射的対象が一致するような，完全圏の構造を持つ． �
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Definition 14. 圏CMLf (Rf )を次のように定義する：

Ob(CMLf (Rf )) = Ob(CMLf (Rf )),

CMLf (Rf )(M,N) := Hom
gr

Lf -Rf
(M,N)/P(M,N).

ここで，g ∈ P(M,N)ということを，射影的対象 P および射 g′ : M → P , g′′ : P → N で
g = g′′ ◦ g′となるものが存在すること，として定める．
圏CMLf (Rf )をCMLf (Rf )の安定圏という．

このとき，一般論からつぎのことがわかる：

Proposition 15 (Happel[7]). 圏CMLf (Rf )は三角圏の構造を持つ． �

また，f が孤立特異点であることを用いると，次の有限性条件が得られる：

Proposition 16. CMLf (Rf )は有限である，つまり∑
i

dimk CM
Lf (RfW )(M,T iN) < ∞,

が成立する．さらに，任意の対象は直既約対象の有限直和と同型となる． �

三角圏CMLf (Rf )は特別に良い自己同値函手を持つ：

Proposition 17 (Auslander-Reiten[2]). CMLf (Rf )上の函手 S = T n−2 ◦ (−~εf )は Serre
函手を与える．つまり，双函手的な同型

CMLf (RfW )(M,N) ' Homk(CM
Lf (RfW )(N,SM), k)

が存在する． �

Rfは超曲面環であり，極大次数付き環として局所環であるので，任意のM ∈ CMLf (Rf )
に対して，grLf -Sにおける自由分解

0 → F1
f1→ F0 → M → 0

が取れることに注意する．一方で，f をM に掛け算するという操作は 0を掛けることに
他ならないので，ホモトピー f0 : F0 → F1で

f1f0 = f · idF0 , f0f1 = f · idF1

となるものが存在する．このことに基づいて，Eisenbudは行列因子化（matrix factoriza-
tion）の概念を導入した．

Definition 18 (Eisenbud[4]). F0, F1を極大次数付き自由加群，f0 : F0 → F1, f1 : F1 →
F0 を f1f0 = f · idF0 , f0f1 = f · idF1 が成立するような S-準同型とする．このとき，組
(F0, F1, f0, f1)を f の極大次数付き行列因子化といい，

F :=
(
F0

f0 // F1
f1

oo
)

であらわす．
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Example 19. 分解
f = x1f1 + x2f2 + · · ·+ xnfn.

が成立するような fi ∈ m, i = 1, . . . , nが取れる．対応する行列因子化は，後で述べる圏
同値により，D

Lf

Sg (Rf )の対象C(~l)に写される．

Lemma 20. fの行列因子化の圏MF
Lf

S (f)はFrobenius圏の構造を持つ．とくに，その安
定圏

HMF
Lf

S (f) := MF
Lf

S (f)

は三角圏の構造を持つ． �

Lemma 21. 圏HMF
Lf

S (f)においては，T 2 = (~f)が成立する．ここで，T は三角圏の平
行移動函手である．とくに，HMF

Lf

S (f)は次元 (n− 2)− 2
εf
hf
の分数的Calabi–Yau圏とな

る．ただし，εf := deg(~εf ) and hf := deg(~f)とする． �

行列因子化 F =
(
F0

f0 // F1
f1

oo
)
に対してCoker(f1)を取ることにより．CMLf (Rf )の

対象が得られる．これは先に述べたものの逆構成である．とくに，これは次の有名な三角
同値をもたらす．

Theorem 22 (c.f., Buchweitz, Orlov[10]). 三角同値

HMF
Lf

S (f) ' CMLf (Rf ) ' D
Lf

Sg (Rf )

が存在する． �
Orlov型の半直交分解定理を述べるために，商スタック

XLf
:= [Spec(Rf )\{0} /Spec(C · Lf ) ]

を導入しておく．このとき，Dbcoh(XLf
) ' Db(grLf -Rf )/D

b(torLf -Rf )が成立している．

Proposition 23 (c.f., Orlov[10]). 次の三角同値が成立する :

(1) εf > 0ならば，

Dbcoh(XLf
) '

〈
D

Lf

Sg (Rf ),A(0), . . . ,A(εf − 1)
〉

である．ここで，A(i) :=
〈
OXLf

(~l)
〉
deg(~l)=i

とする．

(2) εf = 0ならば，Dbcoh(XLf
) ' D

Lf

Sg (Rf )である．.

(3) εf < 0ならば，

D
Lf

Sg (Rf ) '
〈
Dbcoh(XLf

),K(0), . . . ,K(−εf + 1)
〉

である．ここで，K(i) :=
〈
C(~l)

〉
deg(~l)=i

とする．

�
この半直交分解に対するシンプレクティック幾何学側の対応物を考えたい．とくに，そ

のためには商スタックXLf
およびそのミラー双対の理解が不可欠となる．
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4. Dolgachev数

これからは三変数の可逆多項式に制限して話を進める．そこでは，次の可逆多項式の分
類結果が重要な役割を果たす．

Proposition 24 ([1]). f(x, y, z)を可逆多項式とする．このとき，各変数を適当にスケー
ル変換することにより，f はTable 1における 5つのタイプのいずれかの形となる． �

Type Class f f t

I I xp1 + yp2 + zp3 xp1 + yp2 + zp3

(p1, p2, p3 ∈ Z≥2) (p1, p2, p3 ∈ Z≥2)

II II xp1 + yp2 + yz
p3
p2 xp1 + yp2z + z

p3
p2

(p1, p2,
p3
p2

∈ Z≥2) (p1, p2,
p3
p2

∈ Z≥2)

III IV xp1 + zyq2+1 + yzq3+1 xp1 + zyq2+1 + yzq3+1

(p1 ∈ Z≥2, q2, q3 ∈ Z≥1) (p1 ∈ Z≥2, q2, q3 ∈ Z≥1)

IV V xp1 + xy
p2
p1 + yz

p3
p2 xp1y + y

p2
p1 z + z

p3
p2

(p1,
p3
p2

∈ Z≥2,
p2
p1

∈ Z≥1) (p1,
p3
p2

∈ Z≥2,
p2
p1

∈ Z≥1)

V VII xq1y + yq2z + zq3x zxq1 + xyq2 + yzq3

(q1, q2, q3 ∈ Z≥1) (q1, q2, q3 ∈ Z≥1)

Table 1. 3変数の可逆多項式

これから，Table 1における「Type」という分類表記を用いる．これは [11]における分
類に基づいており，[1]においては「Class」という表記で分類されている．
可逆多項式 f(x, y, z)に対して，商スタック

(4.1) CGf
:=

[
f−1(0)\{0} /Gf

]
を考えることができる．これは先に述べたXLf

と同じものである．f は原点 0 ∈ C3にの
み孤立特異点をもち，Gf は 1次元複素トーラスC∗を位数 cf の有限アーベル群で拡大し
たものなので，商スタック CGf

はDeligne–Mumfordスタックであり，とくに有限個の固
定点を持つ滑らかな射影的曲線であることがわかる．さらに，次のことがわかる：

Theorem 25 ([5]). f(x, y, z)を可逆多項式とする．このとき，商スタック CGf
は高々3

点の固定点を持つ射影直線 P1である．各固定点における固定化群の位数は表 2における
α1, α2, α3で与えられる．ただし，固定点の数は αi ≥ 2となる iの数である． �

Definition 26. Theorem 25における数 (α1, α2, α3)を組 (f,Gf )に対するDolgachev数
といい，AGf

であらわす.

なお，Theorem 25，Orlov型半直交分解定理 Theorem 23と Geigle–Lenzing[6]による
重み付き射影直線の導来圏の構造定理により，次のことがわかる：

Corollary 27 ([12][13]). 極大次数付き行列因子化の圏HMF
Lf

S (f)は full exceptional col-
lectionをもつ． �

さらに強く，次のことが成立する：
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Type f(x, y, z) (α1, α2, α3)

I xp1 + yp2 + zp3 (p1, p2, p3)

II xp1 + yp2 + yz
p3
p2

(
p1,

p3
p2
, (p2 − 1)p1

)
III xp1 + zyq2+1 + yzq3+1 (p1, p1q2, p1q3)

IV xp1 + xy
p2
p1 + yz

p3
p2

(
p3
p2
, (p1 − 1)p3

p2
, p2 − p1 + 1

)
V xq1y + yq2z + zq3x (q2q3 − q3 + 1, q3q1 − q1 + 1, q1q2 − q2 + 1)

Table 2. 組 (f,Gf )に対するDolgachev数

Theorem 28 ([8][13]). 極大次数付き行列因子化の圏 HMF
Lf

S (f)は full strongly excep-
tional collectionをもつ．つまり，有限箙 Qおよび経路代数 CQの許容的イデアル I で，
三角同値D

Lf

Sg (Rf ) ' Db(mod-CQ/I)が成立するものが存在する．とくに，有限次元代数
CQ/Iの大局次元が 3以下になるような full strongly exceptional collectionを選ぶことが
できる． �
この定理は，他の同種の結果と同様に，次のように示される：
(1) 「良い」行列因子化を必要な数だけ見つける．
(2) これらの行列因子化が strongly exceptional collectionをなすことを示す．
(3) 次のCategory Generating Lemmaを用いて，その strongly exceptional collec-

tionが fullであることを示す．

Theorem 29 (Category Generating Lemma). HMF
Lf

S (f)の充満部分三角圏 T ′が excep-
tional collection (E1, . . . , En)によって生成されていて，さらに以下の性質をみたすとする
:

(1) T ′は (~l), ~l ∈ Lf によって閉じている．
(2) 対象E ∈ T ′で， D

Lf

Sg (Rf )において，C(~0)と同型となるものが存在する．

このとき，T ′ ' HMF
Lf

S (f)が成立する．

証明の概略を述べておこう．まず，T ′が right admissibleであることに注意する：

Lemma 30. X ∈ HMF
Lf

S (f)に対して，完全三角形

N → X → M → TN

で，N ∈ T ′およびHom(N,M) = 0が成立するものが存在する． �
ここで，

HMF
Lf

S (f)(E(~l), T iM) = 0 ∀~l ∈ Lf ,
∀i ∈ Z

⇐⇒ ExtiRf
(Rf/m,M) = 0 (i 6= d)

⇐⇒ M ∈ CMLf (Rf ) is Gorenstein

⇐⇒ M ∈ CMLf (Rf ) is free

⇐⇒ M ' 0 in CMLf (Rf )

となることから，T ′ ' HMF
Lf

S (f)であることがわかる．
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Figure 1. Coxeter–Dynkin図形 T (γ1, γ2, γ3)

5. Gabrielov数

前節では可逆多項式から代数的不変量としての正の整数の組を構成した．この節では，
幾何学的不変量を取り出すことが目標である．

Definition 31. 整数 γ1, γ2, γ3に対して，多項式

xγ1 + yγ2 + zγ3 − txyz, t ∈ C\{0},
を Tγ1,γ2,γ3-型の多項式という.

正の整数の組 (a, b, c)に対して，

∆(a, b, c) := abc− bc− ac− ab

とおく．∆(γ1, γ2, γ3) > 0ならば，Tγ1,γ2,γ3-型の多項式はカスプ特異点を定める．ただし，
ここでは∆(γ1, γ2, γ3) > 0に制限せず，一般的な条件のもとで考える．

Tγ1,γ2,γ3-型の多項式のCoxeter–Dynkin図式を T (γ1, γ2, γ3)であらわす（図 1）．ここで
T (γ1, γ2, γ3)は，∆(γ1, γ2, γ3) ≥ 0のときは，零点集合 Tγ1,γ2,γ3 = 0を (C3, 0)の中で考えた
ときの，∆(γ1, γ2, γ3) < 0のときは零点集合 Tγ1,γ2,γ3 = 0をC3の中で大局的に考えたとき
の，Milnorファイバーにおける消滅サイクルの交叉行列を組み合わせ論的に記述したも
のである．つまり，交叉行列 I = (Iij)は，各頂点 •iに対して Iii = −2，2頂点 •iおよび
•jが線分で結ばれていないとき Iij = 0，さらに

Iij = 1 ⇔ •i •j , Iij = −2 ⇔ •i ___ ___ •j
として与えられる．

Theorem 32 ([5]). f(x, y, z) を可逆多項式とする．Table 3 に基づき，f に正の整数
γ1, γ2, γ3を対応させる．

(i) ∆(γ1, γ2, γ3) < 0ならば，原点 0 ∈ C3における適当な多項式座標変換により，多
項式 f(x, y, z)− xyzは Tγ1,γ2,γ3-型の多項式の単項式変形

xγ1 + yγ2 + zγ3 − xyz +

γ1−1∑
i=1

aix
i +

γ2−1∑
j=1

bjy
j +

γ3−1∑
k=1

ckz
k + c, ai, bj, ck, c ∈ C
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となる．
(ii) ∆(γ1, γ2, γ3) = 0ならば，原点 0 ∈ C3における適当な正則座標変換により，多項
式 f(x, y, z)− txyzはある a ∈ C∗に対して Tγ1,γ2,γ3-型の多項式となる．

(iii) ∆(γ1, γ2, γ3) > 0ならば，原点 0 ∈ C3における適当な正則座標変換により，多項
式 f(x, y, z)− xyzは Tγ1,γ2,γ3-型の多項式となる．

Type f(x, y, z) (γ1, γ2, γ3)

I xp1 + yp2 + zp3 (p1, p2, p3)

II xp1 + yp2 + yz
p3
p2

(
p1, p2, (

p3
p2

− 1)p1

)
III xp1 + zyq2+1 + yzq3+1 (p1, p1q2, p1q3)

IV xp1 + xy
p2
p1 + yz

p3
p2

(
p1, (

p3
p2

− 1)p1,
p3
p1

− p3
p2

+ 1
)

V xq1y + yq2z + zq3x (q2q3 − q2 + 1, q3q1 − q3 + 1, q1q2 − q1 + 1)

Table 3. f に対するGabrielov数

�
Definition 33. Theorem 32における正の整数の組 (γ1, γ2, γ3)を f のGabrielov数とい
い Γf であらわす.

Corollary 34. f(x, y, z)を可逆多項式，Γf = (γ1, γ2, γ3)をそのGabrielov数とする.

(i) ∆(Γf ) < 0ならば，f のMilnorファイバー f(x, y, z) = 1は Tγ1,γ2,γ3-型の多項式の
Milnorファイバーに変形できる.

(ii) ∆(Γf ) > 0ならば，特異点 f(x, y, z)は Tγ1,γ2,γ3-型のカスプ特異点に変形できる.

特異点 f が特異点 gに変形できるとき，gのCoxeter–Dynkin図形に頂点と辺を付け加
えて f のCoxeter–Dynkin図形にできる．したがって次のことがわかる：

Corollary 35. f(x, y, z)を可逆多項式，Γf = (γ1, γ2, γ3)をそのGabrielov数とする.

(i) ∆(Γf ) < 0ならば，f のCoxeter–Dynkin図形は T (γ1, γ2, γ3)に含まれる．とくに,
f のCoxeter–Dynkin図形はADE型である．

(ii) ∆(Γf ) = 0ならば，f のCoxeter–Dynkin図形は T (γ1, γ2, γ3)に一致する．
(iii) ∆(Γf ) > 0ならば，T (γ1, γ2, γ3)は f のCoxeter–Dynkin図形の一部である．

より強く, Corollary 34は深谷圏DbFuk→(f)およびDbFuk→(Tγ1,γ2,γ3)の間の半直交分
解定理を与える．とくに，この半直交分解は特異点の圏D

Lf

Sg (Rf )に対する半直交分解定
理 (c.f., [10])のミラー対称性対応物である．

6. 奇妙な双対性

これまでの準備により，主定理を述べることができる．とくに，Arnoldの奇妙な双対
性（strange duality）はもはや「奇妙」でななく，ミラー対称性として自然に理解される
ものであることがわかる．

Theorem 36 ([5]). f(x, y, z)を可逆多項式とする．このとき

(6.1) AGf
= Γf t , AGft

= Γf
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が成り立つ．つまり，組 (f,Gf )に対するDolgachev数AGf
は fのBerglund–Hübsch転置

f tのGabrielov数Γf tに一致し，組 (f t, Gf t)に対するDolgachev数AGft
は fのGabrielov

数 Γf に一致する． �

Type AGf
= (α1, α2, α3) = Γf t Γf = (γ1, γ2, γ3) = AGft

I (p1, p2, p3) (p1, p2, p3)

II
(
p1,

p3
p2
, (p2 − 1)p1

) (
p1, p2, (

p3
p2

− 1)p1

)
III (p1, p1q2, p1q3) (p1, p1q2, p1q3)

IV
(

p3
p2
, (p1 − 1)p3

p2
, p2 − p1 + 1

) (
p1, (

p3
p2

− 1)p1,
p3
p1

− p3
p2

+ 1
)

V (q2q3 − q3 + 1, q3q1 − q1 + 1, q1q2 − q2 + 1) (q2q3 − q2 + 1, q3q1 − q3 + 1, q1q2 − q1 + 1)

Table 4. 奇妙な双対性

なお，冒頭に述べたConjecture 1に対して，次の結果も得られている．

Theorem 37. f(x, y, z)を可逆多項式，Γf = (γ1, γ2, γ3)をそのGabrielov数とする.
∑3

i=1(1/γi) >
1ならば，三角同値

(6.2) Db(cohP1
γ1,γ2,γ3

) ' Db(mod-C∆γ1,γ2,γ3) ' DbFuk→(Tγ1,γ2,γ3)

が成立する．ここで，P1
γ1,γ2,γ3

:= CGft
は Dolgachev数 (γ1, γ2, γ3)を持つ重み付き射影直

線，∆γ1,γ2,γ3は (γ1, γ2, γ3)-型の拡大Dynkin箙とする．
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ON A GENERALIZATION OF COSTABLE TORSION THEORY

YASUHIKO TAKEHANA

Abstract. E. P. Armendariz characterized a stable torsion theory in [1]. R. L. Bern-
hardt dualised a part of characterizations of stable torsion theory in Theorem1.1 of [3], as
follows. Let (T ,F) be a hereditary torsion theory for Mod-R such that every torsionfree
module has a projective cover. Then the following are equivalent. (1) F is closed under
taking projective covers. (2) every projective module splits. In this paper we generalize
and characterize this by using torsion theory. In the remainder of this paper we study
a dualization of Eckman and Shopf’s Theorem and a generalization of Wu and Jans’s
Theorem.

1. INTRODUCTION

Throughout this paper R is a right perfect ring with identity. Let Mod-R be the

categories of right R-modules. For M ∈ Mod-R we denote by [0 → K(M) → P (M)
πM→

M → 0 ] the projective cover of M , where P (M) is projective and kerπM is small in
P (M). A subfunctor of the identity functor of Mod-R is called a preradical. For a
preradical σ, Tσ := {M ∈ Mod-R ; σ(M) = M} is the class of σ-torsion right R-modules,
and Fσ := {M ∈ Mod-R ; σ(M) = 0} is the class of σ-torsionfree right R-modules.
A right R-module M is called σ-projective if the functor HomR(M, ) preserves the
exactness for any exact sequence 0 → A → B → C → 0 with A ∈ Fσ. A preradical σ is
idempotent[radical] if σ(σ(M)) = σ(M)[σ (M/σ(M)) = 0] for a module M , respectively.
A preradical σ is called epi-preserving if σ (M/N) = (σ(M)+N)/N holds for any module
M and any submodule N ofM . For a preradical σ, a short exact sequence [0→ Kσ(M)→
Pσ(M)

πσ
M→ M → 0] is called σ-projective cover of a module M if Pσ(M) is σ-projective,

Kσ(M) is σ-torsion free and Kσ(M) is small in Pσ(M). If σ is an idempotent radical
and a module M has a projective cover, then M has a σ-projective cover and it is given
Kσ(M) = K(M)/σ(K(M)), Pσ(M) = P (M)/σ(K(M)). For X,Y ∈ Mod-R we call an
epimorphism g ∈ HomR(X, Y ) a minimal epimorphism if g(H) $ Y holds for any proper
submodule H of X. It is well known that a minimal epimorphism is an epimorphism
having a small kernel. For a preradical σ we say that M is a σ-coessential extension of X
if there exists a minimal epimorphism h : M � X with kerh ∈ Fσ.

For a module M , Pσ(M) is a σ-coessential extension of M . We say that a subclass C of
Mod-R is closed under taking σ-coessential extensions if : for any minimal epimorphism
f : M � X with kerf ∈ Fσ if X ∈ C then M ∈ C. For the sake of simplicity we say
that M is a σ-coessential extension of M/N if N is a σ-torsionfree small submodule of
M . We say that a subclass C of Mod-R is closed under taking σ-coessential extensions if
: if M/N ∈ C then M ∈ C for any σ-torsion free small submodule N of any module M .

The final version of this paper will be submitted for publication elsewhere.
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We say that a subclass C of Mod-R is closed under taking Fσ-factor modules if : if M ∈ C
and N is a σ-torsionfree submodule of M then M/N ∈ C.

2. COSTABLE TORSION THEORY

Lemma 1. Let σ be an idempotent radical. For a module M and its submodule N ,
consider the following diagram with exact rows.

0→ Kσ(M) → Pσ(M)
f→ M → 0

↓j
0→ Kσ(M/N)→ Pσ(M/N) →

g
M/N → 0,

where f and g are epimorphisms associated with the σ-projective covers and j is the
canonical epimorphism. Since g is a minimal epimorphism, there exists an epimorphism
h : Pσ(M)→ Pσ(M/N) induced by the σ-projectivity of Pσ(M) such that jf = gh. Then
the following conditions hold.

(1) If M is a σ-coessential extension of M/N , then h : Pσ(M) → Pσ(M/N) is an
isomorphism.

(2) Moreover if σ is epi-preserving and h : Pσ(M) → Pσ(M/N) is an isomorphism,
then M is a σ-coessential extension of M/N .

Proof. (1): Let N ∈ Fσ be a small submodule of a module M . Since jf is an epimor-
phism and g is a minimal epimorphism, h is also an epimorphism. Since j(f(kerh)) =
g(h(kerh)) = g(0) = 0, it follows that f(kerh) ⊆ ker j = N ∈ Fσ, and so f(kerh) ∈ Fσ.
Let f |kerh be the restriction of f to kerh. Then it follows that ker(f |kerh) = kerh∩ker f =
kerh ∩Kσ(M) ⊆ Kσ(M) ∈ Fσ. Consider the exact sequence 0 → ker f |kerh → kerh →
f(kerh) → 0. Since Fσ is closed under taking extensions, it follows that kerh ∈ Fσ. As
Pσ(M/N) is σ-projective, the exact sequence 0 → kerh → Pσ(M) → Pσ(M/N) → 0
splits, and so there exists a submodule L of Pσ(M) such that Pσ(M) = L ⊕ kerh. So
it follows that f(Pσ(M)) = f(L) + f(kerh). As f(kerh) ⊆ N and f(Pσ(M)) = M ,
M = f(L) + N . Since N is small in M , it follows that M = f(L). As f is a minimal
epimorphism, it follows that Pσ(M) = L and kerh = 0, and so h : Pσ(M) ' Pσ(M/N),
as desired.

(2): Suppose that h : Pσ(M) ' Pσ(M/N). By the commutativity of the above diagram
with h, it follows that h(f−1(N)) ⊆ Kσ(M/N) ∈ Fσ. Since h is an isomorphism, f−1(N) ∈
Fσ. As f |f−1(N) : f

−1(N)→ N → 0 and σ is an epi-preserving preradical, it follows that
N ∈ Fσ. Next we will show that N is small in M . Let K be a submodule of M
such that M = N + K. If f−1(K) $ Pσ(M), then h(f−1(K)) $ Pσ(M/N) as h is an
isomorphism. Since g(h(f−1(K))) = j(f(f−1(K))) = j(K) = (K +N)/N = M/N and g
is a minimal epimorphism, this is a contradiction. Thus it holds that f−1(K) = Pσ(M),
and so K = f(f−1(K)) = f(Pσ(M)) = M . Thus it follows that N is small in M . �

We call a preradical t σ-costable if Ft is closed under taking σ-projective covers. Now
we characterize σ-costable preradicals.

Theorem 2. Let t be a radical and σ be an idempotent radical. Consider the following
conditions.

(1) t is σ-costable.
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(2) P/t(P ) is σ-projective for any σ-projective module P .
(3) For any module M consider the following commutative diagram, then t(Pσ(M)) is

contained in kerf .

Pσ(M)
h→ M → 0

↓f ↓j
Pσ(M/t(M))→

g
M/t(M)→ 0,

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is a morphism induced by σ-projectivity of Pσ(M).

(4) Ft is closed under taking σ-coessential extensions.
(5) For any σ-projective module P such that t(P ) ∈ Fσ, t(P ) is a direct sumand of P .
Then (1) ⇐ (5) ⇐= (2) ⇐⇒ (1) ⇐⇒ (3), (4) =⇒ (1) hold. Moreover if Ft is closed

under taking Fσ-factor modules, then all conditions are equivalent.

Proof. (1) → (2) : Let P be a σ-projective module. Since P/t(P ) ∈ Ft, it follows that
Pσ(P/t(P )) ∈ Ft by the assumption. Consider the following commutative diagram.

P
f ↙ ↓ h

0→ Kσ(P/t(P ))→ Pσ(P/t(P ))→
g
P/t(P )→ 0,

where h is a canonical epimorphism, g is an epimorphism associated with the σ-
projective cover of P/t(P ) and f is a morphism induced by σ-projectivity of Pσ(P/t(P )).
Since f(t(P )) ⊆ t(Pσ(P/t(P ))) = 0, f induces f ′ : P/t(P )→ Pσ(P/t(P )) (x+ t(P ) 7−→
f(x)). Thus for x ∈ P , h(x) = gf(x) = gf ′h(x). So the above exact sequence splits.
Therefore P/t(P ) is a direct summand of σ-projective module Pσ(P/t(P )), and so P/t(P )
is also a σ-projective module, as desired.

(2) → (5) : Let P be σ-projective and t(P ) ∈ Fσ. By the assumption P/t(P ) is σ-
projective. Thus the sequence (0 → t(P ) → P → P/t(P ) → 0) splits, and so t(P ) is a
direct summand of P .

