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TILTING MODULES ARISING FROM TWO-TERM TILTING
COMPLEXES

HIROKI ABE

ABSTRACT. We see that every two-term tilting complex over an Artin algebra has a
tilting module over a certain factor algebra as a homology group. Also, we determine
the endomorphism algebra of such a homology group, which is given as a certain factor
algebra of the endomorphism algebra of the two-term tilting complex. Thus, every
derived equivalence between Artin algebras given by a two-term tilting complex induces
a derived equivalence between the corresponding factor algebras.

Let A be an Artin algebra. We denote by mod-A the category of finitely generated right
A-modules and by P4 the full subcategory of mod-A consisting of projective modules.

Definition 1. A pair (7, F) of full subcategories 7, F in mod-A is said to be a torsion
theory for mod-A if the following conditions are satisfied:
(1) TnF={0}
(2) T is closed under factor modules;
(3) F is closed under submodules; and
(4) for any X € mod-A, there exists an exact sequence 0 — X' — X — X” — 0 with
X' eT and X" € F.

If T is stable under the Nakayama functor v, then (7, F) is said to be a stable torsion
theory for mod-A.
Let T* € X"(Pa) be a two-term complex:
7% 50T 37" 50— -,
and set the following subcategories in mod-A:
T(T*) = Ker Homg(a)(T*[—1], —) N mod-A,
F(T*) = Ker Homg(4)(T*, —) N mod-A.
Proposition 2 ([1, Propositions 5.5 and 5.7]). The following are equivalent.
(1) T* is a tilting complex.
(2) (T(T*),F(T*)) is a stable torsion theory for mod-A.
Furthermore, if these equivalent conditions hold, then the following hold.
(1) T(T*) = gen(H(T*)), the generated class by H*(T*), and H°(T*) is Ext-projective
in T(T*).
(2) F(T*) = cog(H Y (vT®)), the cogenerated class by H'(vT*®) and H~*(vT*) is Ext-
injective in F(T*).

The detailed version of this note has been submitted for publication elsewhere.
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Conversely, let (T, F) be a stable torsion theory for mod-A.

Proposition 3 ([1, Theorem 5.8]). Assume that there exist X € T and Y € F satisfying
the following conditions:

(1) T =gen(X) and X is Ext-projective in T ; and

(2) F =cog(Y) and Y is Ext-injective in F.
Let Py be a minimal projective presentation of X and Iy be a minimal injective presenta-
tion of Y, and set Ty y = Py @ v~ 'Iy[1]. Then Ty € X"(Pa) is a tilting complex such
that T =T (Txy) and F = F(Txy).

Let T* be a two-term tilting complex. We set a = anns(H°(7*)), the annihilator
of H(T*). Note that H°(T*) is faithful in mod-A/a and the canonical full embedding
mod-A/a < mod-A induces gen(H(T*)a/s) = gen(H(T*)4) which is closed under ex-
tensions. Thus, the next lemma follows from Proposition 2.

Lemma 4. The following hold.
(1) proj dim H*(T*)4/s < 1.
(2) Extl, (H(T*), H(T*)) = 0.
(3) There exists an exact sequence 0 — Aj/a — X° — X' — 0 in mod-A/a such
that X° € add(H(T*)4/q) and X' € gen(H*(T*)asa) which is Ext-projective in
gen(H(T*) a4).

We set a’ = anns(H ' (vT*)), the annihilator of H™*(vT*®). The next lemma follows by
the dual arguments of Lemma 4

Lemma 5. The following hold.
(1) inj dim H ' (vT*) 40 < 1.
(2) Exty o (H-'(vT*),H 1 (vT*)) = 0.
(3) There exists an exact sequence 0 — Y — Y? — A/d’ — 0 in mod-A/da’ such
that Y° € add(H ' (vT*)a/w) and Y € cog(H ' (vT*) a/er) which is Ext-injective
in cog(H™(vT*) ay)-

Let X be the direct sum of all indecomposable non-projective Ext-projective modules
in gen(H%(7™*)) which are not contained in add(H°(7*)). Then add(H°(7T*)® X) coincides
with the class of all Ext-projective modules in gen(H°(7*)). Also, since gen(H%(T*)) =
gen(H(T*) @ X), the pair (gen(H(T*) & X),cog(H™}(vT*)) is a stable torsion theory
in mod-A. Let P* be the minimal projective presentation of H*(7*) @& X and I°® be the
minimal injective presentation of H™'(vT*), and set U®* = P* @ v~'I*[1]. Then U® is
a tilting complex such that 7(U®) = gen(H*(T*) & X) and F(U*®) = cog(H™'(vT*)) by
Proposition 3. Note that the stable torsion theory induced by U® coincides with that
of T*. From this fact, we can prove that add(H°(U®)) = add(H°(T*)). Since there
exist the inclusions add(H°(7*)) C add(H%(T*) ® X) C add(H°(U*®)), we conclude that
add(H°(T*)) = add(H°(T*) & X). Thus, we have the next lemma.

Lemma 6. For any M, N € mod-A, the following hold.
(1) M € add(H®(T*®)) if and only if M is Ext-projective in gen(H(T*)).
(2) N € add(H Y (vT*)) if and only if N is Ext-injective in cog(H™*(vT*)).

-9



The next theorem is a direct consequence of the previous three lemmas.

Theorem 7. The following hold.

(1) HY(T*®) is a tilting module in mod-A/a.
(2) H~Y(vT*) is a cotilting module in mod-A/d’, i.e., D(H ' (vT*)) is a tilting module
in mod-(A/a" ).

We determine the endomorphism algebras of H°(T*®). Set B = Endg4)(7*). Since
there exists a surjective algebra homomorphism

0 : B — End,,(H(T*)),
which is induced by the functor H’(—), we have an algebra isomorphism
End/(H(T*)) = B/Ker 6.

Also, we can prove that Ker 6 = anng(Homg4)(A,T*)) = anng(H°(T*)). Thus, we have
the next theorem.

Theorem 8. We have the following algebra isomorphisms.
(1) Ends/q(HY(T*)) = B/b, where b = anng(H(T*)).
(2) Endy/w(H 1 (vT*)) = B/V, where b’ = anng(H™'(vT*)).

As the final of this note, we demonstrate our results through an example.

Example 9. Let A be the path algebra defined by the quiver
2
7N
1 4
N
3

with relations ay = 8o = 0. We denote by e; the empty path corresponding to the vertex
1 =1,---,4. The Auslander-Reiten quiver of A is given by the following:

where each indecomposable module is represented by its composition factors. It is not
difficult to see that the following pair gives a stable torsion theory for mod-A:

_ 1 11 _ 2 3 23
T=A{5,3,5,1tand F={4,%,3% 23 3,2},
where 7T is a torsion class and F is a torsion-free class. We set

X=,4, Y=230300:2.
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Then 7 = gen(X) and X is Ext-projective in T, and F = cog(Y') and Y is Ext-injective in
F. According to Proposition 3, we have a two-term tilting complex T* = T ®Ty ®T5 BTy,
where

T3 =0—=,4, Ty=2->.,4% Ty=3%—=,4 T7=4—0.
Thus, we have
HO(T.) =,35® 3@ :
as a right A-module. Since a = anny(H°(T*)) is a two-sided ideal generated by ey, 7,4,
the factor algebra A/a is defined by the quiver

without relations. Next, it is not difficult to see that B = Endga)(7"*) is defined by the

quiver
2
VN
1 4
N A
3

without relations. Then we have

4
HOIIlg((A) (A, T.) = @ Homqu) (eiA, T.)
=1
=,583;8;3;00

as a left B-module. Thus, b = anng(Homg(a)(A,T*)) is a two-sided ideal generated by
v, & and the empty path corresponding to the vertex 4. Therefore, the factor algebra B/b
is defined by the quiver

without relations. It follows by Theorems 7 and 8 that A/a and B/b are derived equivalent
to each other.
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DIMENSIONS OF DERIVED CATEGORIES

TAKUMA ATHARA AND RYO TAKAHASHI

ABSTRACT. Several years ago, Bondal, Rouquier and Van den Bergh introduced the
notion of the dimension of a triangulated category, and Rouquier proved that the bounded
derived category of coherent sheaves on a separated scheme of finite type over a perfect
field has finite dimension. In this paper, we study the dimension of the bounded derived
category of finitely generated modules over a commutative Noetherian ring. The main
result of this paper asserts that it is finite over a complete local ring containing a field
with perfect residue field.

1. INTRODUCTION

The notion of the dimension of a triangulated category has been introduced by Bondal,
Rouquier and Van den Bergh [4, 14]. Roughly speaking, it measures how quickly the
category can be built from a single object. The dimensions of the bounded derived
category of finitely generated modules over a Noetherian ring and that of coherent sheaves
on a Noetherian scheme are called the derived dimensions of the ring and the scheme,
while the dimension of the singularity category (in the sense of Orlov [12]; the same as the
stable derived category in the sense of Buchweitz [5]) is called the stable dimension. These
dimensions have been in the spotlight in the studies of the dimensions of triangulated
categories.

The importance of the notion of derived dimension was first recognized by Bondal
and Van den Bergh [4] in relation to representability of functors. They proved that
smooth proper commutative/non-commutative varieties have finite derived dimension,
which yields that every contravariant cohomological functor of finite type to vector spaces
is representable.

As to upper bounds, the derived dimension of a ring is at most its Loewy length [14]. In
particular, Artinian rings have finite derived dimension. Christensen, Krause and Kussin
6, 9] showed that the derived dimension is bounded above by the global dimension, whence
rings of finite global dimension are of finite derived dimension. In relation to a conjecture
of Orlov [13], a series of studies by Ballard, Favero and Katzarkov [1, 2, 3] gave in several
cases upper bounds for derived and stable dimensions of schemes. For instance, they
obtained an upper bound of the stable dimension of an isolated hypersurface singularity
by using the Loewy length of the Tjurina algebra. On the other hand, there are a lot of
triangulated categories having infinite dimension. The dimension of the derived category
of perfect complexes over a ring (respectively, a quasi-projective scheme) is infinite unless

2010 Mathematics Subject Classification. Primary 13D09; Secondary 14F05, 16E35, 18E30.

Key words and phrases. dimension of a triangulated category, derived category, singularity category,
stable category of Cohen-Macaulay modules.

The second author was partially supported by JSPS Grant-in-Aid for Young Scientists (B) 22740008.
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the ring has finite global dimension (respectively, the scheme is regular) [14]. It has turned
out by work of Oppermann and Stovicek [11] that over a Noetherian algebra (respectively,
a projective scheme) all proper thick subcategories of the bounded derived category of
finitely generated modules (respectively, coherent sheaves) containing perfect complexes
have infinite dimension. However, these do not apply for the finiteness of the derived
dimension of a non-regular Noetherian ring of positive Krull dimension.

As a main result of the paper [14], Rouquier gave the following theorem.

Theorem 1 (Rouquier). Let X be a separated scheme of finite type over a perfect field.
Then the bounded derived category of coherent sheaves on X has finite dimension.

Applying this theorem to an affine scheme, one obtains:

Corollary 2. Let R be a commutative ring which is essentially of finite type over a perfect
field k. Then the bounded derived category DP(mod R) of finitely generated R-modules has
finite dimension, and so does the singularity category Dsg(R) of R.

The main purpose of this paper is to study the dimension and generators of the bounded
derived category of finitely generated modules over a commutative Noetherian ring. We
will give lower bounds of the dimensions over general rings under some mild assumptions,
and over some special rings we will also give upper bounds and explicit generators. The
main result of this paper is the following theorem. (See Definition 5 for the notation.)

Main Theorem. Let R be either a complete local ring containing a field with perfect
residue field or a ring that is essentially of finite type over a perfect field. Then there exist
a finite number of prime ideals p1,...,p, of R and an integer m > 1 such that

D"(mod R) = (R/p1 & -+ & R/pn),,
In particular, D’(mod R) and Dsg(R) have finite dimension.

In Rouquier’s result stated above, the essential role is played, in the affine case, by the
Noetherian property of the enveloping algebra R ®; R. The result does not apply to a
complete local ring, since it is in general far from being (essentially) of finite type and
therefore the enveloping algebra is non-Noetherian. Our methods not only show finiteness
of dimensions over a complete local ring but also give a ring-theoretic proof of Corollary
2.

2. PRELIMINARIES

This section is devoted to stating our convention, giving some basic notation and re-
calling the definition of the dimension of a triangulated category.
We assume the following throughout this paper.

Convention 3. (1) All subcategories are full and closed under isomorphisms.
(2) All rings are associative and with identities.
(3) A Noetherian ring, an Artinian ring and a module mean a right Noetherian ring,
a right Artinian ring and a right module, respectively.
(4) All complexes are cochain complexes.

We use the following notation.
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Notation 4. (1) Let A be an abelian category.
(a) For a subcategory X of A, the smallest subcategory of A containing X which
is closed under finite direct sums and direct summands is denoted by add 4 X.
(b) We denote by C(A) the category of complexes of objects of A. The derived
category of A is denoted by D(A). The left bounded, the right bounded
and the bounded derived categories of A are denoted by D™(A),D~(A) and
D"(A), respectively. We set D?(A) = D(A), and often write D*(.A) with
x € {@,+,—,b} to mean D?(A), D*(A), D~(A) and D"(A).
(2) Let R be a ring. We denote by Mod R and mod R the category of R-modules and
the category of finitely generated R-modules, respectively. For a subcategory X
of mod R (when R is Noetherian), we put addg X = addmoeqr X

The concept of the dimension of a triangulated category has been introduced by Rouquier
[14]. Now we recall its definition.

Definition 5. Let 7 be a triangulated category.

(1) A triangulated subcategory of T is called thick if it is closed under direct sum-
mands.

(2) Let X, be two subcategories of 7. We denote by X % ) the subcategory of T
consisting of all objects M that admit exact triangles

X—-M-—-Y —>3¥X

with X € X and Y € Y. We denote by (X) the smallest subcategory of T
containing X which is closed under finite direct sums, direct summands and shifts.
For a non-negative integer n, we define the subcategory (X), of T by

{0} (n=0),
(X), = (X) (n=1),
(&) * (X)) (2<n<o0)

Put (X), = U,0(X),. When the ground category 7 should be specified, we
write (X)7 instead of (X) . For a ring R and a subcategory X of D(Mod R), we
put (X), = ()M,

(3) The dimension of T, denoted by dim 7T, is the infimum of the integers d such that
there exists an object M € T with (M), , =T.

3. UPPER BOUNDS

The aim of this section is to find explicit generators and upper bounds of dimensions
for derived categories in several cases.

We observe that the dimensions of the bounded derived categories of finitely generated
modules over quotient singularities are at most their (Krull) dimensions, particularly that
they are finite.

Proposition 6. Let S be either the polynomial ring klzi,...,x,] or the formal power
series ring kl[x1,. .., x,]] over a field k. Let G be a finite subgroup of the general linear
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group GL,(k), and assume that the characteristic of k does not divide the order of G. Let
R = 5 be the invariant subring. Then D*(mod R) = (S),, ., holds, and hence one has

dim D”(mod R) < n = dim R < oo.

For a commutative ring R, we denote the set of minimal prime ideals of R by Min R.
As is well-known, Min R is a finite set whenever R is Noetherian. Also, we denote by
A(R) the infimum of the integers n > 0 such that there is a filtration

O=Lh<ch<---CL,=R

of ideals of R with I;/I; 1 = R/p; for 1 < i < n, where p; € Spec R. If R is Noetherian,
then such a filtration exists and A\(R) is a non-negative integer.

Proposition 7. Let R be a Noetherian commutative ring.

(1) Suppose that for every p € Min R there exist an R/p-complex G(p) and an integer
n(p) > 0 such that D’(mod R/p) = (G(P)) - Then DP(mod R) = (G), holds,
where G = @, eppin g G(P) and n = A(R) - max{n(p) [ p € Min R }.

(2) There is an inequality

dim D”(mod R) < A(R) - sup{ dimD”(mod R/p) + 1 |p € Min R} — 1.
Let R be a commutative Noetherian ring. We set

V(R) =1inf{n >0 | (rad R)" =0},

r(R) =min{n >0| (nilR)" =0},
where rad R and nil R denote the Jacobson radical and the nilradical of R, respectively.
The first number is called the Loewy length of R and is finite if (and only if) R is Artinian,
while the second one is always ﬁnite_. Let Ryeq = R/ nil R be the associated reduced ring.
When R is reduced, we denote by R the integral closure of R in the total quotient ring
Q) of R. Let Cg denote the conductor of R, i.e., Cr is the set of elements z € () with
xR C R. We can give an explicit generator and an upper bound of the dimension of the

bounded derived category of finitely generated modules over a one-dimensional complete
local ring.

Proposition 8. Let R be a Noetherian commutative complete local ring of Krull dimen-
sion one with residue field k. Then it holds that D*(mod R) = (Rrea®k), (gy.(2.0(

In particular,

Rred/CRred )+2) ’

dim D”(mod R) < 7(R) - (26(Reea/Cr..,) +2) — 1 < c0.

Let R be a commutative Noetherian local ring of Krull dimension d with maximal ideal
m. We denote by e(R) the multiplicity of R, that is, e(R) = lim, o %5(5(R/m™ ). Recall
that a numerical semigroup is defined as a subsemigroup H of the additive semigroup
N = {0,1,2,...} containing 0 such that N\ H is a finite set. For a numerical semigroup
H, let ¢(H) denote the conductor of H, that is,

c(H)=max{ieN|i—1¢ H}.
For a real number «, put [a] = min{n € Z | n > a}. Making use of the above

proposition, one can get an upper bound of the dimension of the bounded derived category
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of finitely generated modules over a numerical semigroup ring k[[H]] over a field k, in terms
of the conductor of the semigroup and the multiplicity of the ring.

Corollary 9. Let k be a field and H be a numerical semigroup. Let R be the numerical
semigroup ring k[[H]|, that is, the subring k[[t"|h € H]] of S = K[[t]]. Then D*(mod R) =
(S @ k:>2[@w+2 holds. Hence

e(R)

dim D"(mod R) < 2 [Z((gﬂ Tl

4. FINITENESS

In this section, we consider finiteness of the dimension of the bounded derived category
of finitely generated modules over a complete local ring. Let R be a commutative algebra
over a field k. Rouquier [14] proved the finiteness of the dimension of D’(mod R) when
R is an affine k-algebra, where the fact that the enveloping algebra R ®; R is Noetherian
played a crucial role. The problem in the case where R is a complete local ring is that one
cannot hope that R®; R is Noetherian. Our methods instead use the completion of the
enveloping algebra, that is, the complete tensor product R & R, which is a Noetherian
ring whenever R is a complete local ring with coefficient field k.

Let R and S be commutative Noetherian complete local rings with maximal ideals m
and n, respectively. Suppose that they contain fields and have the same residue field k,
i.e., R/m=k = S5/n. Then Cohen’s structure theorem yields isomorphisms

R=k[[xy,...,xn]l/(f1, ) fa),
S =Ky, uall/ (91,1 9)-

We denote by R®y, S the complete tensor product of R and S over k, namely,
R®y S = lim(R/m’ @, 5/n’).
i,

For r € R and s € S, we denote by r®s the image of r®s by the canonical ring
homomorphism R ®; S — R®;.S. Note that there is a natural isomorphism

R@ksgk[[l’l,---,xm,yl,--~,ynﬂ/<f1,~--,fa,gl,..-,gb)~

Details of complete tensor products can be found in [15, Chapter V].

Recall that a ring extension A C B is called separable if B is projective as a B ® 4 B-
module. This is equivalent to saying that the map B®4 B — B given by z ® y — zy is
a split epimorphism of B ® 4 B-modules.

Now, let us prove our main theorem.

Theorem 10. Let R be a Noetherian complete local commutative ring containing a field
with perfect residue field. Then there exist a finite number of prime ideals p1,...,p, €
Spec R and an integer m > 1 such that

D”(mod R) = (R/p1 @ -~ @ R/pn),,.

Hence one has dim DP(mod R) < oo.

flof



Sketch of proof. We use induction on the Krull dimension d := dim R. If d = 0, then R
is an Artinian ring, and the assertion follows from [14, Proposition 7.37]. Assume d > 1.
By [10, Theorem 6.4], we have a sequence

O=Lh<ch<---CL,=R
of ideals of R such that for each 1 <1 < n one has I;/I; 1 = R/p; with p; € Spec R. Then
every object X of DP(mod R) possesses a sequence
0=XL(CXLC---CXI,=X
of R-subcomplexes. Decompose this into exact triangles
Xl 1= X[, - XL;/XI1; 1 > ¥XXI; q,

in D(mod R), and note that each XI;/XI; ; belongs to D®(mod R/p;). Hence one may
assume that R is an integral domain. By [16, Definition-Proposition (1.20)], we can take a
formal power series subring A = k[[xy, ..., x4)] of R such that R is a finitely generated A-
module and that the extension Q(A) C Q(R) of the quotient fields is finite and separable.

Claim 1. We have natural isomorphisms
R = k[[])[t]/ (f (2, 1)) = K[[z, t]]/(f (. 1)),
§i= R@a R = k[t ]/ (f(z, 1), f(w, 1)) = K[, , /1)) (F(@,0), f(, ),
U= R, A= k[[x,t,2])/(f(z,1)),
T := R®, R k[[x,t, 2", t]]/(f(x,1), f(',1)).

Herex = xy,...,xq, ' =2,....20, t =t,... t,, ' =1t|,... t, are indeterminates over
k, and f(x,t) = fi(x,t),..., fm(x,t) are elements of k[[x]][t] C k[[z,t]]. In particular, the
rings S, T, U are Noetherian commutative complete local rings.

There is a surjective ring homomorphism p : S = R®4 R — R which sends r ® r’ to

rr’. This makes R an S-module. Using Claim 1, we observe that p corresponds to the

map k[[z,t,t']]/(f(x,t), f(x,t") — K[z, t]]/(f(z,t)) given by t’ — t. Taking the kernel,
we have an exact sequence
0=-I—S5R—=0

of finitely generated S-modules. Along the injective ring homomorphism A — S sending
a € Atoa®l =1®a € 5, we can regard A as a subring of S. Note that S is a finitely
generated A-module. Put W = A\ {0}. This is a multiplicatively closed subset of A, R
and S, and one can take localization (—)w.

Claim 2. The Sy -module Ry, is projective.
There are ring epimorphisms
a:U—=R, r@a— ra,
B:T—S, r@re—rer,
v:T—=R, r®r —rr.

Identifying the rings R, S, T and U with the corresponding residue rings of formal power
series rings made in Claim 1, we see that «, 3 are the maps given by 2’ — z, and v
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is the map given by 2’ — z and ¢’ — t. Note that v = uS. The map « is naturally
a homomorphism of (R, A)-bimodules, and /3, are naturally homomorphisms of (R, R)-
bimodules. The ring R has the structure of a finitely generated U-module through a.. The
Koszul complex on the U-regular sequence 2’ — = gives a free resolution of the U-module

R:

d ' —x
2

(4.1) 05U U5y 5. 5 pel) 5 ued 225 U 2 R0,
This is an exact sequence of (R, A)-bimodules. Since the natural homomorphisms

A= E[[2")] = K[[2][z, 1]/ (f (=, 1),
Kl N, 11/ (f (z, 1)) = k{2, 8]/ (f (2, 1)) = U

are flat, so is the composition. Therefore U is flat as a right A-module. The exact sequence
(4.1) gives rise to a chain map 1 : F' — R of U-complexes, where

d d
2 2

F=(0-U—-U%5p2@) ... 5y 5 ysd 222 1 )
is a complex of finitely generated free U-modules. By Claim 1, we have isomorphisms
UaR=U@aAll]/(f(x,t) = U/ (f(', 1) = U]/ (f (=", 1))
= (kll, ¢, 2]/ (f (2, O/ (f (2" 1) = K, 8, 2/ ]/ (f (. 2), f 2", 1) = T

Note from [17, Exercise 10.6.2] that R ®% R is an object of D~ (R-Mod-R) = D~ (Mod R ®;, R).
(Here, R-Mod-R denotes the category of (R, R)-bimodules, which can be identified with
Mod R ® R.) There are isomorphisms

RYR=2F®,R
=05 U®iR— (USiR)®™ = 5 (U2iR)™ 25 Uoa R — 0)
~ (0T =T .. 5T 257 4 0)= C

in D~ (Mod R®y, R). Note that C can be regarded as an object of D”(mod T'). Taking the
tensor product n®4 R, one gets a chain map A : C' — S of T-complexes. Thus, one has
a commutative diagram

)

K e s R y YK
I
I y S 5 R —— ¥I

of exact triangles in D" (mod T).

Claim 3. There exists an element a € W such that -(1&a) = 0 in Hompp (med ) (R, LK).
One can choose it as a non-unit element of A, if necessary.

Let a € W be a non-unit element of A as in Claim 3. Since we regard R as a T-module

through the homomorphism 7, we have an exact sequence 0 — R ~=% R — R/(a) — 0.
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The octahedral axiom makes a diagram in D®(mod T')

1Ra
E—

R R —— R/a —> %R

H | l H

R s YK —YK®YR ——» YR

l H l !

R —s YK — - s YR

sC
| | | |
R/(a) — SK®YR ——> ¥C —— YR/(a)

with the bottom row being an exact triangle. Rotating it, we obtain an exact triangle
K®R—C— R/(a) > (K ®R)

in D"(mod T'). The exact functor D*(mod T') — D~ (Mod R ®;, R) induced by the canonical
ring homomorphism R ®; R — T sends this to an exact triangle

(4.2) K®R— R®YR— R/(a) - L(K®R)

in D~ (Mod R®;, R). As R is a local domain and a is a non-zero element of the maximal
ideal of R, we have dim R/(a) = d—1 < d. Hence one can apply the induction hypothesis
to the ring R/(a), and sees that

D"(mod R/(a)) = (R/p1 @~ ® R/py) "/

for some integer m > 1 and some prime ideals py,--- ,p, of R that contain a. Now, let X
be any object of D’(mod R). Applying the exact functor X ®% — to (4.2) gives an exact
triangle in D~ (Mod R)

(4.3) (X@pK)eX - X®YR— XQFR/(a) > Z(X®FK) & X).

Note that X ®% R/(a) is an object of D*(mod R/(a)) = (R/p1 & --- ® R/pn)/ ™. As
an object of D*(mod R), the complex X ®% R/(a) belongs to (R/py @ --- @ R/pp). We
observe from (4.3) that X is in (R®R/p1®- - -BR/pp) Thus we obtain D*(mod R) =

d+14+m"-
(ROR/p1®- - ®R/Pr)gi14m- (As Ris a domain, the zero ideal of R is a prime ideal.) [

Now, we make sure that the proof of Theorem 10 also gives a ring-theoretic proof of the
affine case of Rouquier’s theorem. Actually, we obtain a more detailed result as follows.
Recall that a commutative ring R is said to be essentially of finite type over a field k if
R is a localization of a finitely generated k-algebra. Of course, every finitely generated
k-algebra is essentially of finite type over k.

Theorem 11. (1) Let R be a finitely generated algebra over a perfect field. Then there
exist a finite number of prime ideals pq,...,p, € Spec R and an integer m > 1
such that

D"(mod R) = (R/p1 & -~ & R/pn),,.
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(2) Let R be a commutative ring which is essentially of finite type over a perfect field.
Then there exist a finite number of prime ideals p1, ..., p, € Spec R and an integer
m > 1 such that

D"(mod R) = (R/p1 @ -~ @ R/pn),,.

Now the following result due to Rouquier (cf. [14, Theorem 7.38]) is immediately
recovered by Theorem 11(2).

Corollary 12 (Rouquier). Let R be a commutative ring essentially of finite type over a
perfect field. Then the derived category D®(mod R) has finite dimension.

Remark 13. In Corollary 12, the assumption that the base field is perfect can be removed;
see [7, Proposition 5.1.2]. We do not know whether we can also remove the perfectness
assumption of the residue field in Theorem 10. It seems that the techniques in the proof
of [7, Proposition 5.1.2] do not directly apply to that case.

5. LOWER BOUNDS

In this section, we will mainly study lower bounds for the dimension of the bounded
derived category of finitely generated modules. We shall refine a result of Rouquier over an
affine algebra, and also give a similar lower bound over a general commutative Noetherian
ring.

Throughout this section, let R be a commutative Noetherian ring. First, we consider
refining a result of Rouquier.

Theorem 14. Let R be a finitely generated algebra over a field. Suppose that there exists
p € Assh R such that R, is a field. Then one has the inequality dim D*(mod R) > dim R.

The following result of Rouquier [14, Proposition 7.16] is a direct consequence of The-
orem 14.

Corollary 15 (Rouquier). Let R be a reduced finitely generated algebra over a field. Then
dim D"(mod R) > dim R.

Next, we try to extend Theorem 14 to non-affine algebras. We do not know whether
the inequality in Theorem 14 itself holds over non-affine algebras; we can prove that a
similar but slightly weaker inequality holds over them.

Now we can show the following result.

Theorem 16. Let R be a ring of finite Krull dimension such that R, is a field for all
p € Assh R. Then we have dim D’(mod R) > dim R — 1.

Here is an obvious conclusion of the above theorem.

Corollary 17. Let R be a reduced ring of finite Krull dimension. Then dim D®(mod R) >
dim R — 1.
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QUIVER PRESENTATIONS OF GROTHENDIECK CONSTRUCTIONS

HIDETO ASASHIBA AND MAYUMI KIMURA

ABSTRACT. We give quiver presentations of the Grothendieck constructions of functors
from a small category to the 2-category of k-categories for a commutative ring k.

Key Words: Grothendieck construction, functors, quivers.

1. INTRODUCTION

Throughout this report I is a small category, k is a commutative ring, and k-Cat
denotes the 2-category of all k-categories, k-functors between them and natural transfor-
mations between k-functors.

The Grothendieck construction is a way to form a single category Gr(X) from a diagram
X of small categories indexed by a small category I, which first appeared in [4, §8 of
Exposé VI|. As is exposed by Tamaki [7] this construction has been used as a useful tool
in homotopy theory (e.g., [8]) or topological combinatorics (e.g., [9]). This can be also
regarded as a generalization of orbit category construction from a category with a group
action.

In [2] we defined a notion of derived equivalences of (oplax) functors from I to k-Cat,
and in [3] we have shown that if (oplax) functors X, X’: I — k-Cat are derived equivalent,
then so are their Grothendieck constructions Gr(X) and Gr(X’). An easy example of a
derived equivalent pair of functors is given by using diagonal functors: For a category
C define the diagonal functor A(C): I — k-Cat to be a functor sending all objects of
to C and all morphisms in I to the identity functor of C. Then if categories C and C’
are derived equivalent, then so are their diagonal functors A(C) and A(C’). Therefore,
to compute examples of derived equivalent pairs using this result, it will be useful to
present Grothendieck constructions of functors by quivers with relations. We already
have computations in two special cases. First for a k-algebra A, which we regard as a
k-category with a single object, we noted in [3] that if [ is a semigroup G, a poset S, or
the free category PQ of a quiver @, then the Grothendieck construction Gr(A(A)) of the
diagonal functor A(A) is isomorphic to the semigroup algebra AG, the incidence algebra
AS, or the path-algebra AQ), respectively. Second in [1] we gave a quiver presentation
of the orbit category C/G for each k-category C with an action of a semigroup G in the
case that k is a field, which can be seen as a computation of a quiver presentation of the
Grothendieck construction Gr(X) of each functor X: G — k-Cat.

In this report we generalize these two results as follows:

(1) We compute the Grothendieck construction Gr(A(A)) of the diagonal functor
A(A) for each k-algebra A and each small category I.