(5) → (1) : Let M be in Ft. Consider the exact sequence 0 → Kσ(M) → Pσ(M) →
f

M → 0. Since f(t(Pσ(M))) ⊆ t(M) = 0, Kσ(M) = ker f ⊇ t(Pσ(M)). As Kσ(M) ∈ Fσ,
t(Pσ(M)) ∈ Fσ. Since Pσ(M) is σ-projective, t(Pσ(M)) is a direct summand of Pσ(M)
by the assumption. Thus there exists a submodule K of Pσ(M) such that Pσ(M) =
t(Pσ(M))⊕K. Since Kσ(M) = ker f ⊇ t(Pσ(M)), Pσ(M) = Kσ(M) +K. As Kσ(M) is
small in Pσ(M), Pσ(M) = K. Thus t(Pσ(M)) = 0, as desired.

(1)→ (3) : Consider the following commutative diagram.

Pσ(M)
h→ M → 0

f ↓ ↓ j
Pσ(M/t(M))

g→M/t(M)→ 0,

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is a morphism induced by σ-projectivity of Pσ(M). As g is a
minimal epimorphism, f is an epimorphism. By the assumption Pσ(M/t(M)) ∈ Ft, and
so f(t(Pσ(M))) ⊆ t(Pσ(M/t(M))) = 0. Hence t(Pσ(M)) ⊆ ker f.
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(3)→ (1) : Let M be in Ft. By the above commutative diagram, f is an identity. Thus
by the assumption t(Pσ(M)) ⊆ ker f = 0, as desired.

(1)→ (4) : Let N ∈ Fσ be a small submodule of a module M such that M/N ∈ Ft. By
the assumption Pσ(M/N) ∈ Ft. By Lemma1, Pσ(M/N) ' Pσ(M), and so Pσ(M) ∈ Ft.
Consider the sequence 0→ Kσ(M)→ Pσ(M)→M → 0. Since Ft is closed under taking
Fσ-factor modules, it follows that M ∈ Ft, as desired.

(4) → (1) : Since Pσ(M) is σ-coessential extension of a module M in Ft, Ft is closed
under taking σ-projective covers. �
Remark 3. It is well known that t is epi-preserving if and only if t is a radical and Ft is
closed under taking factor modules. Therefore if t is epi-preserving and σ be an idempotent
radical, then all conditions in Theorem 2 are equivalent.

Next if σ is identity, then the following corollary holds. The following have the another
characterization of Theorem1.1 of [3].

Corollary 4. For a radical t the following conditions except (4) are equivalent. Moreover
if t is an epi-preserving preradical, then all conditions are equivalent.

(1) t is costable, that is, Ft is closed under taking projective covers.
(2) P/t(P ) is projective for any projective module P .

(3) P (M)
h→ M → 0

↓f ↓j
P (M/t(M))→

g
M/t(M)→ 0,

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is induced by the projectivity of P (M). Then t(P (M)) is contained
in kerf .

(4) Ft is closed under taking coessential extensions.
(5) For any projective module P , t(P ) is a direct summand of P .

3. DUALIZATION OF ECKMAN & SHOPF’S THEOREM

In [8] we state a torsion theoretic generalization of Eckman & Shopf’s Theorem, as
follows. Let σ be a left exact radical and 0 → M → E be a exact sequence of Mod-R.
Then the following conditions from (1) to (4) are equivalent. (1) E is σ-injective and σ-
essential extension of M . (2) E is minimal in {Y ∈ Mod-R|M ↪→ Y and Y is σ-injective}.
(3) E is maximal in {Y ∈ Mod-R|M ↪→ Y and Y is σ-essential extension of M}. (4) E
is isomorphic to Eσ(M), where σ(E(M)/M) = Eσ(M)/M . Here we dualised this.

Lemma 5. If P is σ-projective, then Pσ(P ) is isomorphic to P .

Theorem 6. Let P
f→ M → 0 be a exact sequence of Mod-R. Let σ is an idempotent

radical. Consider the following conditions, then the implications (1) ⇐⇒ (3) and (1) =⇒
(2) hold. Moreover if σ is an epi-preserving preradical, then all conditions are equivalent.

(1) P is σ-projective and P
f
� M is a σ-coessential extension of M .

(2) P is a minimal σ-projective extension of M(i.e. P is σ-projective and if I is σ-

projective and P
h� I, I � M, then h is an isomorphism.).
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(3) P is a maximal σ-coessential extension of M(i.e. P
f
� M is σ-coessential extension

of M and if there exists an epimorphism I
h� P and I

h� P � M is σ-coessential of M ,
then h is an isomorphism.).

(4) P is isomorphic to Pσ(M).

Proof. (1)→(2): Let P be σ-projective and P
f
� M be a σ-coessential extension of M .

Consider the following diagram.

0→ kerh→ P
h→ I → 0
↘f ↓g

M,
where I is σ-projective, g and h are epimorphisms such that gh = f.
Since Fσ 3 f−1(0) = h−1(g−1(0)) ⊇ h−1(0), it follows that Fσ 3 h−1(0) = kerh. As f is

a minimal epimorphism and g is an epimorphism, h is also a minimal epimorphism. Since
I is σ-projective, there exists a submodule L of P such that P = kerh ⊕ L and L ∼= I.
As kerh is small in P , P = L, and so P ∼= I.

(2)→(1): Let σ be an epi-preserving idempotent radical and P be a minimal σ-
projective extension of M . Consider the following commutative diagram.

Pσ(P )
j→ P → 0

g ↓ ↓ f
Pσ(M)

h→M → 0,
where h and j are epimorphisms associated with the projective covers of M and P

respectively and g is an induced epimorphism by the σ-projectivity of Pσ(P ). Since P is
σ-projective, j is an isomorphism by Lemma 4. As Pσ(P ) and Pσ(M) are σ-projective,

g is an isomorphism by the assumption. By Lemma 1, it follows that P
f→ M → 0 is a

σ-coessential extension of M .

(1)→(3): Let I
g→ P be an epimorphism. Let P

f
� M and I

h� M be σ-coessential
extensions of M such that fg = h. Consider the following exact diagram.

I
g ↙ ↓ h

P →
f
M → 0

Since f is a minimal epimorphism, g is an epimorphim. As h and f are minimal
epimorphisms, g is a minimal epimorphim. Since Fσ 3 h−1(0) = g−1(f−1(0)) ⊇ g−1(0), it

follows that Fσ 3 g−1(0). Since P is σ-projective, 0→ ker g → I
g→ P → 0 splits, and so

there exists a submodule H of I such that H ∼= P and I = ker g ⊕H. As ker g is small
in I, I = H ∼= P , as desired.

(3)→(1): We show that P is σ-projective. Since P
f
� M is a σ-coessential extension

of M by the assumption, an induced morphism Pσ(P ) → Pσ(M) is an isomorphism by
Lemma 1. Consider the following commutative diagram.

Pσ(P )→ P → 0
↓ ↓

Pσ(M)→M → 0.
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Since Pσ(P ) ' Pσ(M) � M is a σ-coessential extension of M and P
f
� M is a σ-

coessential extension of M , it follows that Pσ(P ) ∼= P by the assumption, and so P is
σ-projective.

(1)→(4): By Lemma 1, Pσ(P ) ' Pσ(M). By Lemma 4, Pσ(P ) ' P, and so P ' Pσ(M)
as desired.

(4)→(1): It is clear. �
In Theorem 5, if σ = 1, then the following corollary is obtained.

Corollary 7. Let P
f→ M → 0 be a exact sequence of Mod-R. Then the following

conditions are equivalent.

(1) P is projective and P
f
� M is a coessential extension of M(that is, kerf is small

in M).
(2) P is a minimal projective extension of M(i.e. P is projective and if I is projective

and P
h� I, I � M, then h is an isomorphism).

(3) P is a maximal coessential extension of M(i.e. P
f
� M is coessential extension of

M and if there exists an epimorphism I
h� P and I

h� P � M is coessential of M , then
h is an isomorphism.).

(4) P is isomorphic to P (M).

4. A GENERALIZATION OF WU, JANS AND MIYASHITA’S THEOREM
AND AZUMAYA’S THEOREM

In [8] we state a torsion theoretic generalization of Johnson and Wong’s Theorem.
Here we study a dualization of this. For a module M and N , we call M σ-N -projective
if HomR(M, ) preserves the exactness of the short exact sequence 0 → K → N →
N/K → 0 with K ∈ Fσ.

Theorem 8. Let M and N be modules. Consider the following conditions for an idem-
potent radical σ.

(1) γ(Kσ(M)) ⊆ Kσ(N) holds for any γ ∈ HomR(Pσ(M), Pσ(N)).
(2) M is σ-N-projective.
Then the implication (1)→(2) holds. If σ is epi-preserving, then the implication (2)→(1)

holds.

Proof. (1)→(2): Let f be in HomR(M,N/K) with K ∈ Fσ. Then there exists h ∈
HomR(Pσ(M), N) such that fπσ

M = nh, where n is a canonical epimorphism from N to
N/K. And there exists γ ∈ HomR(Pσ(M), Pσ(N)) such that h = πσ

Nγ. So we have the
following commutative diagramm.

Pσ(M)
πσ
M� M

γ ↙ ↓h ↓f
Pσ(N) �

πσ
N

N →
n
N/K

By the assumption, γ induces γ′ : Pσ(M)/Kσ(M)→ Pσ(N)/Kσ(N), and so γ′ induces
γ′′ : M → N such that f = γ′′n, as desired.
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(2)→(1): Let σ be epi-preserving and γ ∈ HomR(Pσ(M), Pσ(N)). We will show that
γ(Kσ(M)) ⊆ Kσ(N). We put T = γ(Kσ(M)) +Kσ(N). Since T ⊇ γ(Kσ(M)), γ induces
γ′ : M ' Pσ(M)/Kσ(M) → Pσ(N)/γ(Kσ(M)) → Pσ(N)/T → N/πσ

N(T ) (πσ
M(x) ←→

x + Kσ(M) → γ(x) + γ(Kσ(M)) → γ(x) + T → πσ
N(γ(x)) + πσ

N(T )). Let nN be a
canonical epimorphism from N to N/πσ

N(T ). Since πσ
N(T ) = πσ

N(γ(Kσ(M)) +Kσ(N)) =
πσ
N(γ(Kσ(M)), Kσ(M) ∈ Fσ and Fσ is closed under taking factor modules, it follows that

πσ
N(T ) ∈ Fσ. Since M is σ-N -projective, there exists β : M → N such that γ′ = nNβ.

Therefore we have the following commutative diagramm.
M

β ↙ ↓ γ′

0→ πσ
N(T )→ N →

nN

N/πσ
N(T )→ 0

·By the σ-projectivity of Pσ(M), there exists α : Pσ(M) → Pσ(N) such that πσ
Nα =

βπσ
M . Thus we have the following commutative diagramm.

0→ Kσ(M)→ Pσ(M)
πσ
M→ M → 0

↓α ↓β
0→ Kσ(N)→ Pσ(N)→

πσ
N

N → 0

Thus by the commutativity of the above diagram, we have α(Kσ(M)) ⊆ Kσ(N).
We put X = {x ∈ Pσ(M)|γ(x) − α(x) ∈ Kσ(N)}. We will show that X + Kσ(M) =

Pσ(M). For any x ∈ Pσ(M) it follows that γ′(πσ
M(x)) = πσ

N(γ(x))+πσ
N(T ), (nNβ)(π

σ
M(x)) =

β(πσ
Mx)+πσ

N(T ) and γ′ = nNβ, it follows that π
σ
N(γ(x))+πσ

N(T ) = β(πσ
Mx)+πσ

N(T ), and
so πσ

N(γ(x))−β(πσ
Mx) ∈ πσ

N(T ). Since π
σ
Nα = βπσ

M , it follows that πσ
N(γ(x))−πσ

N(α(x)) ∈
πσ
N(T ), and so γ(x)− α(x) ∈ T + (πσ

N)
−1(0) = T +Kσ(N) = γ(Kσ(M)) +Kσ(N). Thus

there exists m ∈ Kσ(M) such that γ(x) − α(x) − γ(m) ∈ Kσ(N), and so γ(x − m) −
α(x −m) ∈ α(m) + Kσ(N) ⊆ α(Kσ(M)) + Kσ(N) = Kσ(N). Therefore it follows that
x − m ∈ X, and so x ∈ Kσ(M) + X. Thus we conclude that Pσ(M) = Kσ(M) + X.
Since Kσ(M) is small in Pσ(M), it holds that X = Pσ(M). Thus it follows that
{x ∈ Pσ(M)|γ(x) − α(x) ∈ Kσ(N)} = Pσ(M). Thus if x ∈ Kσ(M)(⊆ Pσ(M)), then
γ(x) − α(X) ∈ Kσ(N), and so γ(x) ∈ α(x) + Kσ(N) ⊆ α(Kσ(M)) + Kσ(N) = Kσ(N),
and so it follows that γ(Kσ(M)) ⊆ Kσ(N). �

In Theorem 7 we put σ = 1, then we have a generalization of Azumaya’s Theorem in
[2]. In Theorem 7 we put M = N and σ = 1, then we have a generalization of Wu, Jans
and Miyashita’s Theorem in [9] and [5].
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GRADED FROBENIUS ALGEBRAS AND QUANTUM BEILINSON

ALGEBRAS
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Abstract. Frobenius algebras are one of the important classes of algebras studied in
representation theory of finite dimensional algebras. In this article, we will study when
given graded Frobenius Koszul algebras are graded Morita equivalent. As applications,
we apply our results to quantum Beilinson algebras.
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1. Introduction

This is based on a joint work with Izuru Mori.
Classification of Frobenius algebras is an active project in representation theory of

finite dimensional algebras. This article tries to answer the question when given graded
Frobenius Koszul algebras are graded Morita equivalent, that is, they have equivalent
graded module categories.

This problem is related to classification of quasi-Fano algebras. It is known that ev-
ery finite dimensional algebra of global dimension 1 is a path algebra of a finite acyclic
quiver up to Morita equivalence, so such algebras can be classified in terms of quivers.
As an obvious next step, it is interesting to classify finite dimensional algebras of global
dimension 2 or higher. Recently, Minamoto introduced a nice class of finite dimensional
algebras of finite global dimension, called (quasi-)Fano algebras [2], which are a very
interesting class of algebras to study and classify. It was shown that, for a graded Frobe-
nius Koszul algebra A, we can define another algebra ∇A, called the quantum Beilinson
algebra associated to A, and with some additional assumptions, ∇A turns out to be a
quasi-Fano algebra. Moreover, it was shown that two graded Frobenius algebras A,A′

are graded Morita equivalent if and only if ∇A,∇A′ are isomorphic as algebras, so clas-
sifying graded Frobenius (Koszul) algebra up to graded Morita equivalence is related to
classifying quasi-Fano algebras up to isomorphism (see [3] for details).

In addition, this problem is related to the study of AS-regular algebras which are the
most important class of algebras in noncommutative algebraic geometry (see [8]).

Our main theorem (Theorem 9) is as follows. For every co-geometric Frobenius Koszul
algebra A, we define another graded algebra A, and see that if two co-geometric Frobenius
Koszul algebras A,A′ are graded Morita equivalent, then A,A′ are isomorphic as graded
algebras. Unfortunately, the converse does not hold in general. On the other hand,
the converse is also true for many co-geometric Frobenius Koszul algebras of Gorenstein
parameter −3.

The detailed version of this paper will be submitted for publication elsewhere.
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2. Frobenius Koszul algebras

Throughout this paper, we fix an algebraically closed field k of characteristic 0, and
we assume that all vector spaces and algebras are over k unless otherwise stated. In this
paper, a graded algebra means a connected graded algebra finitely generated in degree
1, that is, every graded algebra can be presented as A = T (V )/I where V is a finite
dimensional vector space, T (V ) is the tensor algebra on V over k, and I is a homogeneous
two-sided ideal of T (V ). We denote by GrModA the category of graded right A-modules.
Morphisms in GrModA are right A-module homomorphisms preserving degrees. We say
that two graded algebras A and A′ are graded Morita equivalent if GrModA ∼= GrModA′.

For a graded module M ∈ GrModA and an integer n ∈ Z, we define the truncation
M≥n :=

⊕
i≥n Mi ∈ GrModA and the shift M(n) ∈ GrModA by M(n)i := Mn+i for

i ∈ Z. For M,N ∈ GrModA, we write

HomA(M,N) :=
⊕
n∈Z

HomGrModA(M,N(n)).

We denote by V ∗ the dual vector space of a vector space V . If M is a graded right
(resp. left) module over a graded algebra A, then we denote by M∗ := Homk(M,k) the
dual graded vector space of M by abuse of notation, i.e. (M∗)i := (M−i)

∗. Note that M∗

has a graded left (resp. right) A-module structure.
Let A be a graded algebra, and τ ∈ Autk A a graded algebra automorphism. For a

graded right A-module M ∈ GrModA, we define a new graded right A-module Mτ ∈
GrModA by Mτ = M as a graded vector space with the new right action m ∗ a := mτ(a)
for m ∈ M and a ∈ A. If M is a graded A-A bimodule, then Mτ is also a graded A-A
bimodule by this new right action. The rule M 7→ Mτ is a k-linear autoequivalence for
GrModA.

A graded algebra A is called quadratic if A ∼= T (V )/(R) where R ⊆ V ⊗k V is a
subspace and (R) is the ideal of T (V ) generated by R. If A = T (V )/(R) is a quadratic
algebra, then we define the dual graded algebra by A! := T (V ∗)/(R⊥) where

R⊥ := {λ ∈ V ∗ ⊗k V
∗ ∼= (V ⊗k V )∗ | λ(r) = 0 for all r ∈ R}.

Clearly, A! is again a quadratic algebra and (A!)! ∼= A as graded algebras.
We now recall the definitions of Koszul algebras and graded Frobenius algebras. Frobe-

nius algebras are one of the main classes of algebras of study in representation theory of
finite dimensional algebras.

Definition 1. Let A be a connected graded algebra, and suppose k ∈ GrModA has a
minimal free resolution of the form

· · · //
⊕ri

j=1A(−sij) // · · · //
⊕r0

j=1A(−s0j) // k // 0.

The complexity of A is defined by

cA := inf{d ∈ R+ | ri ≤ cid−1for some constant c > 0, i � 0}.
We say that A is Koszul if sij = i for all 1 ≤ j ≤ ri and all i ∈ N.

It is known that if A is Koszul, then A is quadratic, and its dual graded algebra A! is
also Koszul, which is called the Koszul dual of A.
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Definition 2. A graded algebra A is called a graded Frobenius algebra of Gorenstein
parameter ` if A∗ ∼= νA(−`) as graded A-A bimodules for some graded algebra automor-
phism ν ∈ Autk A, called the Nakayama automorphism of A. We say that A is graded
symmetric if A∗ ∼= A(−`) as graded A-A bimodules.

A skew exterior algebra

A = k〈x1, . . . , xn〉/(αijxixj + xjxi, x
2
i )

where αij ∈ k such that αijαji = αii = 1 for 1 ≤ i, j ≤ n is a typical example of a
Frobenius Koszul algebra.

At the end of this section, we give an interesting result about graded Morita equivalence
of graded skew exterior algebras. It is known that every (ungraded) Frobenius algebra
which is Morita equivalent to symmetric algebra is symmetric. The situation in the graded
case is different as the following theorem shows.

Proposition 3. [7] Every skew exterior algebra is graded Morita equivalent to a graded
symmetric skew exterior algebra.

For example, a 3-dimensional skew exterior algebra

A = k〈x, y, z〉/(αyz + zy, βzx+ xz, γxy + yx, x2, y2, z2)

is graded Morita equivalent to a symmetric skew exterior algebra

A = k〈x, y, z〉/( 3
√
αβγyz + zy, 3

√
αβγzx+ xz, 3

√
αβγxy + yx, x2, y2, z2).

3. Co-geometric Frobenius Koszul algebras

In order to state our main result, let us define a co-geometric algebra (see [4] for details).

Definition 4. [4] Let A = T (V )/I be a graded algebra. We say that N ∈ GrModA is a
co-point module if N has a free resolution of the form

· · · // A(−2) // A(−1) // A // N // 0 .

For a graded algebra A = T (V )/I, we can define the pair P !(A) = (E, σ) consisting of
the set E ⊆ P(V ) and the map σ : E → E as follows:

• E := {p ∈ P(V ) | Np := A/pA ∈ GrModA is a co-point module}, and
• the map σ : E → E is defined by ΩNp(1) = Nσ(p).

Meanwhile, for a geometric pair (E, σ) consists of a closed subscheme E ⊆ P(V ) and an
automorphism σ ∈ Autk E, we can define the algebra A!(E, σ) as follows:

A!(E, σ) := (T (V ∗)/(R))! where R := {f ∈ V ∗ ⊗k V
∗ | f(p, σ(p)) = 0, ∀p ∈ E}.

Definition 5. [4] A graded algebra A = T (V )/I is called co-geometric if A satisfies the
following conditions:

• P !(A) consisting of a closed subscheme E ⊆ P(V ) and an automorphism σ ∈
Autk E,

• A! is noetherian, and
• A ∼= A!(P !(A)).
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Example 6. [4] Let A = k〈x, y〉/(αxy + yx, x2, y2) be a 2-dimensional skew exterior
algebra. Then for any point p = (a, b) ∈ P(V ) = P1, Np = A/(ax + by)A has a free
resolution of the form

· · · // A(−2)
(α2ax+by)·

// A(−1)
(αax+by)·

// A
(ax+by)·

// Np
// 0 .

Since ΩNp(1) = A/(αax+ by)A, it follow that

P !(A) = (P1, σ), where σ(a, b) := (αa, b).

In fact, A is co-geometric.

Example 7. The algebras below are examples of co-geometric algebras.

• A Frobenius Koszul algebra of finite complexity and of Gorenstein parameter −3.
For example, if A = k〈x, y, z〉 with the defining relations

αx2 − γyz, αy2 − γzx, αz2 − γxy,

βyz − αzy, βzx− αxz, βxy − αyx.

for a generic choice of α, β, γ ∈ k, then A = A!(E, σ) is a Frobenius Koszul algebra
of complexity 3 and of Gorenstein parameter −3 such that

E = V(αβγ(x3 + y3 + z3)− (α3 + β3 + γ3)xyz) ⊂ P2

is an elliptic curve and σ ∈ Autk E is the translation automorphism by the point
(α, β, γ) ∈ E.

• The skew exterior algebra.

Let A = A!(E, σ) be a co-geometric Frobenius Koszul algebra of Gorenstein parameter
−` with the Nakayama automorphism ν ∈ Autk A. The restriction ν|A1 = τ |V induces an
automorphism ν ∈ Autk P(V ). Moreover, ν ∈ Autk P(V ) restricts to an automorphism
ν ∈ Autk E by abuse of notation (see [5] for details). We can now define a new graded
algebra A as follows:

A := A!(E, νσ`).

Example 8. If A = k〈x, y, z〉 with the defining relations

x2 + βxz, zx+ xz, z2,

y2 + αyz, zy + yz, xy + yx− (β + γ)xz − (α + γ)yz,

where α, β, γ ∈ k, α + β + γ 6= 0, then A = A!(E, σ) is a Frobenius Koszul algebra of
complexity 3 and of Gorenstein parameter −3 such that

E = V(x) ∪ V(y) ∪ V(x− y) ⊂ P2

is a union of three lines meeting at one point, and σ ∈ Autk E is given by

σ|V(x)(0, b, c) = (0, b, αb+ c),

σ|V(y)(a, 0, c) = (a, 0, βa+ c),

σ|V(x−y)(a, a, c) = (a, a,−γa+ c)
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In this case, ν ∈ Autk E induced by the Nakayama automorphism ν ∈ Autk A is given by

ν(a, b, c) = (a, b, (α + γ − 2β)a+ (β + γ − 2α)b+ c)

It follows that A = A!(E, νσ3) is k〈x, y, z〉 with the defining relations

x2 + (α+ β + γ)xz, zx+ xz, z2,

y2 + (α + β + γ)yz, zy + yz, xy + yx− 2(α + β + γ)xz − 2(α + β + γ)yz.

Our main result is as follows.

Theorem 9. [7] Let A,A′ be co-geometric Frobenius Koszul algebras. Then

GrModA ∼= GrModA′ =⇒ A ∼= A′ as graded algebras.

In particular, let A = A!(E, σ), A′ = A!(E ′, σ′) be Frobenius Koszul algebras of finite
complexities and of Gorenstein parameter −3 such that E ∼= E ′. Suppose that E = P2 or
E is a reduced and reducible cubic in P2, then

GrModA ∼= GrModA′ ⇐⇒ A ∼= A′ as graded algebras.

4. Quantum Beilinson Algebras

Finally, we apply our results to quantum Beilinson algebras.

Definition 10. [1], [6] Let A be a graded Frobenius algebra of Gorenstein parameter −`.
Then the quantum Beilinson algebra of A is defined by

∇A :=


A0 A1 · · · A`−1

0 A0 · · · A`−2
...

...
. . .

...
0 0 · · · A0

 .

Theorem 11. [3] Let A,A′ be graded Frobenius algebras. Then

GrModA ∼= GrModA′ ⇐⇒ ∇A ∼= ∇A′ as algebras.

By the above theorem, classifying graded Frobenius algebras up to graded Morita equiv-
alence is the same as classifying quantum Beilinson algebras up to isomorphism.

Quasi-Fano algebras introduced by Minamoto [2] are one of the nice classes of a finite
dimensional algebras of finite global dimensions (see [3], [6] for details).

Definition 12. A finite dimensional algebra R is called quasi-Fano of dimension n if
gldimR = n and w−1

R is a quasi-ample two-sided tilting complex, that is, hi((w−1
R )⊗

L
Rj) = 0

for all i 6= 0 and all j ≥ 0, where wR := R∗[−n].