The final version of this paper has been submitted for publication elsewhere.
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(2) We give a quiver presentation of the Grothendieck construction Gr(X) for each
functor X : I — k-Cat and each small category I when k is a field.

2. PRELIMINARIES

Throughout this report Q@ = (Qo, Q1,t, h) is a quiver, where t(a) € Qo is the tail and
h(a) € Qo is the head of each arrow a of (). For each path p of @, the tail and the head
of p is denoted by t(p) and h(u), respectively. For each non-negative integer n the set of
all paths of @) of length at least n is denoted by (),. In particular ()>¢ denotes the set
of all paths of Q.

A category C is called a k-category if for each z,y € C, C(x,y) is a k-module and the
compositions are k-bilinear.

Definition 1. Let ) be a quiver.

(1) The free category PQ of @) is the category whose underlying quiver is (Qo, @0, t, h)
with the usual composition of paths.
(2) The path k-category of @ is the k-linearization of PQ) and is denoted by kQ).

Definition 2. Let C be a category. We set
Rel€):= | €(i,4) xC(i, ),
(i,j)ECoXCo
elements of which are called relations of C. Let R C Rel(C). For each i, j € Cy we set
R(i,j) == RN (C(i,5) x C(i, ]))-
(1) The smallest congruence relation
= |J A{(dac,dbc)|ceC(—,i),deC(j,—). (a,b) € R(i,j)}
(i,j)GCoXCo

containing R is called the congruence relation generated by R.
(2) For each i,j € Cy we set

R™(i,j) = {(g, f) € C(i,j) x C(i,j) | (f,9) € R(i,j)}
{(£, 1)1 fecClih)}

Legig) =
S(i,4) = R(i,J) U R™(4,7) Ulcq
S(i,4)" = 5(i,4)
S(i,5)" = {(h, f) | 3g € C(i,4), (g, f) € S(i,4), (h,g) € S(i,5)" "} (for all n > 2)

S(i, ) = | S(i,5)", and set
n>1
R= ] SG4)>
(i,j)ECOXCO
R¢ is called the equivalence relation generated by R.
(3) We set R* := (R)® (cf. [5]).

The following is well known (cf. [6]).
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Proposition 3. Let C be a category, and R C Rel(C). Then the category C/R* and the
functor F : C — C/R* defined above satisfy the following conditions.

(i) For eachi,j € Cy and each (f, f') € R(i,7) we have F'f = Ff'.
(ii) If a functor G : C — D satisfies Gf = Gf' for all f, f" € C(i,7) and all i,j € Cy
with (f, f') € R(i, ), then there exists a unique functor G' : C/R* — D such that
G'oF =G.
Definition 4. Let @ be a quiver and R C Rel(PQ). We set

(Q| R) :=PQ/R".
The following is straightforward.
Proposition 5. Let C be a category, (Q the underlying quiver of C, and set

R = {(e;, 1;), (1, [u]) | i € Qo, 1 € @2} C Rel(PQ),
where e; is the path of length O at each vertez i € Qy, and [u] :== o, 0-- -0y (the composite
in C) for all paths p = au, ... € Qo with ay,...,a, € Q1. Then
C=(Q|R).
By this statement, an arbitrary category is presented by a quiver and relations. Through-
out the rest of this report I is a small category with a presentation I = (Q | R).

3. GROTHENDIECK CONSTRUCTIONS OF DIAGONAL FUNCTORS

Definition 6. Let X : I — k-Cat be a functor. Then a category Gr(X), called the
Grothendiek construction of X, is defined as follows:

() (@0 = L) [ 2 € X0}
(i) For (i,), (j.) € (Gr(X))o
X)) () = € KOk
(i) For f = (faacries) € Gr(X)((6,2), () and g = (@hseri € Gr(X)(( ), (b )
gof=0>_ X0 fa)ecsin
)

Definition 7. Let C € k-Cat,. Then the diagonal functor A(C) of C is a functor from I
to k-Cat sending each arrow a: 7 — j in I to 1o: C — C in k-Cat.

In this section, we fix a k-algebra A which we regard as a k-category with a single
object * and with A(x,*) = A. The quiver algebra AQ of @ over A is the A-linearization
of PQ, namely AQ = A @ kQ.

Theorem 8. We have an isomorphism Gr(A(A)) = AQ/(R) 4, where (R) is the ideal
of AQ generated by the elements g — h with (g,h) € R.

Remark 9. Theorem 8 can be written in the form

Gr(A(A)) = Ay (kQ/(R)y).

f18f



4. THE QUIVER PRESENTATION OF GROTHENDIECK CONSTRUCTIONS

In this section we give a quiver presentation of the Grothendieck construction of an
arbitrary functor I — k-Cat. Throughout this section we assume that k is a field.

Theorem 10. Let X : I — k-Cat be a functor, and for each i € I set X (i) = kQ®/
(RDY with ®: kQ® — X (i) the canonical morphism, where R® C kQW, (RM) N {e, |
r € Qi) = 0. Then Grothendieck construction is presented by the quiver with relations
(Q, R') defined as follows.

Quiver: Q' = (Qf, Q1,t', '), where

(i) Q= v e Q).
icl
(i) Q) = U{{ia la e QYU {(a,z) : z — jlar) a1 —j € @,z € Q((f),ax +
icl
0}},

where we set ar := X (a)(z).
(iii) For a € QY. t'(;a) = t%(a) and I (;a) = h(a).
(iv) Fora:i— j € Qi,x € Q(()Z), '(a,;x) =z and N (a,;x) = ;(ax).
Relations: R’ := R} U R, U Ry, where

(i) Ry := {0 (n) | i€ Qo€ RV},
where we set 0@ : kQW — kQ'. .
(i) By = {n(g,i) — w(hia) | i, € Qo (0. h) € R, i),z € QY), where for each
path a i Q) we set
m(a,;x) == (an, i, ,(@n-10n_o...a12)) ... (az,;(a12))(ay, x)

if a =a,...axay for some ay,...,a, arrows in @), and

m(a,;z) = e,

if a =e; for some i € Q. ‘
(ili) Ry := {(a,y)ia — j(aa)(a,;x) |a:i—>j€ Qr,a:x =y € Q\}, where we take
ac : ar — ay so that ®V(aa) € X (a)®?(a):
o € kQW —2% X (3)
X(a)

ac € kQW 22 x(j).

Note that the ideal (R') is independent of the choice of ac because R C R'.

5. EXAMPLES

In this section, we illustrate Theorems 8 and 10 by some examples.
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Example 11. Let Q be the quiver

a b

1—~3-2+5

N

and let R = {(ba,dc)}. Then the category I := (Q | R) is not given as a semigroup, as a
poset or as the free category of a quiver. For any algebra A consider the diagonal functor
A(A): I — k-Cat. Then by Theorem 8 the category Gr(A(A)) is given by

AQ/(ba — dc).

Remark 12. Let Q and Q' be quivers having neither double arrows nor loops, and let
f: Qo — Q) be a map (a vertex map between @ and Q). If Q(z,y) # 0 (z,y € Qo)
implies Q'(f(z), f(y)) # 0 or f(z) = f(y), then f induces a k-functor f: kP — kP’
defined by the following correspondence: For each z € Qo, f(e,) = e f(z), and for each
arrow a:  — y in @, f(a) is the unique arrow f(x) = f(y) (vesp. efw) if f(z) # f(y)
(resp. if f(z) = f(y)).

Example 13. Let I = (Q | R) be as in the previous example. Define a functor X :
I — k-Cat by the k-linearizations of the following quivers in frames and the k-functors
induced by the vertex maps expressed by broken arrows between them:

RN
X@///// la ST o
T xw B G R
1//// T X (@) T :::§1
“l\:;:;/\ X@ X(3) X(a) /////;/Jia
e T
N o T X0)
;@\\\ la ///Q@
-
X(4)



Then by Theorem 10 Gr(X) is presented by the quiver

»2l
— - 20 = ~
( ;11) ~ (b721)
- g (a’12) - h -~ > ~
- _ - (b722) =~ -
- — -~
~ ~ I
- - _ - 51
\/\ /\ (0711) _ - = z
, ~ - - - = (d,gl) _ - -
Q fr—y 1 Z -~ - P — _ —~ 5Q¢
- g = ~ (0’12) T~ _ - - —~ -
12 ——————— \—\— ——————— > 31 -~ 52
~
~ ~ - (f141) e 7
h ~ (6711) S - —~ -
~ ~ - —
N - —~
(€12) ™ < J/ (f,42)
~ _ s -

with relations
R, = {ﬂ-(ba’a 11) - ﬂ-(dca 11)’ 7T(ba,7 12) - 7T(dC, 12)}
U{(a,w)iac — j(aa)(a,;z) a1 —j€Q,a:x—ye Qgi)},

where the new arrows are presented by broken arrows.

Example 14. Let Q = (1 —=2) and I := (Q). Define functors X, X’: [ — k-Cat by
the k-linearizations of the following quivers in frames and the k-functors induced by the
vertex maps expressed by dotted arrows between them:

\ / X(1) / \ X'(1)

X X(a) . S X(a) X' X (“)
X (a}' X/(a):" ) ':X’(a)

Tvp | AV F
1 |X(2), 1 1X'(2).

Then by Theorem 10 Gr(X ) is given by the following quiver with no relations

11\/ NS

S (an2) (a,13)10c = (@,11), (a,13)18 — (@,12) | = 13 ;
(%13); E (a»13)l
N7
21 21

21—



and Gr(X') is given by the following quiver with a commutativity relation

11 11
N N
12 7 (a’ll)é 7 13 ,(CL, 12)10[ - (CL, 11)7 (CL, 13)15 - (CL, 11) = 12 7 O 713
(@12) " ;,fkmﬁ) (@12) o 4 (a13)
2]- 21

By using the main theorem in [3] derived equivalences between X (1) and X'(1) and
between X (2) and X’(2) are glued together to have a derived equivalence between Gr(X)
and Gr(X").
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THE LOEWY LENGTH OF TENSOR PRODUCTS FOR DIHEDRAL
TWO-GROUPS

ERIK DARPO AND CHRISTOPHER C. GILL

ABSTRACT. The indecomposable modules of a dihedral 2-group over a field of charac-
teristic 2 were classified by Ringel over 30 years ago. However, relatively little is known
about the tensor products of such modules, except in certain special cases. We describe
here the main result of our recent work determining the Loewy length of a tensor product
of modules for a dihedral 2-group. As a consequence of this result, we can determine
precisely when a tensor product has a projective direct summand.

1. INTRODUCTION

Let k be a field of positive characteristic p and let G be a finite group. The group algebra
kG is a Hopf algebra with coproduct and co-unit given by A} c;799) = > cqT9g ® g
and €(3_,cqT99) = D _yeq Ty for rg € k. Thus, there is a tensor product operation on the
category of kG-modules. If M and N are kG-modules, then the tensor product of M and
N is the module with underlying vector space M ®; N and module structure given by
gm®@n) =A(g)(m®@n) =gm® gn for g € G,m € M,n € N. The tensor product is a
frequently used tool in the representation theory of finite groups. However, the problem
of determining the decomposition of a tensor product of two modules of a finite group G
— the Clebsch-Gordan problem — can be extremely difficult.

One approach to understanding tensor products of kG-modules goes via the representa-
tion ring, or Green ring, of kG. The isomorphism classes of finite-dimensional kG-modules
form a semiring, with addition given by the direct sum, and multiplication by the tensor
product of kG-modules. The Green ring, A(kG), is the Groethendieck ring of this semir-
ing, i.e., the ring obtained by formally adjoining additive inverses to all elements in the
semiring. Research in this direction was pioneered by J. A. Green [6], who proved the
Green ring of a cyclic p-group is semisimple. The question of semisimplicity of the Green
ring for other finite groups has been studied by several authors since. Benson and Carlson
2] gave a method to produce nilpotent elements in a Green ring, and determined a quo-
tient of the Green ring which has no nilpotent elements.

This so-called Benson—Carlson quotient of the Green ring was studied by Archer [1] in
the case of the dihedral 2-groups, who realised it as an integral group ring of an abelian,
infinitely generated, torsion-free group. Archer gave a precise statement relating the
multiplication of two elements in this infinite group to the Auslander—Reiten quiver of
kD,,. The Green ring of the Klein four group Vi was completely determined by Conlon
[4]; a summary of this result can be found in [1].

For the dihedral 2-groups Dy, the indecomposable modules, over fields of characteristic
2, were classified by Ringel [7] over 30 years ago. However, very little progress has been
made towards understanding the behaviour of the tensor product of the kD4,-modules. In
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particular, the decomposition of a tensor product of two indecomposable kD4,-modules is
not known, other than in some very special cases. One example is the work of Bessenrodt
3], classifying the endotrivial kD,,-modules, thus determining the kD,,-modules M for
which the tensor product of M with its dual M* is the direct sum of a trivial and a
projective module.

In recent work [5], we have continued the study of tensor products of kD,,-modules, de-
termining completely the Loewy length of the tensor product of any two indecomposable
kDs,-modules. This provides an additional piece of information towards the understand-
ing of the Green rings of the dihedral 2-groups, and gives certain bounds on which modules
can occur as direct summands of a tensor product. In particular, it determines precisely
when a tensor product of two modules has a projective direct summand.

The Loewy length ¢(M) of a module M is, by definition, the common length of the
radical series and the socle series of M, that is, /(M) = min{t € N | rad*(kDy,)M = 0}.

In the next section, we recall Ringel’s classification of the indecomposable kD4,-modules.
Section 3 gives a summary of the results in [5], and in Section 4, we give examples il-
luminating our results and showing how they can be used to determine the direct sum
decomposition of a tensor product in certain cases.

2. THE INDECOMPOSABLE MODULES OF DIHEDRAL 2-GROUPS

Let ¢ be a 2-power, and write Dy, = (x,y | 22 = y? = 1, (zy)? = (yz)?) for the dihedral
group of order 4¢. There is an isomorphism of algebras
(X, Y)
(X27 Y27 (XY)Q - (YX)‘I) ’

given by x — 1+ X and y — 1 +Y. Setting A(X) =19 X+X®1+X®X and
AY) =10Y +Y ®1+Y ®Y defines a coproduct on A, corresponding under this
isomorphism to the Hopf algebra structure of kD,,. Owing to the fact that A, is a special
biserial algebra, its non-projective modules split into two classes, known as string modules
and band modules. We describe both classes of modules below.

Let W be the set of words in letters a, b and inverse letters a=',b~! such that a or a~
are always followed by b or b=! and b or b~! are always followed by a or a™!. A directed
subword of a word w € W is a word w’ in either the letters {a, b} or {a=!, b~} such that
w = wyw'w, for some words wy, wy € W. Let W be the subset of W consisting of words
in which all directed subwords are of length strictly less than 2¢. Define an equivalence
relation ~; on W by w ~, w' if, and only if, w’ = w or w' = w™t. Givenw =1, ...1, € W,
the string module determined by w, denoted by M (w), is the n + 1-dimensional module
with basis ey, ..., e, and Agj-action given by the following schema:

kDyy = Ay 1=

1

l1 l2 ln,1 ln
keg keq ke . ken—_1 ke, .

If I; € {a~!,b7'}, the corresponding arrow should be interpreted as going in the opposite
direction, from ke; ; to ke;, and having the label [;'. Now X maps e; to e; (j € {i —
1, + 1}) if there is an arrow ke; — ke;, and as zero if no arrow labelled with a starting
in ke; exists. Similarly, the action of Y is given by arrows labelled with b. Two modules
M(w) and M (w'), w,w" € W, are isomorphic if, and only if, w ~y w'.
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Next, let W' be the subset of W consisting of words w of even positive length containing
letters from both {a, b} and {a~*,b7'}, and such that w is not a power of a word of smaller
length. Given w =y ...l,, € W', and ¢ an indecomposable linear automorphism of k",
the band module determined by w and ¢, M(w,y), is the A,module with underlying

vector space @2’;61 Vi where V; = k", and Aj-action specified by the following schema:

lm72 lmfl

e R I (P

w

lm

The interpretation of the schema is similar to that for string modules. The elements
la, ..., 1, act as the identity map on k", [; acts as the linear automorphism ¢ (this means
that if {; € {a',b7'} then V} is mapped onto V; by ¢! under either X or Y)).

Define ~5 to be the equivalence relation on W' defined by w ~y w' if, and only if,
w of w™! is a cyclic permutation of w’. Two band modules M (w, ) and M (w',1) are
isomorphic if, and only if, w ~y w’ and ¢ = ¢p¢~! for some linear automorphism .
It may be noted that for every w € W' there exists a w’ € W with an even number of
maximal directed subwords such that w ~9 w’. While there are several different choices
for w’, its maximal directed subwords are uniquely determined, as elements in W/ ~q, by
w.

Every indecomposable non-projective kD,,-module is isomorphic either to a string
or a band module, but not both. There is a single, indecomposable projective mod-
ule, xp, KDy, The Loewy length of any non-projective module is at most 2¢, while
E(kD4qu4q) = 2(] + 1.

3. LOEWY LENGTH OF TENSOR PRODUCTS

Here, we give an overview of the results in [5]. We fix the the following conventions
and notation. The least natural number is 0. For [ < 2¢, A; € W is the (unique) word of
length [ in the letters a, b ending in a, and similarly B; € VW is the word of length [ in the
letters a, b ending in b.

If M is a module and X C M any set of generators, then /(M) = max{(({(z)) | z € X},
and if N is another module then, in a similar fashion, /(M ® N) = max{{({(z) ® N) |
x € X}. Any kD,,-module that is generated by a single element is isomorphic to either
M(AB,;}) or M(A;B;,}, p) for some I,m < 2q and p € k ~ {0}, hence it is sufficient
to determine Loewy lengths of tensor products of these types of modules, to solve the
problem for arbitrary modules M and N. Refining these ideas a little, one can prove the
following results.

Proposition 1. Let M and N be kD,,-modules. If M is a string module corresponding
to a word w € W with mazimal directed subwords w;, i € {1,...,m}, then

(M ®N) =max{{(M(w;) @ N) |i € {1,...,m}}.

Proposition 2. Let M = M(w,p), where w € W' and ¢ is an indecomposable auto-
morphism of k™, n > 1. Let w' € W' be a word with an even number of mazximal directed
subwords w;, i € {1,...,2m}, such that w ~o w'. If m and n are not both equal to 1, then

U(M(w,p) @ N) =max{{(M(w;) @ N) |i € {1,...,2m}}.
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Proposition 1 and 2 leave us with determining the Loewy lengths of tensor products of
modules of the types M(A;), M(B,,) and M(A;B;},p) for I,m < 2q, p € k~ {0}. One
can note that these are precisely the non-projective k£D,,-modules whose top and socle
are simple modules.

Given = € N, denote by [z]; the ith term of its binary expansion, i.e., [z]; € {0, 1} such
that © = >, y[z];2". Let [,m € N, and take a € N to be the smallest number such that
[]; +[m];s < 1foralli >a. Set A= 3. [I];2" and p =" . [m];27. Now define a binary
operation # on N by setting

l#m =X+p+2°—1.

If the binary expansions of [ and m are disjoint, that is, if [[]; + [m]; < 1 for all i € N, we
write [ L m. Now observe that if [ 1 m then a = 0 and [#m = [+m, while [#m < [+ m
otherwise.

Example 3. We have 85#38 = 119. Namely, 85 = 2° 422 +2% 1+ 26 and 38 = 2! + 22425,
hence a = 3 for these two numbers, and therefore 85#38 = (24 4 26) + 25+ 23 — 1 = 119.
Clearly, 85#38 = 119 < 123 = 85 + 38, which was to be expected, since 85 [ 38.

The relevance of the operation # is that it neatly describes the Loewy length of a tensor
product of uniserial modules, that is, modules of the type M(A4;) and M (B;). If u is a
generating element in the module M (4;), and v a generating element in M (A,,), then
(({(u®v)) = l#m + 1 (observe that u ® v does not generate M(A;) ® M(A,,), unless {
or m equals zero). Showing this is the most important step in the proof of our principal
theorem, which gives the Loewy lengths of tensor products of kD,,-modules with simple
top and simple socle.

Theorem 4. Let [,m € N, ly,l5,m1,ms € N\ {0}, p,0 € k~ {0}.
1. String with string:
1+l#FMm=1+14+m if [ L m,
2+ #m if 1Y m,
L+i#m if [llp=[m]: =0 for all0 <t <a—1,
24 l#m otherwise.

((M(A) ® M(B,,)) = {

((M(A) @ M(Ap)) = {

where a = min{r € N | [[|s + [m]; < 1, Vt > r}.

2. Band with string:
24 (I — D)#m ifp=1,1 =1y and
C(M(A, B p) @ M(Ay)) = L Lm, I} L (m—1),
0 (M (A, B,') @ M(A,))  otherwise.
3. Band with band: Let M = M (AllBlzl,p), N=M (Aman_é,a).
(a) Ifly # Iy, then
(M ®N) =M (A,B") ® N).
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Assume Iy = ly, my = mo.

(b) If lhy X my, Iy L (mq—1), (I1 — 1) L my then
(M®N) =2+ (I; — 1)#(my — 1).

(c) If s, L my, (I — 1) L my, then

24+ (L1 —D#m—1) if o=1,
li+m;+1 otherwise.

aM®m:{
(d) [f ll 1 my, ll 1 (m1 — 1), then

24+ (L = 1)#(mi = 1) if p=1,
lh+m+1 otherwise.

aM®M:{

(e) If (I = 1) Lmy, Iy L (my — 1), then

(M @N)=qhL+m if p=o#1,
li+m+1 otherwise.

We remark that if any one of the statements [ L m, (I —1) L m and [ L (m — 1) holds
true, then so does precisely one of the remaining ones. Hence 3(b)-3(e) in the theorem
give a complete list of cases. As a consequence of Theorem 4:1, it is not difficult to prove
the following sequence of inequalities:

(3.1)  (M(A) © M(An)) < UM(A) & M(Bn)) < (M (A) ® M(Ani1).

It is entirely possible that each of these inequalities are identities. This is the case for
example if | = 8 m = 9: {(M(Ag) ® M(Ay)) = 2+ 8#9 = 2+ 15 = 2 + 8#10 =
((M(As) @ M(Ay)).

Corollary 5. Let [,m < 2q, 0 < ly,ly, my,mq < 2q, and p,o € k ~ {0}.

1. M(A;)) ® M(B,,) has a projective direct summand if, and only if, | +m > 2q,
2. M(A;) ® M(A,,) has a projective direct summand if, and only if, | +m > 2q + 1.
3. M(A, B, p) ® M(Ay,) has a projective direct summand precisely when

max{l; +m — 1,1l + m} > 2q.

4. If ly # ly or my # mgy, then M (AllBlzl, p) QM (AmlB;é, 0) has a projective direct
summand if, and only if,

max{ly +my — 1,11 +ma,ly +my, lp +mg — 1} > 2q.

5. If Iy = Iy, mqy = my then M (AllBlgl,p) Q M (Aman_é,a) has projective direct
summands if, and only if,
(a) i L (my—1), p# o0 and ly + my = 2q, or
(b) I £ (m1—1), and l; + my > 2q.

We remark that, for [,m < 2¢, the condition | + m > 2q implies [ Y m. Thus, in
particular, in 5(a) above, the condition I; L (m; — 1) is equivalent to (I; — 1) L m4, and
similarly, in 5(b), I; £ (m1 — 1) could be replaced by (I; — 1) £ m;.
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4. EXAMPLES
Example 6. Let M = M(AsB;'B,), N = M(AsB;"). By Proposition 1,

(M @ N) =max {{(M(w) ® M(w)) | we {As, B;', B}, w' € {Ag, By '}}
= U(M(B7") ® M(Ag)) = (M (Br) ® M(Ag)).
Since 7 £ 6, by Theorem 4:1 we have, {(M(B;) ® M(Ag)) = 2 + 7#6 = 9. Hence, the

Loewy length of M ® N is 9 and, seen as a kDig-module, M ® N has a projective direct
summand.

Example 7. By Proposition 1 and the inequality (3.1), we have

UM (A1) ® M(Apny1B,,")) = max{€(M(Ar) @ M(An1)), ((M (A1) @ M(Bn))}
= UM (A) @ M(Apmy1)) .

for all [, m € N.

Example 8. While it is clear that (M (A;B; ', 1)@N) < {(M(A;B;")®N), the difference
between the lengths of the two tensor products may be zero, or arbitrarily large. For
example, if N = M(A,,) and [ } m, then ¢(M(A,;B;',1) ® N) = ((M(A;B;') ® N) by
Theorem 4:2. If, on the other hand, [ = 2" and m = 2° with r > s then

(MAB M) @ M(AL) =2+ 1-1D#m=2+2"-1=1+2",
while
UM(AB ) @ M(Ap)) =0M(B) ® M(Ay) =14+1+m=1+2"+2°,

Example 9. Let M = M(a) = M(A;) and N = M (b(ab)!) = M(Bay1) for some | € N.
Now 1 f (20+1), and 1#(2/+1) = 2]+ 1, so by Theorem 4:1, /(M ® N) = 20+ 3. In this
case, the Loewy length actually provides the missing piece of information to compute the
isomorphism type of M @ N.

Namely, since k is the unique simple module, we have

dimsoc(M ® N) = dim Homyp,, (k, M ® N) = dim Homyp,, (N*, M)
= dim Homyp,, (N, M) =1

and similarly,

dim top(M ® N) = dim Homyp,, (M ® N, k) = 1.

Hence M ® N is a module with simple top and simple socle, of dimension 4(I + 1), and
Loewy length 2] + 3. A module satisfying these conditions is indecomposable, and must
be isomorphic to M (As 2By, p) for some p € k~\ {0}. Now if k is the prime field, that
is the Galois field with two elements, this means that p = 1. From this follows that p =1
also in the general case, since extension of scalars commutes with taking tensor products.
Hence, we have M @ N ~ M(AQHQB;FQ, 1).
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O
EXAMPLE OF CATEGORIFICATION OF A CLUSTER ALGEBRA

LAURENT DEMONET

ABSTRACT. We present here two detailed examples of additive categorifications of the
cluster algebra structure of a coordinate ring of a maximal unipotent subgroup of a
simple Lie group. The first one is of simply-laced type (As) and relies on an article by
Geif}, Leclerc and Schréer. The second is of non simply-laced type (C2) and relies on an
article by the author of this note. This is aimed to be accessible, specially for people
who are not familiar with this subject.

1. INTRODUCTION: THE TOTAL POSITIVITY PROBLEM

Let N be the subgroup of SL4(C) consisting of upper triangular matrices with diagonal
1. We say that X € N is totally positive if its 12 non-trivial minors are positive real
numbers (a minor is non-trivial if it is not constant on N and not product of other
minors). As a consequence of various results of Fomin and Zelevinsky [3] (see also [1]), in
a (very) special case, we get

Proposition 1 (Fomin-Zelevinsky). X € N is totally positive if and only if the minors
ALX), AG(X), AZ(X), AR(X), AL(X), AY(X) are positive.

where Al (X) is the minor of X with rows (1, ..., ¢ and columns c1, ..., ¢.

Remark that, as the algebraic variety N has dimension 6, we can not expect to find a
criterion with less than 6 inequalities to check the total positivity of a matrix.

To prove this, just remark that we have the following equality:

AyiAGH = Dgsi Al + AjAG]
which immediately implies that A}(X), Al(X), AlI2(X), Al%(X), A%(X), A3(X) are
positive if and only if AJ(X), A%(X), A%(X), AB(X), AY(X), A3(X) are positive.
Such an equality is called an exchange identity. In Figure 1, we wrote 14 sets of minors
which are related by exchange identities whenever they are linked by an edge. As every
minor appears in this graph, it induces the previous proposition.

These observations lead to the definition of a cluster algebra [4]. A cluster algebra is an
algebra endowed with an additional combinatorial structure. Namely, a (generally infi-
nite) set of distinguished elements called cluster variables grouped into subsets of the same
cardinality n, called clusters and a finite set {x,11, Tpni2,...,Zm} called the set of coef-
ficients. For each cluster {1, xs,...,2,}, the extended cluster {z1,...,Tn, Tpi1, ..., Tm}
is a transcendence basis of the algebra. Moreover, each cluster {z1,xs,...,2,} has n

The paper is in a final form and no version of it will be submitted for publication elsewhere.
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1 12 123

45345 234>
13 1 1
345253
1 12 123
45345 234>
13 23 1
3473453
1 12 123
45345 234>
13 1 3
D12 123 / 3424
45345 234>
13 23 3
3423454
1 12 123
45345 234>
51201
1 12 123 ’
4§§4§2%§’ 12 123 ////
34404 4734’2347
24747 1 12 123
415412%37 1 12 123
\\ — 24,2023 T 4134234
112 123 I
1 12 123 4’347234’
473472347 4’4’23
34747
1 12 123
4734>2347
23 1
3473’3
12 123
47347234’
237473
1 12 123
45341 234>
12 2 1
237373

Fi1GURE 1. Exchange graph of minors

neighbours obtained by replacing one of its elements x; by a new one z related by a
relation

xpr), = My + My

where M; and M, are mutually prime monomials in {z1,..., 2k 1, Zks1,---,Tm}, given
by precise combinatorial rules. These replacements, called mutations and denoted by
are involutive. For precise definitions and details about these constructions, we refer to
4].

In the previous example, the coefficients are A}, A2 and A2 and the cluster variables
are all the other non-trivial minors. The extended clusters are the sets appearing at the
vertices of Figure 1.
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The aim of the following sections is to describe examples of additive categorifications
of cluster algebras. It consists of enhancing the cluster algebra structure with an additive
category, some objects of which reflect the combinatorial structure of the cluster algebra;
moreover, there is an explicit formula, the cluster character associating to these particular
objects elements of the algebra, in a way which is compatible with the combinatorial
structure. The examples we develop here rely on (abelian) module categories. They are
particular cases of categorifications by exact categories appearing in [6] (simply-laced case)
and [2] (non simply-laced case). The study of cluster algebras and their categorifications
has been particularly successful these last years. For a survey on categorification by
triangulated categories and a much more complete bibliography, see [7].

2. THE PREPROJECTIVE ALGEBRA AND THE CLUSTER CHARACTER

Let @ be the following quiver (oriented graph):

a B
1724

a* ﬁ*

As usual, denote by CQ the C-algebra, a basis of which is formed by the paths (including
O-length paths supported by each of the three vertices) and the multiplication of which is
defined by concatenation of paths when it is possible and vanishes when paths can not be
composed (we write here the composition from left to right, on the contrary to the usual
composition of maps). Thus, a (right) C@Q-module is naturally graded by idempotents
(0-length paths) corresponding to vertices and the action of arrows seen as elements
of the algebra can naturally be identified with linear maps between the corresponding
homogeneous subspaces of the representation. We shall use the following right-hand side

convenient notation:
( : ) (0 0) ’
-1 1 0
N

(7“6) TE o 2\
01 3

where each of the digits represents a basis vector of the representation and each arrow a
non-zero scalar (1 when not specified) in the corresponding matrix entry.
Let us now introduce the preprojective algebra of @:

Definition 2. The preprojective algebra of () is defined by
CQ
(ao*, a*a + BB, B5*)

the representations of which are seen as particular representations of CQ (in other
words, mod Il is a full subcategory of mod CQ).