Let A be a graded Frobenius Koszul algebra of Gorenstein parameter −d. Assume that
A has the Hilbert series

HA(t) :=
∑
i

(dimk Ai)t
i = (1 + t)d

and that A! is noetherian. Then ∇A is a quasi-Fano algebra of dimension d− 1.
In general, it is not easy to check if two algebras given as path algebras of quivers with

relations are isomorphic as algebras by constructing an explicit algebra isomorphism. On
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the other hand, it is much easier to check if two graded algebras T (V )/I and T (V ′)/I ′

generated in degree 1 over k are isomorphic as graded algebras since any such isomorphism
is induced by the vector space isomorphism V → V ′. In this sense, our main result is
useful for the classification of a class of finite dimensional algebras of global dimension 2,
namely, quantum Beilinson algebras of global dimension 2.

Fix the Beilinson quiver

Q = •

x1 //
y1 //
z1 //

•

x2 //
y2 //
z2 //

•

and let
B = kQ/I, B′ = kQ/I ′, B′′ = kQ/I ′′

be path algebras with relations

I = (αy1z2 + z1y2, βz1x2 + x1z2, γx1y2 + y1x2, x1x2, y1y2, z1z2)

I ′ = (x1x2 + α′y1z2, y1y2 + β′z1x2, z1z2 + γ′x1y2, z1y2, x1z2, y1x2)

I ′′ = (α′′y1z2 + z1y2, β
′′z1x2 + x1z2, β

′′x1y2 + y1x2, x1x2 + y1z2, y1y2, z1z2)

where αβγ 6= 0, 1, α′β′γ′ 6= 0, 1, α′′(β′′)2 6= 0, 1. Then B,B′, B′′ are the quantum Beilinson
algebras of co-geometric Frobenius Koszul algebras A,A′, A′′ of Gorenstein parameter −3

A = A!(E, σ) = k〈x, y, z〉/(αyz + zy, βzx+ xz, γxy + yx, x2, y2, z2),

A′ = A!(E ′, σ′) = k〈x, y, z〉/(x2 + α′yz, y2 + β′zx, z2 + γ′xy, zy, xz, yx),

A′′ = A!(E ′′, σ′′) = k〈x, y, z〉/(α′′yz + zy, β′′zx+ xz, β′′xy + yx, x2 + yz, y2, z2),

where E is a triangle and σ ∈ Autk E stabilizes each component, E ′ is a triangle and
σ′ ∈ Autk E

′ circulates three components, and E ′′ is a union of a line and a conic meeting
at two points and σ′′ ∈ Autk E

′′ stabilizes each component and two intersection points.
Since

E ∼= E ′ � E ′′,

we see that
B � B′′, B′ � B′′.

Moreover, it is not difficult to compute

A = A!(E, νσ3)

= k〈x, y, z〉/(αβγyz + zy, αβγzx+ xz, αβγxy + yx, x2, y2, z2),

A′ = A!(E ′, ν ′(σ′)3)

= k〈x, y, z〉/(yz + α′β′γ′zy, zx+ α′β′γ′xz, xy + α′β′γ′yx, x2, y2, z2).

Since A,A′ are skew exterior algebras, it is easy to check when they are isomorphic as
graded algebras. Using theorems, the following are equivalent.

(1) B ∼= B′ as algebras.
(2) GrModA ∼= GrModA′.
(3) A ∼= A′ as graded algebras.
(4) α′β′γ′ = (αβγ)±1.
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APPLICATIONS OF FINITE FROBENIUS RINGS TO THE
FOUNDATIONS OF ALGEBRAIC CODING THEORY

JAY A. WOOD

Abstract. This article addresses some foundational issues that arise in the study of
linear codes defined over finite rings. Linear coding theory is particularly well-behaved
over finite Frobenius rings. This follows from the fact that the character module of a
finite ring is free if and only if the ring is Frobenius.

Key Words: Frobenius ring, generating character, linear code, extension theorem,
MacWilliams identities.
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1. Introduction

At the center of coding theory lies a very practical problem: how to ensure the integrity
of a message being transmitted over a noisy channel? Even children are aware of this
problem: the game of “telephone” has one child whisper a sentence to a second child,
who in turn whispers it to a third child, and the whispering continues. The last child says
the sentence out loud. Usually the children burst out laughing, because the final sentence
bears little resemblance to the original.

Using electronic devices, messages are transmitted over many different noisy channels:
copper wires, fiber optic cables, saving to storage devices, and radio, cell phone, and
deep-space communications. In all cases, it is desirable that the message being received
is the same as the message being sent. The standard approach to error-correction is to
incorporate redundancy in a cleverly designed way (encoding), so that transmission errors
can be efficiently detected and corrected (decoding).

Mathematics has played an essential role in coding theory, with the seminal work of
Claude Shannon [27] leading the way. Many constructions of encoding and decoding
schemes make strong use of algebra and combinatorics, with linear algebra over finite
fields often playing a prominent part. The rich interplay of ideas from multiple areas has
led to discoveries that are of independent mathematical interest.

This article addresses some of the topics that lie at the mathematical foundations of
algebraic coding theory, specifically topics related to linear codes defined over finite rings.
This article is not an encyclopedic survey; the mathematical questions addressed are ones
in which the author has been actively involved and are ones that apply to broad classes
of finite rings, not just to specific examples.

Prepared for the 44th Symposium on Rings and Representation Theory Japan, 2011.
Supported in part by a sabbatical leave from Western Michigan University.
This paper is in final form and no version of it will be submitted for publication elsewhere.
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The topics covered are ring-theoretic analogs of results that go back to one of the early
leaders of the field, Florence Jessie MacWilliams (1917–1990). MacWilliams worked for
many years at Bell Labs, and she received her doctorate from Harvard University in 1962,
under the direction of Andrew Gleason [22]. She is the co-author, with Neil Sloane, of
the most famous textbook on coding theory [23].

Two of the topics discussed in this article are found in the doctoral dissertation of
MacWilliams [22]. One topic is the famous MacWilliams identities, which relate the
Hamming weight enumerator of a linear code to that of its dual code. The MacWilliams
identities have wide application, especially in the study of self-dual codes (linear codes that
equal their dual code). The MacWilliams identities are discussed in Section 4, and some
interesting aspects of self-dual codes due originally to Gleason are discussed in Section 6.

The other topic to be discussed, also found in MacWilliams’s dissertation, is the
MacWilliams extension theorem. This theorem is not as well known as the MacWilliams
identities, but it underlies the notion of equivalence of linear codes. It is easy to show that
a monomial transformation defines an isomorphism between linear codes that preserves
the Hamming weight. What is not so obvious is the converse: whether every isomorphism
between linear codes that preserves the Hamming weight must extend to a monomial
transformation. MacWilliams proves that this is indeed the case over finite fields. The
MacWilliams extension theorem is a coding-theoretic analog of the extension theorems
for isometries of bilinear forms and quadratic forms due to Witt [30] and Arf [1].

This article describes, in large part, how these two results, the MacWilliams identities
and the MacWilliams extension theorem, generalize to linear codes defined over finite
rings. The punch line is that both theorems are valid for linear codes defined over finite
Frobenius rings. Moreover, Frobenius rings are the largest class of finite rings over which
the extension theorem is valid.

Why finite Frobenius rings? Over finite fields, both the MacWilliams identities and
the MacWilliams extension theorem have proofs that make use of character theory. In
particular, finite fields F have the simple, but crucial, properties that their characters

F̂ form a vector space over F and F̂ ∼= F as vector spaces. The same proofs will work

over a finite ring R, provided R has the same crucial property that R̂ ∼= R as one-
sided modules. It turns out that finite Frobenius rings are exactly characterized by this
property ([14, Theorem 1] and, independently, [31, Theorem 3.10]). The character theory
of finite Frobenius rings is discussed in Section 2, and the extension theorem is discussed
in Section 5. Some standard terminology from algebraic coding theory is discussed in
Section 3.

While much of this article is drawn from earlier works, especially [31] and [33], some of
the treatment of generating characters for Frobenius rings in Section 2 has not appeared
before. The new results are marked with a dagger (†).

Acknowledgments. I thank the organizers of the 44th Symposium on Rings and Repre-
sentation Theory Japan, 2011, especially Professor Kunio Yamagata, for inviting me to
address the symposium and prepare this article, and for their generous support. I thank
Professor Yun Fan for suggesting subsection 2.4 and Steven T. Dougherty for bringing
the problem of the form of a generating character to my attention (answered by Corol-
lary 15). I also thank M. Klemm, H. L. Claasen, and R. W. Goldbach for their early work
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on generating characters, which helped me develop my approach to the subject. Finally,
I thank my wife Elizabeth S. Moore for her encouragement and support.

2. Finite Frobenius Rings

In an effort to make this article somewhat self-contained, both for ring-theorists and
coding-theorists, I include some background material on finite Frobenius rings. The goal
of this section is to show that finite Frobenius rings are characterized by having free
character modules. Useful references for this material are Lam’s books [19] and [20].

All rings will be associative with 1, and all modules will be unitary. While left modules
will appear most often, there are comparable results for right modules. Almost all of the
rings used in this article will be finite, so that some definitions that are more broadly
applicable may be simplified in the finite context.

2.1. Definitions. Given a finite ring R, its (Jacobson) radical rad(R) is the intersection
of all the maximal left ideals of R; rad(R) is itself a two-sided ideal of R. A left R-module
is simple if it has no nonzero proper submodules. Given a left R-module M , its socle
soc(M) is the sum of all the simple submodules of M . A ring R has a left socle soc(RR)
and a right socle soc(RR) (from viewing R as a left R-module or as a right R-module);
both socles are two-sided ideals, but they may not be equal. (They are equal if R is
semiprime, which, for finite rings, is equivalent to being semisimple.)

LetR be a finite ring. Then the quotient ringR/ rad(R) is semi-simple and is isomorphic
to a direct sum of matrix rings over finite fields (Wedderburn-Artin):

(2.1) R/ rad(R) ∼=
k⊕

i=1

Mmi
(Fqi),

where each qi is a prime power; Fq denotes a finite field of order q, q a prime power, and
Mm(Fq) denotes the ring of m×m matrices over Fq.

Definition 1 ([19, Theorem 16.14]). A finite ring R is Frobenius if R(R/ rad(R)) ∼=
soc(RR) and (R/ rad(R))R ∼= soc(RR).

This definition applies more generally to Artinian rings. It is a theorem of Honold [15,
Theorem 2] that, for finite rings, only one of the isomorphisms (left or right) is needed.

Each of the matrix rings Mmi
(Fqi) in (2.1) has a simple left module Ti := Mmi×1(Fqi),

consisting of all mi × 1 matrices over Fqi , under left matrix multiplication. From (2.1) it
follows that, as left R-modules, we have an isomorphism

(2.2) R(R/ rad(R)) ∼=
k⊕

i=1

miTi.

It is known that the Ti, i = 1, . . . , k, form a complete list of simple left R-modules, up to
isomorphism.

Because the left socle of an R-module is a sum of simple left R-modules, it can be
expressed as a sum of the Ti. In particular, the left socle of R itself admits such an
expression:
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(2.3) soc(RR) ∼=
k⊕

i=1

siTi,

for some nonnegative integers s1, . . . , sk. Thus a finite ring is Frobenius if and only if
mi = si for all i = 1, . . . , k.

2.2. Characters. Let G be a finite abelian group. In this article, a character is a group
homomorphism $ : G → Q/Z. The set of all characters of G forms a group called the

character group Ĝ := HomZ(G,Q/Z). It is well-known that |Ĝ| = |G|. (Characters
with values in the multiplicative group of nonzero complex numbers can be obtained
by composing with the complex exponential function a 7→ exp(2πia), a ∈ Q/Z; this
multiplicative form of characters will be needed in later sections.)

If R is a finite ring and A is a finite left R-module, then Â consists of the characters

of the additive group of A; Â is naturally a right R-module via the scalar multiplication

($r)(a) := $(ra), for $ ∈ Â, r ∈ R, and a ∈ A. The module Â will be called the

character module of A. Similarly, if B is a right R-module, then B̂ is naturally a left
R-module.

Example 2. Let Fp be a finite field of prime order. Define ϑp : Fp → Q/Z by ϑp(a) = a/p,
where we view Fp as Z/pZ. Then ϑp is a character of Fp, and every other character $ of

Fp has the form $ = aϑp, for some a ∈ Fp (because F̂p is a one-dimensional vector space
over Fp).

Let Fq be a finite field with q = p` for some prime p. Let trq/p : Fq → Fp be the trace.
Define ϑq : Fq → Q/Z by ϑq = ϑp ◦ trq/p. Then ϑq is a character of Fq, and every other
character $ of Fq has the form $ = aϑq, for some a ∈ Fq.

Example 3. Let R = Mm(Fq) be the ring of m ×m matrices over a finite field Fq, and
let A = Mm×k(Fq) be the left R-module consisting of all m × k matrices over Fq. Then

Â ∼= Mk×m(Fq) as right R-modules. Indeed, given a matrix Q ∈ Mk×m(Fq), define a
character $Q of A by $Q(P ) = ϑq(tr(QP )), for P ∈ A, where tr is the matrix trace and

ϑq is the character of Fq defined in Example 2. The map Mk×m(Fq) → Â, Q 7→ $Q is the
desired isomorphism.

Given a short exact sequence of finite left R-modules 0 → A → B → C → 0, there is
an induced short exact sequence of right R-modules

(2.4) 0 → Ĉ → B̂ → Â→ 0.

In particular, if we define the annihilator (B̂ : A) := {$ ∈ B̂ : $(A) = 0}, then

(2.5) (B̂ : A) ∼= Ĉ and |(B̂ : A)| = |C| = |B|/|A|.

2.3. Generating Characters. In the special case that A = R, R is both a left and

a right R-module. A character $ ∈ R̂ induces both a left and a right homomorphism

R → R̂ (r 7→ r$ is a left homomorphism, while r 7→ $r is a right homomorphism). The
character $ is called a left (resp., right) generating character if r 7→ r$ (resp., r 7→ $r) is
a module isomorphism. In this situation, the character $ generates the left (resp., right)
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R-module R̂. Because |R̂| = |R|, one of these homomorphisms is an isomorphism if and
only if it is injective if and only if it is surjective.

Remark 4. The phrase generating character (“erzeugenden Charakter”) is due to Klemm
[17]. Claasen and Goldbach [6] used the adjective admissible to describe the same phe-
nomenon, although their use of left and right is the reverse of ours.

The theorem below relates generating characters and finite Frobenius rings. While the
theorem is over ten years old, we will give a new proof.

Theorem 5 ([14, Theorem 1], [31, Theorem 3.10]). Let R be a finite ring. Then the
following are equivalent:

(1) R is Frobenius;

(2) R admits a left generating character, i.e., R̂ is a free left R-module;

(3) R admits a right generating character, i.e., R̂ is a free right R-module.

Moreover, when these conditions are satisfied, every left generating character is also a
right generating character, and vice versa.

Example 6. Here are several examples of finite Frobenius rings and generating characters
(when easy to describe).

(1) Finite field Fq with generating character ϑq of Example 2. Note that ϑp is injective,
but that for q > p, kerϑq = ker trq/p is a nonzero Fp-linear subspace of Fq. However,
kerϑq is not an Fq-linear subspace. (Compare with Proposition 7 below.)

(2) Integer residue ring Z/nZ with generating character ϑn defined by ϑn(a) = a/n,
for a ∈ Z/nZ.

(3) Finite chain ring R; i.e., a finite ring all of whose left ideals form a chain under
inclusion. See Corollary 15 for information about a generating character.

(4) If R1, . . . , Rn are Frobenius with generating characters %1, . . . , %n, then their direct
sum R = ⊕Ri is Frobenius with generating character % =

∑
%i. Conversely, if

R = ⊕Ri is Frobenius with generating character %, then each Ri is Frobenius, with
generating character %i = % ◦ ιi, where ιi : Ri → R is the inclusion; % =

∑
%i.

(5) If R is Frobenius with generating character %, then the matrix ring Mm(R) is
Frobenius with generating character % ◦ tr, where tr is the matrix trace.

(6) If R is Frobenius with generating character % and G is any finite group, then
the group ring R[G] is Frobenius with generating character % ◦ pre, where pre :
R[G] → R is the projection that associates to every element a =

∑
agg ∈ R[G]

the coefficient ae of the identity element of G.

In preparation for the proof of Theorem 5, we prove several propositions concerning
generating characters.

Proposition 7 ([6, Corollary 3.6]). Let R be a finite ring. A character $ of R is a left
(resp., right) generating character if and only if ker$ contains no nonzero left (resp.,
right) ideal of R.

Proof. By the definition and |R̂| = |R|, $ is a left generating character if and only if

the homomorphism f : R → R̂, r 7→ r$, is injective. Then r ∈ ker f if and only if the
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principal ideal Rr ⊂ ker$. Thus, ker f = 0 if and only if ker$ contains no nonzero left
ideals. The proof for right generating characters is similar. �

Proposition 8 ([31, Theorem 4.3]). A character % of a finite ring R is a left generating
character if and only if it is a right generating character.

Proof. Suppose % is a left generating character, and suppose that I ⊂ ker % is a right
ideal. Then for every r ∈ R, Ir ⊂ ker %, so that I ⊂ ker(r%), for all r ∈ R. But
every character of R is of the form r%, because % is a left generating character. Thus the

annihilator (R̂ : I) = R̂, and it follows from (2.5) that I = 0. By Proposition 7, % is a
right generating character. �

Proposition 9 ([33, Proposition 3.3]). Let A be a finite left R-module. Then soc(Â) ∼=
(A/ rad(R)A)̂.
Proof. There is a short exact sequence of left R-modules

0 → rad(R)A→ A→ A/ rad(R)A→ 0.

Taking character modules, as in (2.4), yields

0 → (A/ rad(R)A)̂ → Â→ (rad(R)A)̂ → 0.

Because A/ rad(R)A is a sum of simple modules, the same is true for (A/ rad(R)A)̂ ∼=
(Â : rad(R)A). Thus (Â : rad(R)A) ⊂ soc(Â).

Conversely, soc(Â) rad(R) = 0, because the radical annihilates simple modules [7, Ex-

ercise 25.4]. Thus soc(Â) ⊂ (Â : rad(R)A), and we have the equality soc(Â) = (Â :

rad(R)A). Now remember that (Â : rad(R)A) ∼= (A/ rad(R)A)̂ . �

Using Proposition 7 as a model, we extend the definition of a generating character to
modules. Let A be a finite left (resp., right) R-module. A character $ of A is a generating
character of A if ker$ contains no nonzero left (resp., right) R-submodules of A.

Lemma 10 (†). Let A be a finite left R-module, and let B ⊂ A be a submodule. If A
admits a left generating character, then B admits a left generating character.

Proof. Simply restrict a generating character of A to B. Any submodule of B inside the
kernel of the restriction will also be a submodule of A inside the kernel of the original
generating character. �

Lemma 11 (†). Let R be any finite ring. Define % : R̂ → Q/Z by %($) = $(1), evaluation

at 1 ∈ R, for $ ∈ R̂. Then % is a left and right generating character of R̂.

Proof. Suppose $0 6= 0 has the property that R$0 ⊂ ker %. This means that for every
r ∈ R, 0 = %(r$0) = (r$0)(1) = $0(r), so that $0 = 0. Thus % is a left generating
character by definition. Similarly for % being a right generating character. �

Proposition 12 (†). Let A be a finite left R-module. Then A admits a left generating

character if and only if A can be embedded in R̂.
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Proof. If A embeds in R̂, then A admits a generating character, by Lemmas 10 and 11.

Conversely, let % be a generating character of A. We use % to define f : A → R̂, as

follows. For a ∈ A, define f(a) ∈ R̂ by f(a)(r) = %(ra), r ∈ R. It is easy to check that

f(a) is indeed in R̂, i.e., that f(a) is a character of R. It is also easy to verify that f is

a left R-module homomorphism from A to R̂. If a ∈ ker f , then %(ra) = 0 for all r ∈ R.
Thus the left R-submodule Ra ⊂ ker %. Because % is a generating character, we conclude
that Ra = 0. Thus a = 0, and f is injective. �

When A = R, Proposition 12 is consistent with the definition of a generating character

of a ring. Indeed, if R embeds into R̂, then R and R̂ are isomorphic as one-sided modules,
because they have the same number of elements.

Theorem 13 (†). Let R =Mm(Fq) be the ring of m×m matrices over a finite field Fq.
Let A =Mm×k(Fq) be the left R-module of all m× k matrices over Fq. Then A admits a
left generating character if and only if m ≥ k.

Proof. If m ≥ k, then, by appending m− k columns of zeros, A can be embedded inside
R as a left ideal. By Example 3 and Lemma 10, A admits a generating character.

Conversely, suppose m < k. We will show that no character of A is a generating
character of A. To that end, let $ be any character of A. By Example 3, $ has the
form $Q for some k ×m matrix Q over Fq. Because k > m, the rows of Q are linearly
dependent over Fq. Let P be any nonzero matrix over Fq of size m×k such that PQ = 0.
Such a P exists because the rows of Q are linearly dependent: use the coefficients of a
nonzero dependency relation as the entries for a row of P . We claim that the nonzero
left submodule of A generated by P is contained in ker$Q. Indeed, for any B ∈ R,
$Q(BP ) = ϑq(tr(Q(BP ))) = ϑq(tr((BP )Q)) = ϑq(tr(B(PQ))) = 0, using PQ = 0 and
the well-known property tr(BC) = tr(CB) of the matrix trace. Thus, no character of A
is a generating character. �
Proposition 14 (†). Suppose A is a finite left R-module. Then A admits a left generating
character if and only if soc(A) admits a left generating character.

Proof. If A admits a generating character, then so does soc(A), by Lemma 10.
Conversely, suppose soc(A) admits a generating character ϑ. Utilizing the short exact

sequence (2.4), let % be any extension of ϑ to a character of A . We claim that % is
a generating character of A. To that end, suppose B is a submodule of A such that
B ⊂ ker %. Then soc(B) ⊂ soc(A) ∩ ker % = soc(A) ∩ kerϑ, because % is an extension of
ϑ. But ϑ is a generating character of soc(A), so soc(B) = 0. Since B is a finite module,
we conclude that B = 0. Thus % is a generating character of A. �
Corollary 15 (†). Let A be a finite left R-module. Suppose soc(A) admits a left generating
character ϑ. Then any extension of ϑ to a character of A is a left generating character
of A.

We now (finally) turn to the proof of Theorem 5.

(†) Proof of Theorem 5. Statements (2) and (3) are equivalent by Proposition 8. We next
show that (3) implies (1).
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By Example 3, the right R-module (R/ rad(R))R equals the character module of the
left R-module R(R/ rad(R)). By Proposition 9 applied to the left R-module A = RR, we

have (R(R/ rad(R)))̂ ∼= soc(R̂R) ∼= soc(RR), because R̂ is assumed to be right free. We
thus have an isomorphism (R/ rad(R))R ∼= soc(RR) of right R-modules. One can either
repeat the argument for a left isomorphism (using (2)) or appeal to the theorem of Honold
[15, Theorem 2] mentioned after Definition 1.

Now assume (1). Referring to (2.1), we see that R being Frobenius implies that soc(R)
is a sum of matrix modules of the form Mmi

(Fqi). By Theorem 13 and summing, soc(R)
admits a left generating character. By Propositions 7 and 14, R itself admits a left
generating character. Thus (2) holds. �
2.4. Frobenius Algebras. In this subsection I want to point out the similarity between
a general (not necessarily finite) Frobenius algebra and a finite Frobenius ring. I thank
Professor Yun Fan for suggesting this short exposition.

Definition 16. A finite-dimensional algebra A over a field F is a Frobenius algebra if
there exists a linear functional λ : A → F such that kerλ contains no nonzero left ideals
of A.

It is apparent that the structure functional λ plays a role for a Frobenius algebra
comparable to that played by a left generating character % of a finite Frobenius ring. As
one might expect, the connection between λ and % is even stronger when one considers
a finite Frobenius algebra. Recall that every finite field Fq admits a generating character
ϑq, by Example 2.

Theorem 17 (†). Let R be a Frobenius algebra over a finite field Fq, with structure
functional λ : R → Fq. Then R is a finite Frobenius ring with left generating character
% = ϑq ◦ λ.

Conversely, suppose R is a finite-dimensional algebra over a finite field Fq and that R
is a Frobenius ring with generating character %. Then R is a Frobenius algebra, and there
exists a structure functional λ : R → Fq such that % = ϑq ◦ λ.

Proof. Both R∗ := HomFq(R,Fq) and R̂ = HomZ(R,Q/Z) are (R,R)-bimodules satisfying

|R∗| = |R̂| = |R|. A generating character ϑq of Fq induces a bimodule homomorphism

f : R∗ → R̂ via λ 7→ ϑq ◦ λ. We claim that f is injective. To that end, suppose λ ∈ ker f .
Then ϑq◦λ = 0, so that λ(R) ⊂ kerϑq. Note that λ(R) is an Fq-vector subspace contained
in kerϑq ⊂ Fq. Because ϑq is a generating character of Fq, λ(R) = 0, by Proposition 7.

Thus λ = 0, and f is injective. Because |R∗| = |R̂|, f is in fact a bimodule isomorphism.
We next claim that the structure functionals in R∗ correspond under f to the generating

characters in R̂. That is, if $ = f(λ), where λ ∈ R∗ and $ ∈ R̂, then λ satisfies the
condition that kerλ contains no nonzero left ideals of R if and only if $ is a generating
character of R (i.e., ker$ contains no nonzero left ideals of R).

Suppose $ is a generating character of R, and suppose that I is a left ideal of R with
I ⊂ kerλ. Since $ = ϑq ◦λ, we also have I ⊂ ker$. Because $ is a generating character,
Proposition 7 implies I = 0, as desired.

Conversely, suppose λ satisfies the condition that kerλ contains no nonzero left ideals
of R, and suppose that I is a left ideal of R with I ⊂ ker$. Then λ(I) is an Fq-linear
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subspace inside kerϑq ⊂ Fq. Because ϑq is a generating character of Fq, we have λ(I) = 0,
i.e., I ⊂ kerλ. By the condition on λ, we conclude that I = 0, as desired. �
Remark 18. The proof of Theorem 17 shows the equivalence of the Morita duality functors

∗ and ̂ when R is a finite-dimensional algebra over a finite field F (cf., [31, Remark 3.12]).