Iy =
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Example 3. Among the following representations of C(), the first one and the second
one are representations of Ily:

2

1 2 PR

\2\ ; 1< >3 ;1702 11\2/3.
3 179 \3

One of the property, which is discussed in many places (for example in [6]), of the
preprojective algebra of (), fundamental for this categorification, is

Proposition 4. The category modllg is stably 2-Calabi-Yau. In other words, for every
X,Y € modlly,

Ext'(X,Y) ~ Ext'(Y, X)*
functorially in X and Y, where Ext'(Y, X)* is the C-dual of Ext' (Y, X). In particular, it

is a Frobenius category (is has enough projective objects and enough injective objects and
they coincide).

Let us now define the three following one-parameter subgroups of N:

1 ¢ 00 1 000 1 000
0100 01 ¢t 0 01 00
n=190 10| 2=loo 10| BW=]001 ¢
0001 0001 0001
For X € modlly and any sequence of vertices ay,as, ..., a, of (), we denote by

X;
(I)X,alag...an = {OZXO cXiC---C X CXn:X|VZ € {1,2,...,n},XA ; ESQZ.}

the variety of composition series of X of type ajas...a, (S, is the simple module, of
dimension 1, supported at vertex a;). This is a closed algebraic subvariety of the product
of Grassmannians

Gr(X) x Gra(X) x -+ x Gr,(X).
We denote by x the Euler characteristic. Using results of Lusztig and Kashiwara-Saito,
GeiB-Leclerc-Schroér proved the following result:

Theorem 5 ([6]). Let X € modIlg. There is a unique px € C[N]| such that

i1 419 i6
tl t2 DY t6

i1lig! . .. dg!

PYx (xal (tl)xaz (tQ) - Lag (tﬁ)) = Z X (q)X,aila;Q..Aaé6>
11,02,..,06 EN

for every word ayasazagasag representing the longest element of G, (aZ’“ is the repetition
i times of ay).
The map ¢ : modIlg — C[N] is called a cluster character.

Remark 6. (1) The uniqueness in the previous theorem is easy because it is well known
that

Ty (t1)Tay (t2) - - - Tag(te)
runs over a dense subset of N ;

f3 Sf



1 212 3
X emodllg | S| S | S
Q| P11 | o2 |03 \2 1/ \3 2/
px €CIN] A AT AT A3 | Ay | AR | A]
) . 5 1[dr] /2\ /3
X emodllg | » A4 2 1 3 2
17 3| | NS
3 2 1
px €CIN] | Aj] A Az Azt Aj

FIGURE 2. Cluster character

(2) the existence is much harder and strongly relies on the construction of semi-
canonical bases by Lusztig [8]. In particular, the fact that it does not depend
on the choice of ajasazasasag is not clear a priori (see the following examples).

Example 7. We suppose that ajasazasasag = 213213. Then

1 t9+t5 1oty totats

0 1 t1+ 1ty ti1ts + titg + L4t
o (1) () (1) (1) (1) (00) = [ T et il e

0 0 0 1

e The module S; has only one composition series, of type 1. Therefore ®1(S;) is
one point and ®,(S;) = 0 for any other a. Identifying the two members in the
formula of the previous theorem,

081 (Tay (1) Tag (£2)Tay (t3) Tay (£4) Tas (t5)Tag (t6)) = to + t5 = A
e The module
v 2\3
\2/
has two composition series, of type 2312 and 2132. Therefore,
0Py (Tay (1) Ty (12) Tay (£3)Tay (E4) Tas (t5)Tag (ts)) = titatsts = AT

Remark that, in this case, the only composition series which is playing a role
is 2132, even if the situation is symmetric. This justify the second part of the
previous remark.

P=1

The other indecomposable representations of Il and their cluster character values are
collected in Figure 2.

Two important properties of this cluster character were proved by Gei3-Leclerc-Schroér
(see for example [6]):

Proposition 8. Let X,Y € modlly.
(1) pxay = pxpy.
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(2) Suppose that dim Ext'(X,Y) =1 (and therefore dim Ext' (Y, X) = 1) and let
0=-X—->T,—-Y —=0 and 0—-Y —>T, X =0

be two (unique up to isomorphism) non-split short exact sequences. Then

YxPy = o1, T 1,

3. MINIMAL APPROXIMATIONS

This section recall the definition and elementary properties of approximations. It is
there for the sake of ease. In what follows, modIly can be replaced by any additive
Hom-finite category over a field.

Definition 9. Let X and 7" be two objects of modIly. A left add(T")-approximation of
X is a morphism f : X — T” such that

e 7" € add(7T) (which means that every indecomposable summand of 7" is an inde-
composable summand of T') ;
e every morphism g : X — T factors through f.

If, moreover, there is no strict direct summand 7" of T" and left add(T)-approximation
f' X = T" then f is said to be a minimal left add(T)-approzimation.
In the same way, we can define
Definition 10. Let X and T be two objects in modIlg. A right add(T)-approzimation
of X is a morphism f : 7" — X such that
o 7" € add(T) ;
e every morphism ¢ : T" — X factors through f.
If, moreover, there is no strict direct summand 7" of 7" and right add(T')-approximation
f/:T" — X, then f is said to be a minimal right add(T)-approzimation.

Now, a classical proposition which permits to explicitly compute approximations:

Proposition 11. Let X and T ~T{' @ T3> @ - - - @ Tin be two objects in mod g (the T;’s
are non-isomorphic indecomposable). Fori,j € {1,...,n}, we denote by I;; the subvector
space of Hom(T;,T;) consisting of the non-invertible morphisms (I;; = Hom(T;,T}) if
i #j). Thus, for j € {1,...,n}, we obtain a linear map

P I, ®Hom(X,T;) = Hom(X, T))

i€{1,...,n}
(9.f) =~ gof
Let B; be a basis of coker p; lifted to Hom(X,T};). Then the morphism
(f)je{l ..... n},fGBj #BJ
X DT
je{1,...,n}

is a minimal left add(T)-approximation of X. Moreover, any minimal left add(T)-
approzimation of X is isomorphic to it.
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The previous proposition has a dual version which permits to compute minimal right
approximations. In practice, this computation relies on searching morphisms up to fac-
torization through other objects. There is an explicit example of computation in Example
19.

4. MAXIMAL RIGID OBJECTS AND THEIR MUTATIONS

Let us introduce the objects the combinatorics of which will play the role of the cluster
algebra structure.

Definition 12. Let X € modIlg.

e The module X is said to be rigid if it has no self-extension, (i.e., Ext'(X, X) = 0).

e The module X is said to be basic maximal rigid if it is basic (i.e., it does not
have two isomorphic indecomposable summands), rigid, and maximal for these
two properties.

Remark 13. A basic maximal rigid IIp-module contains Il as a direct summand (because
11 is both projective and injective and therefore has no extension with any module).

Example 14. The object
1[dr]
1\ /3 b /3 D 1\ ®
2 2 2 2

s 2\ v ’
S 1\ /3 S /2
\3 2 1
the last three summands of which are the indecomposable projective-injective Ily-modules,
is basic maximal rigid. It is easy to check that it is basic and rigid, but more difficult to
prove that it is maximal for these properties (see [6] for more details).

)

Remark 15. We can prove that all basic maximal rigid objects have the same number of
indecomposable summands (six in the example we are talking about).

The following result permits to define a mutation on basic maximal rigid objects. Con-
sidered as an operation on isomorphism classes of basic maximal rigid objects, the induced
combinatorial structure will correspond to the one of a cluster algebra.

Theorem 16 ([6]). Let T ~ Ty @ To & 15 & P, @& P ® Py € modlly be basic mazimal
rigid such that Py, P, and Ps are the indecomposable projective Ilg-modules and Ty, Ts
and T3 are indecomposable non-projective llg-modules. Then, for i € {1,2,3}, there are
two (unique) short exact sequences

050, 517 =0 and 05T 5T, 5T — 0
such that
(1) f and g are minimal left add(T/T;)-approzimations ;
(2) " and ¢' are minimal right add(T'/T;)-approximations ;
(3) T is indecomposable and non-projective ;
(4) dim Ext*(T;, T}") = dim Ext* (T}, T;) = 1 and the two short exact sequences do not
split ;
(5) wi(T) =T/)T; ® T; is basic mazximal rigid ;
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(6) T, and Ty do not have common summands.

Remark 17. In the previous theorem, the existence and uniqueness, regarding the first
two conditions, are automatic, except the fact that the extremities of the two short exact
sequences coincide up to order. This fact strongly relies on the stably 2-Calabi-Yau

property. It implies that p; is involutive.

Definition 18. In the previous theorem, pu; is called the mutation in direction i. The

short exact sequences appearing are called exchange sequences.

Example 19. Let
1[dr]
T_l\/g@ /3@1\69 2
2 2 2 . \2/
3

2
691/ \369

2

J

1

3

3 3
Using Proposition 11, we get a left add (T/ 5 V4 )—approximation of 5 Y

v S 1\ / ’
2 2
and computing the cokernel, we get the exchange sequence:

3 1 3
0%2/ — \2/ — 51— 0

so that
. 5 . 1[dr] /2\
pe(T) = N/ ®5S1® \_ & 2. ©®1. 38
2 2 N A4
3 2
Doing mutation in the reverse direction:
v ’ 3
0—=5—+ 20 = » —=0
4 2

1
Let us now compute pypu2(7T") with its two exchange sequences:
2
1 3 2
0= \V/ —>Sl@1/ \3—> s —0
2 \2 1

3
¥

2 1
0
—>1/ — \2@1/2
5 | 1[dr]
T) =
papa(T) 1/ ® 51 @ \269 2\3 \2/

f37f

1 3
— \2/ — 0

2
EBl/ \3@

1

2

W~

4

2

/ .

/ .

3

/ .
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Computing inductively all the mutations, we obtain the exchange graph of mazimal
rigid objects of Il (Figure 3).

Then, using Proposition 8 and Theorem 16 together with other technical results, we
get the following proposition:

Proposition 20 ([6]). If we project the mutation of maximal rigid objects to C[N| through
the cluster character ¢, we get a cluster algebra structure on C[N] (in the sense of [4]).
Moreover, this structure is the one proposed combinatorially in [1]. Under this projection,
we get the correspondence:

{non projective indecomposable objects} <> { cluster variables}
{projective indecomposable objects} «++ { coefficients}

{basic mazximal rigid objects} <> {extended clusters}

Example 21. Taking the notation of Example 19 and looking at Figure 2, we get:

AAT =050 5=91 g+ 3 = Ay + A
2/ \2 2/
1/
and
A%ZA:II,:S% 39 9= 9 T 3
\2/ 1/ 51@1/ \3 1\ ® 2/
LK 2 v
2 1
=psp 9 te1 @ 3 = AJAGT + ARBAL

1/ \3 \2 2/
\2/ 1/

which can be easily checked by hand. These are part of the equalities which appear in
the proof of Proposition 1.

5. FROM SIMPLY-LACED CASE TO GENERAL ONE

Define the following symplectic form:

0 0 0 1
0 0 —1 0
V=10 1 0 o
10 0 0

and the subgroup

N' ={M € N!MUM = ¥} or, equivalently N’ = NZ%/?Z
where Z/27Z = (g) acts on N by M +— ¥~'(*M~1)¥. The group N’ is a maximal
unipotent subgroup of a symplectic group of type Cj.
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A ese f
L e |

-

2
S1® S8
1/\369 1@ 53

2 2 2
AN 0N O K

A 00N, @ 8
¥ 3 3 78

1. 3
N OS5 S

2 3
N B B 1 3 3
\2/ @2/ @ S3

1 3 1
S
\2/ © 51 P \2

1 2
S
\263 1@1/

1 3 3 1
WAL W

2 3
2] DS
\3 2/ 2

2 2
S:
\3@ 2@1/

1 3
S
\2692/ ® S2

Lese /
2772V

FIGURE 3. Exchange graph of maximal rigid objects (up to projective summands)

The only non-trivial action of Z/2Z on @) induces an action on Il and therefore on

mod IIg. Denote by 7 : C[N] — C[N’] the canonical projection. We can now formulate
the following result:

Theorem 22 ([2]). (1) If T is a Z/2Z-stable basic mazximal rigid Ilg-module, then
pipes(T) = pspr (T). Moreover, pyps(T) and us(T') are also Z/27-stable.
(2) If X € modIlg, then 7 (px) = 7 (@yx)-
(3) If we denote is = po and fiy = pips = pspy, acting on the set of 7Z/27-stable
maximal rigid Ilg-modules, i induces through m o ¢ the structure of a cluster

algebra on C[N'], the clusters of which are projections of the 7Z/27-stable ones of
CIN].
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Example 23. We have

1 a2 a1z au 1 a2 a1z au
0 1 a a 0 1 a a
12 23 Q24 | . 2 23 Q24 | _
A23 0 0 1 a3y = 120923 a3 and A4 0 0 1 a4 ag4
0 0 0 1 0 O 0 1
Moreover,
-1
‘ 1 a2 a3 au
_ 0 1 a a
1 23 QA24
v 0 0 1 a34 v
0 0 0 1
1 ass ag3a34 — Gga (1223034 — Q12024 — Q13034 + Q14
_ 0 1 a93 a12G23 — A13
0 0 1 a2
0 0 0 1
which implies that, as expected,
T (A%) =mTp; =T 3 =7 (A}).
2 2

The exchange graph of the Z/2Z-stable basic maximal rigid objects of mod Il is pre-
sented on Figure 4, in relation to the exchange graph of the basic maximal rigid objects.
It permits, in view of Figure 1 to describe the clusters of C[N']:

1 _ A123 A12
n AP
A24, A2 = A4

1 _ A123 A12 T _ A123 A12
A412_ A22347 A%p A4 1; A%347 A?é47
A24> A4 = A23 A347 AQ = A4
1 _ A123 A1l2 1 A123 A1l2
S A S AR
Aga A4 = A23 A34, A34 = A3

T _ A123 A12
A4 2_ %%34? A3147
A37 A34 - Ag

6. SCOPE OF THESE RESULTS AND CONSEQUENCES

The example presented here can be generalized to the coordinate rings of:
e The groups of the form

N(w)=Nn(w'N_w) and N“=NnN(B_wB_)
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A 00N, @ 8
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2 2 2
AN 0N O K

2
S1® S8
1/\369 1@ 53

1. 3
N OS5 S

2 3
N B B 1 3 3
\2/ @2/ @ S3

Nplesiel, )
N, B850 4

1 3 3 1
WAL W

2 3
2] DS
\3 2/ 2

2 2
S:
\3@ 2@1/

\

1 3
S
\2692/ ® S2

Lese /
2772V

FIGURE 4. Exchange graph of Z/2Z-stable maximal rigid objects

where N is a maximal unipotent subgroup of a Kac-Moody group, N_ its opposite
unipotent group, B_ the corresponding Borel subgroup, and w is an element of the
corresponding Weyl group. In particular, if V is of Lie type and w is the longest
element, then N(w) = N.

e Partial flag varieties corresponding to classical Lie groups.

These results were obtained in [5] and [6] for the simply-laced cases and in [2] for the
non simply-laced cases.

[t permits for example to prove in these cases that all the cluster monomials (products
of elements of a same extended cluster) are linearly independent (result which is now
generalized but was new at that time) and other more specific results (for example the
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classification of partial flag varieties the coordinate rings of which have finite cluster type,
that is a finite number of clusters).
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HOCHSCHILD COHOMOLOGY OF CLUSTER-TILTED ALGEBRAS OF
TYPES A, AND D,

TAKAHIKO FURUYA AND TAKAO HAYAMI

ABSTRACT. In this note, we study the Hochschild cohomology for cluster-tilted algebras
of Dynkin types A, and D,. We first show that all cluster-tilted algebras of type A,
are (D, A)-stacked monomial algebras (with D = 2 and A = 1), and then investigate
their Hochschild cohomology rings modulo nilpotence. Also we describe the Hochschild
cohomology rings modulo nilpotence for some cluster-tilted algebras of type D,, which
are derived equivalent to a (D, A)-stacked monomial algebra. Finally we determine the
structures of the Hochschild cohomology rings modulo nilpotence for algebras in a class
of some special biserial algebras which contains a cluster-tilted algebra of type Dj.

1. INTRODUCTION

The purpose in this note is to study the Hochschild cohomology for cluster-tilted alge-
bras of Dynkin types A, and D,,.

Throughout this note, let K denote an algebraically closed field. Let A be a finite-
dimensional K-algebra, and let A° be the enveloping algebra A° @ A of A (hence right
Ac-modules correspond to A-A-bimodules). Then the Hochschild cohomology ring HH*(A)
of A is defined by the graded ring

HH"(A) = Ext’y. (4, A) = @D Ext'ye(4, A),
i>0
where the product is given by the Yoneda product. It is well-known that HH*(A) is a
graded commutative K-algebra.
Let N4 be the ideal in HH*(A) generated by all homogeneous nilpotent elements. The
following question is important in the study of the Hochschild cohomology rings for finite-
dimensional algebras:

Question ([23]). When is the Hochschild cohomology ring modulo nilpotence HH*(A) /N4
finitely generated as an algebra?

It is shown that the Hochschild cohomology rings modulo nilpotence are finitely generated
in the following cases: blocks of a group ring of a finite group [12, 25], monomial algebras
[16], self-injective algebras of finite representation type [17], finite-dimensional hereditary
algebras ([19]). On the other hand, Xu [26] gave an algebra whose Hochschild cohomology
ring modulo nilpotence is infinitely generated (see also [23]).

In [7], Buan, Marsh and Reiten introduced cluster-tilted algebras, and since then they
have been the subjects of many investigations (see for example [1, 3, 6, 7, 8, 9, 10, 11, 21]).
We briefly recall their definition. Let H = K@ be the path algebra of a finite acyclic

The detailed version of this paper will be submitted for publication elsewhere.
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quiver Q over K, and let D°(H) the bounded derived category of H. Then the cluster
category Cyr associated with H is defined to be the orbit category D°(H)/771[1], where T
denotes the Auslander-Reiten translation in D*(H), and [1] is the shift functor in D°(H)
([5, 10]). Note that, by [5], Cy is a Krull-Schmidt category, and by Keller [20] it is also a
triangulated category. A basic object T in Cy is called a cluster tilting object, if it satisfies
the following conditions ([5]):

(1) Exts, (T,T) = 0; and
(2) the number of the indecomposable summands of T equals the number of vertices
of Q.
Let A be the underlying graph of ). Then the endomorphism ring Ende,, (T") of a cluster
tilting object T" in Cp is called a cluster-tilted algebra of type A ([7]). In this note, we deal
with cluster-tilted algebras of Dynkin types A,, and D,,. Note that by [7] these algebras
are of finite representation type.

In Section 2, we show that cluster-tilted algebras of type A, are (D, A)-stacked mono-
mial algebras (with D = 2 and A = 1) of [18] (Lemma 3), and then describe the structures
of their Hochschild cohomology rings modulo nilpotence by using [18] (Theorem 4). In
Section 3, we determine the Hochschild cohomology rings modulo nilpotence for some
cluster-tilted algebras of type D,, which are derived equivalent to a (D, A)-stacked mono-
mial algebra (Proposition 7). We also describe the Hochschild cohomology rings modulo
nilpotence for algebras in a class of some special biserial algebras which contains a cluster-
tilted algebra of type Dy (Theorem 9).

2. CLUSTER-TILTED ALGEBRAS OF TYPE A, AND THE HOCHSCHILD COHOMOLOGY
RINGS MODULO NILPOTENCE

In this section we describe the structure of the Hochschild cohomology rings modulo
nilpotence for cluster-tilted algebras of type A, (n > 1).

First we recall the presentation by the quiver and relations of cluster-tilted algebras of
type A, given in [3, 9]. For a vertex x in a quiver I', the neighborhood of x is the full
subquiver of I' consisting of x and the vertices which are end-points of arrows starting
at x or start-points of arrows ending with x. Let n > 2 be an integer, and let (),, be the
class of quivers @) satisfying the following:

(1) @ has n vertices.
(2) The neighborhood of each vertex v of @ is one of the following forms:

e
. N\

RN N
NN VN
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(3) There is no cycles in the underlying graph of @ apart from those induced by
oriented cycles contained in neighborhoods of vertices of ().

Let @1 = {Q'}, where @' is the quiver which has a single vertex and no arrows. It is
shown in [9, Proposition 2.4] that a quiver I" is mutation equivalent A, if and only if
I'e@,.

In [9], Buan and Vatne proved the following (see also [3]):

Proposition 1 ([9, Proposition 3.1]). The cluster-tilted algebras of type A, are exactly
the algebras KQ/I, where Q € Q,, and

(2.1) I = (p|p is a path of length 2, and on an oriented 3-cycle in Q)
As a consequence we see that cluster-tilted algebras of type A, are gentle algebras of [2]:
Corollary 2 ([9, Corollary 3.2]). The cluster-tilted algebras of type A, are gentle algebras.

Green and Snashall [18] introduced (D, A)-stacked monomial algebras by using the no-
tion of overlaps of paths, where D and A are positive integers with D > 2 and A > 1, and
gave generators and relations of the Hochschild cohomology rings modulo nilpotence for
(D, A)-stacked monomial algebras completely. (In this note, we do not state the definition
of (D, A)-stacked algebras and the result of [18]; see for their details [13, Section 1], [18,
Section 3], or [23, Section 3].)

It is known that (2, 1)-stacked monomial algebras are precisely Koszul monomial al-
gebras (equivalently, quadratic monomial algebras), and also (D, 1)-stacked monomial
algebras are exactly D-Koszul monomial algebras (see [4]). By the definition, we directly
see that all gentle algebras are (2, 1)-stacked monomial algebras (see [13]). Hence, by
Corollary 2, we have the following:

Lemma 3. All cluster-tilted algebras of type A,, are (2,1)-stacked monomial algebras, and
so are Koszul monomial algebras.

By Lemma 3, we can apply the result of [18] to describe the Hochshild cohomology rings
of cluster-tilted algebras of type A,,. Applying [18, Theorem 3.4] with Proposition 1, we
have the following theorem:

Theorem 4. Let n be a positive integer, and let A = KQ/I be a cluster-tilted algebra
of type A, where Q € @, and I is the ideal given by (2.1). Suppose that char K # 2.
Moreover, let r be the number of oriented 3-cycles in (). Then

Klzy, ...,z /{zizj| i # j) ifr>0

HIC(A)fNa = {K ifr =0,

where degx; =6 fori=1,...,r.

Example 5. Let () be the following quiver with 17 vertices and five oriented 3-cycles:

.H./;\H.%/;\H./;\?H/;\
N\
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Then @ € Q7. Suppose char K # 2, and let A := KQ/I, where I is the ideal generated
by all possible paths of length 2 on oriented 3-cycles. Then A is a cluster-tilted algebra of
type A7, and by Theorem 4 we have HH*(A) /Ny ~ K[z1,. .., x5]/(xiz; | i # j), where
degz; =6 (1 <i<5).

3. CLUSTER-TILTED ALGEBRAS OF TYPE ID,, AND THE HOCHSCHILD COHOMOLOGY
RINGS MODULO NILPOTENCE

The purpose in this section is to describe the Hochschild cohomology rings modulo
nilpotence for some cluster-tilted algebras of type D,, (n > 4) which are derived equivalent
to a (D, A)-stacked monomial algebra.

In [3, Theorem 2.3], Bastian, Holm and Ladkani introduced specific quivers, called
“standard forms” for derived equivalences, and proved that any cluster-tilted algebra of
type D, is derived equivalent to one of cluster-tilted algebras of type ID,, whose quiver is
a standard form.

It is known that Hochschild cohomology ring is invariant under derived equivalence, so
that it suffices to deal with cluster-tilted algebras of type D,, whose quivers are standard
forms. In this note, we consider the following quivers I; (1 <1 < 4). Clearly these quivers
are standard forms of [3, Theorem 2.3].

Fll >

[ )
o
oF 12 =by g

o——>eo ... 0——>e with m (> 4) vertices,

FQ .
[ J
*——0

./ \\.
Iy : with m vertices, where m (> 5) is odd, or m = 4,

[

\.<7./

[ )

.<—.—\>.<—Il

i/ \I'
Iy: : >0 with 2m vertices, where m > 3.
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Remark 6. For i = 1,...,4, let A; = KI3;/I; be the cluster-tilted algebra of type D,
corresponding to I;. Then we see from [3, 24] that

(1) Ay is the path algebra of a Dynkin quiver of type D,,.

(2) As is of type Dy, and Iy = (ayas, b1bs, asag, babg, aga; — boby). We immediately see
that Aj is a special biserial algebra of [22], but not a self-injective algebra.

(3) Az is of type Dy, and I3 = (p | pis a path of length m — 1). Hence Aj is a
(m—1, 1)-stacked monomial algebra, and is also a self-injective Nakayama algebra.

(4) Ay is of type Dy, and it follows by [3, Lemma 4.5] that A4 is derived equivalent
to the (2m — 1, 1)-stacked monomial algebra A’ = KQ'/I', where @' is the cyclic
quiver with 2m vertices

1 2

o——@

Qm./ \o 3
7'\ / 4

o<——©0

6 5
and I’ is generated by all paths of length 2m — 1. Note that A’ is a self-injective
Nakayama algebra, and moreover is a cluster-tilted algebra of type Dy, ([21, 24]).

In [19], Happel described the Hochschild cohomology for path algebras. Using this result
and [18, Theorem 3.4], we have the following proposition:

Proposition 7. For the algebras Ay, A3 and Ay above, we have
HH*(A;) ~ HH*(Ay) /Ny, ~ K
HH*(A3) /Ny, ~ HH*(Ay) /Ny, = K|z].
Finally we describe the Hochschild cohomology ring modulo nilpotence of the algebra
Ay, = I/ Jg, where k > 0 and J, is the ideal generated by the following elements:
(arasap)*ajay, biba, (asapay)*asag, boby, (apaias)*aga; — bobs.

If K =0, then Jy = I, and so Ay = I,/Jy coincides with the algebra A;. Note that, for
all £ > 0, Ay is a special biserial algebra and not a self-injective algebra.
Now the dimensions of the Hochschild cohomology groups of Ay are given as follows:

Theorem 8 ([14]). For k>0 and i > 0 we have

(k+1 ifi=0 (mod6)
k+1 ifi=1 (mod6)
k if i =2 (mod 6)

dimye HH(A}) = k+1 ifi=3 (mod6) and char K | 3k + 2
k if i =3 (mod 6) and char K { 3k + 2
k+1 ifi=4 (mod6) and char K | 3k + 2
k if i =4 (mod 6) and char K t 3k + 2
Lk if 1 =5 (mod6).
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Moreover the Hochschild cohomology ring modulo nilpotence of Ay is given as follows:

Theorem 9 ([15]). For k > 0, we have
3 if k=0 and char K =2

6 otherwise.

HH*(Ag)/Na, ~ K[z], where degax =

Hence HH*(Ay)/Na, (k > 0) is finitely generated as an algebra.

Remark 10. It seems that most of computations of the Hochschild cohomology rings mod-
ulo nilpotence for cluster-tilted algebras of type ID,, except those in the derived equivalence
classes of A; (1 <i < 4) are open questions.
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DERIVED AUTOEQUIVALENCES AND BRAID RELATIONS
JOSEPH GRANT

ABSTRACT. We will consider braid relations between autoequivalences of derived cat-
egories of symmetric algebras. We first recall the construction of spherical twists for
symmetric algebras and the braid relations that they satisfy, as illustrated by Brauer
tree algebras. Then we explain the construction of periodic twists, which generalise
spherical twists for symmetric algebras. Finally, we explain a lifting theorem for peri-
odic twists, and show how this gives a new interpretation of the action on the derived
Picard group of lifts of longest elements of the symmetric group to the braid group.

1. PRELIMINARIES

Let k£ be an algebraically closed field. All algebras we consider will be finite-dimensional
k-algebras, and for simplicity we will also assume that A is basic. We will denote the
category of finite-dimensional left A-modules by A-mod, and of finite-dimensional right
A-modules by mod- A.

Given an algebra A and a left (or right) A-module M, we have a right (or left, respec-
tively) A-module M* = Homy (M, k) with A-action fa(m) = f(am) for m € M, f € M*,
and a € A. This gives a duality

(=)" : A-mod = mod- A.

Similarly, if M is an A-B-bimodule for algebras A and B, then M* is a B-A-bimodule.

There is another way to construct a right module from M € A-mod: we set MV =
Homy (M, A), where the action is given here by fa(m) = f(m)a for m € M, f € MY,
and a € A. This defines a functor

(=) : A-mod — mod- A.

but in general this is not an equivalence. However, in the cases we consider below this
will be an equivalence.

Any algebra A has a natural structure of an A-A-bimodule given by the multiplication.
We say that A is a symmetric algebra if there exists an isomorphism of A-A-bimodules
A 5 A*. Symmetric algebras have various equivalent definitions: one is that (—)* and
(—)Y are natually isomorphic functors, and another is a Calabi-Yau type condition on the
derived category. For more information on this, we refer the reader to [Ric2, Section 3].

We will be interested in bounded derived categories of module categories over algebras
A, which we will denote DP(A). We refer the reader to [Wei, Chapter 10] for their definition
and basic properties. In partuicular, we will study autoequivalences of DP(A). Clearly the
autoequivalences form a group, but in fact we can restrict ourselves to a particular subset.
One way to define an endofunctor of DP(A) is to take the derived tensor product with

The detailed version of this paper will be submitted for publication elsewhere.
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a cochain complex X of A-A-bimodules. If this gives us an equivalence of triangulated
categories, we call X a two-sided tilting complexr [Ricl]. Rickard showed that tensoring
with two-sided tilting complexes does give a subgroup of the group of autoequivalences
[Ricl]. We call this subgroup the derived Picard group of A, and denote it DPic(A). Here
we can work with ordinary tensor products, and will not need to consider derived tensor
products, as all our two-sided tilting complexes will be presented as cochain complexes of
A-A-bimodules which are projective on both sides.

2. SPHERICAL TwISTS AND BRAID RELATIONS

Let A be a symmetric algebra and let P be a projective A-module. Following [ST], we
say that P is spherical if End4(P) = k[x]/(z?). In this case, consider the cochain complex
of A-A-bimodules

P Xk PV — A

concentrated in degrees 1 and 0, where the nonzero map is given by evaluation. We will

denote this complex by Xp. It defines an object in the bounded derived category DP(A),

which we will also denote by Xp. Then tensoring with Xp defines an endofunctor
Xp®y—:DP(A) = D(A)

which we denote by Fp.

Theorem 1 ([RZ] for Brauer tree algebras, [ST] in general). If the projective A-module
P is spherical then Fp is an autoequivalence.

Now let P, ..., P, be a collection of n spherical projective A-modules. Following [ST],
we say that {Py,..., P,} is an A,-collection if
. 0 i fi—g] > 1

dimy Homa (P, F) _{ 1 ifJi—j]=1

forall 1 <1,57 <n.
Theorem 2 ([RZ] for Brauer tree algebras, [ST| in general). If {Py,..., P,} is an A,-
collection then the spherical twists F; = Fp, satisfy the braid relations

o« BF, = FF if i — j| > 1;

o NI, = IGFF; z’f|i—j‘:1
forall1 <i,j5 <n.

Another way to say this is as follows: let B,,; be the braid group on the letters

{1,...,n,n+ 1}. This is generated by elements sy, ..., s, and has relations

® S5;S; = 8;5; if ‘Z —j’ > 1,

® 5558 = s;8;8; if [i — j| = 1.
If A has an A, -collection then we have a group homomorphism

By1 — DPic(A)

which sends s; to the spherical twist Fj.
Let S,41 be the symmetric group on the letters {1,...,n,n + 1}. We also denote the
generators of S; by sq,...,s,, and there is an obvious group epimorphism B,;; — S,11.
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3. PERIODIC TWISTS

We now describe a generalization of the spherical twists described above.
An algebra E is called twisted periodic if there is an algebra automorphism o : £ = E
and an exact sequence of F-FE-bimodules

0= b =Yy 1 =Yy o—- =Y =Yy E—=0

where each Y; is a projective E-FE-bimodule. This just says that the F-FE-bimodule F has
a periodic resolution which is projective up to some automorphism (twist). We say that
FE has a period n.

Let A be a symmetric algebra and P a projective A-module. Let E = End4(P)°P, so
P is an A-FE-bimodule, and suppose that E is a periodic algebra. We denote the cochain
complex

Y12 Yeo— 2 Y12 Y

concentrated in degrees n—1to 0 by Y. Then we have a natural map f : Y — E of cochain
complexes of E-E-bimodules. We use this to construct a map g : PQpY Qg PY — A of
cochain complexes of A-A-bimodules defined as the following composition

where the first map is given by P ®g f ® PV and the last is given by an evaluation map.
We take the cone of the map g to obtain a cochain complex

PRpY, 1@ P’ - PRrY, @p P’ = - > PRrYy®r PY — A

concentrated in degrees n to 0, which we denote X. By tensoring over A we obtain an
endofunctor

X ®4 —:DP(A) — D"(A)
which we denote by Up.

Theorem 3 (|Gra]). If the algebra E is twisted periodic then Vp is an autoequivalence.

Note that the functor ¥p depends on the resolution Y that we choose.
If £ = k[z]/{2?) then we recover the spherical twists described above by using the exact
sequence

0O—F, >EFEQxEFE—FE—Q0

where o is the algebra automorphism which sends x to —z.

4. BRAUER TREE ALGEBRAS OF LINES

We define a collection of algebras I'),, n > 1, which are isomorphic to the Brauer tree
algebras of lines without multiplicity. Let T'y = k[z]/(z?) and let Ty = kQo/I5, where Qo
is the quiver



and Iy is the ideal generated by afa and faf. For n > 3, let I, = kQ,,/I,, where @, is
the quiver

a1 g Qn—1
Q = 172
B2 B3 Bn
and I, is the ideal generated by a; 1y, Bi1105;, and o;B;41 — Biai—q for 2 < i < n — 1.
Note that if we take the indecomposable projective I',-modules P, Piyq,..., P; for 1 <

i <j<n,wehave Endy(P,®& Py1 ®... 0 P)® =T,

One can check that for all n > 1, each indecomposable projective I',,-module is spherical.
Spherical twists for these algebras were studied in detail in [RZ].

We have the following observation:

Lemma 4. Let A be a symmetric algebra. A collection {P,...,P,} of projective A-
modules is an A, -collection if and only if

Enda (@5 P,)” = T,
=1

The algebras I',, are of finite representation type, and hence are twisted periodic, but
in fact we can say more.

Theorem 5 ([BBK]). The algebra n is twisted periodic with period n and automorphism
on tnduced by the quiver automorphism which sends the vertex ¢ ton — i+ 1.

A natural question is: what do the associated periodic twists look like? It was noted
in [Gra] that periodic twists associated to I's are isomorphic to the composition Fj FyFy
of spherical twists. We will show that this pattern continues.

5. A LIFTING THEOREM

Let A be a symmetric algebra and let P;,..., P, be a collection of indecomposable
projective A-modules. We will use the following notation:
e P=@_,

e [/ =End,(P)°;

o ;= Enda(P;)°;

e ); = Homu(P, P),

e Q=@ Qs
so {Q;|1 <i < n} is a complete set of representatives of the isoclasses of indecomposable
projective E-modules. Note that Endg(Q;)°? = F;. We will explain a connection between

compositions of periodic twists for £ and compositions of corresponding periodic twists
for A.

Theorem 6 (Lifting Theorem). Suppose that E and each E; are twisted periodic with
fized truncated resolutions Y and Y;. Let ¥; = Up : DP(A) = DP(A) and ¥, = Vg, :
DP(E) = DP(E). If

Vo=, ... W, U,
for some 1 <iq,...,1 < n then

Up 20, . U0,
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We now specialise to the case where {P;,..., P,} is an A,-collection, so £ = T',, and
F;, =V, and F! = V¥, are spherical twists.

Recall that the symmetric group S, 11 has a unique longest element, often denoted wy.
We choose a particular presentation

Wy = 81(8251) Ce (Sn e 8281) € Sn+1

and define an element wy of the braid group by the same presentation. Rouquier and
Zimmermann showed how this element acts on the derived Picard group of an algebra I',,:

Theorem 7 (|[RZ, Theorem 4.5]). The image of the element wy under the group morphism
Bp+1 — DPic(l'y,) is the functor —,, [n] which twists on the right by the automorphism oy,
and shifts cochain complexes n places to the left.

By Theorem 5 we see that Up, : D*(I',) — DP(T',,) is the same functor, and hence by
applying the lifting theorem we obtain the following:

Corollary 8. Suppose the symmetric algebra A has an A,-collection {P;, ..., P,}. Then
the image of wy in the group morphism B,41 — DPic(A) is Up, where P = @), P;.

We also obtain a new proof of the braid relations by using Theorem 7 in the case n = 2,
or alternatively by performing a straightforward calculation with I'y, and then applying
the lifting theorem.
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n-REPRESENTATION INFINITE ALGEBRAS

MARTIN HERSCHEND

ABSTRACT. We introduce the class of n-representation infinite algebras and discuss some
of their homological properties. We also present the family of n-representation infinite
algebras of type A.

1. INTRODUCTION

This brief survey contains the results from my presentation at the /4th Symposium on
Ring Theory and Representation Theory in Okayama. It is based on joint work Osamu
Iyama and Steffen Oppermann. A detailed final version will be published elsewhere.

The class of hereditary finite dimensional algebras is one of the best understood in terms
of representation theory, especially in the context of Auslander-Reiten theory. This applies
in particular to representation finite hereditary algebras. In higher dimensional Auslander-
Reiten theory an analogue of these algebras is given by the class of n-representation finite
algebras [1, 2]. Recall that a finite dimensional algebra is called n-representation finite
if it has global dimension at most n and admits an n-cluster tilting module. Since a
1-cluster tilting module is the same as an additive generator of the module category,
1-representation finite means precisely hereditary and representation finite.

The aim of this report is to define the class of n-representation infinite algebras, that will
in a similar way be a higher dimensional analogue of representation infinite hereditary
algebras. To do this we begin by recalling some properties of n-representation finite
algebras.

Let K be a field and A a finite dimensional K-algebra with gl.dim A < n. We always
assume that A is ring indecomposable. Denote by mod A the category of finite dimensional
left A-modules and by D"(A) the bounded derived category of mod A. Combining the K-
dual D := Homg(—, K) with the A-dual we obtain the Nakayama functor

v := DRHom(—,A) : DP(A) — D"(A).
It is a Serre functor in the sense that there is a functorial ismorphism
Hompy () (X,Y) = D Hompn ) (Y, v(X)).
We combine v with the shift functor on D”(A) to obtain the autoequivalence
Vy :=vo[—n]: D*(A) = D"(A).

It plays the role of the higher Auslander-Reiten translation in D°(A). More precisely,
define
Tp := D Ext} (=, A) : mod A — mod A

The detailed version of this paper will be submitted for publication elsewhere.
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and
:= Ext} (DA, —) : mod A — mod A.

Then 7, = H°(v,,—) and 7, = H(y, '—). Using these functors we can capture the notion
of n-representation finiteness in the following way.

T

n

Proposition 1. (3| Let A be a finite dimensional K -algebra with gl.dim A < n. Then the
following conditions are equivalent.

(a) A is n-representation finite.
(b) For every indecomposable projective A-module P, there is a non-negative integer
{p such that v;*? P is an indecomposable injective A-module.

We remark that if condition (b) is satisfied then v ‘P ~ 7P for all 0 < i < {p and

l l
DD r- DD
P =0 P =0

is an n-cluster tilting A-module [1]. Furthermore, since v~! sends injectives to projectives
we have

V;(£P+1)P _ V—l(ygépp)[n] = P’'[n] € mod Aln]

for some indecomposable projective P’. We conclude that knowing the 7, -orbits of the
indecomposable projectives in mod A is enough to determine their v '-orbits. Comparing
this to the classical case n = 1 gives us a hint how to define n-representation infinite
algebras.

2. Nn-REPRESENTATION INFINITE ALGEBRAS

Recall that if n = 1 and A is representation infinite, then 77'P is never injective for
an indecomposable projective A-module P. In fact v;'P = 7P € mod A for all i > 0.
Inspired by this we make the following definition.

Definition 2. Let A be a finite dimensional K-algebra with gl.dim A < n. We say that
A is n-representation infinite if

v, "A € mod A
for all + > 0.
We remark that this condition is equivalent to v/, (DA) € mod A for all 7 > 0. In the

classical setting of n = 1 every indecomposable module is either preprojective, preinjective
or regular. We define higher analogues of these classes of modules as follows.

Definition 3. Let A be an n-representation infinite algebra. The full subcategories of
n-preprojective, n-preinjective and n-regular modules are defined as

P = add{y,‘A|i> 0},
J = add{y,(DA)|i> 0}, |
R = {X emodA | Exty (P, X) =0 =Ext}(X,J) for all i > 0},

respectively.
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Note that P and J are well-defined as subcategories of mod A since A is n-representation
infinite. Many properties of representation infinite hereditary algebras generalize to n-
representation infinite algebras. For instance n-regular modules can be characterized by
R={X €modA | V/(X) € modA for all i € Z}. Moreover, one has the following result
about vanishing of homomorphisms and extensions.

Theorem 4. Let A be an n-representation infinite algebra. Then the following holds:

Homy (R, P) =0, Homy(J,P) =0, Homy(J,R) =0,
Exti(P,R) =0, Extj(P,9) =0, Exti(R,I) =0.

3. Nn-REPRESENTATION INFINITE ALGEBRAS OF TYPE A

In this section we assume that K is an algebraically closed field of characteristic zero.
We shall present a family of n-representation infinite algebras by generalizing one of the
simplest classes of representation infinite hereditary algebras, namely path algebras of
extended Dynkin quivers of type A. N

On can construct extended Dynkin quivers of type A by taking the following steps.
Start with the double quiver of A%:

D A A A
=2 -1 20 1 T2
Identify vertices and arrows modulo m for some m > 1 and remove one arrow from each
2-cycle. For instance, choosing m = 2 and removing the arrows starting in the odd vertex
gives the Kronecker quiver:
A
01

We shall construct the n-representation infinite algebras of type A similarly. First we

define the covering quiver ). As vertices in () we take the lattice

n+1
ZUzZO}

i=1

Qo =G = {’UEZWH

It is freely generated as an abelian group by the elements f; :== e;41 —e; for 1 < i < n.
We also define f,, 11 :=e; — e, 1, so that Z?jll fi = 0. As arrows in () we take

Qr={ai:v—=v+filvelG, 1<i<n+1}

Then @ is the double of AY for n = 1. For n > 2 we need to introduce certain relations.
Let v € Qpand 4,5 € {1,...,n+1}. We consider the relation i = a;a; — aja; from v to
v+ f; + f; and let I be the two-sided ideal in K@) generated by

{rislveQo, 1<4,j<n+1}

Since G is an abelian group it acts on itself by translations. This extends to a unique
G-action on the quiver (). We say that a subgroup B < G is cofinite if G/B is finite.
In that case we define I'(B) as the orbit algebra of K@Q/I. More explicitly we define

Q/B = (Qo/B,Q1/B) and set
I'(B) := K(Q/B)/(T}; |v € Quo/B, 1 <i,j <n+1)
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where Ffj := a,;a; —a;a; and @ denotes the B-orbit of a. As motivation for this construction
we remark that T'(B) is isomorphic to a skew group algebra K|xy, ..., z,1]* H for some
finite abelian subgroup H < SL,1(K).

Next we consider the analogue of 2-cycles. For every v € )y and permutation o of
L,...,n+1, there is a cyclic path a,() - - ag(ns1) from v to v. We call such cyclic paths
small cycles. A subset C' C () is called a cut if it contains precisely one arrow from every
small cycle. The symmetry group of C' is defined as

Se:={g9€G|gC=C}<AG.

We say that a cut C is acyclic if all paths in Q¢ := (Qo, @1 \ C) have length bounded
by some N > 0, and periodic if S¢ is cofinite in GG. If both these conditions are satisfied
and B < S¢ is cofinite we say that

I'(B)c :=T(B)/{a|a e C/B)
is n-representation finite of type A. The name is justified by the following Theorem.

Theorem 5. If C' is an acyclic periodic cut and B < Sc¢ is cofinite, then I'(B)¢ is
n-representation finite.

We remark that if n = 1, then I'(B)¢ is a path algebra of an acyclic quiver of type A
constructed exactly as explained above. For n = 2, )y is a triangular lattice in the plane

and @ is

o — 0 — 00— 00— 00— 00— 0

NANANANANSANY

o — 0 —>0 —>0 —>0 —>0

YNANANANANSN

o — 00— 00— 00— 00— 00— 0

NANANANANSANY

o — 00— 00— 00— 0 — 0

YNANANANANAN

o — 06— 0 — 0 — 00— 00— 0

where the small cycles are formed by the small triangles.
Finally we shall generalize the alternating orientation of A%. To do this definew : G —
Z/(n+ 1)Z by w(f;) =1 and set

C:={a:v—=v+filww) =0, 1<i<n+1}

Then every path in @) of length n+1 intersects C' and so C'is acyclic. Moreover, S¢ = ker w
and so C' is periodic.
Forn =1, Q¢ is



For n =2, Q¢ is

""""" o — 0 —> 0 o — 0 — .

\/ SN NS SN

————————— o — 0 — .

/\ ‘\/ /N \/

,,,,,,,,, e — 0 — o o — 0 — .

\/ SN NS SN

""""" o — 0 — .

/\ AVAVANA VA

""""" o — 0 —> 0 o — 0 — .

where the dotted lines indicate commutativity relations in I'/(C').
Now let’s consider I'(B)¢ for B = S¢. Then we can identify Qo/B with Z/(n+ 1)Z via
w and C'/B consists of all arrows from n + 1 to 1. Hence I'(B)¢ is the Beilinson algebra:

al al al

1 ¢+ 2 + 3---n fn+1, a;a; = a;a;.
N T N T ~___ 7
an+1 An+1 An+1

and for n = 1 we obtain the Kronecker algebra:
172
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ON A DEGENERATION PROBLEM FOR COHEN-MACAULAY
MODULES

NAOYA HIRAMATSU

1. INTRODUCTION

The aim of this article is to give an outline of the paper [3], which is a joint work with
Yuji Yoshino.

In this note, we would like to give several examples of degenerations of maximal Cohen-
Macaulay modules and to show how we can describe them (Theorem 12). This result
depends heavily on the recent work by Yoshino about the stable analogue of degenera-
tions for Cohen-Macaulay modules over a Gorenstein local algebra [9]. In Section 3 we
also investigate the relation among the extended versions of the degeneration order, the
extension order and the AR order (Theorem 22).

2. EXAMPLES OF DEGENERATIONS

In this section, we recall the definition of degeneration and state several known results
on degenerations.

Definition 1. Let R be a noetherian algebra over a field k, and let M and N be finitely
generated left R-modules. We say that M degenerates to IV, or N is a degeneration of M,
if there is a discrete valuation ring (V,tV, k) that is a k-algebra (where ¢ is a prime element)
and a finitely generated left R ®; V-module () which satisfies the following conditions:

(1) @ is flat as a V-module.
(2) Q/tQ = N as a left R-module.
(3) Q[1/t] = M ® V[1/t] as a left R ®; V[1/t]-module.

The following characterization of degenerations has been proved by Yoshino [7].
Theorem 2. [7, Theorem 2.2] The following conditions are equivalent for finitely gener-

ated left R-modules M and N.

(1) M degenerates to N.
(2) There is a short exact sequence of finitely generated left R-modules

¥
0 y 4 Mo Z > N 0,
such that the endomorphism 1 of Z is nilpotent, i.e. Y™ =0 for n > 1.

Remark 3. Let R be a noetherian k-algebra.

(1) Suppose that a finitely generated R-module M degenerates to a finitely generated
module N. Then as a discrete valuation ring V' in Definition 1 we can always take
the ring k[t]). See [7, Corollary 2.4.]. Thus we always take k[t]y) as V.
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(2) Assume that there is an exact sequence of finitely generated left R-modules
0 L > M > N > 0.
Then M degenerates to L @ N. See [7, Remark 2.5] for the detail.
(3) Let M and N be finitely generated R-modules and suppose that M degenerates
to N. Then the modules M and N give the same class in the Grothendieck group,

i.e. [M] = [N] as an element of Ky(mod(R)), where mod(R) denotes the category
of finitely generated R-modules and R-homomorphisms.

We are mainly interested in degenerations of modules over commutative rings. Hence-
forth, in the rest of the paper, all the rings are assumed to be commutative.

Definition 4. Let M and N be finitely generated modules over a commutative noetherian
k-algebra R.

(1) We denote by M <4, N if N is obtained from M by iterative degenerations,
i.e. there is a sequence of finitely generated R-modules Lg, Lq,..., L, such that
M = Ly, N =2 L, and each L; degenerates to L; 1 for 0 < i <.
(2) We say that M degenerates by an extension to N if there is a short exact sequence
0—U— M —V — 0 of finitely generated R-modules such that N = U & N.
We denote by M <.,; N if N is obtained from M by iterative degenerations by

extensions, i.e. there is a sequence of finitely generated R-modules Lg, Ly, ..., L,
such that M = Ly, N = L, and each L; degenerates by an extension to L;,; for
0<i<r.

If R is a local ring, then <4, and <. are known to be partial orders on the set of
isomorphism classes of finitely generated R-modules, which are called the degeneration
order and the extension order respectively. See [6] for the detail.

Remark 5. By virtue of Remark 3, if M <.,; N then M <4, N. However the converse is
not necessarily true.
For example, consider a ring R = k[[x,y]]/(2?). A pair of matrices over k[[z, y|];

wo=(( %) 6 )

is a matrix factorization of the equation 22, hence it gives a maximal Cohen-Macaulay R-
module N that is isomorphic to the ideal (x,y*)R. It is known that N is indecomposable.
Then we can show that R degenerates to (z,y?)R in this case, and hence R <4, (z,y*)R.
See [3, Remark 2.5.].

In general if M <.,; N and if M 22 N, then N is a non-trivial direct sum of modules.
Since N 2 (x,y*)R is indecomposable, we see that R <..; (z,y*)R can never happen.

Remark 6. We remark that if finitely generated R-modules M and N satisfy the relation
M <., N, then M degenerates to N.

Now we note that the following lemma holds.

Lemma 7. Let I be a two-sided ideal of a noetherian k-algebra R, and let M and N be
finitely generated left R/I-modules. Then M <gjq N (resp. M <.,y N) as R-modules if
and only if so does as R/I-modules. O
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We make several other remarks on degenerations for the later use.

Remark 8. Let R be a noetherian k-algebra, and let M and N be finitely generated R-
modules. Suppose that M degenerates to N. The ¢th Fitting ideal of M contains that of
N for all i > 0. Namely, denoting the ith Fitting ideal of an R-module M by F*(M), we
have FR(M) D FI{(N) for all i = 0. (See [9, Theorem 2.5]).

Let R = k[[z]] be a formal power series ring over a field k with one variable x and let
M be an R-module of length n. It is easy to see that there is an isomorphism

(2.1) M=R/x")& - & R/(x),

where

(22) pZpp>->py >0 and Y pi=n.
=1

In this case the finite presentation of M is given as follows:

xpl

xpn
0 — R" > R" >y M > 0.
Note that we can easily compute the ith Fitting ideal of M from this presentation;

—ER(M) — (xpi+1+“'+1’n) (z > 0).

We denote by pys the sequence (p1,ps, - -+, pn) of non-negative integers. Recall that such
a sequence satisfying (2.2) is called a partition of n.

Conversely, given a partition p = (p1, pa, - -+ , pn) of n, we can associate an R-module of
length n by (2.1), which we denote by M (p). In such a way we see that there is a one-one
correspondence between the set of partitions of n and the set of isomorphism classes of
R-modules of length n.

Definition 9. Let n be a positive integer and let p = (p1,pa, - -+ ,pn) and ¢ = (q1,G2, -+ , qn)
be partitions of n. Then we denote p = ¢ if it satisfies > 7_ p; > > 7 ¢ forall1 <j <n.

We note that > is known to be a partial order on the set of partitions of n and called
the dominance order (see for example [4, page 7).

In the following proposition we show the degeneration order for R-modules of length n
coincides with the opposite of the dominance order of corresponding partitions.

Proposition 10. Let R = k[[z]] as above, and let M, N be R-modules of length n. Then
the following conditions are equivalent:

(1) M Sdeg N;
(2) M Se:pt N7
(3) par = -
Proof. First of all, we assume M degenerates to N, and let pyy = (p1,p2,--- ,pn) and

v = (1,92, ,qn). Then, by definition, we have the equalities of the Fitting ideals;
FR(M) = (zPierTFPn) and FRA(M) = (z%+1++0) for all i > 0. Since M degenerates
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to NV, it follows from Remark 8 that F(M) D FR(N) for all . Thus pjyq + -+ + pp <
Gix1+ -+ @qn. Since > p;=n=> g, it follows that py +---+p; > 1 +--- + ¢
for all ¢ > 0. Therefore py; = pn, so that we have proved the implication (1) = (3).

Finally we shall prove (3) = (2). To this end let p = (p1,p2, - ,pn) and ¢ =
(q1,q2, "+ ,qn) be partitions of n. Note that it is enough to prove that the corresponding
R-module M (p) degenerates by an extension to M(q) whenever ¢ is a predecessor of p
under the dominance order. (Recall that ¢ is called a predecessor of p if p = ¢ and there
are no partitions r with p > r »= ¢ other than p and q.)

Assume that g is a predecessor of p under the dominance order. Then it is easy to
see that there are numbers 1 < i < j < n with p; — p; > 2, p; > pit1, pj—1 > p; such
that the equality ¢ = (p1, -+ ,pi — L, pit1, -+ ,p; +1,--- ,p,) holds. In this case, setting
L = M((p1,- -+ ,Pi1,Pi1: "+ Pj=1,Pj5*** »Pn)), We have M(p) = L & M((p;, p;)) and
M(q) = L& M((p; — 1,p; +1)). Note that, in general, if M degenerates by an extension
to N, then M @& L degenerates by an extension to N ¢ L, for any R-modules L. Hence
it is enough to show that M((a,b)) degenerates by an extension to M((a — 1,b+ 1)) if
a > b+ 2. However there is a short exact sequence of the form:

0 — R/(z""') —— R/(z*)® R/(z") —— R/(z"") —— 0
1 e (x,1)
Thus M((a,b)) = R/(z%) ® R/(z") degenerates by an extension to M((a — 1,b+ 1)) =
R/(x% 1) @ R/(2"t1). O

Combining Proposition 10 with Lemma 7, we have the following corollary which will
be used latter.

Corollary 11. Let R = k[[z]]/(z™), where k is a field and m is a positive integer, and
let M, N be finitely generated R-modules. Then M <g.y N holds if and only if M <., N
holds. 0J

Next we describe another example.
Let k be a field of characteristic 0 and R = k[[zo, z1, X2, -+ ,24]]/(f), where f is a
polynomial of the form

f=aptt + 24y +- 422 (n>1).
Recall that such a ring R is call the ring of simple singularity of type (A,). Note that R
is a Gorenstein complete local ring and has finite Cohen-Macaulay representation type.
(Recall that a Cohen-Macaulay k-algebra R is said to be of finite Cohen-Macaulay rep-
resentation type if there are only a finite number of isomorphism classes of objects in

CM(R). See [5].) We shall show the following whose proof will be given in the last part
of this section.

Theorem 12. Let k be an algebraically closed field of characteristic 0 and let R =
kl[zo, x1, 72, -+ x4)]/(xgth + 22 + 22 4+ - + 22) as above, where we assume that d is
even. For maximal Cohen-Macaulay R-modules M and N, if M <geq N, then M <.,y N.

To prove the theorem, we need several results concerning the stable degeneration which
was introduced by Yoshino in [9)].
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Let A be a commutative Gorenstein ring. We denote by CM(A) the category of all
maximal Cohen-Macaulay A-module with all A-homomorphisms. And we also denote by
CM(A) the stable category of CM(A). For a maximal Cohen-Macaulay module M we
denote it by M to indicate that it is an object of CM(A). Since A is Gorenstein, it is
known that CM(A) has a structure of triangulated category.

The following theorem proved by Yoshino [9] shows the relation between stable degen-
erations and ordinary degenerations.

Theorem 13. [9, Theorem 5.1, 6.1, 7.1] Let (R, m, k) be a Gorenstein complete local k-
algebra, where k is an infinite field. Consider the following four conditions for maximal
Cohen-Macaulay R-modules M and N :

(1) R™ @& M degenerates to R & N for some m,n € N.
(2) There is a triangle

L4

©)

Z —— MoZ > N > Z[1]

in CM(R), where ¢ is a nilpotent element of Endp(Z).
(3) M stably degenerates to N.
(4) There exists an X € CM(R) such that M & R™ @& X degenerates to N @ R" & X
for some m,n € N.
Then, in general, the implications (1) = (2) = (3) = (4) hold. If R is an isolated
singularity, then (2) and (3) are equivalent. Furthermore, if R is an artinian ring, then
the conditions (1), (2) and (3) are equivalent.

Corollary 14. [9, Corollary 6.6] Let (R, my, k) and (Ry, mo, k) be Gorenstein complete
local k-algebras. Assume that the both Ry and Ry are isolated singularities, and that k
is an infinite field. Suppose there is a k-linear equivalence F' : CM(R;) — CM(Rs) of
triangulated categories. Then, for M, N € CM(Ry), M stably degenerates to N if and
only if F(M) stably degenerates to F(N). O

We now consider the stable analogue of the degeneration by an extension.

Definition 15.

(1) We denote by M < N if N is obtained from M by iterative stable degenerations,
i.e. there is a sequence of objects Ly, L;,...,L, in CM(R) such that M = L,
N = L, and each L; stably degenerates to L; ; for 0 <7 <.

(2) We say that M stably degenerates by a triangle to IV, if there is a triangle of the
form U - M — V. — UJ[1] in CM(R) such that U @ V = N. We denote by
M <; N if there is a finite sequence of modules Lo, Ly, - - -, L, in CM(R) such
that M = Ly, N = L, and each L; stably degenerates by a triangle to L;;; for
0<i<r.

Remark 16. Let R be a Gorenstein local ring that is a k-algebra.

(1) Let M, N € CM(R). If M degenerates to N, then M stably degenerates to N.
Therefore that M <g., N forces that M <, N. (See [9, Lemma 4.2].)

—0 4—



(2) Suppose that there is a triangle

L » M > N L1},

in CM(R). Then M stably degenerates to L & N, thus M <y L & N. (See [9,
Proposition 4.3].)

We need the following proposition to prove Theorem 12.

Proposition 17. Let (R,m,k) be a Gorenstein complete local ring and let M, N €
CM(R). Assume [M] = [N] in Ko(mod(R)). Then M <4; N if and only if M <. N. O

Now we proceed to the proof of Theorem 12.
Let k be an algebraically closed field of characteristic 0 and let

R = K[[xo, x1, 22, -+, 4]/ (xg T + 2] + 25 + -+ 23)

as in the theorem, where we assume that d is even. Suppose that M <., N for maximal
Cohen-Macaulay R-modules M and N. We want to show M <., N.

Since M <4y N, we have M <, N in CM(R) and [M] = [N] in Ky(mod(R)), by
Remarks 16(1) and 3(3). Now let us denote R’ = k[[xo]]/(z§™"), and we note that CM(R)
and CM(R’) are equivalent to each other as triangulated categories. In fact this equiva-
lence is given by using the lemma of the Knorrer’s periodicity (cf. [5]), since d is even. Let
Q: CM(R) — CM(R') be a triangle functor which gives the equivalence. Then, by virtue
of Corollary 14, we have Q(M) <y Q(NN) in CM(R’). Since R’ is an artinian algebra, the
equivalence (1) < (3) holds in Theorem 13, and thus we have M @& R™ <4, N @ R™,
where M (resp. N) is a module in CM(R') with M 2 Q(M) (resp. N = Q(N)) and m, n
are non-negative integers. It then follows from Corollary 11 that M & R™ <., N & R™.
Hence, by Proposition 17, we have that Q(M) <; Q(N) in CM(R’). Noting that the par-
tial order <, is preserved under a triangle functor, we see that M <;,; NV in CM(R). Since
[M] = [N] in Ky(mod(R)), applying Proposition 17, we finally obtain that M <., N. O

Example 18. Let R = k[[xo, x1, 22]] /(23 + 2% + 23), where k is an algebraically closed
field of characteristic 0. Let p and q be the ideals generated by (xg,7; — v/—1 x3) and
(23,71 + /=1 13) respectively. It is known that the set {R,p,q} is a complete list of the
isomorphism classes of indecomposable maximal Cohen-Macaulay modules over R. The
Hasse diagram of degenerations of maximal Cohen-Macaulay R-modules of rank 3 is a
disjoint union of the following diagrams:

pPOpdp qgdqdq pOpoq pOqadq
NS | |
Repdq R®qdq Rep@yp
| | |
R3, R2®p, R*®q.
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3. EXTENDED ORDERS

In the rest of this paper R denotes a (commutative) Cohen-Macaulay complete local
k-algebra, where k is any field.

We shall show that any extended degenerations of maximal Cohen-Macaulay R-modules
are generated by extended degenerations of Auslander-Reiten (abbr.AR) sequences if R is
of finite Cohen-Macaulay representation type. For the theory of AR sequences of maximal
Cohen-Macaulay modules, we refer to [5]. First of all we recall the definitions of the
extended orders generated respectively by degenerations, extensions and AR sequences.

Definition 19. [6, Definition 4.11, 4.13] The relation <pgg on CM(R), which is called
the extended degeneration order, is a partial order generated by the following rules:

(1) It M Sdeg N then M SDEG N.

(2) If M SDEG N and if M’ SDEG N’ then M@ M’ SDEG N@ N’

(3) f M ® L <pgc N @ L for some L € CM(R) then M <pgc N.

(4) If M™ <ppg N™ for some natural number n then M <prqg N.

Definition 20. [6, Definition 3.6] The relation <gxr on CM(R), which is called the
extended extension order, is a partial order generated by the following rules:

(1) If M Seact N then M SEXT N.

(2) It M SEXT N and if M’ SEXT N’ then M@M’ SEXT NEBN/
B) f M@ L <gxr N @ L for some L € CM(R) then M <gxr N.
(4) If M™ <pgxr N™ for some natural number n then M <gxr N.

Definition 21. [6, Definition 5.1] The relation <4z on CM(R), which is called the ex-
tended AR order, is a partial order generated by the following rules:

(1) If0 - X - F—=Y — 0is an AR sequence in CM(R), then £ < g X @Y.
(2) IfMSARNand it M’ SAR N’ then M@M’ SARN@N/
B) f M@ L <sr N&L for some L € CM(R) then M <, N.
(4) If M™ <,r N for some natural number n then M <,p N.

The following is the main theorem of this section.

Theorem 22. Let R be a Cohen-Macaulay complete local k-algebra as above. Adding to
this, we assume that R is of finite Cohen-Macaulay representation type. Then the following
conditions are equivalent for M, N € CM(R):

(1) M <pgc N,

(2) M <pxr N,

(3) M <agr N.

Proof. The implications (3) = (2) = (1) are clear from the definitions.