For a finite R-module M , observe that M∗ := HomF(M,F) ∼= HomR(M,R∗) and M̂ =

HomZ(M,Q/Z) ∼= HomR(M, R̂).

3. The Language of Algebraic Coding Theory

3.1. Background on Error-Correcting Codes. Error-correcting codes provide a way
to protect messages from corruption during transmission (or storage). This is accom-
plished by adding redundancies in such a way that, with high probability, the original
message can be recovered from the received message.

Let us be a little more precise. Let I be a finite set (of “information”) which will
be the possible messages that can be transmitted. An example: numbers from 0 to 63
representing gray scales of a photograph. Let A be another finite set (the “alphabet”);
A = {0, 1} is a typical example. An encoding of the information set I is an injection
f : I → An for some n. The image f(I) is a code in An.

For a given message x ∈ I, the string f(x) is transmitted across a channel (which could
be copper wire, fiber optic cable, saving to a storage device, or transmission by radio or
cell phone). During the transmission process, some of the entries in the string f(x) might
be corrupted, so that the string y ∈ An that is received may be different from the string
f(x) that was originally sent.

The challenge is this: for a given channel, to choose an encoding f in such a way that
it is possible, with high probability, to recover the original message x knowing only the
corrupted received message y (and the method of encoding). The process of recovering x
is called decoding.

The seminal theorem that launched the field of coding theory is due to Claude Shannon
[27]. Paraphrasing, it says: up to a limit determined by the channel, it is always possible
to find an encoding which will decode with as high a probability as one desires, provided
one takes the encoding length n sufficiently large. Shannon’s proof is not constructive;
it does not build an encoding, nor does it describe how to decode. Much of the research
in coding theory since Shannon’s theorem has been devoted to finding good codes and
developing decoding algorithms for them. Good references for background on coding
theory are [16] and [23].

3.2. Algebraic Coding Theory. Researchers have more tools at their disposal in con-
structing codes if they assume that the alphabet A and the codes C ⊂ An are equipped
with algebraic structures. The first important case is to assume that A is a finite field
and that C ⊂ An is a linear subspace.

Definition 19. Let F be a finite field. A linear code of length n over F is a linear subspace
C ⊂ Fn. The dimension of the linear code is traditionally denoted by k = dimFC.

Given two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn, their Hamming distance
d(x, y) = |{i : xi 6= yi}| is the number of positions where the vectors differ. The Hamming
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weight wt(x) = d(x, 0) of a vector x ∈ Fn equals the number of positions where the
vector is nonzero. Note that d(x, y) = wt(x− y); d is symmetric and satisfies the triangle
inequality. The minimum distance of a code C ⊂ Fn is the smallest value dC of d(x, y)
for x 6= y, x, y ∈ C. When C is a linear code, dC equals the smallest value of wt(x) for
x 6= 0, x ∈ C.

The minimum distance of a code C is a measure of the code’s error-correcting capability.
Let B(x, r) = {y ∈ Fn : d(x, y) ≤ r} be the ball in Fn centered at x of radius r. Set
r0 = [(dC − 1)/2], the greatest integer less than or equal to (dC − 1)/2. Then all the balls
B(x, r0) for x ∈ C are disjoint. Suppose x ∈ C is transmitted and y ∈ Fn is received.
Decode y to the nearest element in the code C (and flip a coin if there is a tie). If at
most r0 entries of x are corrupted in the transmission, then this method always decodes
correctly. We say that C corrects r0 errors. The larger dC is, the more errors that can be
corrected.

3.3. Weight Enumerators. It is useful to keep track of the weights of all the elements
of a code C. The Hamming weight enumerator WC(X,Y ) is a polynomial (generating
function) defined by

WC(X,Y ) =
∑
x∈C

Xn−wt(x)Y wt(x) =
n∑

i=0

AiX
n−iY i,

where Ai is the number of elements of weight i in C. Only the zero vector has weight 0.
In a linear code, A0 = 1, and Ai = 0 for 0 < i < dC .

Define an F-valued inner product on Fn by

x · y =
n∑

i=1

xiyi, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn.

Associated to every linear code C ⊂ Fn is its dual code C⊥:

C⊥ = {y ∈ Fn : x · y = 0, x ∈ C}.

If k = dimC, then dimC⊥ = n− k.
One of the most famous results in algebraic coding theory relates the Hamming weight

enumerator of a linear code C to that of its dual code C⊥: the MacWilliams identities,
which is the subject of Section 4.

Theorem 20 (MacWilliams Identities). Let C be a linear code in Fn
q . Then

WC(X, Y ) =
1

|C⊥|
WC⊥(X + (q − 1)Y,X − Y ).

Of special interest are self-dual codes. A linear code C is self-orthogonal if C ⊂ C⊥; C
is self-dual if C = C⊥. Note that a self-dual code C of length n and dimension k satisfies
n = 2k, so that n must be even.
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3.4. Linear Codes over Rings. While there had been some early work on linear codes
defined over the rings Z/kZ, a major breakthrough came in 1994 with the paper [13].
(There was similar, independent work in [25].) It had been noticed that there were
two families of nonlinear binary codes that behaved as if they were duals; their weight
enumerators satisfied the MacWilliams identities. This phenomenon was explained in [13].
The authors discovered two families of linear codes over Z/4Z that are duals of each other
and, therefore, their weight enumerators satisfy the MacWilliams identities. In addition,
by using a so-called Gray map g : Z/4Z → F2

2 defined by g(0) = 00, g(1) = 01, g(2) = 11,
and g(3) = 10 (g is not a homomorphism), the authors showed that the two families of
linear codes over Z/4Z are mapped to the original families of nonlinear codes over F2.
The paper [13] launched an interest in linear codes defined over rings that continues to
this day.

Definition 21. Let R be a finite ring. A left (right) linear code C of length n over R is
a left (right) R-submodule C ⊂ Rn.

It will be useful in Section 5 to be even more general and to define linear codes over
modules. These ideas were introduced first by Nechaev and his colloborators [18].

Definition 22. Let R be a finite ring, and let A (for alphabet) be a finite left R-module.
A left linear code C over A of length n is a left R-submodule C ⊂ An.

The Hamming weight is defined in the same way as for fields. For x = (x1, . . . , xn) ∈ Rn

(or An), define wt(x) = |{i : xi 6= 0}|, the number of nonzero entries in the vector x.

4. The MacWilliams Identities

In this section, we present a proof of the MacWilliams identities that is valid over any
finite Frobenius ring. The proof, which dates to [31, Theorem 8.3], is essentially the same
as one due to Gleason found in [3, §1.12]. While the MacWilliams identities hold in even
more general settings (see the later sections in [33], for example), the setting of linear
codes over a finite Frobenius ring will show clearly the role of characters in the proof.

Let R be a finite ring. As we did earlier for fields, we define a dot product on Rn by

x · y =
n∑

i=1

xiyi, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

For a left linear code C ⊂ Rn, define the right annihilator r(C) by r(C) = {y ∈ Rn :
x ·y = 0, x ∈ C}. The right annihilator will play the role of the dual code C⊥. (Because R
may be non-commutative, one must choose between a left and a right annihilator.) The
Hamming weight enumerator WC(X, Y ) of a left linear code C is defined exactly as for
fields.

Theorem 23 (MacWilliams Identities). Let R be a finite Frobenius ring, and let C ⊂ Rn

be a left linear code. Then

WC(X, Y ) =
1

|r(C)|
Wr(C)(X + (|R| − 1)Y,X − Y ).
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4.1. Fourier Transform. Gleason’s proof of the MacWilliams identities uses the Fourier
transform and the Poisson summation formula, which we describe in this subsection. Let
(G,+) be a finite abelian group.

Throughout this section, we will use the multiplicative form of characters; that is,
characters are group homomorphisms π : (G,+) → (C×, ·) from a finite abelian group to

the multiplicative group of nonzero complex numbers. The set Ĝ of all characters of G
forms an abelian group under pointwise multiplication. The following list of properties of
characters is well-known and presented without proof (see [26] or [28]).

Lemma 24. Characters of a finite abelian group G satisfy the following properties.

(1) |Ĝ| = |G|;
(2) (G1 ×G2)̂ ∼= Ĝ1 × Ĝ2;

(3)
∑

x∈G π(x) =

{
|G|, π = 1,

0, π 6= 1;

(4)
∑

π∈Ĝ π(x) =

{
|G|, x = 0,

0, x 6= 0;

(5) The characters form a linearly independent subset of the vector space of complex-
valued functions on G. (In fact, the characters form a basis.) �

Let V be a vector space over the complex numbers. For any function f : G→ V , define

its Fourier transform f̂ : Ĝ→ V by

f̂(π) =
∑
x∈G

π(x)f(x), π ∈ Ĝ.

Given a subgroup H ⊂ G, define the annihilator (Ĝ : H) = {π ∈ Ĝ : π(H) = 1}. As we

saw in (2.5), |(Ĝ : H)| = |G|/|H|.
The Poisson summation formula relates the sum of a function over a subgroup to the

sum of its Fourier transform over the annihilator of the subgroup. The proof is an exercise.

Proposition 25 (Poisson Summation Formula). Let H ⊂ G be a subgroup, and let
f : G→ V be any function from G to a complex vector space V . Then∑

x∈H

f(x) =
1

|(Ĝ : H)|

∑
π∈(Ĝ:H)

f̂(π).

The next technical result describes the Fourier transform of a function that is the
product of functions of one variable. Again, the proof is an exercise for the reader.

Lemma 26. Suppose V is a commutative algebra over the complex numbers, and suppose
fi : G → V , i = 1, . . . , n, are functions from G to V . Let f : Gn → V be defined by
f(x1, . . . , xn) =

∏n
i=1 fi(xi). Then

f̂(π1, . . . , πn) =
n∏

i=1

f̂i(πi).
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4.2. Gleason’s Proof.

Proof of Theorem 23. Given a left linear code C ⊂ Rn, we apply the Poisson summation
formula with G = Rn, H = C, and V = C[X,Y ], the polynomial ring over C in two
indeterminates. Define fi : R → C[X, Y ] by fi(xi) = X1−wt(xi)Y wt(xi), xi ∈ R, where
wt(r) = 0 for r = 0, and wt(r) = 1 for r 6= 0 in R. Let f : Rn → C[X, Y ] be the product
of the fi; i.e.,

f(x1, . . . , xn) =
n∏

i=1

X1−wt(xi)Y wt(xi) = Xn−wt(x)Y wt(x),

where x = (x1, . . . , xn) ∈ Rn. We recognize that
∑

x∈H f(x), the left side of the Poisson
summation formula, is simply the Hamming weight enumerator WC(X, Y ).

To begin to simplify the right side of the Poisson summation formula, we must calculate
f̂ . By Lemma 26, we first calculate f̂i.

f̂i(πi) =
∑
a∈R

πi(a)fi(a) =
∑
a∈R

πi(a)X
1−wt(a)Y wt(a) = X +

∑
a 6=0

πi(a)Y

=

{
X + (|R| − 1)Y, πi = 1,

X − Y, πi 6= 1.

At the end of the first line, one evaluates the case a = 0 versus the cases where a 6= 0. In
going to the second line, one uses Lemma 24. Using Lemma 26, we see that

f̂(π) = (X + (|R| − 1)Y )n−wt(π)(X − Y )wt(π),

where π = (π1, . . . , πn) ∈ R̂n and wt(π) counts the number of πi such that πi 6= 1.

The last task is to identify the character-theoretic annihilator (Ĝ : H) = (R̂n : C) with
r(C), which is where R being Frobenius enters the picture. Let ρ be a generating character

of R. We use ρ to define a homomorphism β : R → R̂. For r ∈ R, the character β(r) ∈ R̂

has the form β(r)(s) = (rρ)(s) = ρ(sr) for s ∈ R. One can verify that β : R → R̂ is an
isomorphism of left R-modules. In particular, wt(r) = wt(β(r)).

Extend β to an isomorphism β : Rn → R̂n of left R-modules, via β(x)(y) = ρ(y ·x), for
x, y ∈ Rn. Again, wt(x) = wt(β(x)). For x ∈ Rn, when is β(x) ∈ (R̂n : C)? This occurs
when β(x)(C) = 1; that is, when ρ(C · x) = 1. This means that the left ideal C · x of
R is contained in ker ρ. Because ρ is a generating character, Proposition 7 implies that

C · x = 0. Thus x ∈ r(C). The converse is obvious. Thus r(C) corresponds to (R̂n : C)
under the isomorphism β.

The right side of the Poisson summation formula now simplifies as follows:

1

|(Ĝ : H)|

∑
π∈(Ĝ:H)

f̂(π) =
1

|r(C)|
∑

x∈r(C)

(X + (|R| − 1)Y )n−wt(x)(X − Y )wt(x)

=
1

|r(C)|
Wr(C)(X + (|R| − 1)Y,X − Y ),

as desired. �
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5. The Extension Problem

In this section, we will discuss the extension problem, which originated from under-
standing equivalence of codes. The main result is that a finite ring has the extension
property for linear codes with respect to the Hamming weight if and only if the ring is
Frobenius.

5.1. Equivalence of Codes. When should two linear codes be considered to be the
same? That is, what should it mean for two linear codes to be equivalent? There are
two (related) approaches to this question: via monomial transformations and via weight-
preserving isomorphisms.

Definition 27. Let R be a finite ring. A (left) monomial transformation T : Rn → Rn

is a left R-linear homomorphism of the form

T (x1, . . . , xn) = (xσ(1)u1, . . . , xσ(n)un), (x1, . . . , xn) ∈ Rn,

for some permutation σ of {1, 2, . . . , n} and units u1, . . . , un of R.
Two left linear codes C1, C2 ⊂ Rn are equivalent if there exists a monomial transfor-

mation T : Rn → Rn such that T (C1) = C2.

Another possible definition of equivalence of linear codes C1, C2 ⊂ Rn is this: there
exists an R-linear isomorphism f : C1 → C2 that preserves the Hamming weight, i.e.,
wt(f(x)) = wt(x), for all x ∈ C1. The next lemma shows that equivalence using monomial
transformations implies equivalence using a Hamming weight-preserving isomorphism.

Lemma 28. If T : Rn → Rn is a monomial transformation, then T preserves the Ham-
ming weight: wt(T (x)) = wt(x), for all x ∈ Rn. If linear codes C1, C2 ⊂ Rn are equivalent
via a monomial transformation T , then the restriction f of T to C1 is an R-linear iso-
morphism C1 → C2 that preserves the Hamming weight.

Proof. For any r ∈ R and any unit u ∈ R, r = 0 if and only if ru = 0. The result follows
easily from this. �

Does the converse hold? This is an extension problem: given C1, C2 ⊂ Rn and an
R-linear isomorphism f : C1 → C2 that preserves the Hamming weight, does f extend to
a monomial transformation T : Rn → Rn? We will phrase this in terms of a property.

Definition 29. Let R be a finite ring. The ring R has the extension property (EP) with
respect to the Hamming weight if, whenever two left linear codes C1, C2 ⊂ Rn admit an
R-linear isomorphism f : C1 → C2 that preserves the Hamming weight, it follows that f
extends to a monomial transformation T : Rn → Rn.

Thus, the two notions of equivalence coincide precisely when the ring R satisfies the
extension property. Another important theorem of MacWilliams is that finite fields have
the extension property [21], [22].

Theorem 30 (MacWilliams). Finite fields have the extension property with respect to the
Hamming weight.
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Other proofs that finite fields have the extension property with respect to the Hamming
weight have been given by Bogart, Goldberg, and Gordon [5] and by Ward and Wood
[29]. We will not prove the finite field case separately, because it is a special case of the
main theorem of this section:

Theorem 31. Let R be a finite ring. Then R has the extension property with respect to
the Hamming weight if and only if R is Frobenius.

One direction, that finite Frobenius rings have the extension property, first appeared in
[31, Theorem 6.3]. The proof (which will be given in subsection 5.2) is based on the linear
independence of characters and is modeled on the proof in [29] of the finite field case. A
combinatorial proof appears in work of Greferath and Schmidt [12]. More generally yet,
Greferath, Nechaev, and Wisbauer have shown that the character module of any finite
ring has the extension property for the homogeneous and the Hamming weights [11]. Ideas
from this latter paper greatly influenced the work presented in subsection 5.4.

The other direction, that only finite Frobenius rings have the extension property, first
appeared in [32]. That paper carried out a strategy due to Dinh and López-Permouth [8].
Additional relevant material appeared in [33].

The rest of this section will be devoted to the proof of Theorem 31.

5.2. Frobenius is Sufficient. In this subsection we prove half of Theorem 31, that a
finite Frobenius ring has the extension property, following the treatment in [31, Theo-
rem 6.3].

Assume C1, C2 ⊂ Rn are two left linear codes, and assume f : C1 → C2 is an R-linear
isomorphism that preserves the Hamming weight. We want to show that f extends to
a monomial transformation of Rn. The core idea is to express the weight-preservation
property of f as an equation of characters of C1 and to use the linear independence of
characters to match up terms.

Let pr1, . . . , prn : Rn → R be the coordinate projections, so that pri(x1, . . . , xn) = xi,
(x1, . . . , xn) ∈ Rn. Let λ1, . . . , λn denote the restrictions of pr1, . . . , prn to C1 ⊂ Rn.
Similarly, let µ1, . . . , µn : C1 → R be given by µi = pri ◦f . Then λ1, . . . , λn, µ1, . . . , µn ∈
HomR(C1, R) are left R-linear functionals on C1. It will suffice to prove the existence
of a permutation σ of {1, . . . , n} and units u1, . . . , un of R such that µi = λσ(i)ui, for
i = 1, . . . , n.

For any x ∈ C1, the Hamming weight of x is given by wt(x) =
∑n

i=1wt(λi(x)), while
the Hamming weight of f(x) is given by wt(f(x)) =

∑n
i=1wt(µi(x)). Because f preserves

the Hamming weight, we have

(5.1)
n∑

i=1

wt(λi(x)) =
n∑

i=1

wt(µi(x)).

Using Lemma 24, observe that 1−wt(r) = (1/|R|)
∑

π∈R̂ π(r), for any r ∈ R. Apply this
observation to (5.1) and simplify:

(5.2)
n∑

i=1

∑
π∈R̂

π(λi(x)) =
n∑

i=1

∑
π∈R̂

π(µi(x)), x ∈ C1.
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Because R is assumed to be Frobenius, R admits a (left) generating character ρ. Every

character π ∈ R̂ thus has the form π = aρ, for some a ∈ R. Recall that the scalar
multiplication means that π(r) = (aρ)(r) = ρ(ra), for r ∈ R. Use this to simplify (5.2)
(and use different indices on each side of the resulting equation):

(5.3)
n∑

i=1

∑
a∈R

ρ ◦ (λia) =
n∑

j=1

∑
b∈R

ρ ◦ (µjb).

This is an equation of characters of C1. Because characters are linearly independent, we
can match up terms from the left and right sides of (5.3). In order to get unit multiples,
some care must be taken.

Because C1 is a left R-module, HomR(C1, R) is a right R-module. Define a preorder �
on HomR(C1, R) by λ � µ if λ = µr for some r ∈ R. By a result of Bass [4, Lemma 6.4],
λ � µ and µ � λ imply µ = λu for some unit u of R.

Among the linear functionals λ1, . . . , λn, µ1, . . . , µn (a finite list), choose one that is
maximal in the preorder �. Without loss of generality, assume µ1 is maximal in �. (This
means: if µ1 � λ for some λ, then µ1 = λu for some unit u of R.) In (5.3), consider the
term on the right side with j = 1 and b = 1. By linear independence of characters, there
exists i1, 1 ≤ i1 ≤ n, and a ∈ R such that ρ ◦ (λi1a) = ρ ◦ µ1. This equation implies
that im(µ1 − λi1a) ⊂ ker ρ. But im(µ1 − λi1a) is a left ideal of R, and ρ is a generating
character of R. By Proposition 7, im(µ1 − λi1a) = 0, so that µ1 = λi1a. This means that
µ1 � λi1 . Because µ1 was chosen to be maximal, we have µ1 = λi1u1, for some unit u1 of
R. Begin to define a permutation σ by σ(1) = i1.

By a reindexing argument, all the terms on the left side of (5.3) with i = i1 match the
terms on the right side of (5.3) with j = 1. That is,

∑
a∈R ρ ◦ (λi1a) =

∑
b∈R ρ ◦ (µ1b).

Subtract these sums from (5.3), thereby reducing the size of the outer summations by
one. Proceed by induction, building a permutation σ and finding units u1, . . . , un of R,
as desired.

5.3. Reformulating the Problem. The proof that being a finite Frobenius ring is suf-
ficient for having the extension property with respect to the Hamming weight was based
on the proof of the extension theorem over finite fields that used the linear independence
of characters [29]. In contrast, the proof that Frobenius is necessary will make use of
the approach for proving the extension theorem due to Bogart, et al. [5]. This requires a
reformulation of the extension problem.

Every left linear code C ⊂ Rn can be viewed as the image of the inclusion map C →
Rn. More generally, every left linear code is the image of an R-linear homomorphism
Λ : M → Rn, for some finite left R-module M . By composing with the coordinate
projections pri, the homomorphism Λ can be expressed as an n-tuple Λ = (λ1, . . . , λn),
where each λi ∈ HomR(M,R). The λi will be called the coordinate functionals of the
linear code.

Remark 32. It is typical in coding theory to present a linear code C ⊂ Rn by means of
a generator matrix G. The matrix G has entries from R, the number of columns of G
equals the length n of the code C, and (most importantly) the rows of G generate C as
a left submodule of Rn.
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The description of a linear code via coordinate functionals is essentially equivalent to
that using generator matrices. If one has coordinate functionals λ1, . . . , λn, then one can
produce a generator matrix G by choosing a set v1, . . . , vk of generators for C as a left
module over R and taking as the (i, j)-entry of G the value λj(vi). Conversely, given
a generator matrix, its columns define coordinate functionals. Thus, using coordinate
functionals is a “basis-free” approach to generator matrices. This idea goes back to [2].

We are interested in linear codes up to equivalence. For a linear code given by Λ =
(λ1, . . . , λn) :M → Rn, the order of the coordinate functionals λ1, . . . , λn is irrelevant, as
is replacing any λi with λiui, for some unit ui of R. We want to encode this information
systematically. Let U be the group of units of the ring R. The group U acts on the module
HomR(M,R) by right scalar multiplication; let O] denote the set of orbits of this action:
O] = HomR(M,R)/U . Then a linear code M → Rn, up to equivalence, is specified by
choosing n elements of O] (counting with multiplicities). This choice can be encoded
by specifying a function (a multiplicity function) η : O] → N, the nonnegative integers,
where η(λ) is the number of times λ (or a unit multiple of λ) appears as a coordinate
functional. The length n of the linear code is given by

∑
λ∈O] η(λ).

In summary, linear codes M → Rn (for fixed M , but any n), up to equivalence, are
given by multiplicity functions η : O] → N. Denote the set of all such functions by
F (O],N) = {η : O] → N}, and define F0(O],N) = {η ∈ F (O],N) : η(0) = 0}.

We are also interested in the Hamming weight of codewords and in how to describe
the Hamming weight in terms of the multiplicity function η. Fix a multiplicity function
η : O] → N. Define Wη :M → N by

(5.4) Wη(x) =
∑
λ∈O]

wt(λ(x)) η(λ), x ∈M.

Then Wη(x) equals the Hamming weight of the codeword given by x ∈ M . Notice that
Wη(0) = 0.

Lemma 33. For x ∈M and unit u ∈ U , Wη(ux) = Wη(x).

Proof. This follows immediately from the fact that wt(ur) = wt(r) for r ∈ R and unit
u ∈ U ; that is, ur = 0 if and only if r = 0. �

BecauseM is a left R-module, the group of units U acts onM on the left. Let O denote
the set of orbits of this action. Observe that Lemma 33 implies that Wη is a well-defined
function from O to N. Let F (O,N) denote the set of all functions from O to N, and
define F0(O,N) = {w ∈ F (O,N) : w(0) = 0}. Now define W : F (O],N) → F0(O,N) by
η ∈ F (O],N) 7→ Wη ∈ F0(O,N). (Remember that Wη(0) = 0.) Thus W associates to
every linear code, up to equivalence, a listing of the Hamming weights of all the codewords.
The discussion to this point (plus a technical argument on the role of the zero functional,
which is relegated to subsection 5.5) proves the following reformulation of the extension
property.

Theorem 34. A finite ring R has the extension property with respect to the Hamming
weight if and only if the function

W : F0(O],N) → F0(O,N), η 7→ Wη,
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is injective for every finite left R-module M .

Observe that the function spaces F0(O],N), F0(O,N) are additive monoids and that
W : F0(O],N) → F0(O,N) is additive, i.e., a monoid homomorphism. If we tensor
with the rational numbers Q (which means we formally allow coordinate functionals to
have multiplicities equal to any rational number), it is straight-forward to generalize
Theorem 34 to:

Theorem 35. A finite ring R has the extension property with respect to the Hamming
weight if and only if the Q-linear homomorphism

W : F0(O],Q) → F0(O,Q), η 7→ Wη,

is injective for every finite left R-module M .

Theorem 35 is very convenient because the function spaces F0(O],Q), F0(O,Q) are Q-
vector spaces, and we can use the tools of linear algebra over fields to analyze the linear
homomorphism W . In fact, in [5], Bogart et al. prove the extension theorem over finite
fields by showing that the matrix representing W is invertible. The form of that matrix
is apparent from (5.4). Greferath generalized that approach in [10].

For use in the next subsection, we will need a version of Theorem 35 for linear codes
defined over an alphabet A. Let A be a finite left R-module, with automorphism group
Aut(A). A left R-linear code in An is given by the image of an R-linear homomorphism
M → An, for some finite left R-module M . In this case, the coordinate functionals will
belong to HomR(M,A). The group Aut(A) acts on HomR(M,A) on the right; let O]

denote the set of orbits of this action. A linear code over A, up to equivalence, is again
specified by a multiplicity function η ∈ F (O],N).

Just as before, the group of units U of R acts on the module M on the left, with set O
of orbits. In the same way as above, we formulate the extension property for the alphabet
A as:

Theorem 36. Let A be a finite left R-module. Then A has the extension property with
respect to the Hamming weight if and only if the linear homomorphism

W : F0(O],Q) → F0(O,Q), η 7→ Wη,

is injective for every finite left R-module M .

5.4. Frobenius is Necessary. In this subsection we follow a strategy of Dinh and López-
Permouth [8] and use Theorem 35 to prove the other direction of Theorem 31; viz., if a
finite ring has the extension property with respect to the Hamming weight, then the ring
must be Frobenius.

The strategy of Dinh and López-Permouth [8] can be summarized as follows.

(1) If a finite ring R is not Frobenius, then its left socle contains a left R-module of
the form Mm×k(Fq) with m < k, for some q (cf., (2.1) and (2.3)).

(2) Use the matrix module Mm×k(Fq) as the alphabet A. If m < k, show that A does
not have the extension property.

(3) Take the counter-examples over A to the extension property, consider them as R-
modules, and show that they are also counter-examples to the extension property
over R.
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The first and last points were already proved in [8]. Here’s one way to see the first point.
We know from (2.3) that soc(RR) is a sum of matrix modules Mmi×si(Fqi). If mi ≥ si for
all i, then each of theMmi×si(Fqi) would admit a generating character, by Theorem 13. By
adding these generating characters, one would obtain a generating character for soc(RR)
itself. Then, by Proposition 14, R would admit a generating character, and hence would
be Frobenius by Theorem 5.

For the third point, consider counter-examples C1, C2 ⊂ An to the extension property
for the alphabet A with respect to the Hamming weight. Because An ⊂ soc(RR)

n ⊂ RR
n,

C1, C2 can also be viewed as R-modules via (2.1). The Hamming weight of an element
x of An equals the Hamming weight of x considered as an element of Rn, because the
Hamming weight just depends upon the entries of x being zero or not. In this way, C1, C2

will also be counter-examples to the extension property for the alphabet R with respect
to the Hamming weight.

Thus, the key step remaining is the second point in the strategy. An explicit con-
struction of counter-examples to the extension property for the alphabet A =Mm×k(Fq),
m < k, was given in [32]. Here, we give a short existence proof; more details are available
in [32] and [33].

Let R = Mm(Fq) be the ring of m × m matrices over Fq. Let A = Mm×k(Fq), with
m < k; A is a left R-module. It is clear from Theorem 36 that A will fail to have the
extension property with respect to the Hamming weight if we can find a finite left R-
module M with dimQ F0(O],Q) > dimQ F0(O,Q). It turns out that this inequality will
hold for any nonzero M .

Because R is simple, any finite left R-moduleM has the formM =Mm×`(Fq), for some
`. First, let us determine O, which is the set of left U -orbits on M . The group U is the
group of units of R, which is precisely the general linear group GLm(Fq). The left orbits
of GLm(Fq) onM =Mm×`(Fq) are represented by the row reduced echelon matrices1 over
Fq of size m× `.

Now, let us determine O], which is the set of right Aut(A)-orbits on HomR(M,A). The
automorphism group Aut(A) equals GLk(Fq), acting on A = Mm×k(Fq) by right matrix
multiplication. On the other hand, HomR(M,A) = M`×k(Fq), again using right matrix
multiplication. Thus O] consists of the right orbits of GLk(Fq) acting onM`×k(Fq). These
orbits are represented by the column reduced echelon matrices over Fq of size `× k.
Because the matrix transpose interchanges row reduced echelon matrices and column

reduced echelon matrices, we see that |O]| > |O| if and only if k > m (for any positive `).
Finally, notice that dimQ F0(O],Q) = |O]|−1 and dimQ F0(O,Q) = |O|−1. Thus, for any
nonzero moduleM , dimQ F0(O],Q) > dimQ F0(O,Q) if and only if m < k. Consequently,
if m < k, then W fails to be injective and A fails to have the extension property with
respect to Hamming weight.

5.5. Technical Remarks. Here is the technical argument regarding the zero functional
needed to justify Theorem 34.

Remark 37. For η ∈ F (O],N), define the length of η to be l(η) =
∑

λ∈O] η(λ) and the
essential length of η to be l0(η) =

∑
λ 6=0 η(λ). The length l(η) equals the length of the

1Prof. Yamagata tells me that the Japanese name for this concept translates literally as “step matrices.”
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linear code defined by η; the reduced length l0(η) equals the length of the linear code
defined by η after any all-zero positions have been removed. (In terms of a generator
matrix, one removes all the zero columns.)

Assume the extension property holds with respect to the Hamming weight. This means
that if η, η′ ∈ F (O],N) satisfy l(η) = l(η′) and Wη = Wη′ , then η = η′. That is, W is
injective along the level sets of the length function l. If l(η′) < l(η) and Wη = Wη′ , then
we can append zeros to η′ until its length is the same as l(η) without changing Wη′ . More
precisely, define η′′ by η′′(λ) = η′(λ) for λ 6= 0 and set η′′(0) = η′(0) + l(η)− l(η′). Then
l(η′′) = l(η) and Wη′′ = Wη. Then η′′ = η, by the extension property. In particular, the
reduced lengths are equal: l0(η) = l0(η

′) = l0(η
′′).

There is a projection pr : F (O],N) → F0(O],N) which sets (pr η)(0) = 0 and leaves
the other values unchanged, (pr η)(λ) = η(λ), λ 6= 0. This projection splits the monoid
as F (O],N) = F0(O],N) ⊕ N. The argument of the previous paragraph shows that if
Wη =Wη′ , then pr η = pr η′ as elements of F0(O],N).

Conversely, supposeW : F0(O],N) → F0(O,N) is injective. Let η, η′ ∈ F (O],N) satisfy
l(η) = l(η′) and Wη = Wη′ . Because the value of η(0) does not affect Wη, we see that
Wpr η = Wpr η′ . By assumption, W is injective on F0(O],N), so that pr η = pr η′. In
particular, l0(η) = l0(η

′). Since l(η) = l(η′), we must also have η(0) = η′(0), and thus
η = η′.

6. Self-Dual Codes

I want to finish this article by touching on a very active research topic: self-dual codes.
As we saw in subsection 3.3, if C ⊂ Fn is a linear code of length n over a finite field F,

then its dual code C⊥ is defined by C⊥ = {y ∈ Fn : x · y = 0, x ∈ C}. A linear code C
is self-orthogonal if C ⊂ C⊥ and is self-dual if C = C⊥. Because dimC⊥ = n − dimC,
a necessary condition for the existence of a self-dual code C over a finite field is that the
length n must be even; then dimC = n/2.

The Hamming weight enumerator of a self-dual code appears on both sides of the
MacWilliams identities:

WC(X, Y ) =
1

|C|
WC(X + (q − 1)Y,X − Y ),

where C is self-dual over Fq. As |C| = qn/2 and the total degree of the polynomial
WC(X,Y ) is n, the MacWilliams identities for a self-dual code can be written in the form

WC(X,Y ) = WC

(
X + (q − 1)Y

√
q

,
X − Y
√
q

)
.

Every element x of a self-dual code satisfies x · x = 0. In the binary case, q = 2, notice
that x · x ≡ wt(x) mod 2. Thus, every element of a binary self-dual code C has even
length. This implies that WC(X,−Y ) = WC(X,Y ).

Restrict to the binary case, q = 2. Define two complex 2× 2 matrices P,Q by

P =

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)
, Q =

(
1 0
0 −1

)
.
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Notice that P 2 = Q2 = I. Let G be the group generated by P and Q (inside GL2(C)).
Define an action of G on the polynomial ring C[X, Y ] by linear substitution: (fS)(X, Y ) =
f((X,Y )S) for S ∈ G. The paragraphs above prove the following

Proposition 38. Let C be a self-dual binary code. Then its Hamming weight enumerator
WC(X,Y ) is invariant under the action of the group G. That is, WC(X, Y ) ∈ C[X, Y ]G,
the ring of G-invariant polynomials.

Much more is true, in fact. Let C2 ⊂ F2
2 be the linear code C2 = {00, 11}. Then C2 is

self-dual, and WC2(X,Y ) = X2 + Y 2. Let E8 ⊂ F8
2 be the linear code generated by the

rows of the following binary matrix
1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0

 .

Then E8 is also self-dual, with WE8(X, Y ) = X8 + 14X4Y 4 + Y 8.

Theorem 39 (Gleason (1970)). The ring of G-invariant polynomials is generated as an
algebra by WC2 and WE8. That is,

C[X, Y ]G = C[X2 + Y 2, X8 + 14X4Y 4 + Y 8].

Gleason proved similar statements in several other contexts (doubly-even self-dual bi-
nary codes, self-dual ternary codes, Hermitian self-dual quaternary codes) [9]. The results
all have this form: for linear codes of a certain type (e.g., binary self-dual), their Ham-
ming weight enumerators are invariant under a certain finite matrix group G, and the ring
of G-invariant polynomials is generated as an algebra by the weight enumerators of two
explicit linear codes of the given type.

Gleason’s Theorem has been generalized greatly by Nebe, Rains, and Sloane [24]. Those
authors have a general definition of the type of a self-dual linear code defined over an
alphabet A, where A is a finite left R-module. Associated to every type is a finite group
G, called the Clifford-Weil group, and the (complete) weight enumerator of every self-
dual linear code of the given type is G-invariant. Finally, the authors show (under certain
hypotheses on the ring R) that the ring of all G-invariant polynomials is spanned by
weight enumerators of self-dual codes of the given type.

In order to define self-dual codes over non-commutative rings, Nebe, Rains, and Sloane
must cope with the difficulty that the dual code of a left linear code C in An is a right linear

code of the form (Ân : C) ⊂ Ân (cf., the proof of Theorem 23 in subsection 4.2). This
difficulty can be addressed first by assuming that the ring R admits an anti-isomorphism ε,
i.e., an isomorphism ε : R → R of the additive group, with ε(rs) = ε(s)ε(r), for r, s ∈ R.
Then every left (resp., right) R-module M defines a right (resp., left) R-module ε(M).
The additive group of ε(M) is the same as that of M , and the right scalar multiplication
on ε(M) is mr := ε(r)m, m ∈ M , r ∈ R, where ε(r)m uses the left scalar multiplication
of M . (And similarly for right modules.)

Secondly, in order to identify the character-theoretic annihilator (Ân : C) ⊂ Ân with
a submodule in An, Nebe, Rains, and Sloane assume the existence of an isomorphism
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ψ : ε(A) → Â. In this way, C⊥ := ε−1ψ−1(Ân : C) can be viewed as the dual code of C;
C⊥ is a left linear code in An if C is. With one additional hypothesis on ψ, C⊥ satisfies all
the properties one would want from a dual code, such as (C⊥)⊥ = C and the MacWilliams
identities. (See [34] for an exposition.)

There are several questions that arise immediately from the work of Nebe, Rains, and
Sloane that may be of interest to ring theorists.

(1) Which finite rings admit anti-isomorphisms? Involutions?
(2) Assume a finite ring R admits an anti-isomorphism ε. Which finite left R-modules

A admit an isomorphism ψ : ε(A) → Â?
(3) Even in the absence of complete answers to the preceding, are there good sources

of examples?

There are a few results in [34], but much more is needed. Progress on these questions may
prove helpful in understanding the limits and the proper setting for the work of Nebe,
Rains, and Sloane.
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REALIZING STABLE CATEGORIES AS DERIVE CATEGORIES

KOTA YAMAURA

Abstract. In this paper, we compare two different kinds of triangulated categories.
First one is the stable category modA of the category of Z-graded modules over a pos-
itively grade self-injective algebra A. Second one is the derived category Db(modΛ) of
the category of modules over an algebra Λ. Our aim is give the complete answer to
the following question. For a positively graded self-injective algebra A, when is modA
triangle-equivalent to Db(modΛ) for some algebra Λ ? The main result of this paper
gives the following very simple answer. modA is triangle-equivalent to Db(modΛ) for
some algebra Λ if and only if the 0-th subring A0 of A has finite global dimension.

1. Main Result

There are two kinds of triangulated categories which are important for representation
theory for algebras. First one is the derived category Db(modΛ) of the category modA of
modules over an algebra Λ. Second one is algebraic triangulated categories, that is the
stable categories of Frobenius categories (cf. [5]). A typical example is the stable category
modA of the category modA of modules over a self-injective algebra A.

In this paper, our aim is to compare derived categories of algebras and the stable
categories of self-injective algebras, and find a ”nice” relationship between them. If we
find it, then those triangulated categories can be investigated from mutual viewpoints.

There several method to compare derived categories of algebras and the stable categories
of self-injective algebras. We focus on the following Happel’s result. For any algebra Λ,
one can associate a self-injective algebra A which is called the trivial extension of Λ.
A admits a natural positively grading such that A0 = Λ where A0 is the 0-th subring.
Therefore A is a positively graded self-injective algebra. So the stable category modZA of
the category modZA of Z-graded A-modules has the structure of triangulated category.
In this setting, D. Happel [6] showed that Λ has finite global dimension if and only if
there exists a triangle-eqiuvalence

modZA ' Db(modΛ).(1.1)

This equivalence gives a ”nice” relationship between derived category Db(modΛ) and the
stable categories modZA. The above result asserts that sometimes representation theory
of Λ and that of A are deeply related.

We consider the drastic generalization of the above Happel’s result. Happel started
from an algebra Λ, and constructed the special positively graded self-injective algebra of
A. In contrast, we start from a positively graded self-injective algebra A =

⊕
i≥0Ai, and

suggest the following question.

The detailed version of this paper will be submitted for publication elsewhere.
The author is supported by JSPS Fellowships for Young Scientists No.22-5801.
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Question. When is modZA triangle-equivalent to the derived category Db(modΛ) for
some algebra Λ ?

The following result is main theorem of this paper which gives the complete answer to
our question.

Theorem 1. Let A be a positively graded self-injective algebra. Then the following are
equivalent.

(1) The global dimension of A0 is finite.
(2) There exists an algebra Λ, and a triangle-equivalence

modZA ' Db(modΛ).(1.2)

The aim of the rest of this paper is to give an explanation of the proof of Theorem 1,
and some examples. Our plan is as follows.

In Section 2, we give two preliminaries. First we recall that modZA for a positively
graded algebra A is a Frobenius category, and so its stable category modZA is an alge-
braic triangulated category. Secondly we give an explanation of Keller’s tilting theorem.
Our approach to the question is using Keller’s titling theorem for algebraic triangulated
categories. B. Keller [7] introduced and investigated differential graded categories and
its derived categories. In his work, it was determine when is an algebraic triangulated
category triangle-equivalent to the derived category of some algebra by the existence of
tilting objects (tilting theorem). In Section 3, we apply Keller’s tilting theorem to our
study.

In Section 3, we give an outline of the proof of Theorem 1. We omit the proof of (2) ⇒
(1). We give proofs (1) ⇒ (2). We start from finding a concrete tilting object in modZA
which has ”good” properties. After finding it, we show two ways to prove (1) ⇒ (2). The
first proof is based on Keller’s tilting theorem, namely we entrust with constructing the
triangle-equivalence (1.2). The second proof is direct more than the first one, namely we
construct the triangle-equivalence (1.2) explicitly.

In Section 4, we give some examples of Theorem 1. In particular as an application of
our main theorem, we show Happel’s result, and its generalization shown by X-W Chen
[2].

Throughout this paper, let K be an algebraically closed field. An algebra means a
finite dimensional associative algebra over K. We always deal with finitely generated
right modules over algebras. For an algebra Λ, we denote by modΛ the category of Λ-
modules, projΛ the category of projective Λ-modules. The same notations is used for
graded case. For an additive category A, we denote by Kb(A) the homotopy category of
bounded complexes of A. For an abelian category A, we denote by Db(A) the bounded
derived category of A.

2. Preliminaries

In this section, we recall basic facts about representation theory of a positively graded
algebras, and tilting theorem for algebraic triangulated categories for the readers conve-
nient.
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2.1. Positively graded self-injective algebras. In this subsection, our aim is to recall
that the stable category of Z-graded modules over positively graded self-injective algebras
are algebraic triangulated categories. Most of results stated here are due to Gordon-Green
[3, 4]. In details, readers should refer to [3, 4].

We start with setting notations. Let A =
⊕

i≥0Ai be a positively graded self-injective
algebra. We say that an A-module is Z-gradable if it can be regarded as a Z-graded
A-module. For a Z-graded A-module X, we write Xi the i-degree part of X. We denote
by modZA the category of Z-graded A-modules. For Z-graded A-modules X and Y , we
write HomA(X, Y )0 the morphism space in modZA from X to Y .

We recall that modZA has two important functors. The first one is the grading shift
functor. For i ∈ Z, we denote by

(i) : modZA → modZA

the grading shift functor, that is defined as follows. For a Z-graded A-module X,

• X(i) := X as an A-module,
• Z-grading on X(i) is defined by X(i)j := Xj+i for any j ∈ Z.

This is an autofunctor on modZA whose inverse is (−i).
The second one is the K-dual. It is already known that there is the standard duality

D := HomK(−, K) : modA → modAop.

This functor induces the following duality. For a Z-graded A-module X, we regard DX as
a Z-graded Aop-module by defining (DX)i := D(X−i) for any i ∈ Z. By this observation,
we have the duality

D : modZA → modZAop.

Next we recall a few important facts about objects and morphism spaces in modZA.
The following results are two of the most basic categorical properties of modZA.

Proposition 2. modZA is a Hom-finite Krull-Schmidt category

Proposition 3. [3, Theorem 3.2. Theorem 3.3.] The following assertions hold.

(1) A Z-graded A-module is indecomposable in modZA if and only if it is an inde-
compsable A-module.

(2) Any direct summand of a Z-gradable A-module is also Z-gradable.
(3) Let X and Y be indecomposable Z-graded A-modules. If X and Y are isomorphic

to each other in modA, then there exists i ∈ Z such that X and Y (i) are isomorphic
to each other in modZA.

Next we recall what are projective objects and injective objects in modZA. A is natu-
rally regarded as a Z-graded A-module. By Proposition 3 (2), any projective A-modules
are Z-gradable. Moreover it is easy to check that all projective object in modZA is given
by projective A-modules. By the standard duality, the same argument hold for injective
objects in modZA.

Proposition 4. A complete list of indecomposable projective objects in modZA is given
by

{P (i) | i ∈ Z, P is an indecomposable projective A-module}.
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Dually a complete list of indecomposable injective objects in modZA is given by

{I(i) | i ∈ Z, I is an indecomposable injective A-module}.
If A is self-injective, then modZA is a Frobenius category by Proposition 3 and Proposi-

tion 4. So in this case, the stable category modZA has a structure of triangulated category
by [5].

Lemma 5. If A is self-injective, the following assertions hold.

(1) modZA is a Frobenius category.
(2) modZA has a structure of triangulated category whose shift functor [1] is given by

the graded cosyzygy functor Ω−1 : modZA → modZA.

2.2. Tilting theorem for algebraic triangulated categories. In this subsection, we
recall tilting theorem for algebraic triangulated categories which is due to Keller [7]. It
is a theorem which provides a method for comparison of given triangulated category and
homotopy category of bounded complexes of projective modules over some algebra.

First let us recall the definition of algebraic triangulated categories again.

Definition 6. A triangulated category T is algebraic if it is triangle-equivalent to the
stable category of some Frobenius category.

A class of algebraic triangulated categories contains the following important examples.

Example 7. (1) Let Z be an abelian group, and A a Z-graded self-injective algebra.
Then modZA is a Frobenius category, and the stable category modZA is an algebraic
triangulated category (Lemma 5).

(2) Let Λ be an algebra. The category Cb(projΛ) of bounded complexes of projective
Λ-modules can be regarded as a Frobenius category whose stable category is the homotopy
category Kb(projΛ) of bounded complexes of projective Λ-modules (cf. [5]).

In tilting theory, tilting objects which is defined as follows play an important role.

Definition 8. Let T be a triangulated category. An object T ∈ T is called a tilting object
in T if it satisfies the following conditions.

(1) HomT (T, T [i]) = 0 for i 6= 0.
(2) T = thickT .

Here thickT is the smallest triangulated full subcategory of T which contains T , and is
closed under direct summands.

The following is a typical example of tilting objects.

Example 9. Let Λ be a ring. Λ can be regarded as a complex which concentrates in
degree 0. So Λ is contained in a triangulated category Kb(projΛ). It is a tilting object in
Kb(projΛ).

The following result is Keller’s tilting theorem which determine when is an algebraic
triangulated category triangle-equivalent to Kb(projΛ) for some algebra Λ,

Theorem 10. [7, Theorem 4.3.] Let T be an algebraic triangulated category. If T has a
tilting object T , then there exists a triangle-equivalence up to direct summands

T ' Kb(projEndT (T )).
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By the above result, finding tilting objects is a basic problem for the study of a given
algebraic triangulated category. We will consider this problem for Example 7 (1) in the
next section (Theorem 11).

3. Triangle-equivalences between stable categories and derived
categories

Throughout this section, let A be a positively graded self-injective algebra. In this
section, we discuss triangle-equivalences between the stable category modZA and derived
categories of algebras.

First we prove Theorem 1 in the half of this section. We omit the proof of (2) ⇒ (1).
We prove (1) ⇒ (2). We begin the proof from giving the necessary and sufficient condition
for existence of tilting objects in the stable category modZA. The necessary and sufficient
condition is described by important homological property of the subring A0 of A which is
stated as follows.

Theorem 11. modZA has a tilting object if and only if A0 has finite global dimension.

We omit the proof of only if part of Theorem 11. In the following, we show the proof
of if part of Theorem 11 which is given by constructing a tilting object in modZA. To
construct it, we consider truncation functors

(−)≥i : modA → modA

and

(−)≤i : modA → modA

which are defined as follows. For a Z-graded A-moduleX, X≥i is a Z-graded sub A-module
of X defined by

(X≥i)j :=

{
0 (j < i)

Xj (j ≥ i),

and X≤i is a Z-graded factor A-module X/X≥i+1 of X.
Now we define

T :=
⊕
i≥0

A(i)≤0.(3.1)

which is an object in ModZA but not an object in modZA. However since A(i)≤0 = A(i)
for enough large i, T can be regarded as an object in modZA.

Then we have the following result.

Theorem 12. Under the above setting, the following assertions hold.

(1) T is a tilting object in thickT .
(2) If A0 has finite global dimension, then T is a tilting object in modZA.

It is proved that T satisfies the first condition in Definition 8 with no assumptions for
A, and T satisfies the second condition in Definition 8 if A0 has finite global dimension.
Then we finish the proof of if part of Theorem 11. �
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Now we keep the notation as above and put

Γ := EndA(T )0.

the endomorphism algebra of T in modZA. This endomorphism algebra Γ has a nice
homological property if so does A0.

Theorem 13. If A0 has finite global dimension, then so does Γ.

Now we ready to prove Theorem 1 (1) ⇒ (2).

Theorem 14. Under the above setting, the following assertions hold.

(1) There exists a triangle-equivalence

thickT −→ Kb(projΓ).

(2) If A0 has finite global dimension, then there exists a triangle-equivalence

modZA −→ Db(modΓ).

Proof. (1) By Theorem 10 and Theorem 12 (1), we have the triangle-equivalence thickT −→
Kb(projΓ).

(2) We assume that A0 has finite global dimension. First by Theorem 10 and Theorem
12 (2), we have the triangle-equivalence modZA −→ Kb(projΓ). Next by Theorem 13, the
natural triangle-functor Kb(projΛ) −→ Db(modΓ) is an equivalence. Finally by composing
these equivalences, we have a triangle-equivalence

modZA −→ Db(modΓ).

�
In the above proof, the triangle-equivalence modZA → Db(modΓ) was given by the

existence of tilting object T in modZA and Keller’s Theorem 10 automatically. In the
rest of this section, we construct a triangle-equivalence Db(modΓ) → modZA by derived
tensor functor directly.

To construct the triangle-equivalence, first we want to consider the derived tensor func-

tor −
L
⊗Γ T : Db(modΓ) → Db(modZA). However Γ does not act on T naturally since Γ

is defined by the morphism space in the stable category modZA. To solve this problem,
we give the description of T in modZA below. The description allow us to realize Γ as the
morphism space in the category modZA.

Proposition 15. T is decomposed as T = T ⊕P where T is a direct sum of all indecom-
posable non-projective direct summand of T . Then the following assertions hold.

(1) T is in modZA.
(2) T and T are isomorphic to each other in modZA.
(3) There exists an algebra isomorphism Γ ' EndA(T )0.

Let T = T⊕P be the decomposition which was given in Proposition 15. By Proposition
15 (3), T is regarded as a Z-graded Γop⊗KA-module naturally. So we have the left derived
tensor functor

−
L
⊗Γ T : Db(modΓ) → Db(modZA).
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Next we consider the quotient category Db(modZA)/Kb(projZA) of Db(modZA), and
the quotient functor

Db(modZA) −→ Db(modZA)/Kb(projZA).

The following triangle-equivalence is the realization of modZA as the quotient category
Db(modZA)/Kb(projZA). The ungraded version of this realization was studied by several
authors [1], [8] and [9].

Theorem 16. [9, Theorem 2.1.] The natural embedding modZA → Db(modZA) induces
a triangle-equivalence

modZA −→ Db(modZA)/Kb(projZA)

Now we consider the following composition of the above three functors

G : Db(modΓ)
−

L
⊗ΓT−−−−−→ Db(modZA) −→ Db(modZA)/Kb(projZA) −→ modZA.

where the second one is the quotient functor, and the third one is a quasi-inverse of
Theorem 16. This is the triangle-functor which we want.

Theorem 17. Under the above setting, the following assertions hold.

(1) G is fully faithful on Kb(projΓ).
(2) A0 has finite global dimension if and only if G is a triangle-equivalence.

Proof. (1) It is easy to check that G(Γ) is isomorphic to T , so is isomorphic to T . Moreover
by Theorem 12 (1), G induces an isomorphism

HomDb(modΓ)(Γ,Γ[i]) ' HomA(G(Γ), G(Γ)[i])0

for any i ∈ Z. By this and thickΓ = Kb(projΓ), G is fully faithful on Kb(projΓ). Thus G
induces a triangle-equivalence Kb(projΓ) → thickT .