To prove (1) = (2), it suffices to show that M <gxr N whenever M degenerates to
N. If M degenerates to N, then, by virtue of Theorem 2, we have a short exact sequence
02> M®&Z — N — 0 with Z € CM(R). Thus M & Z <.,y N @ Z, hence
M <gxr N.

It remains to prove that (2) = (3), for which we need the following lemma which is
essentially due to Auslander and Reiten [1].
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Lemma 23. Under the same assumptions on R as in Theorem 22, let 0 — L — M —
N — 0 be a short exact sequence in CM(R). Then there are a finite number of AR
sequences in CM(R);

0-X, - E —-Y, -0 (1<i<n),

such that there is an equality in G(CM(R));

L-M+N=> (X;— E+Y)).

i=1

Here, G(CM(R)) = @ Z- X where X runs through all isomorphism classes of indecom-
posable objects in CM(R).

To prove this lemma, we consider the functor category Mod(CM(R)) and the Auslander

category mod(CM(R)) of CM(R). O

Remark 24. In the paper [6], Yoshino introduced the order relation <j,,, as well. Adding
to the assumption that R is of finite Cohen-Macaulay representation type, if we assume
further conditions on R, such as R is an integral domain of dimension 1 or R is of dimension
2, then he showed that <y, is also equal to any of <,r, <gpxr and <pgg.

9.
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WEAK GORENSTEIN DIMENSION FOR MODULES AND
GORENSTEIN ALGEBRAS

MITSUO HOSHINO AND HIROTAKA KOGA

ABSTRACT. We will generalize the notion of Gorenstein dimension and introduce that of
weak Gorenstein dimension. Using this notion, we will characterize Gorenstein algebras.

1. INTRODUCTION

1.1. Notation and definitions. For a ring A we denote by rad(A) the Jacobson radical
of A. Also, we denote by Mod-A the category of right A-modules, by mod-A the full sub-
category of Mod-A consisting of finitely presented modules and by P4 the full subcategory
of mod-A consisting of projective modules. For each X € Mod-A we denote by F4(X)
its injective envelope. Left A-modules are considered as right A°®-modules, where A°P
denotes the opposite ring of A. In particular, we denote by inj dim A (resp., inj dim A°P)
the injective dimension of A as a right (resp., left) A-module and by Hom4(—, —) (resp.,
Hom gop(—, —)) the set of homomorphisms in Mod-A (resp., Mod-A°P). Sometimes, we
use the notation X4 (resp., 4X) to stress that the module considered is a right (resp.,
left) A-module.

In this note, complexes are cochain complexes and modules are considered as complexes
concentrated in degree zero. For a complex X* and an integer n € Z, we denote by H"(X*)
the nth cohomology. We denote by K(Mod-A) the homotopy category of complexes
over Mod-A, by K~ (Pa) (resp., K*(P4)) the full triangulated subcategory of K(Mod-A)
consisting of bounded above (resp., bounded) complexes over P4 and by K—P(P,4) the full
triangulated subcategory of K~ (P4) consisting of complexes with bounded cohomology.
We denote by D(Mod-A) the derived category of complexes over Mod-A. Also, we denote
by Hom%(—, —) (resp., — ®* —) the associated single complex of the double hom (resp.,
tensor) complex and by RHom$ (—, A) the right derived functor of Hom%(—, A). We refer
to [4], [9] and [15] for basic results in the theory of derived categories.

Definition 1 ([5]). A module X € Mod-A is said to be coherent if it is finitely generated
and every finitely generated submodule of it is finitely presented. A ring A is said to be
left (resp., right) coherent if it is coherent as a left (resp., right) A-module.

Throughout the first three sections, A is a left and right coherent ring. Note that
mod-A consists of the coherent modules and is a thick abelian subcategory of Mod-A in
the sense of [9].

We denote by DP(mod-A) the full triangulated subcategory of D(Mod-A) consisting of
complexes over mod-A with bounded cohomology.

The detailed version of this paper will be submitted for publication elsewhere.
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Definition 2 ([9]). A complex X* € D"(mod-A) is said to have finite projective dimension
if Homp(nod-4)(X°[i], —) vanishes on mod-A for i < 0. We denote by DP(mod-A)g,q the
épaisse subcategory of DP(mod-A) consisting of complexes of finite projective dimension.

Note that the canonical functor KX(Mod-A) — D(Mod-A) gives rise to equivalences of
triangulated categories

K=P(Pa) = DP(mod-A) and K°(P4) = DP(mod-A)gpq.
We denote by D(—) both RHom®%(—, A) and RHom%.,(—, A). There exists a bifunc-

torial isomorphism
Onre xo : Hompnod-aery(M*, DX*) = Hompnod-a)(X*®, DM®)
for X* € D(Mod-A) and M* € D(Mod-A°P). For each X* € D(Mod-A) we set
Nxs = Opxe x+(idpxe) : X* — D*X* = D(DX*).

Definition 3. A complex X* € DP(mod-A) is said to have bounded dual cohomology if
DX* € DP(mod-A°). We denote by DP(mod-A)pqy the full triangulated subcategory of
DP(mod-A) consisting of complexes with bounded dual cohomology.

Definition 4 ([2] and [12]). A complex X* € D"(mod-A°P)yq, is said to have finite
Gorenstein dimension if 1y« is an isomorphism. We denote by DP(mod-A)iqq the full
triangulated subcategory of DP(mod-A) consisting of complexes of finite Gorenstein di-
mension.

For a module X € D"(mod-A)qq, we set

G-dim X = sup{ i > 0 | Ext’, (X, A) # 0}

if X # 0, and G-dim X = 0 if X = 0. Also, we set G-dim X = oo for a module
X € mod-A with X ¢ DP(mod-A)sqq. Then G-dim X is called the Gorenstein dimension
of X € mod-A. We denote by G4 the full additive subcategory of mod-A consisting of
modules of Gorenstein dimension zero.

Remark 5. A module X € mod-A has Gorenstein dimension zero if and only if X is
reflexive, i.e., the canonical homomorphism

X — Homyop(Homa(X, A), A), 2z — (f — f(2))
is an isomorphism and Ext’ (X, A) = Ext’., (Hom(X, A), A) = 0 for i # 0.

Remark 6. The following hold.

(1) D*(mod-A)gg € DP(mod-A)gqa € DP(mod-A)pan and Pa C Ga.

(2) The pair of functors RHom%(—, A) and RHom%.,(—, A) defines a duality be-
tween DP(mod-A)gq and DP(mod-A°P)iqq and a duality between DP(mod-A)pyq
and DP(mod-A°P)gq.

(3) The pair of functors Hom4(—, A) and Hom gep (—, A) defines a duality between G4
and G o and a duality between P4 and P gop.
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1.2. Introduction. The notion of Gorenstein dimension has played an important role in
the study of Gorenstein algebras (see e.g. [2], [10], [11] and so on). In this note, gener-
alizing this, we will introduce the notion of weak Gorenstein dimension and characterize
Gorenstein algebras in terms of weak Gorenstein dimension.

A complex X* € DP(mod-A)pg, with sup{ i | H(X*®) # 0} = d < oo is said to
have finite weak Gorenstein dimension if H'(ny«) is an isomorphism for all i < d and
H¢(nx.) is a monomorphism. Obviously, every X* € D"(mod-A)izq has finite weak
Gorenstein dimension, the converse of which does not hold true in general (see Example 9
and Proposition 15). Extending the fact announced by Avramov [3], we will characterize
complexes of finite weak Gorenstein dimension. Denote by G4/P4 the residue category
of G4 over P4. Also, denote by D"(mod-A)iga/D"(mod-A)ga the quotient category of
DP(mod-A)scq over the épaisse subcategory DP(mod-A)gq. Avramov [3] announced that
the embedding G4 — DP(mod-A)igq gives rise to an equivalence

QA/PA :) @b(IIlOd—A)de/gb(IIlOd—A)fpd.

We will extend this fact. Denote by G the full additive subcategory of mod-A consisting
of modules X € mod-A with Ext’,(X, A) = 0 for i # 0, by Ga/P4 the residue category of
G4 over P4 and by DP(mod-A)pan/DP(mod-A)g,q the quotient category of DP(mod-A)pan
over the épaisse subcategory DP(mod-A)g,q. We will show that the embedding Ga —
DP(mod-A)pqn gives rise to a full embedding

F:Ga/Pa — D*(mod-A)pan/DP(mod-A)gq

(see Proposition 8), that a complex X®* € DP(mod-A)pq, has finite weak Gorenstein
dimension if and only if there exists a homomorphism Z[m] — X* in D®(mod-A)pqn
inducing an isomorphism in DP(mod-A)pan/DP(mod-A)g,q for some Z € G4 and m € Z
(see Lemma 12) and that F' is an equivalence if and only if G4 = G4 (see Proposition 15).

Using the notion of weak Gorenstein dimension, we will characterize Gorenstein al-
gebras. Let R be a commutative noetherian local ring and A a noetherian R-algebra,
i.e., A is a ring endowed with a ring homomorphism R — A whose image is contained
in the center of A and A is finitely generated as an R-module. We say that A satisfies
the condition (G) if the following equivalent conditions are satisfied: (1) Every simple
X € mod-A has finite weak Gorenstein dimension; and (2) A/rad(A) has finite weak
Gorenstein dimension (see Definition 18). Our main theorem states that the following
are equivalent: (1) inj dim A = inj dim A° < oo; and (2) A, satisfies the condition (G)
for all p € Suppy(A) (see Theorem 19). Furthermore, in case A is a local ring, we will
show that for any d > 0 the following are equivalent: (1) inj dim A = inj dim A°® = d;
(2) inj dim A = depth A = d; and (3) A/rad(A) has weak Gorenstein dimension d (see
Theorem 20). Note that if inj dim A = depth A < oo then A is a Gorenstein R-algebra
in the sense of Goto and Nishida [8].

This note is organized as follows. In Section 2, we will extend the fact announced by
Avramov [3] quoted above. Also, we will include an example of A with G =% G4 which
is due to J.-I. Miyachi. In Section 3, we will introduce the notion of weak Gorenstein
dimension and study finitely presented modules of finite weak Gorenstein dimension. In
Section 4, we will study noetherian algebras of finite selfinjective dimension and prove the
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main theorem. In Section 5, we will characterize local noetherian algebras of finite self-
injective dimension. Also, we will provide several examples showing what rich properties
local noetherian algebras of finite selfinjective dimension enjoy.

2. FUuLL EMBEDDING

Let G4/P4 be the residue category of G4 over the full additive subcategory P4 and
DP(mod-A)sgqa/DP(mod-A)gq the quotient category of DP(mod-A)igq over the épaisse
subcategory DP(mod-A),q. Then, as Avramov [3] announced, the embedding G4 —
DP(mod-A)sqq gives rise to an equivalence

QA/PA :) @b(mod—A)de/@b(mod—A)fpd.
In this section, we will extend this fact.

Definition 7. We denote by 'QAA the full additive subcategory of mod-A consisting of
modules X € mod-A with Ext’y (X, A) = 0 for i # 0.

We denote by Ga /P4 the residue category of G4 over the full additive subcategory Py
and by D"(mod-A)/DP(mod-A)s,q the quotient category of DP(mod-A) over the épaisse
subcategory DP(mod-A)gq. Also, we denote by DP(mod-A)pan/DP(mod-A)ga the quo-
tient category of DP(mod-A)nan over the épaisse subcategory DP(mod-A)g,q.

Proposition 8. The embedding G4 — DP(mod-A)pan gives rise to a full embedding
F:Ga/Pa — D*(mod-A)pan/D(mod-A)gyq.

In the next section, we will characterize a complex X* € Db(mod-A)bdh which admits
a homomorphism Z[m] — X* in D°(mod-A)pq, inducing an isomorphism Z[m] = X*
in DP(mod-A)pan/DP(mod-A)gq for some Z € G4 and m € Z. Such a complex does not

necessarily belong to D®(mod-A)igq. Namely, Ga # G4 in general (see Proposition 15
below), which has been pointed out by J.-I. Miyachi in oral communication.

Example 9 (Miyachi). Let k£ be a field and fix a nonzero element ¢ € k which is not
a root of unity. Let S = k < z,y > be a non-commutative polynomial ring and I =
(22,92, cry + yx) a two-sided ideal generated by z?, y* and cxy + yx. Set R = S/I,
zn=2+c"y+1 € Rforn € Z and w =2y+1 € R. Then R is a selfinjective algebra and
for each n € Z there exist exact sequences R =% R =% R in mod-R and R =% R =% R
in mod-R°P. Since c is not a root of unity, z,R %# 2, R and Homg(z,R, z,,R) = k unless
n = m. Thus, since we have a projective resolution --- - R =% R 2 R 5 1R — 0 in
mod-R, applying Homg(—, zoR) we have Ext’ (21 R, z0R) = 0 for all i > 1 (see [14]).

Now, we set
[k xR (10 (0 0
A—(O R)andel—(o 0),62—(0 I)GA'

Then a module X € mod-A is given by a triple (X7, Xs;¢) of X; € mod-k, Xy € mod-R
and ¢ € Hompg(X; ®; 2R, X5), and a module M € mod-A° is given by a triple
(My, My;4p) of My € mod-k, My € mod-R°® and ¢ € Homy(z0R ®pg Ma, My) (see [7]).
Set X = (0,2, R;0) € mod-A. Since we have a projective resolution --- ~% ey A 2
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exA 5 X — 0 in mod-A4, it follows that Ext’ (X, e d) = Ext’(z1R, 20R) = 0 and
Ext’y (X, e2A) = Exty (21 R, R) = 0 for ¢ > 0. Thus X € G4. On the other hand, we have
Hom (X, A) = Ker(Aey 2 Aey)
>~ (wR, Rzy;0)
= (wR,0;0) & (0, Rz;0)

in mod-A°? and hence Hom gor (Hom4 (X, A), A) is decomposable, so that we have X 2
Hom 4op (Hom (X, A), A) and X ¢ Ga.

3. WEAK GORENSTEIN DIMENSION

In this section, we will introduce the notion of weak Gorenstein dimension for finitely
presented modules and study finitely presented modules of finite weak Gorenstein dimen-
sion.

Definition 10. A complex X* € DP(mod-A) with sup{ i | H(X®) # 0} = d < o©
is said to have finite weak Gorenstein dimension if X* € D"(mod-A)pqn, H (nxs) is an
isomorphism for i < d and H%(nx+) is a monomorphism.

For a module X € mod-A of finite weak Gorenstein dimension we set

G-dim X = sup{ i | Ext, (X, A) # 0}
if X #0and G-dim X = 0if X = 0. Also, we set G-dim X = oo if X € mod-A does
not have finite weak Gorenstein dimension. Then G-dim X is called the weak Gorenstein
dimension of X € mod-A.
Remark 11. For any X € mod-A the following hold.
(1) G-dim X = 0 if and only if X is embedded in some P € Py, i.e., the canonical
homomorphism
X — Homyop(Homa(X, A), A),z — (f — f(z))
is a monomorphism and X € G A
(2) If G-dim X =d < oo then G-dim X = d.
(3) If G-dim X = d < oo then G-dim X’ < d for all X’ € add(X), the full additive

subcategory of mod-A consisting of direct summands of finite direct sums of copies
of X.

Lemma 12. A compler X* € DP(mod-A) with sup{ i | H(X*®) # 0} = d < oo has
finite weak Gorenstein dimension if and only if there exists a distinguished triangle in
DP(mod-A)

X*=Y*— Z[-d —
with Y* € KP(P4), Yi=0 fori>d, and Z € G4.
Corollary 13 (cf. [6, Lemma 2.17]). For any X € mod-A with G-dim X < oo there

exists an ezxact sequence 0 — X — Y — Z — 0 in mod-A with G-dim X = proj dim Y
and Z € G4.

Lemma 14. For any exact sequence 0 - X — Y — Z — 0 in mod-A the following hold.
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(1) If G-dim Z < oo, then G-dim X < oo if and only if G-dim Y < occ.

(2) If G-dim Y < oo, then G-dim X < oo if and only if Z € DP(mod-A)pqn and
HY(D?*Z) =0 fori < —1.

(3) If G-dim X < oo and H(nx) is an isomorphism, then G-dim Y < oo if and only
if G-dim Z < 0.

Proposition 15. The following are equivalent.
(1) Ga = Ga. A
(2) G-dim X =0 for all X € G4.
(3) Db(mod—A)de = Db(mod—A)bdh.
(4) The embedding Ga/Pa — DP(mod-A)pan/DP(mod-A)gq is dense.

4. FINITENESS OF SELFINJECTIVE DIMENSION

Throughout the rest of this note, A is a left and right noetherian ring.
In this section, using the notion of weak Gorenstein dimension, we will characterize
noetherian algebras of finite selfinjective dimension.

Lemma 16. For any injective I € Mod-A the following hold.
(1) flat dim I < inj dim A°P and the equality holds if I is an injective cogenerator.
(2) Let d > 0 and assume that there exists a direct system ({Xx},{f)}) in mod-A
over a directed set A such that hﬂ X\ =21 and G-dim X, < d for all X € A.
Then flat dim I < d.

Corollary 17. For any d > 0 the following are equivalent.
(1) inj dim A = inj dim A°? < d.
(2) G-dim X < d for all X € mod-A.

Throughout the rest of this note, R is a commutative noetherian local ring with the
maximal ideal m and A is a noetherian R-algebra, i.e., A is a ring endowed with a ring
homomorphism R — A whose image is contained in the center of A and A is finitely
generated as an R-module. It should be noted that A/mA is a finite dimensional algebra
over a field R/m.

We denote by Spec(R) the set of prime ideals of R. For each p € Spec(R) we denote
by (—), the localization at p and for each X € Mod-R we denote by Suppy(X) the set of
p € Spec(R) with X, # 0. Also, we denote by dim X the Krull dimension of X € mod-R.
We refer to [13] for basic commutative ring theory.

Definition 18. We say that A satisfies the condition (G) if the following equivalent
conditions are satisfied:

(1) G—dim X < oo for all simple X € mod-A.

(2) G-dim A/rad(A) < co.
Theorem 19. The following are equivalent.

(1) inj dim A = inj dim A°P < oco.

(2) A, satisfies the condition (G) for all p € Suppy(A).
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5. GORENSTEIN ALGEBRAS

In this section, we will deal with the case where inj dim A = inj dim A°? = depth A.
In that case, A is a Gorenstein R-algebra in the sense of Goto and Nishida (see [8]). Also,
we will characterize local Gorenstein algebras in terms of weak Gorenstein dimension.

We set S = A/rad(A) and denote by depth X the depth of X € mod-R. Throughout
the rest of this note, we assume that A is a local ring, i.e., S is a division ring. Note that
S € mod-A is a unique simple module up to isomorphism and that every X € mod-A
admits a minimal projective resolution.

Theorem 20. For any d > 0 the following are equivalent.
(1) inj dim A = inj dim A°? = d.
(2) inj dim A = depth A =d.
(3) G-dim SA =d.

Corollary 21. Assume that inj dim A = inj dim A°® = d < oo. Then A is Cohen-
Macaulay as an R-module and I¢ = Hompg (A, Er(R/m)) for a minimal injective resolution
A — I* in Mod-A.

Example 22. Even if inj dim A = inj dim A° < oo, it may happen that A is not Cohen-
Macaulay as an R-module. For instance, let R be a Gorenstein local ring with dim R > 1

and set
A R R/zR
- \0 R/xzR

with x € m a regular element. Then A is not Cohen-Macaulay as an R-module but
inj dim A = inj dim A° < oo (see [1, Example 4.7]).

Example 23. Even if A is a Cohen-Macaulay R-module and inj dim A = inj dim A% <
00, it may happen that inj dim A # depth A. For instance, let R be a Gorenstein local

ring with dim R = d and set
R R
A= ( 4 R) |

Then A is a Cohen-Macaulay R-module with depth A = d but inj dim A = inj dim A°? =
d+1.

Example 24. Even if A is a Cohen-Macaulay R-module and inj dim A = inj dim A°? =
depth A = d < oo, it may happen that ¢ 2 Homg(A, Er(R/m)) for a minimal injective
resolution A — I* in Mod-A. For instance, let R be a Gorenstein local ring with dim R =
d and A a free R-module with a basis {e;;}1<;j<3. Define a multiplication on A subject
to the following axioms: (Al) e;en = 0 unless j = k; (A2) ee;; = e;; = e;;e5; for all
’L,j, (A3) €12€21 — €11 and €921€12 = €92, and (A4) €i3€3; = €3;€i3 = 0 for all Z,j §£ 3. Set
e; = e;; for all &. Then A is an R-algebra with 1 = e; + es + e3 and Cohen-Macaulay
as an R-module. Also, setting 0 = Hompg(A, R), we have e;A = es A = e300 and e;Q =
€22 = e3A. Tt follows that inj dim A = inj dim A°? = d but /¢ = Homp(Q, Er(R/m)) 2
Hompg (A, Er(R/m)) in Mod-A.
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ON Q-PERFECT MODULES AND SEQUENCES OF BETTI NUMBERS

OTTO KERNER AND DAN ZACHARIA

ABSTRACT. Let R be a selfinjective algebra. In this paper we consider -perfect modules
and show how to use them to get information about the shapes of the Auslander-Reiten
components containing modules of finite complexity. We also look at the growth of the
sequence of Betti numbers for modules belonging to certain types of Auslander-Reiten
components.

1. INTRODUCTION, BACKGROUND AND MOTIVATION

The notion of complexity of a module has been around for more than thirty years. In
depth studies have started in parallel at around the same time for group representations
(see [1, 2, 7, 8, 21] for instance) and also in commutative algebra (see [4, 5, 16, 23] and
[24]). In both cases the interest in complexity arose from the desire to understand the
growth of minimal projective resolutions.

We will recall now the definition of complexity. For this definition we don’t need to
restrict ourselves to finite dimensional algebras, so R can be either a finite dimensional
algebra over a field k, or R = (R, m, k) can be a local noetherian ring with maximal ideal
m and residue field k. Let M be a finitely generated R-module and let

P o pr S pr o po P

be a minimal projective (free in the local case) resolution of M. The i-th Betti number
of M, denoted 3;(M), is the number of indecomposable summands of P°. Then, the
complexity of M is defined as

cx M = inf{n € N|B;(M) < ¢i"! for some positive ¢ € Q and all 7 > 0}

For instance cx M = 0 is equivalent to M having finite projective dimension, and cx M = 1
means that the Betti numbers of M are all bounded. If no such n exists, then we say that
the complexity of M is infinite (at some point in time people also used to say that the
complexity does not exist in this case). Let Q denote the syzygy operator. Then it is clear
from the definition that if M is a finitely generated R-module, then cx M = cx QXM , and
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an immediate application of the horseshoe lemma also shows that if 0 -+ A —- B — C — 0
is a short exact sequence of R-modules, then cx B < max{cx 4, cx C'}.

Note also that every Q-periodic module (that is a module M with the property that
OFM = M for some positive integer k) has complexity 1. In fact, Eisenbud has proved
that if R = kG is the group algebra of a finite group, or if R is a complete intersection,
then every module of complexity 1 is {2-periodic [10]. The converse need not hold in
general, not even in the symmetric local case; we have the following example due to Liu
and Schulz, [22]: Consider R = k(z,y)/(x? y?, vy + qyz) where 0 # ¢ € k is not a root
of 1, and let T be the trivial extension of R by Homy(R,k). Then 7 is a local symmetric
algebra. Let M be the T-module (z+y)T. For all i € Z the modules Q' M have dimension
4, and are pairwise non-isomorphic. Since 7' is symmetric, 7M = Q?>M holds, where 7 is
the Auslander-Reiten translation. Hence the module M has complexity 1 and is neither
Q- nor 7-symmetric. The module M therefore is contained in a ZA,, component. There
are also counterexamples in the commutative case (see Gasharov and Peeva [15]).

Throughout this paper, R will denote a finite dimensional selfinjective algebra over
an algebraically closed field k with Jacobson radical r. Then, by an induction on the
Loewy length, it follows readily from the definition and the above remarks, that for
every finitely generated R-module M, we have cx M < cx R/r. D will denote the usual
dualityD = Homy(—, k), and v will denote the Nakayama equivalence

v = DHompg(—, R)

Also, since R is selfinjective, then v€) = Qv. Moreover in this case, the Auslander-Reiten
translate 7 is given by 7 = vQ?. Since v is a dimension preserving equivalence that
takes projective modules into projective modules, we have that cx M = cxv M, hence
cx M = cx1M for every finitely generated R-module M.

The paper is organized as follows. In the second section we talk about the shape of the
Auslander-Reiten components containing modules of finite complexity as obtained in [20]
and about the methods used in approaching this problem. In particular, we talk about
a very special class of modules called (2-perfect. In section three, we study the existence
of Q-perfect modules. Finally, in the last section we look at some special cases where we
analyze the growth of the Betti numbers.

2. AUSLANDER-REITEN COMPONENTS CONTAINING MODULES OF FINITE COMPLEXITY
We start this section with the following easy observation:

Lemma 1. Let R be a selfinjective algebra and let Cs be a stable component of its
Auslander-Reiten quiver. The complezity is constant on Cs.

Proof. Let B — C € C, be an irreducible morphism. Then there exists an Auslander-
Reiten sequence 0 — 7C' - B & E — C' — 0 for some module . Hence we have
cxB < ex(B & () < max{cxC,cx7C} = e¢xC. Since there is an irreducible morphism
from 7C to B we use the same reasoning to get the reverse inequality. There is also an
“extreme” case to prove: the case when the only irreducible morphisms to modules C' € C;
are from projective modules. But it is not hard to prove that this corresponds to the case
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when R is a Nakayama algebra of Loewy length two. In that case, the only non projective
modules are the simple modules and they are all periodic, hence their complexity is 1. [

In order to describe the shapes of the stable Auslander-Reiten components containing
modules of finite complexity we recall first the notion of {2-perfect modules introduced
in [17, 18]. We observe first that if g: B — C is an irreducible epimorphism between
two nonprojective modules, then we have an induced irreducible map Qg: QB — QC,
see [3] for instance These modules have a particularly nice behaviour under the syzygy
operator. However, there is no reason why g should be again an epimorphism. Being
irreducible, we know though that it must be either an epimorphism or a monomorphism.
And one could ask the same question about an irreducible monomorphism f: when can
we guarantee that its syzygy €2f is gain an irreducible monomorphism? We have the
following definition:

Definition. An irreducible map g: B — C' is called Q-perfect if for all n > 0 the induced
maps Q"qg: Q"B — Q"C' are all monomorphisms or are all epimorphisms. An irreducible
map g is eventually Q-perfect if, for some i > 0, the induced map Q'g: A'B — QC
1s Q-perfect. An indecomposable non projective R-module C' is called Q)-perfect, if each
wrreducible map into C is Q-perfect. We say that C' is it eventually 2-perfect if some
syzyqy of C is an Q-perfect module.

It was proved in [17] that if g: B — C'is an irreducible epimorphism, then Qg is again an
epimorphism if and only if its kernel is not a simple module. Thus, an irreducible map
g: B — C is eventually (2-perfect, if and only if there exists a positive integer n such that
for each ¢ > n, the induced map Q'g: Q'B — Q'C has a non simple kernel. We have the
following consequence, see [18]:

Proposition 2. Let R be a selfinjective algebra having no periodic simple modules. Then
every nonprojective R-module is eventually 2-perfect. 0

We can specialize to the local finite dimensional case to obtain the following:

Corollary 3. Let R = (R, m,k) be a local selfinjective algebra, and assume that there are
modules of complezity two or higher. Then every indecomposable non projective R-module
15 eventually Q2-perfect. 0

One very nice feature of 2-perfect maps is that they behave very nice under the syzygy
operator. We have the following (see [17]):

Proposition 4. Let R be a selfinjective algebra, and let 0 — A — B % C — 0 be a
short exact sequence of R-modules where g is an irreducible Q2-perfect map. Then, for

each i > 0 we have induced exact sequences 0 — V'A — Q'B Y9 qic 0, and thus
Bi(B) = Bi(A) + 5:(C) for each i > 0. -

It turns out that every indecomposable not 7-periodic module of complexity one is even-
tually Q-perfect ([17]). The proof of this result is somehow involved and it would be
interesting to have a more direct and possibly elementary proof. Note also that a recent
result of Dugas ([9]), proves that if a simple module over a selfinjective algebra has com-
plexity 1, then it must be periodic. As mentioned above in the introduction, this need
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not hold for all modules with bounded Betti numbers so the assumption that the module
is simple, is essential.

We would also like to mention the following facts. Let C' be an Q-perfect module. Then
it is easy to show that 7C is also Q-perfect. Let now B be an indecomposable module,
and assume that there is an irreducible monomorphism B — C. Then it was shown in
[17] that B must also be Q-perfect. We would like to know the answer to the following
question:

Question 5. Let B and C be two indecomposable R-modules, let B — C' be an irreducible
epimorphism and assume C' is 2-perfect. Is B also 2-perfect?

We will first look at Auslander-Reiten components containing modules that are not even-
tually Q2-perfect since this is the much easier case. We will show that these components
must have a very predictable shape. First, we recall the following definition and theorem,
see [19].

Definition. Let R be an artin algebra and let C4 be a stable component of its Auslander-
Reiten quiver. A function d: C; — Q is additive if it satisfies the following properties:

(a) d(C) > 0 for each C € Cs.

(b) 2d(C) = > . d(E;) for each indecomposable non projective module C, where the
sequence 0 — 7C — @, E; P P — C — 0 is an Auslander-Reiten sequence and P is a
(possibly 0) projective R-module.

(c) d(C) = d(rC) for each C € C,.

The following theorem was proved by Happel-Preiser-Ringel in [19]:

Theorem 6. Let R be an artin algebra over an algebraically closed field and let Cs be
a stable component of its Auslander-Reiten quiver. Assume that there exists an additive
function on Cs. Then the tree class of Cs is either an extended Dynkin diagram of type
A, D, Eg, E7, Eg, or an infinite Dynkin tree of type As, Do o1 AX.

Assume that a non-periodic stable component C, contains a module C' that is not even-
tually Q-perfect. This means that some syzygy of C' is a simple periodic module. Let
us denote that module by S, and let n be the Q-period of S. It is clear that S is also
v-periodic since the Nakayama functor preserves lengths, so let m denote the v-period of
S. Let T=S®QS®...o0 'S, andlet W =T ®vT ... »v" T, It is now imme-
diate that 7W = W. Also, it is not hard to show that the function d: C; — Q given by
d(M) = dimHomp (W, M) is an additive function, see [13, 20]. Using the Happel-Preiser-
Ringel theorem and the above observations we have the following surprising application
(see [20]):

Theorem 7. Let R be a selfinjective algebra and let Cs be a stable component of the
Auslander-Reiten quiver of R containing a module that is not eventually $2-perfect. As-
sume in addition that the component is not T-periodic. Then C is of the form ZA where
A is of type An, Dn, E6, E’7, Eg, or an infinite Dynkin tree of type Do, or AZ. O

We should make a few remarks here. First, note the excluded case when the component
is 7-periodic is also well understood. They are either infinite tubes or they are periodic
components whose tree class is a Dynkin diagram (see [19, 26]). Note also that the theorem
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says that components of type ZA., cannot occur. In fact, we shall see in the next section
that we cannot have components of type ZA for A = Al, EG, E7, or Eg either. At this
point we would like to state a second question that has actually been around in the area
for some time.

Question 8. Let R be a selfinjective algebra and assume that its Auslander-Reiten quiver
contains a component of type ZA where A = An, Dm EG, E7, Eg, Do, or AZ. Does this
imply that R is a tame algebra?