(2) We assume that A0 has finite global dimension. Then Γ has finite global dimension
by Theorem 13. Thus we have thickΓ = Db(modΓ), and so G is fully faithful. Again since
A0 has finite global dimension, we have thickT = modZA by Theorem 12 (2). Thus G is
dense.

We omit the proof of converse. �

4. Examples

In this section, we show some examples and applications of results which was shown in
previous section.

First example is famous Happel’s result [6], which gives a relationship between represen-
tation theory of algebras and that of the trivial extensions. We show it as an application
of Theorem 1.

Example 18. If an algebra is given, then we can always construct a positively graded self-
injective algebra called trivial extension, which contains original algebra as a subalgebra.
Let us recall the definition of trivial extensions. Let Λ be an algebra. The trivial extension
A of Λ is defined as follows.

• A := Λ⊕DΛ as an abelian group.

–252–



• The multiplication on A is defined by

(x, f) · (y, g) := (xy, xg + fy).

for any x, y ∈ Λ and f, g ∈ DΛ. Here xg and fy is defined by (Λ,Λ)-bimodule
structure on DΛ.

This A becomes an algebra with respect to the above operations. Moreover it is known
that A is self-injective.

Now we introduce a positively grading on A by

Ai :=


Λ (i = 0),

DΛ (i = 1),

0 (i ≥ 2).

Then obviously A =
⊕

i≥0Ai becomes a positively graded self-injective algebra.
Under the above setting, we apply Theorem 17 to the trivial extension A of an algebra

Λ. Then we have the following Happel’s triangle-equivalence.

Theorem 19. [6, Theorem 2. 3.] Under the above setting, the following are equivalent.

(1) Λ has finite global dimension.
(2) There exists an triangle-equivalence

modZA ' Db(modΛ).

Proof. We calculate T constructed in (3.1) for our setting. Then one can check that
T = Λ, and EndA(T )0 = EndA(T )0 ' Λ. Thus the assertion follows from this and
Theorem 17. �

Next example is X-W Chen’s result [2] which gives a generalization of Happel’s result.

Example 20. Chen [2] studied relationship between the stable category modZA of a
positively graded self-injective algebra A which has Gorenstein parameter and the derived
category Db(modΓ) of the Beilinson algebra Γ of A. The notion of Gorenstein parameter
is defined as follows.

Definition 21. Let A be a positively graded self-injective algebra. We say that A has
Gorenstein parameter ` if SocA is contained in A`.

Let A be a positively graded self-injective algebra of Gorenstein parameter `. The
Beilinson algebra Γ of A is defined by

Γ :=


A0 A1 · · · A`−2 A`−1

A0 · · · A`−3 A`−2

. . .
...

...
A0 A1

0 A0

 .

Then Chen showed the following result.

Theorem 22. [2, Corollary 1.2.] Under the above setting, the following are equivalent.

(1) A0 has finite global dimension.
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(2) There exists a triangle-equivalence

modZA ' Db(modΓ).

As an application of Theorem 12, we give a proof of the above result. Let T be the
object defined in (3.1), and T the direct summand of T defined in Proposition 15. We
calculate T and the endomorphism algebra EndA(T )0. Then since A has Gorenstein
parameter `, those can be represented as the following explicit form.

Proposition 23. Under the above setting, the following assertions hold

(1) T =
⊕`−1

i=0 A(i)≤0.
(2) There exists an algebra isomorphism EndA(T )0 ' Γ.

Proof. Since A has Gorenstein parameter `, we have T =
⊕`−1

i=0 A(i)≤0 by the definition
of T . Moreover it is easy to calculate that there is an algebra isomorphism EndA(T )0 =

EndA

(⊕`−1
i=0 A(i)≤0

)
0
' Γ. �

Proof of Theorem 22. The assertion follows from Theorem 17 and Proposition 23. �
Remark 24. The trivial extensions of algebras are positively graded self-injective algebras
of Gorenstein parameter 1. Thus Theorem 22 contains Theorem 19.

Next we show a concrete examples.

Example 25. We consider A := K[x]/(xn+1), and define a grading on A by deg x := 1.
Then A is a positively graded self-injective algebra of Gorenstein parameter n.

Since the global dimension of A0 = K is equal to zero, modZA has a tilting object by
Theorem 11. Let T be the object in modZA which was defined in (3.1). Since A has a
unique chain

A ⊃ (x)/(xn+1) ⊃ (x2)/(xn+1) ⊃ · · · ⊃ (xn)/(xn+1)

of Z-graded A-submodules of A, it is easy to calculate that the endomorphism algebra
Γ := EndA(T )0 of T is isomorphic to the n× n upper triangular matrix algebra over K.
By Theorem 12, there exists a triangle-equivalence

modZA ' Db(modΓ).

We observe the above triangle-equivalences by considering the case that n = 2, namely
the case that A = K[x]/(x3). For i = 1, 2, we put X i := (xi)/(x3) the Z-graded A-
submodule of A. Then we have a chain A ⊃ X1 ⊃ X2 of Z-graded A-submodules of A. It
is known that {X i(j) | i = 1, 2, j ∈ Z} is a complete set of indecomposable non-projective
Z-graded A-modules.

The Auslander-Reiten quiver of modZA is as follows.

X1(−2)

X2(−2)

X1(−1)

X2(−1)

X1

X2

X1(1)

X2(1)

X1(2)

X2(2)

· · · · · · · · · · · ·
??������� ��?

??
??

?? ??������� ��?
??

??
?? ??������� ��?

??
??

?? ??������� ��?
??

??
?? ??�������

oo oo oo oo

oo oo oo oo

Here dotted arrows mean the Auslander-Reiten translation in modZA. We can observe
that the Auslander-Reiten translation coincides with the graded shift functor (−1).
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Next we write the Auslander-Reiten quiver of Db(modΓ). In this case, Γ = EndA(T )0
is isomorphic to 2 × 2 upper triangular matrix algebra over K. We put P 1 := (KK),
P 2 := (0K) and I1 := (K0). It is known that the set {P 1, P 2, I1} is a complete set of
indecomposable Γ-modules, and the Auslander-Reiten quiver of Db(modΓ) is as follows.

I1[−1]

P 1[−1]

P 1

P 2

P 2[1]

I1

I1[1]

P 1[1]

P 1[2]

P 2[2]

· · · · · · · · · · · ·
??������� ��?

??
??

?? ??������� ��?
??

??
?? ??������� ��?

??
??

?? ??������� ��?
??

??
?? ??�������

oo oo oo oo

oo oo oo oo

Here dotted arrows mean the Auslander-Reiten translation in Db(modΓ).
From shape of the above Auslander-Reiten quivers, one can see that modZA and

Db(modΓ) should be equivalent to each other. In fact, we gave a triangle-equivalence
between those.
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ALGEBRAIC STRATIFICATIONS OF DERIVED MODULE
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Abstract. In this note I will survey on some recent progress in the study of recollements

of derived module categories.
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The notion of recollement of triangulated categories was introduced in [5] as an analogue

of short exact sequence of modules or groups. In representation theory of algebras it

provides us with reduction techniques, which have proved very useful, for example, in

• proving conjectures on homological dimensions, see [9];

• computing homological invariants, see [11, 12];

• classifying t-structures, see [14].

In this note I will survey on some recent progress in the study of recollements of derived

module categories.

1. Recollements

Let k be a field. For a k-algebra A denote by D(A) = D(ModA) the (unbounded)

derived category of the category ModA of right A-modules. The objects of D(A) are

complexes of right A-modules. The category D(A) is triangulated with shift functor Σ

being the shift of complexes. See [10] for a nice introduction on derived categories.

A recollement of derived module categories is a diagram of derived module categories

and triangle functors

D(B) i∗=i! // D(A) j!=j∗ //

i!

ee

i∗

yy
D(C),

j∗

ee

j!

yy
(1.1)

where A, B and C are k-algebras, such that

(1) (i∗, i∗ = i!, i
!) and (j!, j

! = j∗, j∗) are adjoint triples;

(2) j!, i∗ and j∗ are fully faithful;

(3) j∗i∗ = 0;

The detailed /final/ version of this paper will be /has been/ submitted for publication elsewhere.
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(4) for every object M of D(A) there are two triangles

i!i
!M // M // j∗j

∗M // Σi!i
!M

and

j!j
!M // M // i∗i

∗M // Σj!j
!M ,

where the four morphisms starting from and ending atM are the units and counits.

Necessary and sufficient conditions under which such a recollement exists were discussed

in [13, 16].

Example 1. Let A be the path algebra of the Kronecker quiver

1 //// 2 .

The trivial path e1 at 1 is an idempotent of A and e1A is a projective A-module. The

following diagram is a recollement

D(A/Ae1A) ?
L
⊗A/Ae1A

A/Ae1A
// D(A) ?

L
⊗AAe1

//

RHomA(A/Ae1A,?)

jj

?
L
⊗AA/Ae1A

tt
D(e1Ae1).

RHome1Ae1
(Ae1,?)

ii

?
L
⊗e1Ae1

e1A

uu

Note that both e1Ae1 and A/Ae1A are isomorphic to k.

2. Algebraic stratifications of derived module categories

Let A be an algebra. An algebraic stratification of D(A) is a sequence of iterated non-

trivial recollements of derived module categories. It can be depicted as a binary tree as

below, where each edge represents an adjoint triple of triangle functors and each hook

represents a recollement

D(A)

jjjj
jjjj

jjjj
jjjj

jjj

SSSS
SSSS

SSSS
SSSS

SSS

D(B)

vv
vv
vv
vv
v

HH
HH

HH
HH

H
D(C)

vv
vv
vv
vv
v

HH
HH

HH
HH

H

D(B′)

��
��
��
�

88
88

88
8

D(B′′)

��
��
��
�

88
88

88
8

D(C ′)

��
��
��
�

77
77

77
7

D(C ′′)

��
��
��
�

88
88

88
8

· · · · · · · ·
...

...
...

–257–



The leaves of the tree are the simple factors of the stratification. The following questions

are basic:

(a) Does every derived module category admit a finite algebraic stratification?

(b) Do two finite algebraic stratifications of a derived module category have the same

number of simple factors? Do they have the same simple factors (up to triangle

equivalence and up to reordering)?

(c) Which derived module categories occur as simple factors of some algebraic strati-

fications?

The question (c) will be discussed in the next section. The questions (a) and (b) ask for

a Jordan–Hölder type result for derived module categories. For general (possibly infinite-

dimensional) algebras the answers are negative. Below we give some (counter-)examples.

Example 2. ([2]) Let A =
∏

N k. Then D(A) does not admit a finite algebraic stratifica-

tion.

Example 3. ([6]) Let A be as in Example 1. Let V be a regular simple A-module, namely,

V corresponds to one of the following representations of the Kronecker quiver

k
1 //

λ
// k (λ ∈ k), k

0 //

1
// k .

Let ϕ : A → AV be the corresponding universal localisation. Then T = A⊕ AV /ϕ(A) is

an (infinitely generated) tilting A-module. We refer to [6] for the unexplained notions.

Let B = EndA(T ). Then there are two algebraic stratifications of D(B) of length 3 and

2 respectively :

D(B)

tt
tt
tt
tt
t

HH
HH

HH
HH

H

D(k((t))) D(A)

vv
vv
vv
vv
v

GG
GG

GG
GG

D(k) D(k)

D(B)

uu
uu
uu
uu
u

JJ
JJ

JJ
JJ

J

D(k[t]) D(k[[t]])

Examples of this type are systematically studied in [7].

Notice that the algebra B in the preceding example is infinite-dimensional. For finite-

dimensional algebras, the questions (a) and (b) are open. For piecewise hereditary algebras

the answers to them are positive. Recall that a finite-dimensional algebra is piecewise

hereditary if it is derived equivalent to a hereditary abelian category.

Theorem 4. ([1, 3]) Let A be a piecewise hereditary algebra. Then any algebraic stratifi-

cation of D(A) has the same set (with multiplicities) of simple factors: they are precisely

the derived categories of the endomorphism algebras of the simple A-modules.
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3. Derived simple algebras

An algebra is said to be derived simple if its derived category does not admit any

non-trivial recollements of derived module categories. For example, the field k is derived

simple. Derived simple algebras are precisely those algebras whose derived categories

occur as simple factors of some algebraic stratifications.

Example 5. ([17, 4]) Let n ∈ N. Let A be the algebra given by the quiver

1
α // 2
β

oo

with relations (αβ)n = 0 = (βα)n or with relations (αβ)nα = 0 = β(αβ)n. Then A is

derived simple.

Example 6. ([8]) There are finite-dimensional derived simple algebras of finite global

dimension. In [8], Happel constructed a family of finite-dimensional algebras Am (m ∈ N)
such that

– the global dimension of Am is 6m− 3,

– Am is derived simple.

All these algebras have exactly two isomorphism classes of simple modules. For example,

A1 is given by the quiver

1
α //

γ
// 2βoo

with relations βα = 0 = γβ.

The classification of derived simple algebras turns out to be a wild problem. Besides

those in the above examples, only a few families of algebras have been shown to be derived

simple.

Theorem 7. The following algebras are derived simple:

(a) ([2]) local algebras,

(b) ([2]) simple artinian algebras,

(c) ([4]) indecomposable commutative algebras,

(d) ([15]) blocks of finite group algebras.

Sketch of the proof for (d): First recall that a block of an algebra is an indecomposable

algebra direct summand.

Step 1: Let A, B and C be finite-dimensional algebras such that there is a rec-

ollement of the form (1.1). Then i∗(B) and j!(C) has no self-extensions. Moreover,

i∗(B) ∈ Db(modA), j!(C) ∈ Kb(projA) and i∗(A) ∈ Kb(projB). Here Db(mod) denotes

the bounded derived category of finite-dimensional modules and Kb(proj) denotes the ho-

motopy category of bounded complexes of finite-dimensional projective modules. They

can be considered as triangulated subcategories of the (unbounded) derived category.
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Step 2: Let A be a finite-dimensional symmetric algebra, i.e. D(A) ∼= A as A-A-

bimodules. Here D = Homk(?, k) is the k-dual. Then for M,N ∈ Kb(projA), we have

DHomA(M,N) ∼= HomA(N,M).

Step 3: Let A be a finite-dimensional symmetric algebra satisfying the following con-

dition

(#) for any finite-dimensional A-module M , the space
⊕

i∈Z Ext
i
A(M,M) is infinite-

dimensional.

Let M ∈ Db(modA). Then either M ∈ Kb(projA) or the space
⊕

i∈Z HomA(M,ΣiM) is

infinite-dimensional.

Step 4: Let G be a finite group. Then the group algebra kG satisfies the condition (#).

So each block of kG is a finite-dimensional indecomposable symmetric algebra satisfying

the condition (#).

Step 5: Let A be a finite-dimensional indecomposable symmetric algebra satisfying the

condition (#). Then A is derived simple.

To show this, suppose on the contrary that there is a non-trivial recollement of the

form (1.1). Then there is a triangle

j!j
!(A) // A // i∗i

∗(A) // Σj!j
!(A).(3.1)

By Steps 1 and 3, we know that i∗(B) ∈ Kb(projA), which implies that i∗i
∗(A) ∈

Kb(projA), and hence j!j
!(A) ∈ Kb(projA) as well. For any n ∈ Z we have

HomA(j!j
!(A),Σni∗i

∗(A)) = HomA(j
!(A),Σnj∗i∗i

∗(A)) = 0,(3.2)

where the first equality follows from the adjointness of j! and j∗, and the second one

follows from the fact that j∗i∗ = 0 (the third condition in the definition of a recollement).

It then follows from the formula in Step 2 that for any n ∈ Z

HomA(i∗i
∗(A),Σnj!j

!(A)) = 0.(3.3)

Taking n = 1, we see that the triangle (3.1) splits, and hence A = j!j
!(A)⊕ i∗i

∗(A). The

formulas (3.2) and (3.3) for n = 0 say that there are no morphisms between j!j
!(A) and

i∗i
∗(A). Thus we have

A = EndA(A) = EndA(j!j
!(A)⊕ i∗i

∗(A)) = EndA(j!j
!(A))⊕ EndA(i∗i

∗(A)),

contradicting the assumption that A is indecomposable. �
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RECOLLEMENTS GENERATED BY IDEMPOTENTS AND
APPLICATION TO SINGULARITY CATEGORIES
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Abstract. In this note I report on an ongoing work joint with Martin Kalck, which

generalises and improves a construction of Thanhoffer de Völcsey and Van den Bergh.
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In [15] Thanhoffer de Völcsey and Van den Bergh showed that the stable category of

maximal Cohen–Macaulay modules over a local complete commutative Gorenstein algebra

with isolated singularity can be realized as the triangle quotient of the perfect derived

category by the finite-dimensional category of a certain nice dg algebra constructed from

the given Gorenstein algebra. We generalises and improves their construction by studying

recollements of derived categories generated by idempotents.

1. Recollements generated by idempotents

Let k be a field, let A be a k-algebra and e ∈ A be an idempotent. Let D(A) denote

the (unbounded) derived category of the category of right modules over A. This is a

triangulated category with shift functor Σ being the shift of complexes. Consider the

following standard diagram

D(A/AeA) i∗=i! // D(A) j!=j∗ //

i!

ff

i∗

xx
D(eAe)

j∗

ff

j!

xx
(1.1)

where

i∗ =?
L
⊗A A/AeA, j! =?

L
⊗eAe eA,

i∗ = RHomA/AeA(A/AeA, ?), j! = RHomA(eA, ?),

i! =?
L
⊗A/AeA A/AeA, j∗ =?

L
⊗A Ae,

i! = RHomA(A/AeA, ?), j∗ = RHomeAe(Ae, ?).

One asks when this diagram is a recollement ([3]), i.e. the following conditions hold

(1) (i∗, i∗ = i!, i
!) and (j!, j

! = j∗, j∗) are adjoint triples;

(2r) j! and j∗ are fully faithful;

(2l) i∗ = i! is fully faithful;

The detailed version of this paper will be submitted for publication elsewhere.
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(3) j∗i∗ = 0;

(4) for every object M of D(A) there are two triangles

i!i
!M // M // j∗j

∗M // Σi!i
!M

and

j!j
!M // M // i∗i

∗M // Σj!j
!M ,

where the four morphisms starting from and ending atM are the units and counits.

This type of recollements attracts considerable attention, see for example [6, 8, 7, 14]. The

conditions (1) and (3) are easy to check, and it is known that (2r) holds (by applying [11,

Proposition 3.2] to eA). However, in general (2l) is not necessarily true, as seen from the

next example.

Example 1. Let A be the finite-dimensional algebra given by the quiver

1
α // 2
β

oo

with relation αβ = 0. Take the idempotent e = e1, the trivial path at the vertex 1. Then

the associated functor i∗ : D(A/AeA) → D(A) is not fully faithful. Indeed, i∗(A/AeA)

is the simple A-module at vertex 2, which has non-vanishing self-extensions in degree 2,

while as an A/AeA-module A/AeA has no self-extensions.

Theorem 2. ([8]) The following conditions are equivalent

(i) the standard diagram (1.1) is a recollement,

(ii) the homomorphism A → A/AeA is a homological epimorphism, i.e. the functor

i∗ : D(A/AeA) → D(A) is fully faithful,

(iii) the ideal AeA is a stratifying ideal, i.e. the counit Ae
L
⊗eAe eA → A induces an

isomorphism Ae
L
⊗eAe eA ∼= AeA.

In general, to make the standard diagram (1.1) a recollement, one needs to replace

A/AeA by a dg (=differential graded) algebra, which, in some sense, enhances A/AeA.

For dg algebras and their derived categories, we refer to [13]. We remark that a k-algebra

can be viewed as a dg k-algebra concentrated in degree 0.

Theorem 3. ([12]) Let A and e ∈ A be as above. There is a dg k-algebra B with a

homomorphism of dg algebras f : A → B and a recollement of derived categories

D(B) i∗=i! // D(A) j!=j∗ //

i!

ee

i∗

yy
D(eAe)

j∗

ff

j!

xx
,

such that
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(a) the adjoint triples (i∗, i∗ = i!, i
!) and (j!, j

! = j∗, j∗) are given by

i∗ =?
L
⊗A B, j! =?

L
⊗eAe eA,

i∗ = RHomB(B, ?), j! = RHomA(eA, ?),

i! =?
L
⊗B B, j∗ =?

L
⊗A Ae,

i! = RHomA(B, ?), j∗ = RHomeAe(Ae, ?),

where B is considered as a left A-module and as a right A-module via the homo-

morphism f ;

(b) the degree i component Bi of B vanishes for i > 0;

(c) the 0-th cohomology H0(B) of B is isomorphic to A/AeA.

As a consequence of the recollement, there is a triangle equivalence

per(B) ∼= (Kb(projA)/ thick(eA))ω.

Here per(B) is the smallest triangulated subcategory of D(B) which contains B and which

is closed under taking direct summands, Kb(projA) is the homotopy category of bounded

complexes of finitely generated projective A-modules, thick(eA) is the smallest triangu-

lated subcategory of Kb(projA) which contains eA and which is closed under taking direct

summands, and ()ω denotes the idempotent completion.

Assume further that A/AeA is finite-dimensional and that each simple A/AeA-module

has finite projective dimension over A. Then

(d) H i(B) is finite-dimensional over k for any i ∈ Z, equivalently, per(B) is Hom-

finite, i.e. Hom(M,N) is finite-dimensional over k for any M,N ∈ per(B),

(e) Dfd(B) ⊆ per(B), here Dfd(B) denotes the full subcategory of D(B) consisting of

those objects whose total cohomology is finite-dimensional over k,

(f) per(B) has a t-structure whose heart is fdmod−A/AeA, the category of finite-

dimensional modules over A/AeA,

(g) if moreover there is a quasi-isomorphism from a dg algebra Ã = (k̂Q, d) to A, where

Q is a graded quiver concentrated in non-positive degrees and d : k̂Q → k̂Q is a

continuous k-linear differential satisfying the graded Leibniz rule and d(m̂) ⊆ m̂2,

such that e is the image of a sum ẽ of some trivial paths of Q, then B is quasi-

isomorphic to Ã/ÃẽÃ. Here k̂Q is the completion of the path algebra kQ with

respect to the m-adic topology in the category of graded algebras for the ideal m

of kQ generated by all arrows, and ÃẽÃ is the closure of ÃẽÃ under the m̂-adic

topology for the ideal m̂ of k̂Q generated by all arrows.

Thanks to the following lemma due to Keller, Theorem 3 (g) becomes practical when

the global dimension of A is 2.

Lemma 4. Let A = k̂Q′/(R) be of global dimension 2, where Q′ is a finite (ordinary)

quiver and R is a finite set of minimal relations. Let Q be the graded quiver obtained

from Q′ by adding an arrow ρr of degree −1 from the source of r to the target of r for
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each relation r ∈ R. Let d be the unique continuous k-linear automorphism of k̂Q which

satisfies the graded Leibniz rule and which takes ρr to r for each relation r ∈ R. Then

there is a quasi-isomorphism from (k̂Q, d) to A.

Example 5. Let A be as in Example 1. Let Q be the graded quiver

1
α // 2
β

oo ρff

where α and β are in degree 0 and ρ is in degree −1. Let d be the unique continuous

k-linear automorphism of k̂Q which satisfies the graded Leibniz rule and which takes ρ

to αβ. Then the obvious map from (k̂Q, d) to A is a quasi-isomorphism.

Let e = e1. The associated dg algebra B as in Theorem 3 is (quasi-isomorphic to) the

dg algebra k[ρ] with ρ in degree −1 and with vanishing differential.

2. Application to singularity categories

Let k be a field, and let R be a Iwanaga–Gorenstein k-algebra, i.e. R is left and right

noetherian as a ring and R has finite injective dimension both as left R-module and as

right R-module. Let modR denote the category of finitely generated right R-modules.

On the one hand, one defines the singularity category

Dsg(R) := Db(modR)/Kb(projR),

which measures the complexity of the singularity of R. (Kb(projR) is considered as the

smooth part.) On the other hand, one defines the category MCM(R) of maximal Cohen–

Macaulay R-modules

MCM(R) := {M ∈ modR | ExtiR(M,R) = 0 for any i > 0}.

The following nice result of Buchweitz relates these categories.

Theorem 6. ([4]) MCM(R) is a Frobenius category whose full subcategory of projective-

injective objects is precisely projR. Moreover, the embedding MCM(R) → modR induces a

triangle equivalence from the stable category MCM(R) to the singularity category Dsg(R).

Let M1, . . . ,Mr ∈ MCM(R) be pairwise non-isomorphic non-projective R-modules and

let M = R⊕M1 ⊕ . . .⊕Mr. Let A = EndR(M) and e = idR considered as an element of

A. Then R = eAe and A/AeA = EndMCM(R)(M). For example, the ring R = k[x]/x2 has

a unique simple module S, and letting M = R ⊕ S we obtain that A = EndR(M) is the

algebra given in Example 1.

There is always an embedding of Kb(projR) into Kb(projA) with essential image being

thick(eA). If the following condition is satisfied

(c1) A has finite global dimension,

then A becomes a non-commutative/categorical resolution of R. The condition (c1) has

an interesting consequence: the object M generates MCM(R) as a triangulated category.
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Cluster-tilting theory comes into the story because cluster-tilting objects are closely re-

lated to Van den Bergh’s non-commutative crepant resolutions [16], see [10].

The triangle quotient Kb(projA)/ thick(eA) measures the difference between the reso-

lution and the smooth part of the singularity, see [5]. So Kb(projA)/ thick(eA) is in some

sense a ‘categorical exceptional locus’. A natural question is: how is Kb(projA)/ thick(eA)

related to Dsg(R)?

Consider the following condition

(c2) MCM(R) is Hom-finite.

Theorem 7. ([12]) Keep the above notations and assume that (c1) and (c2) hold. There

is a dg algebra B with a morphism f : A → B such that f induces a triangle equivalence

per(B) ∼= (Kb(projA)/ thick(eA))ω.

Moreover, B satisfies the following properties:

(a) Bi = 0 for any i > 0,

(b) H0(B) ∼= A/AeA,

(c) Dfd(B) ⊆ per(B),

(d) per(B) is Hom-finite,

(e) there is a triangle equivalence

Dsg(R)ω ∼= (per(B)/Dfd(B))ω.

Theorem 7 (a–d) are obtained by applying Theorem 3, and part (e) needs more work.

This theorem was proved by Thanhoffer de Völcsey and Van den Bergh in [15] for R

being a local complete commutative Gorenstein k-algebra with isolated singularity. As an

application, they proved the following result, which was independently proved by Amiot,

Iyama and Reiten.

Theorem 8. ([2, 15]) Let d ∈ N. Let G ⊂ SLd(k) be a finite subgroup, acting naturally

on S = k[[x1, . . . , xd]] and let R = SG be the ring of invariants. Then MCM(R) is a

generalized (d− 1)-cluster category in the sense of Amiot [1] and Guo [9].
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singuliers, Astérisque, vol. 100, Soc. Math. France, 1982 (French).

[4] Ragnar-Olaf Buchweitz, Maximal Cohen-Macaulay modules and Tate-Cohomology over Gorenstein

rings, preprint 1987.

[5] Igor Burban and Martin Kalck, Singularity category of a non-commutative resolution of singularities,

arXiv:1103.3936.

[6] Edward Cline, Brian Parshall, and Leonard L. Scott, Finite-dimensional algebras and highest weight

categories, J. reine ang. Math. 391 (1988), 85–99.

–266–



[7] , Endomorphism algebras and representation theory, Algebraic groups and their representa-

tions (Cambridge, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 517, Kluwer Acad.

Publ., Dordrecht, 1998, pp. 131–149.

[8] , Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124 (1996), no. 591.

[9] Lingyan Guo, Cluster tilting objects in generalized higher cluster categories, J. Pure Appl. Algebra

215 (2011), no. 9, 2055–2071.

[10] Osamu Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51–82.

[11] Peter Jørgensen, Recollement for differential graded algebras, J. Algebra 299 (2006), no. 2, 589–601.

[12] Martin Kalck and Dong Yang, work in preparation.
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INTRODUCTION TO REPRESENTATION THEORY OF
COHEN-MACAULAY MODULES AND THEIR DEGENERATIONS

YUJI YOSHINO

Abstract. This is a quick introduction to the theory of representation theory of Cohen-
Macaulay modules and their degenerations.

1. Representation theory of Cohen-Macaulay modules.

Let k be a field and let R be commutative noetherian complete local k-algebra with
unique maximal ideal m. We assume k ∼= R/m naturally. Then it is known that there is
a regular local k-subalgebra T of R such that R is a module-finite T -algebra. (Cohen’s
structure theorem for complete local rings.) Note that T is isomorphic to a formal power
series ring over k.

Definition 1. (1) R is called a Cohen-Macaulay ring (a CM ring for short) if R
is free as a T -module.

(2) A finitely generated R-module M is called a Cohen-Macaulay module over R,
or a maximal Cohen-Macaulay module (a CM module or an MCM module for
short) if M is free as a T -module.

Given a CM module M , since M ∼= T n for some n ≥ 0, we have a k-algebra homomor-
phism R→ EndT (M) ∼= T n×n, which is a matrix-representation of R over T .

In the following we always assume that R is a CM complete local k-algebra. We
denote by mod(R) (res. CM(R) ) the category of finitely generated R-modules (resp. CM
modules over R ) and R-homomorphisms.

CM(R) := { CM modules over R} ⊆ mod(R) := {finitely generated R-modules }

Since R is complete, mod(R) and CM(R) are Krull-Schmidt categories. Note that CM(R)
is a resolving subcategory of mod(R) in the following sense: Suppose there is an exact
sequence 0→ L→M → N → 0 in mod(R).

(i) If L,N ∈ CM(R) then M ∈ CM(R).
(ii) If M,N ∈ CM(R) then L ∈ CM(R).
Let d be the Krull-dimension of the ring R (so that we can take T = k[[t1, . . . , td]] on

which R is finite). If d = 1 and if R is reduced, then CM modules are just torsion-free
modules. If d = 2 and if R is normal, then CM modules are nothing but reflexive modules.
In general, if d ≥ 3 and if R is normal, then CM(R) ⊆ {reflexive modules} but this is not
necessarily an equality. If R is regular (i.e. gl-dimR < ∞) then all CM modules over R
are free.

Let KR := HomT (R, T ) and call it the canonical module of R. Since R is a CM ring,
KR ∈ CM(R). For any X ∈ mod(R), we have a natural isomorphism HomR(X,KR) ∼=
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HomT (X,T ). It follows that HomR(−, KR) gives duality CM(R)→ CM(R)op. Grothendieck’s
local duality theorem claims the existence of natural isomorphisms

ExtiR(M,KR) ∼= HomR(H
d−i
m (M), ER(k)) (∀i ∈ N)

whenever R is a CM complete ring and M ∈ mod(R). Thus it is easy to see the following

Lemma 2. The following are equivalent for M ∈ mod(R):

(1) M ∈ CM(R),
(2) ExtiR(M,KR) = 0 (∀i > 0),
(3) Hj

m(M) = 0 (∀j < d),
(4) ExtiR(k,M) = 0 (∀i < d).

Now recall that R is called an isolated singularity if Rp is a regular local ring for
each prime p 6= m. It is not hard to prove the following

Lemma 3. Let R be a CM local ring as above. The R is an isolated singularity if and
only if Ext1R(M,N) is of finite length for each M,N ∈ CM(R).

Definition 4. A CM local ring R is said to be of finite CM representation type if
CM(R) has only a finite number of isomorphism classes of indecomposable modules.

The first celebrated result about finiteness of CM representation type was due to
M. Auslander.

Theorem 5. [Auslander, 1986] Let R be a CM complete local ring. If R is of finite CM
representation type, then R is an isolated singularity.

We prove this theorem by using an idea of Huneke and Leuschke [6]. By virtue of
Lemma 3 it is enough to prove the following:

(*) Let a1, a2, a3, . . . be any countable sequence of elements in m and let M,N ∈ CM(R)
be any indecomposable CM modules. Then there is an integer n such that
a1a2 · · · · anExt1R(M,N) = 0.

Actually this will imply that a power of m annihilates Ext1R(M,N), hence the length of
Ext1R(M,N) is finite. To prove (∗), take a σ ∈ Ext1R(M,N) that corresponds to a short
exact sequence σ : 0 → N → E0 → M → 0. Now assume the corresponding sequence
to a1a2 · · · anσ ∈ Ext1R(M,N) is 0 → N → En → M → 0 for any integer n. Note that
each En is a direct sum of indecomposable CM modules and the multiplicity (or the rank
if it is defined) e(En) is constantly equal to e(M) + e(N). Therefore the possibilities of
such En are finite, and hence there are integers n and r > 0 such that En ∼= En+r. By
definition, there is a commutative diagram with exact rows:

a1 · · · anσ : 0 −−−→ N
j−−−→ En −−−→ M −−−→ 0

b:=an+1···an+r

y y y=

a1 · · · an+rσ : 0 −−−→ N −−−→ En+r −−−→ M −−−→ 0,

where the first square is a push-out. Hence,

0 −−−→ N
(jb)−−−→ En ⊕N −−−→ En+r −−−→ 0
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is exact. Since En ∼= En+r, Miyata’s theorem forces that
(
j
b

)
is a split monomorphism.

Then one can see that j is also a split monomorphism. (pj + qb = 1N in the local ring
EndR(N).) Hence a1 · · · anσ = 0 as an element of Ext1R(M,N). 2

By a similar idea to the proof above, Huneke and Leuschke [7] was able to prove the
following theorem which had been conjectured by F.-O.Schreyer in 1987.

Theorem 6. [Huneke-Leuschke 2003] Let R be a CM complete local ring and assume
that R is of countable CM representation type (i.e. CM(R) has only a countable number
of isomorphism classes of indecomposable modules). Then the singular locus of R has at
most one-dimension, i.e. Rp is regular for each prime p with dimR/p > 1.

(Proof) Let {Mi | i = 1, 2, . . .} be a complete list of isomorphism classes of indecom-
posable CM modules, and set

Λ = {p ∈ Spec(R) | p = AnnR Ext1R(Mi,Mj) for some i, j and dimR/p = 1},

which is a countable set of prime ideals. Let J be an ideal defining the singular locus of
Spec(R) and we want to show dimR/J ≤ 1. Assume contrarily dimR/J ≥ 2. If p ∈ Λ
then, since (Mi)p is not free, we have J ⊆ p. Thus J ⊆

∩
p∈Λ p. By countable prime

avoidance, there is an f ∈ m\
∪

p∈Λ p, and we can find a prime q so that q ⊇ J + fR and

dimR/q = 1. Set Xi = Ωi
R(R/q) the ith syzygy for i ≥ 0. Then Xi ∈ CM(R) if i ≥ d

and one can show that AnnR Ext1R(Xd, Xd+1) = q. The CM modules Xd and Xd+1 is a
direct sum of indecomposables as Xd

∼=
⊕r

u=1Miu and Xd+1
∼=

⊕s
v=1Mju . Thus since

q =
∩
u,v AnnR Ext1R(Miu ,Mjv), we have q = AnnR Ext1R(Miu ,Mjv) for some u, v. Thus

q ∈ Λ, but this is a contradiction for f ∈ q. 2

Auslander’s original proof of Theorem 5 uses AR-sequences.

Definition 7. A non-split short exact sequence 0 → N → E
p→ M → 0 in CM(R) is

called an AR-sequence (ending in M) if

(1) M and N are indecomposable,
(2) if f : X → M is any morphism in CM(R) that is not a splitting epimorphism,

then f factors through p.

We say that the category CM(R) admits AR-sequences if, for any indecomposable M ∈
CM(R), there is an AR-sequence ending in M .

M.Auslander proved the following theorems.

Theorem 8. Let R be a CM complete local ring and assume that R is of finite CM
representation type. Then CM(R) admits AR-sequences.

Theorem 9. Let R be a CM complete local ring. Then CM(R) admits AR-sequences if
and only if R is an isolated singularity.

The most difficult part of the proofs of Theorems 8 and 9 is to show the implication
”being isolated singularity ⇒ admitting AR-sequences”. This implication follows from
the following isomorphism which is called the Auslander-Reiten duality :
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Theorem 10. Assume that a CM complete local ring R is an isolated singularity of
dimension d. Then, for any M,N ∈ CM(R), there is a natural isomorphism

ExtdR(HomR(N,M), KR) ∼= Ext1R(M,HomR(Ω
d
Rtr(N), KR)).

Now we discuss some generalities about stable categories. For this let R be a CM
complete local ring of dimension d. We denote by CM(R) the stable category of CM(R).
By definition, CM(R) is the factor category CM(R)/[R]. Recall that the objects of CM(R)
is CM modules over R, and the morphisms of CM(R) are elements of HomR(M,N) :=
HomR(M,N)/P (M,N) forM,N ∈ CM(R), where P (M,N) denotes the set of morphisms
from M to N factoring through projective R-modules. For a CM module M we denote
it by M to indicate that it is an object of CM(R).

Since R is a complete local ring, note that M is isomorphic to N in CM(R) if and only
if M ⊕ P ∼= N ⊕Q in CM(R) for some projective (hence free) R-modules P and Q.

For any R-module M , we denote the first syzygy module of M by ΩRM . We should
note that ΩRM is uniquely determined up to isomorphism as an object in the stable
category. The nth syzygy module Ωn

RM is defined inductively by Ωn
RM = ΩR(Ω

n−1
R M),

for any nonnegative integer n.
We say that R is a Gorenstein ring if KR

∼= R. If R is Gorenstein, then it is easy
to see that the syzygy functor ΩA : CM(R) → CM(R) is an autoequivalence. Hence, in
particular, one can define the cosyzygy functor Ω−1

R on CM(R) which is the inverse of
ΩR. We note from [3, 2.6] that CM(R) is a triangulated category with shifting functor
[1] = Ω−1

R . In fact, if there is an exact sequence 0 → L → M → N → 0 in CM(R), then
we have the following commutative diagram by taking the pushout:

0 −−−→ L −−−→ M −−−→ N −−−→ 0∥∥∥ y y
0 −−−→ L −−−→ P −−−→ Ω−1L −−−→ 0,

where P is projective (hence free). We define the triangles in CM(R) are the sequences

L −−−→ M −−−→ N −−−→ L[1]

obtained in such a way.
Now we remark one of the fundamental dualities called the Auslander-Reiten-Serre

duality, which essentially follows from Theorem 10.

Theorem 11. Let R be a Gorenstein complete local ring of dimension d. Suppose that R is
an isolated singularity. Then, for any X,Y ∈ CM(R), we have a functorial isomorphism

ExtdR(HomR(X,Y ), R) ∼= HomR(Y,X[d− 1]).

Therefore the triangulated category CM(R) is a (d− 1)-Calabi-Yau category.

2. Degenerations of modules

Let us recall the definition of degeneration of finitely generated modules over a noe-
therian algebra, which is given in [12].

Let R be an associative k-algebra where k is any field. We take a discrete valuation
ring (V, tV, k) which is a k-algebra and t is a prime element. We denote by K the quotient
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field of V . We denote by mod(R) the category of all finitely generated left R-modules
and R-homomorphisms as before. Then we have the natural functors

mod(R)
r←−−− mod(R⊗k V )

`−−−→ mod(R⊗k K),

where r = −⊗V V/tV and ` = −⊗V K. (”r” for residue, and ”`” for localization.)

Definition 12. For modules M,N ∈ mod(R), we say that M degenerates to N if
there exist a discrete valuation ring (V, tV, k) which is a k-algebra and a module Q ∈
mod(R⊗k V ) that is V -flat such that `(Q) ∼= M ⊗k K and r(Q) ∼= N .

The module Q, regarded as a bimodule RQV , is a flat family of R-modules with pa-
rameter in V . At the closed point in the parameter space SpecV , the fiber of Q is N ,
which is a meaning of the isomorphism r(Q) ∼= N . On the other hand, the isomorphism
`(Q) ∼= M ⊗k K means that the generic fiber of Q is essentially given by M .

Example 13. Let R = k[[x, y]]/(x2), where k is a field. In this case, a pair of matrices

(ϕ, ψ) =

((
x y2

0 x

)
,

(
x −y2
0 x

))
over k[[x, y]] is a matrix factorization of x2, giving a CM R-module N that is isomorphic
to an ideal I = (x, y2)R. Thus there is a periodic free resolution of N ;

· · · −−−→ R2 ψ−−−→ R2 ϕ−−−→ R2 ψ−−−→ R2 ϕ−−−→ R2 −−−→ N −−−→ 0.
Now we deform the matices to

(Φ,Ψ) =

((
x+ ty y2

−t2 x− ty

)
,

(
x− ty −y2
t2 x+ ty

))
over R⊗k V . Since this is a matrix factorization of x2 again, we have a free resolution

· · · Φ−−−→ (R⊗k V )2
Ψ−−−→ (R⊗k V )2

Φ−−−→ (R⊗k V )2 −−−→ Q −−−→ 0.

It is obvious to see that r(Q) = Q/tQ ∼= N , since Φ ⊗V V/tV = ϕ. On the other hand,

since t2 is a unit in R⊗kK, we have Φ⊗V K ∼=
(
0 0
1 0

)
after elementary transformations

of matrices. Hence, `(Q) = Qt
∼= R⊗k K. As a conclusion, we see that R degenerates to

I = (x, y2)R !

Theorem 14 ([12]). The following conditions are equivalent for finitely generated left
R-modules M and N .

(1) M degenerates to N .
(2) There is a short exact sequence of finitely generated left R-modules

0→ Z
(φψ)−→M ⊕ Z → N → 0,

such that the endomorphism ψ of Z is nilpotent, i.e. ψn = 0 for n� 1.

Example 15. In Example 13, we have an exact sequence

0 −−−→ m
(−1,x

y
)

−−−−→ R⊕m
(xy)−−−→ I −−−→ 0,

such that x
y
: m→ m is nilpotent, where m = (x, y)R.
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By virtue of this theorem together with a theorem of Zwara [17, Theorem 1], we see that
if R is a finite-dimensional algebra over k, then our definition of degeneration agrees with
the classical (geometric) definition of degenerations using module varieties of R-module
structures.

We prove here the implication (2)⇒ (1).
Suppose that there is an exact sequence of finitely generated left R-modules

0→ Z
f=(φψ)−→ M ⊕ Z → N → 0,

such that ψ is nilpotent. Considering a trivial exact sequence

0→ Z
j=(01)−→ M ⊕ Z →M → 0,

we shall combine these two exact sequences along a [0, 1]-interval. More precisely, let V
be the discrete valuation ring k[t](t), where t in an indeterminate over k, and consider a
left R⊗k V -homomorphism

g = j ⊗ t+ f ⊗ (1− t) =
(

φ⊗ (1− t)
1⊗ t+ ψ ⊗ (1− t)

)
: Z ⊗k V → (M ⊕ Z)⊗k V.

We can easily show that g is a monomorphism.
Setting the cokernel of the monomorphism g as Q, we have an exact sequence in

modR⊗k V :

0→ Z ⊗k V
g→ (Z ⊗k V )⊕ (M ⊗k V )→ Q→ 0.

Since g ⊗k V/tV = f is an injection and since one can easily show TorV1 (Q, V/tV ) = 0,
we conclude that Q is flat over V and Q/tQ ∼= N .

Finally note that the morphism g ⊗k V [1
t
] is essentially the same as the morphism

Z ⊗k V [1
t
]

 sφ
1 + sψ


−−−−−−−→ M ⊗k V [1

t
]⊕ Z ⊗k V [1

t
],

where s = 1−t
t
∈ V [1

t
]. Note that sψ : Z ⊗k V [1

t
] → Z ⊗k V [1

t
] is nilpotent as well as

ψ, hence 1 + sψ is an automorphism on Z ⊗k V [1
t
]. Therefore we have an isomorphism

Q[1
t
] ∼= M ⊗k V [1

t
]. This completes the proof of the theorem. 2

We remark from this proof that we can always take k[t](t) as V in Definition 12.

We give an outline of the proof of (1)⇒ (2). (See [12] for the detail.)
We can take Q in Definition 12 so that M ⊗k V ⊆ Q. Then we have an exact sequence

0→ Q/(M ⊗k V )
t−→ Q/(M ⊗k tV ) −→ Q/tQ→ 0

Setting Z = Q/(M ⊗k V ), we can see that the middle term will be M ⊕ Z and the right
term is N . 2

Lemma 16. If there is an exact sequence 0 → L
i→ M

p→ N → 0 in mod(R), then M
degenerates to L⊕N .
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(Proof)

0 −−−→ L
(i0)−−−→ M ⊕ L

(
p 0
0 1

)
−−−−→ N ⊕ L −−−→ 0

is exact where 0 : L→ L is of course nilpotent. 2

Such a degeneration given as in the lemma will be called a degeneration by an extension.
There is a degeneration which is not a degeneration by an extension. See the degeneration
of Example 13.

In the rest we mainly treat the case when R is a commutative ring.

Remark 17. Let R be a commutative noetherian algebra over k, and suppose that a finitely
generated R-module M degenerates to a finitely generated R-module N . Then:

(1) The modulesM andN give the same class in the Grothendieck group, i.e. [M ] = [N ]
as elements of K0(mod(R)). This is actually a direct consequence of 0 → Z → M ⊕
Z → N → 0. In particular, rank M = rank N if the ranks are defined for R-modules.
Furthermore, if (R,m) is a local ring, then e(I,M) = e(I,N) for any m-primary ideal I,
where e(I,M) denotes the multiplicity of M along I.

(2) If L is an R-module of finite length, then we have the following inequalities of
lengths for any integer i:{

lengthR(Ext
i
R(L,M)) 5 lengthR(Ext

i
R(L,N)),

lengthR(Ext
i
R(M,L)) 5 lengthR(Ext

i
R(N,L)).

In particular, when R is a local ring, then

ν(M) 5 ν(N), βi(M) 5 βi(N) and µi(M) 5 µi(N) (i = 0),

where ν, βi and µ
i denote the minimal number of generators, the ith Betti number and

the ith Bass number respectively.
(3) We also have pdRM ≤ pdRN , depth RM ≥ depth RN and similar inequalities like

G-dimRM ≤ G-dimRN . Roughly speaking, when there is a degeneration from M to N ,
then M is a better module than N .

Recall that a finitely generated R-module is called rigid if it satisfies Ext1R(N,N) = 0.

Lemma 18. Let R be a complete local k-algebra and let M,N ∈ mod(R). Assume that
N is rigid. If M degenerates to N , then M ∼= N .

(Proof) From the sequence 0→ Z
(φψ)−→M ⊕Z → N → 0, we have an exact sequence

Ext1R(N,Z)
(φψ)−→ Ext1R(N,M)⊕ Ext1R(N,Z)→ Ext1R(N,N),

where ψ is nilpotent and Ext1R(N,N) = 0. Thus we have Ext1R(N,Z) = 0. It follows the
first sequence splits, and thus M ⊕Z ∼= N ⊕Z. Since R is complete, it forces M ∼= N . 2

We recall the definition of the Fitting ideal of a finitely presented module. Suppose
that a module M over a commutative ring R is given by a finitely free presentation

Rm C−−−→ Rn −−−→ M −−−→ 0,
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where C is an n × m-matrix with entries in R. Then recall that the ith Fitting ideal
FRi (M) of M is defined to be the ideal In−i(C) of R generated by all the (n− i)-minors
of the matrix C. (We use the convention that Ir(C) = R for r 5 0 and Ir(C) = 0 for
r > min{m,n}.) It is known that FRi (M) depends only on M and i, and independent
of the choice of free presentation, and FR0 (M) ⊆ FR1 (M) ⊆ · · · ⊆ FRn (M) = R. The
following lemma will be used to prove the theorem.

Lemma 19. Let f : A → B be a ring homomorphism and let M be an A-module which
possesses a finitely free presentation. Then FBi (M ⊗A B) = f(FAi (M))B for all i = 0.

(Proof) IfM has a presentation Am
C→ An →M → 0, thenM⊗AB has a presentation

Bm f(C)→ Bn → M ⊗A B → 0. Thus FBi (M ⊗A B) = In−i(f(C)) = f(In−i(C))B =
f(FAi (M))B. 2

Theorem 20. [Y, 2011] Let R be a noetherian commutative algebra over k, and M and
N finitely generated R-modules. Suppose M degenerates to N . Then we have FRi (M) k
FRi (N) for all i = 0.

(Proof) By the assumption there is a finitely generated R ⊗k V -module Q such that
Qt
∼= M ⊗k K and Q/tQ ∼= N , where V = k[t](t) and K = k(t). Note that R ⊗k V ∼=

S−1R[t] where S = k[t]\(t). Since Q is finitely generated, we can find a finitely generated
R[t]-module Q′ such that Q′ ⊗R[t] (R ⊗k V ) ∼= Q. For a fixed integer i we now consider

the Fitting ideal J := FR[t]
i (Q′) j R[t]. Apply Lemma 19 to the ring homomorphism

R[t]→ R = R[t]/tR[t], and noting that Q′ ⊗R[t] R ∼= N , we have

(2.1) FRi (N) = J + tR[t]/tR[t]

as an ideal of R = R[t]/tR[t]. On the other hand, applying Lemma 19 to R[t]→ R⊗kK =
T−1R[t] where T = k[t]\{0}, we have FRi (M)T−1R[t] = JT−1R[t]. Therefore there is an
element f(t) ∈ T such that f(t)J ⊆ FRi (M)R[t].
Now to prove the inclusion FRi (N) j FRi (M), take an arbitrary element a ∈ FRi (N). It

follows from (2.1) that there is a polynomial of the form a+ b1t+ b2t
2+ · · ·+ brtr (bi ∈ R)

that belongs to J . Then, we have f(t)(a + b1t + b2t
2 + · · · + brt

r) ∈ FRi (M)R[t]. Since
f(t) is a non-zero polynomial whose coefficients are all in k, looking at the coefficient of
the non-zero term of the least degree in the polynomial f(t)(a+ b1t+ · · ·+ brt

r), we have
that a ∈ FRi (M). 2

Example 21. Let R = k[[x, y]]/(x2, y2). Note that R is an artinian Gorenstein local ring.
Now consider the modules Mλ = R/(x− λy)R for all λ ∈ k. We denote by k the unique
simple module R/(x, y)R over R.
(1) R degenerates toMλ⊕M−λ for ∀λ ∈ k, since there is an exact sequence 0→M−λ →

R→Mλ → 0.
(2) There is a sequence of degenerations from R ⊕ k2 to Mλ ⊕Mµ ⊕ k2 for any choice

of λ, µ ∈ k. ([9, Example 3.1])

(Proof) There are exact sequences; 0→ m→ R⊕m/(xy)→ R/(xy)→ 0, 0→Mλ →
m → k → 0 and 0 → k

x−µy→ R/(xy) → Mµ → 0 for any λ, µ ∈ k. Noting m/(xy) ∼= k2,
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we have a sequence of degenerations R ⊕ k2 ⇒ m ⊕ R/(xy) ⇒ (Mµ ⊕ k) ⊕ (Mλ ⊕ k) =
Mλ ⊕Mµ ⊕ k2. 2

(3) There is no sequence of degenerations from R to Mλ ⊕Mµ if λ+ µ 6= 0.

(Proof) If there are such degenerations, then we have an inclusion of Fitting ideals;
FRn (Mλ ⊕Mµ) ⊆ FRn (R) for all n. Note that FR0 (R) = 0, and

FR0 (Mλ ⊕Mµ) = FR0 (Mλ)FR0 (Mµ) = (x− λy)(x− µy)R = (λ+ µ)xyR.

Hence we must have λ+ µ = 0. 2

This example shows the cancellation law does not hold for degeneration.

Example 22. Let R = k[[t]] be a formal power series ring over a field k with one variable
t and let M be an R-module of length n. It is easy to see that there is an isomorphism

(2.2) M ∼= R/(tp1)⊕ · · · ⊕R/(tpn),

where

(2.3) p1 ≥ p2 ≥ · · · ≥ pn ≥ 0 and
n∑
i=1

pi = n.

In this case the ith Fitting ideal of M is given as

FRi (M) = (tpi+1+···+pn) (i ≥ 0).