The answer to the above question is affirmative in the group algebra case, see [12]. There-
fore it seems that given a selfinjective algebra, almost all the indecomposable modules are
eventually Q-perfect. We will discuss more about this phenomenon in the next section.

Considering Theorem 2.7, it turns out that a similar result holds for components con-
taining modules of finite complexity. The following result was proved in [20]. It is a
generalization of Webb’s theorem who had proved it first for group algebras [28].

Theorem 9. Let R be a selfinjective algebra and let Cs be a stable component of the
Auslander-Reiten quiver of R containing a module of finite complexity. Assume in addi-
tion that the component is not T-periodic. Then C is of the form ZA where A is of type
Ay, Dy, Eg, E7, Eg, or an infinite Dynkin tree of type Aoo, Doo o1 AZ. O

3. Q-PERFECT MODULES

In this section we continue the study of {:-perfect modules over a selfinjective algebra
and show that every component of type ZFE; for i = 6,7,8 or ZA; consists of eventually
-perfect modules. We also give an example of a component containing only modules
that are not Q-perfect, and discuss possible values for complexities. We also pose some
new questions. We will need the notion of 7-perfect irreducible map. It is obviously very
similar to the one of 2-perfect map: we say that an irreducible map ¢g: B — C'is called
T-perfect if for all n > 0 the induced maps 7"g: 7" B — 7"C' are all monomorphisms or
are all epimorphisms.

If C is a component of the Auslander-Reiten quiver of R, we will denote by C, its stable
part, and by QC the component containing all the modules of the form QX for X € C
non projective. We have the following:

Proposition 10. Let R be a selfinjective artin algebra and let C be an Auslander-Reiten
component. If the module X € C does not have any projective or simple predecessors in
C, then QX does not have either any simple or projective predecessors in 2C.

Proof. Assume that QX has a simple predecessor S in the component 2C. By applying
the inverse syzygy operator we obtain in C a chain of irreducible maps Q1S — --- — X.
Denote by P the indecomposable projective-injective with socle S. We have an Auslander-
Reiten sequence 0 — rP — P &rP/S — P/S — 0, and since P/S = Q1S we see that
P is a predecessor of X in C. Assume now that QX has a projective predecessor in its
component, so there exists a chain of irreducible maps P — P/S — -+ — QX where S
is the socle of P. As before, we have that P/S = Q1S so there is a chain of irreducible
maps in Q2C from S to Q2X. Applying the Nakayama functor, we obtain that 7.X, and
hence X have a simple predecessor since the Nakayama functor preserves lengths. 0
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One can prove in a similar fashion that for a selfinjective algebra, a component C contains
a simple (projective) module, if and only if the component QC contains a projective
(respectively simple) module.

Remark 11. Let C be an Auslander-Reiten component having a boundary, that is, a
component containing indecomposable modules whose Auslander-Reiten sequences have
indecomposable middle terms. Assume that C is not a tube, and let C' be an indecom-
posable module lying on the boundary of C. Without loss of generality we may assume
that neither C' nor 2C' has a simple module in the positive direction of their 7-orbit. This
means that if 0 - 7C — B — C — 0 is the Auslander-Reiten sequence ending at C,
then both maps 7C' — B and B — C are )-perfect and so C' is an 2-perfect module. So
we see that nonperiodic components with boundaries, always contain Q2-perfect maps and
Q-perfect modules. As we will see soon, this need not happen in components of the type
LZAZ.

Lemma 12. Let g: B — C' be an irreducible map that is not eventually 2-perfect, where
neither B nor C' has a nonzero projective summand. Then, there exists a positive integer

a such that for each i > 0 we have [((X'B) — ((Q2'C)| < a.

Proof. By taking enough powers of the Auslander-Reiten translate 7, we may assume
without loss of generality that g is onto, and that its kernel S is a simple periodic module.

Note that by applying {2 we obtain an induced exact sequence 0 — QB 2,00 5 S 0.
If the induced map Q2¢ is again a monomorphism, then we get the commutative exact
diagram

0 0 0

/ S

0B 20 [ ¢

0 — Pop Paoc Q 0
! | |

0—= QB -2 QC S0
} | |
0 0 0

hence the two modules L and S are isomorphic, and we have a short exact sequence
0 — 2B — Q*C — QS — 0. If on the other hand, the map Q2g is an epimorphism,
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then we obtain a commutative diagram

0 0
b
0—L——>0P2B-2020—>0

0—L— FPop— Poc —= S —0

| ! H
0— QB2 QC—>8§—>0

: }

0 0

and therefore we obtain a short exact sequence 0 — Q25 — QB — Q?C — 0. Continuing
in this fashion we see that for each integer ¢ > 0 we get either short exact sequences
0 — QS — OB — QIC — 0, or of the form 0 — Q'B — Q'C — Q'S — 0. By
letting @ = max;en{£(Q'S)}, our result follows, since the simple module S is periodic. [

The following (most probably) well-known lemma will be used to characterize Q2-perfect
maps in terms of the “r-perfect” property. As usual, if M is an indecomposable non-
projective module, a(M) denotes the number of non-projective indecomposable direct
summands of the middle term of the Auslander-Reiten sequence ending in M.

Lemma 13. Let A be a selfinjective artin algebra and let M be an indecomposable non
projective and non simple A-module with a(M) = 2 with n = (M) = ¢{(TM). Assume
also that there exists an irreducible map E — M where E 1is indecomposable and that
UE)=0¢M)—1.
(a) The middle term of the Auslander-Reiten sequence ending at M has no nonzero
projective summand.
(b) If E, M and TM are uniserial, then the remaining summand F of the Auslander-
Reiten sequence ending at M is uniserial too and its length is ((F) = ¢(M) + 1.

Proof. Let 0 > 7M — E® F & P — M — 0 be the Auslander-Reiten sequence ending
at M, where F' is indecomposable non projective, and P is a nonzero projective module.
Note first that P must be indecomposable since the algebra is selfinjective. Using now
the fact that 7M = rP, a length argument shows that

UF)=2n—l(E)—{¢P)=2n—(n—1)—(n+1)=0

contradicting our assumption. This proves the first part of the lemma.

For part (b), note first that the Auslander-Reiten sequence ending at M has the form
0—7M — E®F — M — 0 where £ and F' are both indecomposable and ¢(F') = n+ 1.
Hence 7M is a maximal submodule of F'. To prove the uniseriality of F', it suffices to
show that 7TM = rF. It is folklore (see also [17], Proposition 2.5.) that, since 7M is not
simple, we have an induced exact sequence

0 —=r7M -rEDrF —rM — 0.
Counting lengths, we get {(rF') = 2(n — 1) — (n — 2) = n. Since the image of 7M in F

contains the radical of F', it follows that 7M = rF', and F is also an uniserial module. [J
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We are now ready to prove the promised characterization of (2-perfect maps.

Proposition 14. Let R be a selfinjective algebra of infinite representation type, and let
C be an indecomposable module and let g: B — C be an irreducible map. Then g is
eventually Q-perfect if and only if both g and Qg are eventually T-perfect.

Proof. Obviously, if ¢ is eventually 2-perfect then both maps ¢ and 2g are eventually
T-perfect. For the reverse direction, assume that both maps g and (g are eventually
T-perfect, but that g is not eventually (2-perfect. By applying enough powers of €2, we
may assume that g, g are both 7-perfect, and that for each i > 0, the maps 7g are onto
and Q'rg are one-to-one. Thus, for each ¢ > 0, there exist simple modules S; and exact

sequences 0 — S; — Q¥ B ﬁ 0%C - 0and 0 — Q¥ B sz_+1>g Q*+HC = S; — 0. But
0%*2g is again surjective so we infer from the proof of lemma 13 that for each i > 0,
0%S; = S;;,. Since there are only finitely many nonisomorphic simple modules, the
sequence {S1,vSy = 751,253 = 725}, - - - } is eventually periodic. Therefore without loss
of generality we may assume that there is a periodic simple module S, say of period n,
whose 7-powers are all simple.

We claim first that the simple modules S, 7S, --- , 7% 1S lie on the boundary of a regular
tube C. To see this, observe first that we can deduce that the middle term E of the
Auslander-Reiten sequence 0 — 7S — E — S — 0 is indecomposable. Moreover, F
cannot be projective, since otherwise the middle term of each Auslander-Reiten sequence
ending at a 7S would be an indecomposable projective-injective module of length two.
This would imply that our algebra is selfinjective Nakayama of Loewy length two, contra-
dicting our assumption on the representation type of R. By construction, all the modules
in the same 7-orbit of C have the same length, and these lengths increase by one from
a T-orbit to the next one. We may apply now the previous lemma and infer that the
component is a regular component. By the second part of the lemma we get that all
the modules in C are uniserial, a contradiction since we cannot have uniserial module of
arbitrary large length. 0

Let A be a quiver. A vertex x of A is called a tip, if only one arrow of A starts or ends
at x. If C is a component whose stable part is of type ZA, then a module M corresponds
to a tip of A if and only if the Auslander-Reiten sequence ending at M is of the form:

O— T M—-YDPP—M-—0

for some projective (possibly zero) module P and indecomposable non projective module
Y. Assume that C is a connected component of the Auslander-Reiten quiver, and that
we have C; = ZA for some quiver A. Since an Auslander-Reiten component contains at
most finitely many indecomposable projective or simple modules, for each indecomposable
module M € C, there exists a positive integer r such that 7" M has no projective or simple
predecessors in C. We have the following immediate consequence:

Corollary 15. Let C, be a stable component of type ZA and let M be an indecomposable
module in Cy. Assume that M corresponds to a tip of A. Then M 1is eventually €2-
perfect. O

We have the following:
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Proposition 16. Let C, be a stable component of type ZA where A is one of FEs, E-, B,
Ay, Ay. Then every module in Cy is eventually Q2-perfect.

Proof. The case where A = A, was treated in [20], (Theorem 2.11. and Lemma 2.6.).
Consider now the only case when the connected component ZA has no tip, that is the
case when A = A, that is, the Kronecker quiver. Let M € C, with no projective or
simple predecessors. The Auslander-Reiten sequence ending at M is of the form

[91,92]

0o MR peplesly g

and it is obvious that all of the irreducible maps fi1, f2, g1, go are epimorphisms, or all are
monomorphisms. We claim that they are all epimorphisms. If they are monomorphisms,
then in the Auslander-Reiten sequence

T 77— ¢ b}
078 e B p o
the maps 7¢;,7gs are also monomorphisms. Continuing in the positive 7 direction we
obtain an arbitrary long chain or irreducible monomorphisms

T Bt M 7' Es o s Es M

which is absurd. We can make the same argument for XM, and it follows that M is
Q-perfect.

Assume now that A is one of the remaining finite quiver E;, take M in Cy with a(M) = 3,
such that M has no projective or simple predecessor in C and let Cy; be the full subquiver
of C, defined by the vertices which are predecessors of M. If X € Cy with o(X) =1
(hence X corresponds to one of the 3 tips of A, then X is Q-perfect by Remark 3.2, the
irreducible map ¥ — 7.X is an Q-perfect epimorphism, and 7X — Y is injective and
Q-perfect. Consequently all irreducible maps between indecomposable modules in Cy; are
Q-perfect, hence all indecomposable modules N € Cj; with a(N) < 2 are Q-perfect. Take
finally V' € Cp; with a(V) = 3 and let

[

2]t -
0— 7 V2l gy neel g

the Auslander-Reiten sequence ending in V. The irreducible maps f; all are surjective,
while the g; are injective. Choose j < 3, let &, X; =Y @& X, and let [g,¢;]: Y & X; =V
be the sink map. Since f; is an {2-perfect epimorphism, the same holds for the ”parallel”
morphism g, hence V' is (2-perfect, too. U

As we will see very soon, it turns out that if C is a component in which no irreducible
map is (2-perfect, then every non projective module in C has complexity at most 2. In
fact, we have a slightly more general result. We start with the following:

Proposition 17. Let C be an indecomposable non projective, and non T-periodic module
and assume that there exist irreducible morphisms B — C' and 7C' — B that are not
eventually Q-perfect. Then, there exists a positive integer o such that for each n > 0,
((Q*"C) < U(C) + na. In particular, C and every nonprojective module in the same
Auslander-Reiten component has complexity 2.
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Proof. Observe first that for each indecomposable non projective R-module M, we have
((Q2M) = ((tM). Now, applying the previous Lemma 3.3, we obtain for each i > 0
that £(Q'B) < ((Q'C) + /2, and £(Q2C) < L(2'B) 4+ a/2 for some positive number a.
Hence, for each i > 0 we have /(Q02C) — ¢(Q'C') < . In particular, for each n > 0 we
have ((Q**C') — ¢(C') < na. This means that the complexity of C' is bounded by 2. If
cx C' = 1, then, since it is not 7 periodic, the module C' must lie in a ZA,-component
by [17], but for these components every irreducible map is eventually Q-perfect. Hence
cx C = 2. O

We obtain the following immediate consequence: assume that we have a component C,
whose stable part C; is of the form ZAZ, and assume also that there exists an Auslander-
Reiten sequence 0 — 7C' - E @ F — C' — 0 where E and F' are indecomposable, and
neither £ — C nor F' — (' is eventually (2-perfect. Observe also that in this case, no
irreducible map in C, between indecomposable modules is eventually 2-perfect. It follows
immediately from the previous proposition that every non projective module in C has
complexity 2. This situation can actually occur. The following example is due to Ringel.

Example 18. Let R be the finite dimensional selfinjective string algebra given by the
quiver

modulo the relations a8 = 0, 0y = 0, yaya = 050 and ayaya = 68650 = 0. There
exists a ZAZ component where none of the irreducible maps between the indecomposable
modules is eventually Q-perfect, (or even 7-perfect). For instance, consider the string
module M = r3P,. It is easy to see that M is not eventually Q-perfect, that (M) = 2,
and that no irreducible map from an indecomposable module to M is eventually Q-perfect.
Moreover, by [6], M lies in a component consisting entirely of string modules. But the
only string modules lying on the boundary of an Auslander-Reiten component can lie on
tubes (see [12], 11.6.4), so this module belongs to a ZA component. Note also that the
simple modules S; and S5 are (2-periodic of period 6, and that they both lie on tubes of
rank 3.

Example 19. Following Erdmann [12], for each positive integer m, we denote by A,, the
local symmetric string algebra over a field K,
Am = Kz, y)/(2*, (2y)" " = (y2)™ ", 2% — (y2)"y, o)

If the characteristic of K is 2, and m+1 = 2" > 4, then the algebra A,, modulo its socle is
isomorphic to the group algebra of the semidihedral group of order 2"*2 modulo its socle.
Motivated by this fact, Erdmann calls this algebra semidihedral. She proves that A,, has
infinitely many stable components of type ZA%Y and ZD., ([12], Propositions I1,10.1 and
I1,10.2), and that the other stable components are tubes of rank 1 and 2. Moreover, she
shows that the unique simple module lies in a component of type Z D, so it is not periodic.
Therefore, every indecomposable non projective A,,-module is eventually Q-perfect by
[18]. Note that in the same book, Erdmann generalizes the notion of semidihedral algebra

to that of algebras of semidihedral type and one also obtains interesting examples for the
non local case ([12], Lemma VIII. 2.1.).
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3.1. ZD,,-components. We assume for the remainder of this section that C is a con-
nected Auslander-Reiten component whose stable part is of the form ZD.,. Let C' be an
indecomposable module lying on the boundary of C. Then, without loss of generality we
may assume that C' is (2-perfect, by Remark 11. In this context we have the following:

Lemma 20. Let A and B be two indecomposable modules lying on the boundary of C with

Auslander-Reiten sequences 0 — 1A TP A0 and0 =B M 2B o,
Then the irreducible map [g1, g2)": M — A @ B is an epimorphism if and only if the map
[f1, fo]: TA® 7B — M is also an epimorphism.

Proof. Counting lengths, we have ¢(7A)+((A)+((TB)+{(B) = 2¢(M). This means that
((A) +¢(B) < ¢(M) if and only if £(TA) + {(TB) > {(M). The result follows, since an
irreducible map is either a monomorphism, or an epimorphism. 0

Keeping the notation from the lemma, we may clearly assume that the modules A and
B lying on the boundary of the component are 2-perfect, and that the Auslander-Reiten
sequence ending at M is0 - 7M — TA®TB® 17X — M — 0 for some indecomposable
module X. Since the irreducible epimorphisms M — A and M — B are Q-perfect, then
the irreducible epimorphisms 7A ® 7X — M and 7B @& 7X — M are also ()-perfect
being “parallel” to Q-perfect epimorphisms. Similarly, the irreducible monomorphisms
™M — 17X ®717A and TM — 7X @ 7B are also 2-perfect. Putting together our remarks,
we have:

Proposition 21. Let C be an Auslander-Reiten component whose stable part is of type
Z.D.,. Assume that there is an irreducible map between indecomposable non projective
modules X — Y that is not eventually Q-perfect. Then each non projective module in C
has complexity 2.

Proof. From the shape of our component, it follows by looking at “paralle]” maps one at a
time, that we may assume that there exists an irreducible map of the form 7M — T A®7TB
or TA® 7B — M that is not eventually -perfect, where A and B are indecomposable
modules lying on the boundary of C, and M is an indecomposable module. Observe that,
neither TM — 7A ® 7B nor TA ® 7B — M can be eventually Q-perfect by Lemma 20.
Being of type ZD., means also that C cannot contain modules of complexity 1 by [17].
We apply now 17. and the result follows. 0

We would like to propose the following questions summarizing the discussion in the first
three sections. The first one has been around for some time and is due to Rickard [25].

Questions 22. Let R be a selfinjective algebra.

(1) Assume that there exists an indecomposable R-module of complexity greater than
2. Is R is of wild representation type?

(2) Assume that R has stable components of type ZD, or ZAZ. Is R of tame repre-
sentation type? Must these components have complexity 27

(3) Assume that R has a stable component of type ZA. Is R necessarily of wild
representation type?

The answer to the first question is known to be yes if R admits a theory of support
varieties, for instance in the group algebras case. See also [14]. The answer to the second
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and third question is also known to be affirmative in the group algebra case [12] but
almost nothing is known outside this case.

4. GROWTH OF BETTI NUMBERS. THE LOCAL CASE

Let us return to the situation where R = (R, m, k) is a local noetherian k-algebra. The
following questions were among questions posed in the late 1970s and the early 1980s.
They are still open even in the commutative artinian case, and even if we also add the
selfinjective assumption.

Questions 23. Let R = (R, m, k) be a local noetherian k-algebra. Let M be an inde-
composable finitely generated R-module of infinite projective dimension.

(1) Assume that M has complexity 1. Is the sequence of Betti numbers {3;(M)};
eventually constant?
(2) Is the sequence of Betti numbers {3;(M)}; eventually nondecreasing?

The first question has an affirmative answer if R is a complete intersection ([10]). In the
radical square zero case the answer is also affirmative. We sketch the proof below (see
also [15])

Proposition 24. Let R = (R, m,Kk) is a local artinian ring with m? = 0 and let M be a
finitely generated R-module with cx M = 1. Then the Betti numbers of M are eventually
constant.

Proof. Let F be a finitely generated free R-module. We observe first that since m? = 0,
every submodule of mF' is semisimple [3], so all the syzygies of M must be semisimple. Let
k denote the largest possible value of a Betti number of M and assume that it corresponds
to the i-th Betti number, that is §;(M) = k. This means that the i-th syzygy of M is a
direct sum of k simple modules, hence f;11(M) > k. Our choice of k implies now that
Bit;(M) =k for all j > 0 and the result follows. O

Question 1 also has an affirmative answer in the case where R = (R, m,k) is a com-
mutative Gorenstein artinian ring with m* = 0, see [15]. Question 2 is also pretty much
unresolved. In the local commutative artinian case, Gasharov and Peeva have shown
([15]) that for a finitely generated module M, we have the following:

Bir1i(M) = (2e — {(R) + h — 1) 3i(M)
for large enough i. Here e = dimy m/m?, h is the Loewy length of R, and ¢(R) is the
length of R. They have also shown that if the constant 2e — ¢(R) + h — 1 > 2, then the
sequence of Betti numbers has exponential growth. However it is not hard to produce
examples of local commutative artinian rings where the constant 2e — ¢(R) + h — 1 is

a negative number. We also want to mention the following two results due to Ramras
23, 24]:

Theorem 25. Let (R,m,k) be a reqular local ring of dimension at least two, and let
S = R/mF* for some k > 2. Let M be a finitely generated non free S-module. Then, for
each i > 1 we have B2 ,(M) > 35 (M). O

and

f87f



Theorem 26. Let R be a local artinian ring, and let M be a finitely generated non free
R-module. Then, for each i > 1 we have

{(socR

URBM) > Bun(00) > 0T 5 a1
((R)

Observe that if we assume in the last theorem that R is also selfinjective, then its socle
has length equal to 1, so we don’t get any extremely useful information about the growth
of the sequence of Betti numbers.

It turns out that in certain cases we can prove a similar theorem to Ramras’ first
theorem. For this type of result we might restrict ourselves only to the local selfinjective
case R = (R,m,k) but this is not necessary. Recall that since R is selfinjective, then
for each integer n > 0 we have that 5;(TM) = B;1o(M) if M is an indecomposable non
projective R-module. We will assume that cx M > 1. Next we want to make sure that the
stable component of M consists of modules that are eventually Q-perfect. As mentioned
in the introduction, this can be easily achieved if we assume that every simple R-module
is non periodic (ecxk > 1 for the local case) by [18].

We have the following:

Lemma 27. Let R be a selfinjective algebra and let M be a finitely generated non projective
indecomposable R-module. Assume that the stable component of the Auslander-Reiten
quiver containing M is of the form ZAZ and that it consists entirely of eventually $2-
perfect modules. Then the sequences {2, (M)}, and {Poni1(M)}, are eventually strictly
INCTeasing.

Proof. Let M be a module in this component. We may assume that M is Q-perfect by
taking enough powers of theAuslander-Reiten translate. The Auslander-Reiten sequence
ending at M must have the following form [18, 20]

X

X
M

\Y/

M

so we have an epimorphism 7M — M that is the composition of two ()-perfect epi-
morphisms. But we can infer from 4 that whenever we have an 2-perfect epimorphism
f: B — C, then for each i we have 3;(B) > f;(C) since §;(Kerf) > 0. This implies that
Bita(M) = Bi(tM) > Bi(X) > f;(M) for all i > 0 and the result follows. O

We now treat the D, case.

Lemma 28. Let R be a selfinjective algebra. Let Cq be a stable component of the Auslander-
Reiten quiver of the form ZD, consisting entirely of eventually Q2-perfect modules.
(1) Let M be a module in Cs not lying on the border of the component. Then the
sequences {Pon (M)}, and {Poni1(M)}, are eventually strictly increasing.
(2) Let Y and Z be two indecomposable modules in Cy lying in the two different -
orbits that form the border of the component. Then the sequences {fon(Y & Z)},
and { Pan+1(Y & Z)},, are eventually strictly increasing.
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Proof. Let M be an indecomposable module in this component. We may assume that M
is Q-perfect by taking enough powers of the Auslander-Reiten translate. If the Auslander-
Reiten sequence ending at M has three indecomposable terms in the middle, the Auslander-
Reiten sequence ending at M must have the following form [18, 20]

X

AN
™™ Y= M

e

so as in the previous lemma we have an epimorphism 7M — M that is the composition
of two Q-perfect epimorphisms. and f;1o(M) = Bi(tM) > Bi(M) for all ¢ > 0. So
the sequences of odd ,and of even Betti numbers for M are strictly increasing. Next we
look at the module X. It is clear that we may assume that X is also 2-perfect. The
Auslander-Reiten sequence ending at X is of the form

017X —>"TMdX —-X—=0

where the irreducible map X; — X is an epimorphism. We proceed as in the proof of
the previous lemma and obtain that for large enough n, the sequences {/2,(X)}, and
{Ban+1(X)}n are strictly increasing. We proceed by induction along the sectional path of
irreducible epimorphisms

e Xy == Xo = X 2 X

and we conclude that for each module X; the two sequences {52, (X;)}, and {Ban41(X;)}n
are eventually strictly increasing. This implies that the result holds for every module in
the component, whose Auslander-Reiten sequence has the middle term decomposing into
two indecomposable summands. This proves the first part of the lemma. By 20 we see
that we have a composition of two irreducible epimorphisms fro 7Y & 77 — Y & Z and
we may also assume that both Y and Z are Q-perfect. This shows that {52,(Y @ Z)},
and {fan+1(Y & Z)}, are eventually strictly increasing. O

For the case when the stable component is of type Zﬁn or Zﬁn we proceed as above. We
have the following similar proposition:

Proposition 29. Let R be a selfinjective algebra and let M be a finitely generated non
projective indecomposable R-module. Assume that the stable component of the Auslander-
Reiten quiver containing M is of the form ZA,, or ZD,, and consists entirely of eventually
Q-perfect modules. Assume that the Auslander-Reiten sequence ending at M has a de-
composable middle term. Then the sequences { P, (M)} and {Bon1(M)}n are eventually
mereasing.

Proof. Note first that M has complexity 2, by [20]. We use now the fact that a component
of type ZA, is of tree type AY and use the same argument as above. For the case when
the component is of type Zﬁn with n > 4, we can use the same proof as in the Zﬁoo case,
so it remains to look at the case when n = 4. In that case, if M is an Q-perfect module,
by [18] the Auslander-Reiten sequence ending at M has the form

T
0 — M [ f1,f2,f3,fa]

[91,92,93,94 ]
——

Ei®E,® EsD Ey M —=0
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where each f; is an irreducible epimorphism and each g; is an irreducible monomorphism.
We show first that at least one of the two induced irreducible maps E; & Ey — M or
E3 @& Ey — M is an irreducible epimorphism. Assume they are both monomorphisms.

Then both ¢(E, & Es) < {(M) and {(E3 & Ey) < £(M) hence
O(M) 4+ U(TM) = L(Ey) + ((Ey) + ((Es) + ((Ey) < 20(M)

implying ¢(7M) < ¢(M). Since M is Q-perfect we can repeat this argument and we obtain
that the sequence {¢(7"M)} is strictly decreasing; clearly a contradiction. Therefore we
may assume that F3 @& Ey; — M is an irreducible epimorphism. This means that we can
look at our sequence as being

[flanufé]T 7927g(,3]

0 M B @ By B, 2225 g

where Ef = E3 @ E4. Now we obtain again from [18] that the induced map fj is an
irreducible epimorphism and since M is Q-perfect, §;(tM) > 5;(M) for all i > 0. The
result follows now immediately. U
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QUANTUM UNIPOTENT SUBGROUP AND DUAL CANONICAL
BASIS

YOSHIYUKI KIMURA

ABSTRACT. In a series of works [13, 16, 14, 15, 18, 19], Gei-Leclerc-Schréer defined
the cluster algebra structure on the coordinate ring C[N(w)] of the unipotent subgroup,
associated with a Weyl group element w. And they proved cluster monomials are con-
tained in Lusztig’s dual semicanonical basis S*. We give a set up for the quantization
of their results and propose a conjecture which relates the quantum cluster algebras in
[3] to the dual canonical basis B"P. In particular, we prove that the quantum analogue
O4[N(w)] of C[N(w)] has the induced basis from B"P, which contains quantum flag mi-
nors and satisfies a factorization property with respect to the ‘g-center’ of O,[N(w)].
This generalizes Caldero’s results [4, 5, 6] from finite type to an arbitrary symmetrizable
Kac-Moody Lie algebra.

1. INTRODUCTION

1.1. The canonical basis B and the dual canonical basis B"’. Let g be a sym-
metrizable Kac-Moody Lie algebra, U,(g) its associated quantized enveloping algebra,
and U (g) its negative part. In [24], Lusztig constructed the canonical basis B of U_ (g)
by a geometric method when g is symmetric. In [21], Kashiwara constructed the (lower)
global basis G'°¥(B(00)) by a purely algebraic method. Grojnowski-Lusztig [20] showed
that the two bases coincide when g is symmetric. We call the basis the canonical ba-
sis. There are two remarkable properties of the canonical basis, one is the positivity of
structure constants of multiplication and comultiplication, and another is Kashiwara’s
crystal structure B(oco), which is a combinatorial machinery useful for applications to
representation theory, such as tensor product decomposition.

Since U (g) has a natural pairing which makes it into a (twisted) self-dual bialgebra, we
consider the dual basis B'" of the canonical basis in U (g). We call it the dual canonical
bastis.

1.2. Cluster algebras. Cluster algebras were introduced by Fomin and Zelevinsky [10]
and intensively studied also with Berenstein [11, 1, 12] with an aim of providing a concrete
and combinatorial setting for the study of Lusztig’s (dual) canonical basis and total pos-
itivity. Quantum cluster algebras were also introduced by Berenstein and Zelevinsky [3],
Fock and Goncharov [8, 9, 7] independently. The definition of (quantum) cluster algebra
was motivated by Berenstein and Zelevinsky’s earlier work [2] where combinatorial and
multiplicative structures of the dual canonical basis were studied for g = sl,, (2 <n < 4).
In [1], it was shown that the coordinate ring of the double Bruhat cell contains a cluster
algebra as a subalgebra, which is conjecturally equal to the whole algebra.

The detailed version of this paper [22] will be published from Kyoto Journal of Mathematics.
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A cluster algebra A is a subalgebra of rational function field Q(xq,z, -+ ,z,) of r
indeterminates which is equipped with a distinguished set of generators (cluster variables)
which is grouped into overlapping subsets (clusters) consisting of precisely r elements.
Each subset is defined inductively by a sequence of certain combinatorial operation (seed
mutations) from the initial seed. The monomials in the variables of a given single cluster
are called cluster monomials. However, it is not known whether a cluster algebra have a
basis, related to the dual canonical basis, which includes all cluster monomials in general.

1.3. Cluster algebra and the semicanonical basis. In a series of works [13, 16, 14,
15, 18, 19], Geif}, Leclerc and Schréer introduced a cluster algebra structure on the coor-
dinate ring C[N(w)] of the unipotent subgroup associated with a Weyl group element w.
Furthermore they show that the dual semicanonical basis S* is compatible with the inclu-
sion C[N(w)] C U(n);, and contains all cluster monomials. Here the dual semicanonical
basis is the dual basis of the semicanonical basis of U(n), introduced by Lusztig [25, 28],
and “compatible” means that S* N C[N(w)] forms a C-basis of C[N(w)]. It is known
that canonical and semicanonical bases share similar combinatorial properties (crystal
structure), but they are different. Gei}, Leclerc and Schréer conjecture that certain dual
semicanonical basis elements are specialization of the corresponding dual canonical basis
elements. This is called the open orbit conjecture.

Acknowledgement. The author is grateful to Professor Osamu Iyama for giving oppor-
tunity to talk in Okayama University.

2. QUANTUM UNIPOTENT SUBGROUP AND THE DUAL CANONICAL BASIS

2.1. Notations. Let g be a symmetrizable Kac-Moody Lie algebra and g = n, &hdEn_ =
HhEP,ca 9a be its triangular decomposition and its root decomposition. Let W be a Weyl
group which is associated with g. Let AL be the set of positive (resp. negative) roots. For
a Weyl group element w € W, we set A(w) := A, NwA_={a e A, [wla<0} CA,.
For a Weyl group element w, let @ = (11,19, ...,17) be a reduced expression of w. We set
Br = Si, ... Si,_, (v, ) for each 1 < k < £. Then it is known that A(w) = {6 | 1 < k < (}.
Let n(w) be the nilpotent Lie subalgebra which is associated with A(w), that is

n(w) = @ 98-

1<k<t

For i € I, we have Lusztig’s braid symmetry 7; on U,(g), see [26, Chapter 32] for
more details. Tt is known that {7;};c; satisfies braid relations. Hence the composite
T, :=1T;, ---T;,does not depend on a choice of reduced word W = (11,49, ...,1¢) of w. In
this article, we set T; =T} _,.

2.2. Poincaré-Birkhoff-Witt basis. Let g be a symmetrizable Kac-Moody Lie algebra
and U,(g) be the corresponding quantized enveloping algebra. We have a standard gen-
erators {E;}ier U {¢"} U {F;}ies Let U, (g) be the Q(g)-subalgebra which is generated
by {Fi}ier- It is known that U_ (g) is isomophic to the Q(g)-algebra which is defined by
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{F;}icr and g-Serre relations

1—a;

<0

k (1—ai;—k)
(=) FORETY,

k=0

where {a;;} is the generahzed Cartamn matrix which defines g and Fi(k) is the divided
power which is defined by F* := FF¥/[k];. Let U, (9)q be the Q[¢*']-subalgebra which

is generated by {F }161 nezsy- This Q[g=']- algebra is called Lusztig’s Q[¢*!]-form.

We define root vectors associated with a reduced wordw@ = (i1,19,...,10) for a Weyl
group element w € W. See [26, Proposition 40.1.3, Proposition 41.1.4] for more detail.
For a Weyl group elementw € W and a reduced word @ = (i1,19,...,1p) , we define [y
as above. We define the root vectors F(fy) associated with 8 € A(w)

F(ﬂk) = Til . Ekfl(Flk)
It is known that F(8x) € U, (g) for all 1 < k < ¢. We also define its divided power by

F(cBr) =1, .. .ﬂk_l(FZ(k)) For an ¢ tuple of non-negative integers ¢ = (¢y, ca, ..., ¢), we
set

F(c, ﬁ) = F(cfBe) - Flef).
It is known that F(c, @) € U, (9)o-

Theorem 1 (|26, Proposition 40.2.1, Proposition 41.1.3]).

Theorem 2. (1) Then {F(c ﬁ)}cezf forms a Q(q)-basis of a subspace defined to be

U, (w) of U, (g) which does not depend on .
(2) We have F(c, W) € U, (g)q for all c € ZX,,.

We consider the total order on A(w) as follows:

fr < Bo <o < By

We have the following convex properties on {F'(S)}1<k<e.

Theorem 3 ([29, Proposition 3.6], [23, 5.5.2 Proposition]). For j < k, let us write

F(e;B))F(cxBe) — a~ O W F () Fle;B) = Y foF (W

)
c EZZO

fe € Q(q). If for # 0, then c; < ¢; and ¢}, < ¢}, with ngmgk B = ;B + B

By the above formula, it is shown that U, (w) is a Q(q)-algebra which is generated by
{F(Br) hr<n<e-

2.3. PBW basis and crystal basis. Let £(co) be the crystal lattice of U;(g) and
B(o0) be the crystal basis and B the canoncial basis.
The following result is due to Saito and Lusztig.
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Theorem 4 ([30, Theorem 4.1.2], [27, Proposition 8.2]). (1) We have F(c, @) € £(o0)

and
b(c, W) := F(c, W) mod ¢L(c0) € B(c0).
(2) The map Z5, — B(co) which is defined by ¢ — b(c, W) is injective and the image
B(w) does not depend on the choice of W

2.4. Dual canonical basis. Let (, )x be the inner product on U, (g) defined by Kashi-
wara and U_ (g)g be the dual Q[¢*']-lattice of U, (g)g. Let B"be the dual basis of B
with respect to (, )k and this is called dual canonical basis. We set

F'(c, W) :=

Proposition 5. (1) We have F"P(8;) € B"P.
(2) Let U, (w)g be the Q[g™']-span of {F*™(c, ﬁ)}cezzzo. Then U, (w)g is the Q[g*']-

algebra generated by { F™*(Bk) b1<k<e-

Using the above proposition we obtain the following compabitility. This is a quantum
analogue of the Gei}-Leclerc-Schroér’s result.

Theorem 6. Let B™(w) := B NU_ (w)y’. Then B (w) is a Qlg*"]-basis of B"™(w).

2.5. Specialization at ¢ = 1. For the Lusztig form, we have the specilization isomor-
phism C®ge+1)U; (g)g ~ U(n). Dually, we have the C-algebra isomorphism ®"P: C®gq+1]
U, (9)g =~ CIN].

Under the isomorphism C ®qp+11 U, (g)g” =~ C[N], as a corollay of the above theorem,
we obtain the following result for U, (w) which concerns the specialization at ¢ = 1.

Corollary 7. Under the C-algebra isomorphism ®"P, we have
C &g+ Uy (w)g” = CN(w)],

where N(w) is the unipotent subgroup associated with the nilpotent Lie algebra n(w).

3. QUANTUM CLOSED UNIPOTENT SUBGROUP AND DUAL CANONICAL BASIS

For a Weyl group element w € W and a reduced word @ = (i1,...,1), we set

U, = Y QF"™...F".

This is called Demazure-Schubert filtration. It is known that U, is compatible with the
canonical basis B, that is BN U, is a Q[¢*!]-basis of U,. We denote the correponding
subset by B(w,c0). Hence we set

O4[Nu] == Uy (9)/(U,)",

q

where (U,)"* is the annhilator of Uy, with respect to Kashiwara’s bilinear form (, )x-.
Since (U w)l is compatible with B"P, the canonical projection induces the dual canonical
basis on O[N]
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Theorem 8. (1)Let U, (w) — U (g) — Oy[Ny| be the inclusion and the canonical
projectinon. Then the composite is monomorphism of algebra.

(2) We have B(w) C B(w, c0).

4. QUANTUM FLAG MINOR AND ITS MULTIPLICATIVE PROPRERTIES

For a dominant integral weight A € P, let V' (\) be the corresponding integrable highest
weight module with highest weight vector uy. We have symmetric bilinear form (, ) on
V(A). Let my: U (g) — V(A) be the projection defined by = +— zuy. Let jy be dual of
Ty, that is jy: V(A) <= U_(g). For a Weyl group element w € W, we have the extremal
vector u,, of weight A. It is known that u,,) is contained in the canoical basis and the
dual canoncial basis. We set quantum unipotent minro D, yby

Dw,\,A = j)\(uw)\)-

It is known that D, € B"P. The following is main result in our study.

Theorem 9. (1) Forw € W and A € Py, we have Dy x € U (w).
(2) For arbitrary b € B(w), there exists N € Z such that ¢¥NG"(b)Dyxx € B (w),
there G"P(b) is the dual canonical basis element which is associated with b € B(w).

Using the above theorem, we obtain the following quantum seed.
For a Weyl group element w, a reduced word @ = (i1, 4y, . ..,i¢) and ¢ = (c1,...,¢) €
75, we set

@ o
D*(c) == H Dy, si\ exwiy sexws, -

1<k<t
Then {Dl_‘;(c)}cezz> , forms a mutually commmuting familty and {Dm(c)}cezg , is linear

independent over Z[éil]. {DW(C)}ceZe> , can be considered as a quantum analogue of the

initial seed in [18] and we can form the corresponding quantum cluster algebra by it. Our
conjecture is an Q[¢*!]-algebra isomorphism between the quantum cluster algebra and
the quantum unipotent subgroup O,[N(w)] and the set of quantum cluster monomials is
contained by the dual canonical basis B"?(w). This is just a quantum analogue of [18§]
and this is compatible with their open orbit conjecture for symmetric g. Recently the
Q(g)-algebra isomorphism is obtained by [17].
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WEAKLY CLOSED GRAPH

KAZUNORI MATSUDA

ABSTRACT. We introduce the notion of weak closedness for connected simple graphs.
This notion is a generalization of closedness introduced by Herzog-Hibi-Hreindottir-
Kahle-Rauh. We give a characterization of weakly closed graphs and prove that the
binomial edge ideal Jg is F-pure for weakly closed graph G.

Key Words:  binomial edge ideal, F-purity, weakly closed graph.
2000 Mathematics Subject Classification:  05C25, 05E40, 13A35, 13C05.

1. INTRODUCTION

This article is based on [6].

Throughout this article, let £ be an F-finite field of positive characteristic. Let G be
a graph on the vertex set V(G) = [n| with edge set E(G). We assume that a graph G
is always connected and simple, that is, G is connected and has no loops and multiple
edges. And the term “labeling” means numbering of V(G) from 1 to n.

For each graph G, we call Jg = ([1,7] = X;Y; — X;Y; | {i,j} € E(G)) the binomial
edge ideal of G (see [4], [8]). Jg is an ideal of S := k[Xy,..., X, Y1,...,Y,].

2. WEAKLY CLOSED GRAPH

In this section, we give the definition of weakly closed graphs and the first main theorem
of this chapter, which is a characterization of weakly closed graphs.

Until we define the notion of weak closedness, we fix a graph G and a labeling of V (G).

Let (aq,...,a,) be a sequence such that 1 < a; <n and a; # a; if i # j.

Definition 1. We say that a; is interchangeable with a;iq if {a;,a;41} € E(G). And we
call the following operation {a;, a;11 }-interchanging :

(ah sy A1, Qs Qg 1, At 2,5 - - - 7%) — (al, ey A1, Qg 1, Ay Ay 25 - - 7%)
Definition 2. Let {i,5} € E(G). We say that i is adjacentable with j if the following
assertion holds: for a sequence (1,2,...,n), by repeating interchanging, one can find a
sequence (ay,...,a,) such that ay =i and a1 = j for some k.

Example 3. About the following graph G, 1 is adjacentable with 4:

1 2

The detailed version of this paper will be submitted for publication elsewhere.
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Indeed,

{1,2} {3,4}

(1,2,3,4) (2,1,3,4) (2,1,4,3).

Now, we can define the notion of weakly closed graph.

Definition 4. Let G be a graph. G is said to be weakly closed if there exists a labeling
which satisfies the following condition: for all 7, j such that {7, 7} € E(G), i is adjacentable
with j.

Example 5. The following graph G is weakly closed:

Indeed,
(123456) (2,1,3456) (2,1,4356)

(1,2,3,4,5,6) 2 (1,2,4,3,5,6) 2% (1,2,4,3,6,5).
Hence 1 is adjacentable with 4 and 3 is adjacentable with 6.

Before stating the first main theorem of this chapter, which is a characterization of
weakly closed graphs, we recall that the definition of closed graphs.

Definition 6 (See [4]). G is closed with respect to the given labeling if the following
condition is satisfied: for all {7, j},{k,l} € E(G) with i < j and k < [ one has {j,l} €
E(G)ifi=kbut j#I, and {i,k} € E(G) if j =1 but i # k.

In particular, G is closed if there exists a labeling for which it is closed.

Remark 7. (1) [4, Theorem 1.1] G is closed if and only if Ji has a quadratic Grobner
basis. Hence if G is closed then S/Jg is Koszul algebra.
(2) [2, Theorem 2.2] Let G be a graph. Then the following conditions are equivalent:
(a) G is closed.
(b) There exists a labeling of V(G) such that all facets of A(G) are intervals
[a,b] C [n], where A(G) is the clique complex of G.

The following characterization of closed graphs is a reinterpretation of Crupi and Ri-
naldo’s one. This is relevant to the first main theorem of this chapter deeply.

Proposition 8 (See [1, Proposition 2.6]). Let G be a graph. Then the following conditions
are equivalent:
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(1) G is closed.

(2) There exists a labeling which satisfies the following condition: for alli,j such that
{i,j} € E(G) and j > i+ 1, the following assertion holds: for all i < k < j,
{i,k} € E(G) and {k,j} € E(G).

Proof. (1) = (2): Let {i,5} € E(G). Since G is closed, there exists a labeling satisfying
{i,i+1},{i+1,i+2}....{j — 1,5} € E(G) by [HeHiHrKR, Proposition 1.4]. Then
we have that {i,7 + 2},...,{i,j — 2},{i,7 — 1} € E(G) by the definition of closedness.
Similarly, we also have that {k,j} € E(G) for all i < k < j.

(2) = (1): Assume that i < k < j. If {i,k},{i,j} € E(G), then {k,j} € E(G)
by assumption. Similarly, if {i,j},{k,j} € E(G), then {i,k} € E(G). Therefore G is
closed. O

The following theorem characterizes weakly closed graph.

Theorem 9. Let G be a graph. Then the following conditions are equivalent:

(1) G is weakly closed.

(2) There exists a labeling which satisfies the following condition: for all i,j such that
{i,j} € E(G) and j > i+ 1, the following assertion holds: for all i < k < j,
{i,k} € E(G) or {k,j} € E(G).

Proof. (1) = (2): Assume that {i,j} € E(G), {i,k} ¢ E(G) and {k,j} & E(G) for
some ¢ < k < j. Then ¢ is not adjacentable with 7, which is in contradiction with weak
closedness of G.

(2) = (1): Let {i,7}E(G). By repeating interchanging along the following algorithm,
we can see that ¢ is adjacentable with j:

(a): Let A:={k|{k,j} € E(G),i <k <j}and C :=0.

(b): If A =0 then go to (g), otherwise let s := max{A}.

( ) Let B:={t|{s,t} € E(G),s <t <j}\C =A{t1,...,t,, = j}, where t; < ... <

(d) Take {s, t1 }-interchanging, {s,t2}-interchanging, ..., {s,t,, = j}-interchanging in
turn.

(e): Let A:= A\ {s} and C := C U {s}.

(f): Go to (b).

(g): Let U:={ul|i<u<j{iu} € E(G) and {u,j} € E(G)} and W := ().

(h): If U = 0 then go to (m), otherwise let u := min{U}.

(i): Let V:=A{v | {v,u} € E(G),i <v <u}\W ={v; =1i,...,u}, where v; =i <

<.

j): Take {v; = i, u}-interchanging, {ve, u}-interchanging, ..., {v;, u}-interchanging in
tu

1): Go to (h).

(
?1}:) Let U :=U \ {u} and W := W U {u}.
81): Finished. O
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By comparing this theorem and Proposition 8, we get the following corollary. A graph
G is said to be complete r-partite if there exists a partition V(G) = [['_, Vi such that
{i,j} € E(G) if and only of a # b for all i € V, and j € V},.

Corollary 10. Closed graphs and complete r-partite graphs are weakly closed.
Proof. Assume that G is complete r-partite and V(G) = [[;_, V;. Let {i,j} € E(G) with

i €V,and j € V. Then a # b. Hence for all i < k < j, k & V, or k ¢ Vj. This implies
that {i,k} € E(G) or {k,j} € E(G). O

3. F-PURITY OF BINOMIAL EDGE IDEALS

In this section, we study about F-purity of binomial edge ideals. Firstly, we recall that
the definition of F-purity of a ring R.

Definition 11 (See [5]). Let R be an F-finite reduced Noetherian ring of characteristic
p > 0. R is said to be F-pure if the Frobenius map R — R, z + P is pure, equivalently,
the natural inclusion 7 : R < RY?  (x + (2P)'/P) is pure, that is, M — M ®g RYP,
m +— m ® 1 is injective for every R-module M.

The following proposition, which is called the Fedder’s criterion, is useful to determine
the F-purity of a ring R.

Proposition 12 (See [3]). Let (S,m) be a regular local ring of characteristic p > 0. Let
I be an ideal of S. Put R = S/I. Then R is F-pure if and only if IP) : I ¢ mP!, where
JP = (zP | € J) for an ideal J of S.

In this section, we consider the following question:
Question. When is S/Jg F-pure ?

In [8], Ohtani proved that if G is complete r-partite graph then S/Jg is F-pure. More-
over, it is easy to show that if G is closed then S/Jg is F-pure. However, there are many
examples of G such that G is neither complete r-partite nor closed but S/Jg is F-pure.
Namely, there is room for improvement about the above studies.

The second main theorem of this chapter is as follows:

Theorem 13. If G is weakly closed, then S/Jg is F-pure.

Proof. For a sequence vy, vs, ..., vs, We put
Yo, (V1,09 .o, 06) Xy, 1= (Yo, [v1, va][v2, 03] - - - [0s_1, vs] X, )P 1.
Let m = (Xy,...,X,,,Y1,...,Y,)S. By taking completion and using Proposition 2.2, it
is enough to show that Yi(1,2,...,n)X, € (J[C];] . Jg) \ mPl. Tt is easy to show that
Yi(1,2,...,n)X, & mP by considering its initial monomial.
Next, we use the following lemmas (see [8]):
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Lemma 14 ([8, Formula 1]). If {a,b} € E(G), then
Y;l(vla' I 767Q7[_)>d7 . 7vn)Xvn = Y;}l(vlw .. 7Cabagad7 s 7/Un)Xvn
modulo J[é’].

Ya(@? b? C7 c 7Un)Xv = Yé(b? Q? C? ct 7UTL)XUTL7

}/1)1(U17 L 7C7Q7l_))Xb = Y:U1<U17 .. ‘7CJZ_)7Q)X(Z

modulo J[g] .

Let {i,7} € E(G). Since G is weakly closed, i is adjacentable with j. Hence there
exists a polynomial g € S such that

Yi(1,2,...,0) X, =g~ [i, j]P
modulo Jg] from the above lemmas. This implies Y1(1,2,...,n)X, € (Jc[;p} : Ja). O

4. DIFFERENCE BETWEEN CLOSEDNESS AND WEAK CLOSEDNESS AND SOME
EXAMPLES

In this section, we state the difference between closedness and weak closedness and give
some examples.

Proposition 16. Let G be a graph.

(1) [4, Proposition 1.2] If G is closed, then G is chordal, that is, every cycle of G with
length t > 3 has a chord.
(2) If G is weakly closed, then every cycle of G with length t > 4 has a chord.

Proof. (2) It is enough to show that the pentagon graph G with edges {a, b}, {b, c}, {c,d},
{d,e} and {a, e} is not weakly closed. Suppose that G is weakly closed. We may assume
that @ = min{a, b, ¢, d, e} without loss of generality. Then b # max{a,b,c,d,e}. Indeed,
if b = max{a,b,c,d, e}, then ¢,d, e are connected with a or b by the definition of weak
closedness, but this is a contradiction. Similarly, e # max{a,b,c,d,e}. Hence we may
assume that ¢ = max{a, b, ¢, d, e} by symmetry. If b = min{b, ¢, d}, then d, e are connected
with b or ¢, a contradiction. Therefore, b # min{b, c,d}. Similarly, b # max{b,c,d}.
Hence we may assume that d = min{b, c,d} and e = max{b,c,d} by symmetry. Then
{a,b} and a < d < b, but {a,d},{d,b} ¢ E(G). This is a contradiction. O

Next, we give a characterization of closed (resp. weakly closed) tree graphs in terms of
claw (resp. bigclaw). A graph G is said to be tree if G has no cycles. We consider the
following graphs (a) and (b). We call the graph (a) a claw and the graph (b) a bigclaw.
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(a) (b)

Proposition 17. Let G be a tree.

(1) /4, Corollary 1.3] The following conditions are equivalent:
(a) G is closed.
(b) G is a path.
(¢) G is a claw-free graph.
(2) The following conditions are equivalent:
(a) G is weakly closed.
(b) G is a caterpillar, that is, a tree for which removing the leaves and incident
edges produces a path graph.
(¢) G is a bigclaw-free graph.

Proof. (2) One can see that a bigclaw graph is not weakly closed. U

Remark 18. From Proposition 17(2), we have that chordal graphs are not always weakly
closed. As other examples, the following graphs are chordal, but not weakly closed:

REFERENCES
[1] M. Crupi and G. Rinaldo, Koszulness of binomial edge ideals, arXiv:1007.4383.
[2] V. Ene, J. Herzog and T. Hibi, Cohen-Macaulay binomial edge ideals, arXiv:1004.0143.
[3] R. Fedder, F-purity and rational singularity, Trans. Amer. Math. Soc., 278 (1983), 461-480.
[4] J. Herzog, T. Hibi, F. Hreind6ttir, T. Kahle and J. Rauh, Binomial edge ideals and conditional

independence statements, Adv. Appl. Math., 45 (2010), 317-333.

[5] M. Hochster and J. L. Roberts, The purity of the Frobenius and Local Cohomology, Adv. in Math.,
21 (1976), 117-172.

[6] K. Matsuda, Weakly closed graph, preprint.

[7] M. Ohtani, Graphs and ideals generated by some 2-minors, Comm. Alg., 39 (2011), 905-917.

[8] , Binomial edge ideals of complete r-partite graphs, Proceedings of The 32th Symposium The
6th Japan-Vietnam Joint Seminar on Commtative Algebra (2010), 149-155.

GRADUATE SCHOOL OF MATHEMATICS
NAGOYA UNIVERSITY

—104-



FrocHO, CHIKUSAKU, NAGOYA 464-8602 JAPAN
E-mail address: d09003p@math.nagoya-u.ac.jp

—105-



POLYCYCLIC CODES AND SEQUENTIAL CODES

MANABU MATSUOKA

ABSTRACT. In this paper we generalize the notion of cyclicity of codes, that is, poly-
cyclic codes and sequential codes. We study the relation between polycyclic codes and
sequential codes over finite commutative QF rings. Furthermore, we characterized the
family of some constacyclic codes.

Key Words:  finite rings, (6, §)-codes, skew polynomial rings.
2010 Mathematics Subject Classification: — Primary 94B60; Secondary 94B15.

1. INTRODUCTION

Let R be a finite commutative ring. A linear code C of length n over R is a sub-

module of the R-module R" = {(ag,- - ,an-1)la; € R}. If C is a free R-module, C is

said to be a free code. A linear code C' C R" is called cyclic if (ag,a1, -+ ,a,-1) € C
implies (a,—1,ag, a1, -+ ,a,—2) € C. The notion of cyclicity has been extended in various
directions.

In [6], S. R. Lopez-Permouth, B. R. Parra-Avila and S. Szabo studied the duality
between polycyclic codes and sequential codes. By the way, J. A. Wood establish the ex-
tension theorem and MacWilliams identities over finite frobenius rings in [9]. M. Greferath
and M. E. O’Sullivan study bounds for block codes on finite frobenius rings in [2]. In this
paper, we generalize the result of [6] to codes with finite commutative QF rings.

In section 2 we define polycyclic codes over finite commutative rings. And we study
the properties of polycyclic codes. In section 3 we define sequential codes and consider
the properties of sequential codes. In section 4 we study the relation between polycyclic
codes and sequential codes over finite commutative QF rings. And we characterized the
family of some constacyclic codes.

Throughout this paper, R denotes a finite commutative ring with 1 # 0, n denotes a
natural number with n > 2, unless otherwise stated.

2. PoLycycLIC CODES

A linear [n, k]-code over a finite commutative ring R is a submodule C' C R" of rank
k. We define polycyclic codes over a finite commutative ring.

Definition 1. Let C be a linear code of length n over R. C'is a polycyclic code induced by

c if there exists a vector ¢ = (cg, ¢1, -+ ,¢,—1) € R™ such that for every (ag, a1, -+ ,a,-1) €
C, (0,a9,a1,- -+ ,an—2) + apn_1(co,c1, -+ ,cn—1) € C. In this case we call ¢ an associated
vector of C.

The detailed version of this paper will be submitted for publication elsewhere.
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As cyclic codes, polycyclic codes may be understood in terms of ideals in quotient
rings of polynomial rings. Given ¢ = (¢, 1, ,¢,1) € R™, if we let f(X) = X" —
c(X), where ¢(X) = ¢, 1 X" 1+ -+ 4+ X + ¢y then the R-module homomorphism p :
R™ — R[X]/(f(X)) sending the vector a = (ag, a1, -+ ,a,—1) to the equivalence class of
polynomial a,, 1 X" 1 4+ .-+ + a1 X + ag, allows us to identify the polycyclic codes induced
by ¢ with the ideal of R[X]/(f(X)).

Definition 2. Let C be a polycyclic code in R[X]/(f(X)). If there exist monic polynomi-
als g and h such that p(C) = (9)/(f) and f = hg, then C' is called a principal polycyclic
code.

Proposition 3. A code C C R" is a principal polycyclic code induced by some ¢ € C' if
and only if C' is a free R-module and has a k X n generator matrix of the form

g 91 " Gk 0 - 0
0 g0 o v On—k 0
G-\ o - . . 0
0O -+ 0 g9 g1 Yok

with an invertible g,_. In this case
p(C) = (gnka"*’“ +o T X+ go)
is the ideal of R[X]/(f(X)).

Definition 4. Let C' = (¢)/(f) € R[X]/(f(X)) be a principal polycyclic code. If the
constant term of ¢ is invertible, then C' is called a principal polycyclic code with an
invertible constant term.

For a ¢ = (¢, 1, -+ ,cn1) € R, let D, be the following square matrix;
0 1 0
D.= -
0 1
C €1 - Cpa

It follows that a code C' C R"™ is polycyclic with an associated vector ¢ € R" if and
only if it is invariant under right multiplication by D..

3. SEQUENTIAL CODES

Definition 5. Let C be a linear code of length n over R. C'is a sequential code induced by

c if there exists a vector ¢ = (cp, 1, -+ ,¢,—1) € R™ such that for every (ag,ay, -+ ,a,-1) €
C, (ay,a9, -+ ,an_1,a0c0 +arcy + -+ an_1¢,—1) € C. In this case we call ¢ an associated
vector of C.

Let C be a sequential code with an associated vector ¢ = (¢g,¢1, -+ ,¢p—1). Then C'is

invariant under right multiplication by the matrix
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0 0 Co
1 C1

0 1 ¢,
On R™ define the standard inner product by
<T,y >= Z?;ol Y
for ¥ = (zo, 21, , Tn1), ¥ = (Yo, Y1, , Yn-—1) € R™.
The dual code C* of a linear code C is defined by
Ct={ae€ R <c,a>=0 forany c € C}.
Clearly, C* is a linear code over R.

Theorem 6. For a code C C R", we have the following assertions:
(1) If C is polycyclic, then C* is sequential.
(2) If C is sequential, then C* is polycyclic.

4. CODES OVER FINITE COMMUTATIVE QF RINGS

Let R be a (not necessarily commutative) ring. A left R-module P is projective if for
every R-epimorphism g : M — N and every R-homomorphism f : P — N, there exists a
R-homomorphism h : P — M with f = goh.

A left R-module @) is injective if for every R-monomorphism g : N — M and every
R-homomorphism f : N — @, there exists a R-homomorphism h : M — @ with f = hog.

The ring R is said to be left (resp. right) self-injective if R itself is injective as left
(resp. right) R-module. If both conditions hold, R is said to be a self-injective ring.

A left R-module M is Artinian if M is satisfies the descending chain condition on
submodules. A ring R is left (resp. right) Artinian if R itself is Artinian as left (resp.
right) R-module. If both conditions hold, R is said to be an Artinian ring.

It is clear that a finite ring is an Artinian ring.

Definition 7. For a (not necessarily commutative) ring R, R is called a QF (quasi-
Frobenius) ring if R is left Artinian and left self-injective.

It is well-known that the definition of a QF ring is left-right symmetric.
For any R-submodule C' C R", C° is defined by
C° ={\ € Homg(R", R)|\(C) = 0}.
Theorem 8. For a (not necessarily commutative) ring R, the following conditions are
equivalent:
(1) R is a QF ring.
(2) For submodules M C R", M*° = M.

Theorem 9. For a (not necessarily commutative) ring R, the following are equivalent:
(1) R is a QF ring.
(2) A left module is projective if and only if it is injective.

We define an R-module homomorphism 4, : R" — R as d,(y) =< y,x > for any z € R".
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Proposition 10. The homomorphism 6 : C+ — C° sending = to §, is an isomorphism
of R-modules.

Theorem 11. Let R be a finite commutative QF ring. For a submodule C C R", (C*+)* =
C.

By Theorem 1 and Theorem 4, we can get the following corollary.

Corollary 12. Let R be a finite commutative QF ring. Then C' is a polycyclic code if
and only if C* is a sequential code.

Theorem 13. Let R be a finite commutative QF ring. If C' C R"™ is a free R-module of
finite rank, then C* is a free R-module of rankC* = n — rankC'.

We determine the parity check matrix of a constacyclic code.

Proposition 14. Let R be a finite commutative QF ring and f = X" — a € R[X].
Suppose f = hg € R[X]| where g and h are polynomials of degree n—k and k, respectively.
Let C' be the linear [n, k]-code corresponding to the ideal generated by g in R[X]/(X" —«)
and h(X) = h X* 4+ hp 1 X+ + Wy X + ho. Then C has the (n— k) x n parity check
matriz H given by

By -+ hy hy 0 -+ 0
0 hyg -+ hy hg -+ 0
H = 0O "-. .. a0 a0 00
0 -« 0 hy - hy ho

Definition 15. Let R be a finite commutative QF ring. For a sequential code C' C R", C
is called a principal sequential code if C* is a principal polycyclic code. And C is called a
principal sequential code with an invertible constant term if C* is a principal polycyclic
code with an invertible constant term.

Now we can get the main theorem.

Theorem 16. Let R be a finite commutative QF ring. Suppose C' is a free codes of R".
Then the following conditions are equivalent:

1) Both C and C* are principal polycyclic codes with invertible constant terms.

Both C and C* are principal sequential codes with invertible constant terms.

C is a principal polycyclic and sequential code with an invertible constant term.

C* is a principal polycyclic and sequential code with an invertible constant term.

C = (9)/(X™—a) is a constacyclic code with an invertible .

C* = (q)/(X™ — B) is a constacyclic code with an invertible [3.

Acknowledgement. The author wishes to thank Prof. Y. Hirano, Naruto University of

Education, for his helpful suggestions and valuable comments.
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A NOTE ON DIMENSION OF TRIANGULATED CATEGORIES.

HIROYUKI MINAMOTO

ABSTRACT. In this note we study the behavior of the dimension of the perfect derived
category Perf(A) of a dg-algebra A over a field k& under a base field extension K/k. In
particular we show that the dimension of a perfect derived category is invariant under a
separable algebraic extension K/k. As an application we prove the following statement:
Let A be a self-injective algebra over a perfect field k. If the dimension of the stable
category modA is 0, then A is of finite representation type. This theorem is proved by
M. Yoshiwaki in the case when k is an algebraically closed field. Our proof depends on
his result.

1. INTRODUCTION

In [3] R. Rouquier introduced the dimension of triangulated categories and showed that
it gives an upper bound or a lower bound of other dimensions in algebraic geometry or
in representation theory(see also [4]). The dimension of triangulated categories is studied
by many researchers.

In this note we study the behavior of the dimension of the perfect derived category
Perf(A) of a dg-algebra A over a field k£ under a base field extension K/k. For a field
extension K /k, we denote A ®; K by Ag.

Theorem 1. (1) For an algebraic extension K/k, we have
tridim Perf(A) < tridim Perf(Ag).
(2) If moreover K/k is separable, then equality holds.

As an application we prove the following theorem, which gives evidence that dimension
of triangulated categories captures some representation theoretic properties.

The stable category modA plays an important role in the study of self-injective algebra
A (cf. [2,4]). If a self-injective algebra A is of finite representation type then the dimension
of the stable category modA is zero. Then a natural question arises as to whether the
converse should also hold.

Theorem 2. Let A be a self-injective finite dimensional algebra over a perfect field k. If
tridim modA = 0, then A is of finite representation type.

In the case when £k is an algebraically closed field, this theorem is proved by M. Yoshi-
waki in [5]. Our proof depends on his result.

The final version of this paper has been submitted for publication elsewhere.
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2. DIMENSION OF TRIANGULATED CATEGORIES.

We review the definition of dimension of triangulated categories due to R. Rouquier
We need to prepare a bit of notations.