We denote by pM the sequence (p1, p2, · · · , pn) of non-negative integers. Recall that such
a sequence satisfying (2.3) is called a partition of n.

Conversely, given a partition p = (p1, p2, · · · , pn) of n, we can associate an R-module of
length n by (2.2), which we denote by M(p). In such a way there is a one-one correspon-
dence between the set of partitions of n and the set of isomorphism classes of R-modules
of length n.
Let p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) be partitions of n. Then we denote

p � q if it satisfies
∑j

i=1 pi ≥
∑j

i=1 qi for all 1 ≤ j ≤ n. This � is known to be a partial
order on the set of partitions of n and called the dominance order.
Then we can show that there is a degeneration from M to N if and only if pM � pN .

3. Stable degenerations of CM modules

In this section we are interested in the stable analogue of degenerations of Cohen-
Macaulay modules over a commutative Gorenstein local ring. For this purpose, (R,m, k)
always denotes a Gorenstein local ring which is a k-algebra, and V = k[t](t) and K = k(t)
where t is a variable. We note that R⊗k V and R⊗k K are Gorenstein as well as R and
we have the equality of Krull dimension;

dimR⊗k V = dimR + 1, dimR⊗k K = dimR.

If dimR = 0 (i.e. R is artinian), then the rings R⊗k V and R⊗kK are local. However
we should note that R ⊗k V and R ⊗k K will never be local rings if dimR > 0. Since
R⊗k K is non-local, there may be a lot of projective modules which are not free.
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Example 23. Let R = k[[x, y]]/(x3−y2). It is known that the maximal ideal m = (x, y) is
a unique non-free indecomposable Cohen-Macaulay module over R. See [10, Proposition
5.11]. In fact it is given by a matrix factorization of the polynomial x3 − y2;

(ϕ, ψ) =

((
y x
x2 y

)
,

(
y −x
−x2 y

))
.

Therefore there is an exact sequence

· · · −−−→ R2 ϕ−−−→ R2 ψ−−−→ R2 ϕ−−−→ R2 −−−→ m −−−→ 0.

Now we deform these matrices and consider the pair of matrices over R⊗k K;

(Φ,Ψ) =

((
y − xt x− t2
x2 y + xt

)
,

(
y + xt −x+ t2

−x2 y − xt

))
.

Define the R⊗k K-module P by the following exact sequence;

· · · −−−→ (R⊗k K)2
Ψ−−−→ (R⊗k K)2

Φ−−−→ (R⊗k K)2 −−−→ P −−−→ 0.

In this case we can prove that P is a projective module of rank one over R⊗k K but non-free.
(Hence the Picard group of R⊗k K is non-trivial.)

Let A be a commutative Gorenstein ring which is not necessarily local. We say that a
finitely generated A-module M is CM if ExtiA(M,A) = 0 for all i > 0. We consider the
category of all CM modules over A with all A-module homomorphisms:

CM(A) := {M ∈ mod(A) | M is a Cohen-Macaulay module over A}.
We can then consider the stable category of CM(A), which we denote by CM(A). This
is similarly defined as in local cases, but the morphisms of CM(A) are elements of
HomA(M,N) := HomA(M,N)/P (M,N) for M,N ∈ CM(A), where P (M,N) denotes
the set of morphisms from M to N factoring through projective A-modules (not neces-
sarily free).

Note that M ∼= N in CM(A) if and only if there are projective A-modules P1 and P2

such that M ⊕ P1
∼= N ⊕ P2 in CM(A).

Under such circumstances it is known that CM(A) has a structure of triangulated
category as well as in local cases.

Let x ∈ A be a non-zero divisor on A. Note that x is a non-zero divisor on every
CM module over A. Thus the functor − ⊗A A/xA sends a CM module over A to that
over A/xA. Therefore it yields a functor CM(A)→ CM(A/xA). Since this functor maps
projective A-modules to projective A/xA-modules, it induces the functor R : CM(A) →
CM(A/xA). It is easy to verify that R is a triangle functor.

Now let S ⊂ A be a multiplicative subset of A. Then, by a similar reason to the above,
we have a triangle functor L : CM(A)→ CM(S−1A) which maps M to S−1M .

As before, let (R,m, k) be a Gorenstein local ring that is a k-algebra and let V = k[t](t)
andK = k(t). Since R⊗kV and R⊗kK are Gorenstein rings, we can apply the observation
above. Actually, t ∈ R⊗k V is a non-zero divisor on R⊗k V and there are isomorphisms
of k-algebras; (R ⊗k V )/t(R ⊗k V ) ∼= R and (R ⊗k V )t ∼= R ⊗k K. Thus there are
triangle functors L : CM(R ⊗k V ) → CM(R ⊗k K) defined by the localization by t, and
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R : CM(R⊗kV )→ CM(R) defined by taking −⊗R⊗kV (R⊗kV )/t(R⊗kV ) = −⊗V V/tV .
Now we define the stable degeneration of CM modules.

Definition 24. LetM, N ∈ CM(R). We say thatM stably degenerates to N if there
is a Cohen-Macaulay module Q ∈ CM(R⊗kV ) such that L(Q) ∼= M ⊗k K in CM(R⊗kK)
and R(Q) ∼= N in CM(R).

Lemma 25. [15, Lemma 4.2, Proposition 4.3]

(1) Let M,N ∈ CM(R). If M degenerates to N , then M stably degenerates to N .
(2) Suppose that there is a triangle in CM(R);

L
α−−−→ M

β−−−→ N
γ−−−→ L[1].

Then M stably degenerates to L⊕N .

Lemma 26. [15, Proposition 4.4] Let M, N ∈ CM(R) and suppose that M stably degen-
erates to N . Then the following hold.

(1) M [1] (resp. M [−1]) stably degenerates to N [1] (resp. N [−1]).
(2) M∗ stably degenerates to N∗, where M∗ denotes the R-dual HomR(M,R).

Lemma 27. [15, Proposition 4.5] Let M, N, X ∈ CM(R). If M ⊕X stably degenerates
to N , then M stably degenerates to N ⊕X[1].

Remark 28. The zero object in CM(R) can stably degenerate to a non-zero object. In
fact, in Example 13 the free module R degenerates to an ideal N . Hence it follows from
Proposition 25(1) that 0 = R stably degenerates to N .

For another example, note that there is a triangle

X −−−→ 0 −−−→ X[1]
1−−−→ X[1],

for any X ∈ CM(R). Hence 0 stably degenerates to X ⊕X[1] by Proposition 25(2).

Let (R,m, k) be a Gorenstein complete local k-algebra and assume for simplicity that
k is an infinite field. For Cohen-Macaulay R-modules M and N we consider the following
four conditions:

(1) Rm ⊕M degenerates to Rn ⊕N for some m,n ∈ N.

(2) There is a triangle Z
(φψ)
→ M ⊕ Z → N → Z[1] in CM(R), where ψ is a nilpotent

element of EndR(Z).
(3) M stably degenerates to N .
(4) There exists an X ∈ CM(R) such that M ⊕Rm ⊕X degenerates to N ⊕Rn ⊕X

for some m,n ∈ N.
In [15] we proved the following implications and equivalences of these conditions:

Theorem 29. (i) In general, (1)⇒ (2)⇒ (3)⇒ (4) holds.
(ii) If dimR = 0, then (1)⇔ (2)⇔ (3) holds.
(iii) If R is an isolated singularity of any dimension, then (2)⇔ (3) holds.
(iv) There is an example of isolated singularity of dimR = 1 for which (2)⇒ (1) fails.
(v) There is an example of dimR = 0 for which (4)⇒ (3) fails.
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We give here an outline of some of the proofs.

Proof of (1)⇒ (2) : By Theorem 14, there exists an exact sequence

0→ Z
(φψ)−→ (Rm ⊕M)⊕ Z → (Rn ⊕N)→ 0,

where ψ is nilpotent. In such a case Z ia a Cohen-Macaulay module as well. Then
converting this into a triangle in CM(R), and noting that the nilpotency of ψ ∈ EndR(Z)
forces the nilpotency of ψ ∈ EndR(Z), we can see that (2) holds. 2

Proof of (2) ⇒ (3): Suppose that there exists a triangle Z
(φψ)
−→ M ⊕ Z → N → Z[1],

where ψ is nilpotent. Then we have a triangle of the form;

Z ⊗k V
( φ

t+ψ)
−→ M ⊗k V ⊕ Z ⊗k V −→ Q −→ Z ⊗k V [1],

for a Q ∈ CM(R ⊗k V ). Note L(t + ψ) is an isomorphism in CM(R ⊗k K). Thus
L(Q) ∼= L(M ⊗k V ) = M ⊗k K. On the other hand, since R(t + ψ) = ψ, R(Q) ∼= N .
Thus M stably degenerates to N . 2

Proof of (3)⇒ (1) when dimR = 0: In this proof we assume dimR = 0. Suppose that
M stably degenerates to N . Then there is a Q ∈ CM(R ⊗k V ) with L(Q) ∼= M ⊗k K
and R(Q) ∼= N . By definition, we have isomorphisms Qt ⊕ P1

∼= (M ⊗k K) ⊕ P2 in

CM(R ⊗k K) for some projective R ⊗k K-modules P1, P2, and Q/tQ ⊕ Ra ∼= N ⊕ Rb

in CM(R) for some a, b ∈ N. Since R ⊗k K is a local ring, P1 and P2 are free. Thus
Qt⊕ (R⊗kK)c ∼= (M ⊗kK)⊕ (R⊗kK)d for some c, d ∈ N. Setting Q̃ = Q⊕ (R⊗k V )a+c,
we have isomorphisms

Q̃t
∼= (M ⊕Ra+d)⊗k K, Q̃/tQ̃ ∼= N ⊕Rb+c.

Since Q̃ is V -flat, M ⊕Ra+d degenerates to N ⊕Rb+c. 2

The difficult part of the proof is to show the implications (3) ⇒ (4) and (3) ⇒ (2).
Actually it is technically difficult to show the existence of a Cohen-Macaulay module Z
and X in each case. To get over this difficulty, we use the following lemma called Swan’s
Lemma in Algebraic K-Theory.

Lemma 30. [8, Lemma 5.1] Let R be a noetherian ring and t a variable. Assume that an
R[t]-module L is a submodule of W ⊗R R[t] with W being a finitely generated R-module.
Then there is an exact sequence of R[t]-modules;

0 −−−→ X ⊗R R[t] −−−→ Y ⊗R R[t] −−−→ L −−−→ 0,

where X and Y are finitely generated R-modules.

By virtue of Swan’s lemma we can prove the following proposition that will play an
essential role in the proof of Theorem 29.

Proposition 31. Let R be a Gorenstein local k-algebra, where k is an infinite field.
Suppose we are given a Cohen-Macaulay R⊗k V -module P ′ satisfying that the localization
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P = P ′
t by t is a projective R ⊗k K-module. Then there is a Cohen-Macaulay R-module

X with a triangle in CM(R⊗k V ) of the following form:

(3.1) X ⊗k V −−−→ X ⊗k V −−−→ P ′ −−−→ X ⊗k V [1].

As a direct consequence of Theorem 29, we have the following corollary.

Corollary 32. Let (R1,m1, k) and (R2,m2, k) be Gorenstein complete local k-algebras.
Assume that the both R1 and R2 are isolated singularities, and that k is an infinite field.
Suppose there is a k-linear equivalence F : CM(R1)→ CM(R2) of triangulated categories.
Then, for M, N ∈ CM(R1), M stably degenerates to N if and only if F (M) stably
degenerates to F (N).

Remark 33. Let (R1,m1, k) and (R2,m2, k) be Gorenstein complete local k-algebras as
above. Then it hardly occurs that there is a k-linear equivalence of categories between
CM(R1) and CM(R2). In fact, if it occurs, then R1 is isomorphic to R2 as a k-algebra.
(See [4, Proposition 5.1].)

On the other hand, an equivalence between CM(R1) and CM(R2) may happen for non-
isomorphic k-algebras. For example, letR1 = k[[x, y, z]]/(xn+y2+z2) andR2 = k[[x]]/(xn)
with characteristic of k not being 2 and n ∈ N. Then, by Knoerrer’s periodicity ([10, The-
orem 12.10]), we have an equivalence CM(k[[x, y, z]]/(xn + y2 + z2)) ∼= CM(k[[x]]/(xn)).
Since k[[x]]/(xn) is an artinian Gorenstein ring, the stable degeneration of modules over
k[[x]]/(xn) is equivalent to a degeneration up to free summands by Theorem 29(ii). More-
over the degeneration problem for modules over k[[x]]/(xn) is known to be equivalent to
the degeneration problem for Jordan canonical forms of square matrices of size n. (See Ex-
ample 22.) Thus by virtue of Corollary 32, it is easy to describe the stable degenerations
of Cohen-Macaulay modules over k[[x, y, z]]/(xn + y2 + z2).

References

1. K. Bongartz, A generalization of a theorem of M. Auslander, Bull. London Math. Soc. 21 (1989), no.
3, 255-256.

2. K. Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121 (1996),
no. 2, 245–287.

3. D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London
Mathematical Society Lecture Note Series, vol.119. Cambridge University Press, Cambridge, 1988.
x+208 pp.

4. N. Hiramatsu and Y. Yoshino, Automorphism groups and Picard groups of additive full subcategories,
Math. Scand. 107 (2010), 5–29.

5. , Examples of degenerations of Cohen-Macaulay modules, Preprint (2010). [arXiv:1012.5346]
6. C.Huneke and G.Leuschke, Two theorems about maximal Cohen-Macaulay modules, Math. Ann. 324

(2002), no. 2, 391-404.
7. C.Huneke and G.Leuschke, Local rings of countable Cohen-Macaulay type, Proc. Amer. Math. Soc.

131 (2003), no. 10, 3003-3007.
8. T. Y. Lam, Serre’s conjecture, Lecture Notes in Mathematics, Vol. 635. Springer-Verlag, Berlin-New

York, 1978. xv+227 pp. ISBN: 3-540-08657-9
9. Ch. Riedtmann, Degenerations for representations of quivers with relations, Ann. Scient. École Nor-
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SUBCATEGORIES OF EXTENSION MODULES

RELATED TO SERRE SUBCATEGORIES

TAKESHI YOSHIZAWA

Abstract. We consider subcategories consisting of the extensions of modules in two
given Serre subcategories to find a method of constructing Serre subcategories of the
module category. We shall give a criterion for this subcategory to be a Serre subcategory.

1. Introduction

Let R be a commutative Noetherian ring. We denote by R-Mod the category of R-
modules and by R-mod the full subcategory consisting of finitely generated R-modules.

In [2], P. Gabriel showed that one has lattice isomorphisms between the set of Serre
subcategories of R-mod, the set of Serre subcategories of R-Mod which are closed under
arbitrary direct sums and the set of specialization closed subsets of Spec (R). By this
result, Serre subcategories of R-mod are classified. However, it has not yet classified
Serre subcategories of R-Mod. In this paper, we shall give a way of constructing Serre
subcategories of R-Mod by considering subcategories of extension modules related to Serre
subcategories.

2. The definition of a subcategory of extension modules
by Serre subcategories

We assume that all full subcategories of R-Mod are closed under isomorphisms. We
recall that a subcategory S of R-Mod is said to be Serre subcategory if the following
condition is satisfied: For any short exact sequence

0 → L → M → N → 0

of R-modules, it holds that M is in S if and only if L and N are in S. In other words,
S is called a Serre subcategory if it is closed under submodules, quotient modules and
extensions.

We give the definition of a subcategory of extension modules by Serre subcategories.

Definition 1. Let S1 and S2 be Serre subcategories of R-Mod. We denote by (S1,S2) a
subcategory consisting of R-modules M with a short exact sequence

0 → X → M → Y → 0

of R-modules where X is in S1 and Y is in S2, that is

(S1,S2) =

M ∈ R-Mod

∣∣∣∣∣∣
there are X ∈ S1 and Y ∈ S2 such that

0 → X → M → Y → 0
is a short exact sequence.

 .

The detailed version of this paper has been submitted for publication elsewhere.
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Remark 2. Let S1 and S2 be Serre subcategories of R-Mod.

(1) Since the zero module belongs to any Serre subcategory, one has S1 ⊆ (S1,S2) and
S2 ⊆ (S1,S2).

(2) It holds S1 ⊇ S2 if and only if (S1,S2) = S1.

(3) It holds S1 ⊆ S2 if and only if (S1,S2) = S2.

(4) A subcategory (S1,S2) is closed under finite direct sums.

Example 3. We denote by Sf.g. the subcategory consisting of finitely generated R-
modules and by SArtin the subcategory consisting of Artinian R-modules. If R is a com-
plete local ring, then a subcategory (Sf.g.,SArtin) is known as the subcategory consisting
of Matlis reflexive R-modules. Therefore, (Sf.g.,SArtin) is a Serre subcategory of R-Mod.

The following example shows that a subcategory (S1,S2) needs not be a Serre subcat-
egory for Serre subcategories S1 and S2.

Example 4. We shall see that the subcategory (SArtin,Sf.g.) needs not be closed under
extensions.

Let R be a one dimensional Gorenstein local ring with a maximal ideal m. Then one
has a minimal injective resolution

0 → R →
⊕

p ∈ Spec(R)

htp = 0

ER(R/p) → ER(R/m) → 0

of R. (ER(M) denotes the injective hull of an R-module M .) We note that R and
ER(R/m) are in (SArtin,Sf.g.).

Now, we assume that a subcategory (SArtin,Sf.g.) is closed under extensions. Then
ER(R) = ⊕htp=0ER(R/p) is in (SArtin,Sf.g.). It follows from the definition of (SArtin,Sf.g.)
that there exists an Artinian R-submodule X of ER(R) such that ER(R)/X is a finitely
generated R-module.
If X = 0, then ER(R) is a finitely generated injective R-module. It follows from the

Bass formula that one has dimR = depthR = inj dimER(R) = 0. However, this equality
contradicts dimR = 1. On the other hand, if X 6= 0, then X is a non-zero Artinian
R-module. Therefore, one has AssR(X) = {m}. Since X is an R-submodule of ER(R),
one has

AssR(X) ⊆ AssR(ER(R)) = {p ∈ Spec(R) | ht p = 0}.
This is contradiction as well.

3. The main result

In this section, we shall give a criterion for a subcategory (S1,S2) to be a Serre subcat-
egory for Serre subcategories S1 and S2.

First of all, it is easy to see that the following assertion holds.

Proposition 5. Let S1 and S2 be Serre subcategories of R-Mod. Then a subcategory
(S1,S2) is closed under submodules and quotient modules.
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Lemma 6. Let S1 and S2 be Serre subcategories of R-Mod. We suppose that a sequence
0 → L → M → N → 0 of R-modules is exact. Then the following assertions hold.

(1) If L ∈ S1 and N ∈ (S1,S2), then M ∈ (S1,S2).

(2) If L ∈ (S1,S2) and N ∈ S2, then M ∈ (S1,S2).

Proof. (1) We assume that L is in S1 and N is in (S1,S2). Since N belongs to (S1,S2),
there exists a short exact sequence

0 → X → N → Y → 0

of R-modules where X is in S1 and Y is in S2. Then we consider the following pull buck
diagram

0 0y y
0 −−−→ L −−−→ X ′ −−−→ X −−−→ 0

‖
y y

0 −−−→ L −−−→ M −−−→ N −−−→ 0y y
Y Yy y
0 0

of R-modules with exact rows and columns. Since S1 is a Serre subcategory, it follows
from the first row in the diagram that X ′ belongs to S1. Consequently, we see that M is
in (S1,S2) by the middle column in the diagram.

(2) We can show that the assertion holds by the similar argument in the proof of (1). �

Now, we can show the main purpose of this paper.

Theorem 7. Let S1 and S2 be Serre subcategories of R-Mod. Then the following condi-
tions are equivalent:

(1) A subcategory (S1,S2) is a Serre subcategory;

(2) One has (S2,S1) ⊆ (S1,S2).

Proof. (1) ⇒ (2) We assume that M is in (S2,S1). By the definition of a subcategory
(S2,S1), there exists a short exact sequence

0 → Y → M → X → 0

of R-modules where X is in S1 and Y is in S2. We note that X and Y are also in (S1,S2).
Since a subcategory (S1,S2) is closed under extensions by the assumption (1), we see that
M is in (S1,S2).
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(2) ⇒ (1) We only have to prove that a subcategory (S1,S2) is closed under extensions
by Proposition 5. Let 0 → L → M → N → 0 be a short exact sequence of R-modules
such that L and N are in (S1,S2). We shall show that M is also in (S1,S2).

Since L is in (S1,S2), there exists a short exact sequence

0 → S → L → L/S → 0

of R-modules where S is in S1 such that L/S is in S2. We consider the following push
out diagram

0 0y y
S Sy y

0 −−−→ L −−−→ M −−−→ N −−−→ 0y y ‖

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0y y
0 0

of R-modules with exact rows and columns. Next, since N is in (S1,S2), we have a short
exact sequence

0 → T → N → N/T → 0

of R-modules where T is in S1 such that N/T is in S2. We consider the following pull
back diagram

0 0y y
0 −−−→ L/S −−−→ P ′ −−−→ T −−−→ 0

‖
y y

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0y y
N/T N/Ty y
0 0

of R-modules with exact rows and columns.
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In the first row of the second diagram, since L/S is in S2 and T is in S1, P
′ is in

(S2,S1). Now here, it follows from the assumption (2) that P ′ is in (S1,S2). Next, in the
middle column of the second diagram, we have the short exact sequence such that P ′ is
in (S1,S2) and N/T is in S2. Therefore, it follows from Lemma 6 that P is in (S1,S2).
Finally, in the middle column of the first diagram, there exists the short exact sequence
such that S is in S1 and P is in (S1,S2). Consequently, we see that M is in (S1,S2) by
Lemma 6.

The proof is completed. �

Corollary 8. A subcategory (Sf.g.,S) is a Serre subcategory for a Serre subcategory S of
R-Mod.

Proof. Let S be a Serre subcategory of R-Mod. To prove our assertion, it is enough to
show that one has (S,Sf.g.) ⊆ (Sf.g.,S) by Theorem 7. Let M be in (S,Sf.g.). Then
there exists a short exact sequence 0 → Y → M → M/Y → 0 of R-modules where Y
is in S such that M/Y is in Sf.g.. It is easy to see that there exists a finitely generated
R-submodule X of M such that M = X + Y . Since X ⊕ Y is in (Sf.g.,S) and M is a
homomorphic image of X ⊕ Y , M is in (Sf.g.,S) by Proposition 5. �

We note that a subcategory SArtin consisting of Artinian R-modules is a Serre subcat-
egory which is closed under injective hulls. (Also see [1, Example 2.4].) Therefore we
can see that a subcategory (S,SArtin) is also Serre subcategory for a Serre subcategory of
R-Mod by the following assertion.

Corollary 9. Let S2 be a Serre subcategory of R-Mod which is closed under injective
hulls. Then a subcategory (S1,S2) is a Serre subcategory for a Serre subcategory S1 of
R-Mod.

Proof. By Theorem 7, it is enough to show that one has (S2,S1) ⊆ (S1,S2).
We assume that M is in (S2,S1) and shall show that M is in (S1,S2). Then there exists

a short exact sequence
0 → Y → M → X → 0

of R-modules where X is in S1 and Y is in S2. Since S2 is closed under injective hulls, we
note that the injective hull ER(Y ) of Y is also in S2. We consider a push out diagram

0 −−−→ Y −−−→ M −−−→ X −−−→ 0y y ‖

0 −−−→ ER(Y ) −−−→ T −−−→ X −−−→ 0

of R-modules with exact rows and injective vertical maps. The second exact sequence
splits, and we have an injective homomorphism M → X ⊕ ER(Y ). Since there is a short
exact sequence

0 → X → X ⊕ ER(Y ) → ER(Y ) → 0

of R-modules, the R-module X ⊕ ER(Y ) is in (S1,S2). Consequently, we see that M is
also in (S1,S2) by Proposition 5.
The proof is completed. �
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Example 10. Let R be a domain but not a field and let Q be a field of fractions of R.
We denote by STor a subcategory consisting of torsion R-modules, that is

STor = {M ∈ R-Mod | M ⊗R Q = 0}.

Then we shall see that one has

(STor,Sf.g.) $ (Sf.g.,STor) = {M ∈ R-Mod | dimQM ⊗R Q < ∞}.

Therefore, a subcategory (Sf.g.,STor) is a Serre subcategory by Corollary 8, but a subcat-
egory (STor,Sf.g.) is not closed under extensions by Theorem 7.

First of all, we shall show that the above equality holds. We suppose that M is in
(Sf.g.,STor). Then there exists a short exact sequence

0 → X → M → Y → 0

of R-modules where X is in Sf.g. and Y is in STor. We apply an exact functor −⊗R Q to
this sequence. Then we see that one has M ⊗R Q ∼= X ⊗R Q and this module is a finite
dimensional Q-vector space.

Conversely, let M be an R-module with dimQ M ⊗R Q < ∞. Then we can denote
M ⊗R Q =

∑n
i=1Q(mi ⊗ 1Q) with mi ∈ M and the unit element 1Q of Q. We consider a

short exact sequence

0 →
n∑

i=1

Rmi → M → M/

n∑
i=1

Rmi → 0

of R-modules. It is clear that
∑n

i=1Rmi is in Sf.g. and M/
∑n

i=1Rmi is in STor. So M is
in (Sf.g.,STor). Consequently, the above equality holds.

Next, it is clear that M ⊗R Q has finite dimension as Q-vector space for an R-module
M of (STor,Sf.g.). Thus, one has (STor,Sf.g.) ⊆ (Sf.g.,STor).

Finally, we shall see that a field of fractions Q of R is in (Sf.g.,STor) but not in
(STor,Sf.g.), so one has (STor,Sf.g.) $ (Sf.g.,STor). Indeed, it follows from dimQQ⊗RQ =

1 that Q is in (Sf.g.,STor). On the other hand, we assume that Q is in (STor,Sf.g.). Since
R is a domain, a torsion R-submodule of Q is only the zero module. It means that Q
must be a finitely generated R-module. But, this is a contradiction.
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