Let T be a triangulated category. For a full subcategory Z of 7 we denote by (Z)
the smallest full subcategory of 7 containing Z which is closed under taking shifts, finite
direct sums, direct summands and isomorphisms. For full subcategories Z and J of T we
denote by Z x J the full subcategory of 7 consisting of those object M € T such that

there exists an exact triangle I — M — J U, with I € ZTand J € J. Set ZoJ = (I*xJ).
For n > 1 we define inductively

@ for n =1;
Lhn = {(I} o (L)y_1 form >2.

Now we define the dimension of a triangulated category T to be

tridim 7 := min{n | (E),+1 = T for some E € T}.

3. SKETCH OF PROOF OF THEOREM 1 AND 2

First we consider the case when K/k is a finite extension. Let E be an object of
Perf(Ag) such that (E), = Perf(Ag) for some n € N. Then we see that (UFE),, = Perf(A)
where U : Perf(Ax) — Perf(A) is the forgetful functor.

In the case K/k is an infinite algebraic extension, the key of the proof is the following
lemma.

Lemma 3. Let K/k be an algebraic extension and E an object of D(A).

If an object G of D(Ag) belongs to (E ®j K),, then there exists an intermediate field
k C Koy C K which is finite dimensional over k such that there exists an object G' of
(E @y Ko)n, such that G' @, K 2 G in D(Ag).

Let E be an object of Perf(Ax) such that (E), = Perf(Ag) for some n € N. Since
Perf(Ax) = Uien(Ak):, by the above lemma there exists an intermediate field k C Ky C K
which is finite dimensional over k such that there exists an object E’ of Perf( Ak, ) such that
E' ®k, K ~ E. Then we see that (Uy(E")), = Perf(A) where Uy : Perf(Ag,) — Perf(A)
is the forgetful functor.

To prove the second statement, we use the fact that when K/k is a finite separable
field extension, the canonical morphism K ®; K — K splits as K — K bimodules. In the
case when K/k is an infinite separable field extension, we reduce to the finite separable
extension case by the above lemma.

Theorem 2 is reduced to the case when the base field £ is an algebraically closed field
by Theorem 1 and the following lemma.

Lemma 4. Let A be a finite dimensional k-algebra. If Ay is of finite representation type,
then A is of finite representation type.
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4. EXAMPLES WHICH SHOW THAT WE NEED TO IMPOSE CONDITIONS ON THEOREM 1

To conclude this note we give examples which show that we need to impose conditions
on Theorem 1.

Example 5. If an algebraic extension K /k is not separable, then the dimension tridim Perf(Ag)
is possibly larger than the dimension tridim Perf(A).

Here is an example. Let F' be a field of characteristic p > 0. Let K := F(t) be a rational
function field in one variable and define k := F(t*) C K = F(t). Set A := K. Then it is
easy to see Ax = K|[z]/(xP). Since gldim Ax = oo, we see that tridim Perf(Ax) = oo by
[3, Proposition 7.26]. However since A = K is a field, we have tridim Perf(A) = 0.

Example 6. In the case when the extension K'/k is not algebraic, the dimension tridim Perf(Ag)
is possibly larger than tridim Perf(A) even if an extension K/k is separable.
Here is an example. Assume that for simplicity k is algebraically closed. Let K = k(y)
and A = k(z) be rational function fields in one variable over k. Then we can easily see
that tridim Perf(Agx) = 1 by the method of the proof of [3, Theorem 7.17]. However since
A = k(z) is a field, we see that tridim Perf(A) = 0.
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APR TILTING MODULES AND QUIVER MUTATIONS

YUYA MIZUNO

ABSTRACT. We study the quiver with relations of the endomorphism algebra of an APR
tilting module. We give an explicit description of the quiver with relations by graded
quivers with potential (QPs) and mutations. Consequently, mutations of QPs provide a
rich source of derived equivalence classes of algebras.

1. INTRODUCTION

Derived categories have been one of the important tools in the study of many areas
of mathematics. In the representation theory of algebras, tilting modules play an essen-
tial role to give an equivalence of derived categories. More precisely, the endomorphism
algebra of a tilting module is derived equivalent to the original algebra. Therefore the
relationship of quivers with relations of these algebras has been investigated for a long
time.

The first well-known result of these studies appears in the work of [5]. It is the origin
of tilting theory and formulated in terms of an APR tilting module now [4]. Let us recall
an important property of APR tilting modules.

Theorem 1. [4] Let KQ be a path algebra of a finite acyclic quiver Q and Ty, be the APR
tilting KQ-module associated with a source k € Q). Then we have an algebra isomorphism

EndKQ(Tk) = K(Mk@)v

where . is a mutation at k.

Thus the quiver of the endomorphism algebra is completely determined by combinato-
rial methods and the mutation can be considered as a generalization of BGP reflection.
The notion of mutation was introduced by Fomin-Zelevinsky [11], which is an important
ingredient of cluster algebras, and many links with other subjects have been discovered
and widely investigated. In particular, Derksen-Weyman-Zelevinsky applied mutations
to quivers with potential (QPs). It has been found that mutations of QPs have close
connections with tilting theory, for example [9, 17].

The main purposes of this paper is to generalize the above result for a more general
class of algebras by using mutations of QPs. Since we have gl.dimK @) < 1, it is natural
to consider algebras A with gl.dimA < 2. In this case, we can describe the quiver and
relations by the following steps.

1. Define the associated graded QP (Qx, Wa, Cy).
2. Apply left mutation puf to (Qa, Wa, Cy).
3. Take the truncated Jacobian algebras P(uf(Qx, Wa, Ch)).

The detailed version of this paper will be submitted for publication elsewhere.
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Then we have the following result.

Theorem 2. (Theorem 7) Let A be a finite dimensional algebra with gl.dimA < 2 and
Ty be the APR tilting A-module associated with a source k. Then we have an algebra
isomorphism

Enda(Ty) 2 P(u (Qa, Wa, Ca)).

We give three remarks about the theorem. First, we can show that P(uZ(Qx, Wa, Ch))
coincides with K (@) if gl.dimA = 1, so that Theorem 2 gives a generalization of The-
orem 1. Second, the condition gl.dimA < 2 is actually not necessary, and it is enough
to assume that the associated projective module has the injective dimension at most 2.
Finally, this isomorphic provides a bridge of the two notions which have entirely different
origins, and it implies that the contemporary concepts have a profound connection with
the classical ones.

Conventions and notations. We always suppose that K is an algebraically closed field
for simplicity. All modules are left modules and the composition fg of morphisms means
first f, then g. We denote the set of vertices by )g and the set of arrows by )1 of a quiver
Q. We denote by a : s(a) — e(a) the start and end vertices of an arrow or path a.

2. PRELIMINARIES

In this section, we give a brief summary of the definitions and results we will use in the
next sections. See references for more detailed arguments and precise definitions.

2.1. Quivers with potentials. We review the notions initiated in [10].

e Let () be a finite connected quiver. We denote by KQ); the K-vector space with basis
consisting of paths of length 7 in ), and by KQ); ., the subspace of K(Q); spanned by all
cycles. We denote complete path algebra by

KQ=]]xQ.
i>0
A quiver with potential (QP) is a pair (@, W) consisting of a quiver () and an element
W e Hi22 KQicye, called a potential. For each arrow a in @, the cyclic derivative

0o KQ.ye — l/(@ is defined by the continuous linear map which sends 0,(a; ---aq) =
Zai:a Qiy1 -+ Agaq - -+ a;—q1. For a QP (Q, W), we define the Jacobian algebra by

PQ,W)=KQ/T(W),

where J (W) = (0, | a € 1) is the closure of the ideal generated by 9, with respect
to the Ji5-adic topology.

o A QP (Q,W) is called reduced if W € [[,o5 KQi cye-

e For two QPs (Q', ') and (Q",W"), we define a new QP (Q,W) as a direct sum
(Q W @ (Q",W"), where Qo = Qy(=Qp), Q1 = Q][ Q) and W = W'+ W".

Definition 3. For each vertex k in ) not lying on a loop nor 2-cycle, we define a mutation
we(Q, W) as a reduced part of i, (Q, W) = (Q', W’), where (Q',W') is given as follows.
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(1) @ is a quiver obtained from @ by the following changes.
e Replace each arrow a : K — v in () by a new arrow a* : v — k.
e Replace each arrow b : u — k in ) by a new arrow b* : k — u.

e For each pair of arrows u Ok v, add a new arrow [ba] : u — v
(2) W' = [W]+ A is defined as follows.
e [IW] is obtained from the potential W by replacing all compositions ba by the

new arrows [ba| for each pair of arrows u Ok S,
e A= > [baJa’d".

a,beQ
e(b)=k=s(a)

2.2. Truncated Jacobian algebras. We introduce the notion of cuts and the truncated

Jacobian algebras.

Definition 4. [14] Let (Q, W) be a QP. A subset C' C @ is called a cut if each cycle
appearing W contains exactly one arrow of C. Then we define the truncated Jacobian
algebra by

P(Q.W,C) :=P(Q.W)/{C) = KQc/@.W [ c€ C),

where Q¢ is the subquiver of @) with vertex set )y and arrow set @ \ C.

Then, we can naturally define a QP with a cut from a given algebra as follows.

Definition 5. [16] Let @ be a finite connected quiver and A = @/@ be a finite
dimensional algebra with a minimal set of relations.

Then we define a QP (Qa, Wa) as follows:
(1) (@a)o= Qo
(2) (Qa)1 = Q1 ][ Cha, where Cp :={p, : e(r) — s(r) | r € R}.
(3) Wy = Zprr.

reR

Then the set Cy gives a cut of (Qx, Wy).

2.3. APR tilting modules. We call a A-module T tilting module if proj.dim, 7T < 1,
Ext) (T, T) = 0, and there exists a short exact sequence 0 — A — Ty — Ty — 0 with
T(), T1 in addT'.

Definition 6. Let A be a basic finite dimensional algebra and P, be a simple projective
non-injective A-module associated with a source k of the quiver A. Then A-module
T :=7 P, ®A/Py is called an APR tilting module, where 7~ denotes the inverse of the
Auslander-Reiten translation.

3. MAIN THEOREM

3.1. Main result. Let @) be a finite connected quiver and A = @/(R) be a finite
dimensional algebra with a minimal set of relations. Assume that P is the simple pro-
jective non-injective A-module associated with a source k£ € (). Our aim is to determine
the quiver and the set of relations giving Enda (7).
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Consider the associated QP (Qa, Wy, Cy) of A and we put fix(Qx, Wa) = (Q', W),

Then W’ is given by
W=D _prl+ > Ipaats,

reR a€Q1,7rER
s(a)=k=s(r)

and it is easy to check that subset

C'={p |reRsr)#k}[[{ pa] | a € Qv € R s(a) =k = s(r)}

of @ is a cut of (Q', ).
Then we have the following.

Theorem 7. Let A = I/(Z)/(_}%} be a finite dimensional algebra with a minimal set of
relations. Let Ty, := 7~ P, ® A/ P, be the APR tilting module. Then if inj.dimPj, < 2, we
have an algebra isomorphism

End, (k) = P(jik(Qa, Wa), C).

Notice that the assumption inj.dimP, < 2 is automatic if gl.dimA = 2. Thus our
theorem give a generalization from gl.dimA =1 to gl.dimA = 2.

Here we will explain the choice of C’. In fact C” is naturally obtained by using graded
mutations. For this purpose, we recall graded QPs, as introduced by [1].

Graded quivers with potentials. Let (Q, W) be a QP and we defineamap d : Q@ — Z.
We call a QP (Q,W,d) Z-graded QP if each arrow a € @1 has a degree d(a) € Z, and
homogeneous of degree [ if each term in W is a degree .

Definition 8. Let QP (Q,W,d) be a Z-graded QP of degree [. For each vertex k in Q)
not lying on a loop nor 2-cycle, we define a left mutation pZ(Q,W,d) as a reduced part
of pk(Q,W,d) = (Q',W',d'), where (Q', W', d') is given as follows.

(1) (@, W') = (@, W)
(2) The new degree d' is defined as follows:
e d'(a) = d(a) for each arrow a € Q N Q'.
e d'(a*) = —d(a) for each arrow a : k — v in Q.
o d'(b*) = —d(b) + I for each arrow b: u — k in Q.
e d'([ba)) = d(a) + d(b) for each pair of arrows u 2k S vin Q.
In particular, fr(Q,W,d) also has a potential of degree [. Similarly, we can define
pft at k. In this case, we define d'(b*) = —d(b) for each arrow b : u — k in @ and
d'(a*) = —d(a) + [ for each arrow a : k — v in Q.

If (Q, W) has a cut C, we can identify the QP with a Z-graded QP of degree 1 associating

a grading on () by
1 aeC
d pr—
c(a) {0 adC.

We denote by (Q, W, C) the graded QP of degree 1 with this grading. If any arrow of
pE(Q, W, C) has degree 0 or 1, degree 1 arrows give a cut of [1x(Q, W) since iz (Q, W, C)
is homogeneous of degree 1. Therefore a cut of i, (Qx, Wy ) is naturally induced as degree
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1 arrows of fiF(Qa, Wy, Cy) and the above C” is obtained in this way. Thus we identify
degree 1 arrows as a cut.

Because we have P(fir (Qa, Wa, Cr)) = P(uk(Qn, Wi, Cy)), we can rewrite Theorem 7
that we have an algebra isomorphism

Enda (Ty) = P (15 (Qa, Wa, Ch)).

3.2. Examples. We explain the theorem with some examples.

Example 9. We keep the assumption of Theorem 7. If gl.dimA = 1, then we have
A= K@ and

P (ki (Qa, Wi, Ca)) = P15 (Q,0,0)) = K (1u:Q),

so that the mutation procedure is just reversing arrows having k. Thus the above theorem
coincides with the classical result (Theorem 1).

Example 10. Let A = I/(@ /(R) be a finite dimensional algebra given by the following
quiver with a relation.

3 (R) = (ab).

Then we consider the APR tilting module T} := 7= P, & A/P; and calculate ' and R’
satisfying K@Q'/(R') = End,(T7) by the following steps.

2 b 2 b a* 2 <\b[pa]
1 / \ A (QA@CA) 1 / p \ 4 ﬁ:f> 1 @Z
/
N, ™ ; 4 N e//[pc]
(R) = (ab). Wa = pab. W' = [palb+[pala*p*+[pc]c*p*.
2 .2
é{; ] /p* 4 P(#IL(QA:JQ/A,CA)) QO = 1 /p* y 4
© 3
W’ = [pccp* (R') = (c"p).

Similarly from the left-hand side algebra A, we obtain the quiver and the set of relations
giving Endy (77), which is given by right-hand side picture.
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a2“a1 c = a3 || ax c
2 b 3 2 B b 3
<R> = <a1bc, a266> <RI> = <CL>{pT+bC, CL;PZ‘H)C? an; CLSPT>
(2) (@)
11— .0 % .3 , 3
= - N
4 5 =6 =
bo b3
(R) = (a1a2a3) (R') = (agaz + ar*p*, by p*).
(i)
1—2 -2 % .3 : 3
= - N
4 0 5 m = 6 6
<R> = <a1a2a3 = blbgb3> <R/> = <a2a3 + al*p*, b2b3 + bl*p*>

As examples show, we interpret the degree 1 arrows as relations.
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THE EXAMPLE BY STEPHENS

KAORU MOTOSE

ABSTRACT.  Concerning the Feit-Thompson Conjecture, Stephens found the serious
example. Using Artin map (see [9]), we shall show that numbers 17 and 3313 in the
example by Stephen are common index divisors of some subfields of a cyclotomic field
Q(¢r) where r = 112643 and ¢, = e’ and some results in [7, 8] shall be again proved.

Key Words:  Artin map, common index divisors, Gauss sums.
2000 Mathematics Subject Classification:  Primary 11A15, 11R04; Secondary 20D05.

Let p < ¢ be primes and we set

f= ¢ -1 andt::pq_l.
q—1 p—1
Feit and Thompson [3] conjectured that f never divides ¢. If it would be proved,
the proof of their odd order theorem [4] would be greatly simplified (see [1] and [5]).

Throughout this note, we assume that r is a common prime divisor of f and t.

Using computer, Stephens [10] found the example about r as follows: for p = 17 and
g = 3313, r = 112643 = 2pq + 1 is the greatest common divisor of f and ¢. This example
is so far the only one.

In this note, using the Artin map, we shall show that both 17 and 3313 are common
index divisors (gemeinsamer ausserwesentlicher Discriminantenteiler) of some subfields of
a cyclotomic field Q((,) where r = 112643 and ¢, = ¢, and some results in [7, 8] shall
be again proved from our Theorem.

The assumption on r yields from [7, Lemma, (1) and (3)] that p and ¢ are orders of
g mod r and p mod r, respectively. Thus » = 1 mod 2pq since r is odd.

We set ¢*q :== r — 1 and ( = e’r. Let n be a divisor of q*, let L, be a subfield of
K = Q(¢) with [L,, : Q] = n and let Q,, be the algebraic integer ring of L,,. Using the
exact sequence by the Artin map (see [9, p.99 and section 2.16] ) and Kummer’s theorem.

We have d(u) = I(p)?d(Ly,) for p € @, where I(i) € Z, d(u) and d(L,) are discrimi-
nants of p and of the field L,,, respectively.

The example by Stephens shows from the next Theorem that p = 17 and ¢ = 3313 are
common index divisors of L4 and of Lggog, respectively, since we can exchange p for q.

The detailed version of this paper will be submitted for publication elsewhere.
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Theorem. Assume r is a common prime divisor of f and t, and n is a divisor of q*,
where q¢*q = r — 1. Then p splits completely in OQ,, and if there exists p € Q,, such that p
does not divide I(p), then n < p. In particular, for n > p, p is a common index divisor of
O, namely, p divides 1(~y) for all v € Q,.

Let ¢ be a primitive root for r, let y be a character of order n defined by x(c¢) = w
where w = en and let 9(X) = > uer, X(a)¢® be the Gauss sum of x where F, is a finite
field of order 7. Let o(¢) = (¢ be a generator of the Galois group G of K over Q and set
T, == (o™).

For simplicity, we set go = —1, gr = g(x*) for n > k > 0 and 6 = 0°" forn >k =0
where 0 = > .. (7 is a trace of (.

It is known that L, = Q(#) and 6 is a normal basis element of @,, over Z (see [9, p.61,
p.74])

The next Lemma is useful to our object. It only needs to assume r is prime and n is a
divisor of 7 — 1 in this Lemma. This proof is essentially in the first equation of (1) due
to [9, p.62]. This idea of classifying primitive roots goes back to Gauss; the regular 17
polygon construction by ruler and compass.

Lemma.

(1) gx = Z::_ol Wk, for 0 £ k < n and nb), = ZZ:_& WFgs for 0 < k < n where @ s
the complex conjugate of w.
(2) Using (1), determinants of cyclic matrices A,, B,, are given by

o O ... Op . g 91 --- Gn-1 )
Op1 6Oy ... O, e e R e
|A,] =1 . ' .0 , .2 :Hgk; and |B,| = g' ' g.o . 9.2 Zn"HQk-
: A ot : S 0
h Oy ... b g g2 --- Yo
(3) We have

d(L,) = rn-t if n is odd,
U (=D T ifnis even.

Some results in [7, 8] are proved again in the next

Corollary. Let r be a common prime diwvisor of f and t. Then we have
(1) p=1 orr=1mod4 (see [7, Lemma, (4) ]).

(2) ¢g=—1mod 9 in case p =3 and f divides t (see [8, Corollary, (a)]).
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Proof of (2). We consider the case n = p = 3. If f is composite, then f does not
divide ¢. Thus we may assume f is prime and so r = f (see [7]). f has a primary prime
decomposition f = 77 in Z[w] where w = €3 and 1 = w(w — q), (see [6, 8]). In this case,
we set x is the cubic residue character modulo 1. Let h(z) be the minimal polynomial of
0 over Q.

h(l’) = $3 + Cl1$2 + asx + az = (ZL‘ — 90)(1‘ — 91)(1‘ — 92)
where a; = —0y — 0; — 0 = 1. If 3 does not divide I(6), then h(x) = 23 — x mod 3 by
Kummer’s theorem and our Theorem. This contradicts to a; = 1. Thus d(f) = 0 mod 3.
Using 9192 = g191 = |g1]> = r, we have
1 91 92
f:T: —|A3| = —(‘90+61+¢92) 1 90 61 :9(2]4‘9%4—6%—@2 = 1—3(12.
1 02 00
Thus we obtain 3a; =1 — f = —¢(q + 1). On the other hand, using g, = g1, f = 17 and
the Stickelberger relation g; = rn = fn (see [6]), we have

go g1 G2
—2Tag = 276060 = |Bs| = |92 g0 91| =5+ 9 + 95 — 3909192
g1 92 Yo
= —1+f+m)+3f=-1+[(g—1)+3/=(¢+1)"
Thus we have 33¢%a3 = (—q(q + 1))® = 3%a3 and so as + a3 = a3 — ¢3az = 0 mod 3.
Noting h'(0) = ay — 6 mod 3 where h/(z) is the derivation of h(z), we obtain
= —d(0) = Np,0(W(0)) = h(az) = az — a3 + a3 = —a3 mod 3.
Thus we have 0 = 3a2 = —¢(q + 1) mod 9. 0

Remark. Using only the quadratic reciprocity law, we can prove
¢ = —1 mod 8 in case p = 3 and f divides t.

It simplifies the proof of Proposition 3.2 by Lemma 3.3 on p.172 in the paper
K. Dilcher and J. Knauer, On a conjecture of Feit and Thompson, pp.169-178 in the book,
High primes and misdemeanours, edited by A. van der Poorten, A. Stein, Fields Institute
Communications 41, Amer. Math. Soc., 2004.

We can understand their proof through the next some results in this order :

e Ex. 11 on p.231, and p.103 in the book, B. C. Berndt, R.J. Evans, K. S. Williams,
Gauss and Jacobi Sums, Wiley, New York, 1998.

e Proof of Theorem 2 on p.139 in the paper, R. Hudson and K. S. Williams, Some
new residuacity criteria, Pacific J. of Math. 91(1980), 135-143.

e The tables for the cyclotomic numbers of order 6 and p.68 in the paper, A. L.
Whiteman, The cyclotomic numbers of order twelve, Acta. Arithmetica 6 (1960),
53-76.
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HOM-ORTHOGONAL PARTIAL TILTING MODULES
FOR DYNKIN QUIVERS

HIROSHI NAGASE AND MAKOTO NAGURA

ABSTRACT. We count the number of the isomorphic classes of basic hom-orthogonal
partial tilting modules for an arbitrary Dynkin quiver. This number is independent on
the choice of an orientation of arrows, and the number for A,, or D,,-type can be expressed
as a special value of a hypergeometric function. As a consequence of our theorem, we
obtain a minimum value of the number of basic relative invariants of corresponding
regular prehomogeneous vector spaces.

INTRODUCTION

Let @ = (Qo, @1) be a Dynkin quiver having n vertices (i.e., its base graph is one of
Dynkin diagrams of type A, with n > 1, D,, with n > 4, or E,, with n = 6,7, 8), where Q,
(21 is the set of vertices, arrows of (), respectively. We denote by A = K(Q) its path algebra
over an algebraically closed field K of characteristic zero, and by mod A the category of
finitely generated right A-modules.

Let X = @;_, my Xy be the decomposition of X € mod A into indecomposable direct
summands, where m;X; means the direct sum of my copies of Xj, and the X,’s are
pairwise non-isomorphic. Then X is called basic if m;, = 1 for all indices k. We call X
to be hom-orthogonal if Hom,(X;, X;) = 0 for all ¢ # j. This notion is equivalent to that
X is locally semi-simple in the sense of Shmelkin [8] when @ is a Dynkin quiver. In the
case where X is indecomposable, we will say that X itself is hom-orthogonal. Since A is
hereditary, we say that X € mod A is a partial tilting module if it satisfies Ext}; (X, X) = 0.

Each X € mod A with dimension vector d = dim X can be regarded as a representa-
tion of @; that is, a point of the variety Rep(Q, d) that consists of representations with
dimension vector d = (d);cq, € Z%,. Then the direct product GL(d) = [T;cq, GL(d™)
acts naturally on Rep(Q, d); see, for example, [3, §2]. Since A is representation-finite,
Rep(Q, d) has a unique dense GL(d)-orbit; thus (GL(d), Rep(Q,d)) is a prehomoge-
neous vector space (abbreviated PV). It follows from the Artin—Voigt theorem [3, Theo-
rem 4.3] that the condition that X is a partial tilting module can be interpreted to that
the GL(d)-orbit containing X is dense in Rep(Q,d); On the other hand, the condition
that X is hom-orthogonal corresponds to that the isotropy subgroup (or, stabilizer) at
X € Rep(Q, d) is reductive. Therefore we are interested in hom-orthogonal partial tilting
A-modules, because they correspond to generic points of reqular PVs associated with Q;
see [5, Theorem 2.28].

In this paper, we count up the number of the isomorphic classes of basic hom-orthogonal
partial tilting A-modules for an arbitrary Dynkin quiver ). In other words, this is nothing

The detailed version of this paper has been submitted for publication elsewhere.
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e(n,s)|n=6 7 8 (n,s)|[n=6 7 8

s=1 36 63 120 s=1 7 16 44

2 108 315 945 2 35 120 462

3 72 336 1575 3 35 170 924

4 0 63 675 4 0 40 462
TABLE 0.1. The values of e(n, s) and €°(n, s)

but essentially counting the number of regular PVs associated with. Our main theorem
is the following:

Theorem 0.1. Let QQ be a quiver of type A, with n > 1 (resp. D,, with n > 4, E,, with
n =6,7,8). Then the number a(n,s) (resp. d(n,s), e(n,s)) of the isomorphic classes of
basic hom-orthogonal tilting KQ-modules having s pairwise non-isomorphic indecompos-
able direct summands is given explicitely by the following:

(n+1)!
O alns) = T+ 1 29)
(0_2) = Cs (n+1)

if 1 <s<(n+1)/2, and a(n,s) = 0 if otherwise. Here Cs = (%) /(s + 1) denotes the
s-th Catalan number.

(n—1)!
()2 (n+2—2s)!

if 1 <s < (n+2)/2, and d(n,s) = 0 if otherwise. The values of e(n,s) for 1 < s <
(n+1)/2 are given in Table 0.1, and we have e(n,s) = 0 if otherwise.

d(n,s) = A (s—1) +n(n+1-2s)(n+2—2s)}

Our approach to this theorem, which was inspired by Seidel’s paper [7], is based on
an observation of perpendicular categories introduced by Schofield [6]. Here we point
out that the totality of a(n,s) or d(n,s) for fixed n can be expressed as a special value
of a hypergeometric function. As mentioned in Remark 2.4, the formula (0.2) has a
combinatorial interpretation.

According to Happel [4], if a A-module corresponding to a point contained in the dense
orbit of a PV (GL(d), Rep(Q, d)) has s pairwise non-isomorphic indecomposable direct
summands, then the PV has exactly n — s basic relative invariants. Thus we obtain a
consequence of Theorem 0.1.

Corollary 0.2. Each reqular PV associated with a quiver of type A, (resp. D, Eq, E;,
and Bg) has at least (n —1)/2 (resp. (n—2)/2, 3, 3, and 4) basic relative invariants.

We say that X € mod A is sincere if its dimension vector dim X does not have zero en-
try. Sincere modules are fairly interesting to the theory of PVs, because (GL(d), Rep(Q, d))
with non-sincere dimension can be regarded as a direct sum of at least two PVs associated
with proper subgraphs of (). So we have counted them:

Theorem 0.3. Let Q) be a quiver of type A, with n > 1 (resp. D,, with n > 4, E, with
n =6,7,8). Then the number a®(n,s) (resp. d°(n,s), €’(n,s)) of the isomorphic classes
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of basic sincere hom-orthogonal tilting KQ-modules having s pairwise non-isomorphic in-
decomposables is given explicitely by the following:
(n B 1>' n—1
(e — 1) ool s—1'<25—2)
sl(s=1)!(n+1—2s)!

(0.3) a’(n,s) =
if1<s<(n+1)/2, and a®(n,s) = 0 if otherwise.
0 B (n —2)!
A s) = T D+ 2= 29)]
x {n(n—1-2s)(n—2s)+2n(n—2)+ (s —1)(s* —9s +4)}

if 1 < s < (n+2)/2, and d°(n,s) = 0 if otherwise. The values of €®(n,s) for 1 < s <
(n+1)/2 are given in Table 0.1, and we have €°(n,s) = 0 if otherwise.

Now we will exceptionally define some values of a(m,t) for simplicity:
a(m, —1) =0, a(m, 0) =1, and a(l, t) =0 for [ < 0 and ¢ # 0.

Then we can express d(n, s), a’(n, s), and d°(n, s) as the following simpler forms:

(0.4) dn,s)=mn—-1)-a(n—3,s=2)+(s+1)-aln—1,s),
a’(n,s) =a(n —2, s —1),
(0.5) d’(n,s)=(s—1)-a(n—3,5s—2)+(n—2)-aln—3,s—1).

As will be mentioned in §1, the numbers presented in Theorems 0.1 and 0.3 are inde-
pendent on the choice of an orientation of arrows of ). Thus we may assume that its
arrows are conveniently oriented.

1. PRELIMINARIES

Let @ be a Dynkin quiver having n vertices, A = K@ its path algebra. For an inde-
composable A-module M, its right perpendicular category M+ is defined by

M~* = {X € mod A; Hom,(M,X) =0 and Extl(M,X)=0}.

The left perpendicular category + M is also defined similarly. To investigate hom-orthogonal
partial tilting modules (or, regular PVs), we are interested in their intersection Per M =
M N M*; we will simply call it the perpendicular category of M. Now we recall the
Ringel form, which is defied on the Grothendieck group Ko(A) = Z™:

(dim X, dimY) = dim Hom4(X,Y) — dim Ext}(X,Y)
='(dimX) - Rg - (dimY)

for X, Y € mod A, where Rg = (745)ijeq, 1s the representation matrix with respect to the

basis ey, es, ..., e, of Ky(A) = Z" (here we put e = dim S(k), which is the dimension
vector of a simple module corresponding to a vertex k € (). This is defined as r; = 1
for all i € Qo; 15 = —1 if there exists an arrow ¢ — j in @); and 7;; = 0 if otherwise.

Lemma 1.1. For indecomposable A-modules X and Y, we have (dim X, dimY') = 0 if
and only if Hom,(X,Y) =0 and Ext}(X,Y) = 0.
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Now we will show that the numbers that are presented in our theorems do not depend
on the choice of an orientation of arrows of (). To do this, we need the following lemma:

Lemma 1.2. For any sink a € Qo and any A-module M, if Hom,(S(a), M) = 0 and
Ext (M, S(a)) = 0, then we have Hom,(P(ta), M) = 0 for any arrow o : ta — a in Q.

Let 0 = 0, be the reflection functor (with the APR-tilting module T', see [2, VII Theo-
rem 5.3]) at a sink a € @y, and @' the quiver obtained by reversing all arrows connecting

with @ in . For a basic hom-orthogonal partial tilting A-module X = @;_, Xj, we
define a A-module as follows (here we put A’ = KQ'):

oX =Sa)y ®oXo® - BoX;
if X has a direct summand (say, X;) isomorphic to the simple module S(a),; and
cX =0 X1 ®oXa®---PoX,

if X does not, where we put 0 X = Hom,(7T, X}) for each indecomposable X;. Let R,
R’ be the set of the isomorphic classes of basic hom-orthogonal partial tilting A-modules,
A’-modules, having exactly s indecomposable direct summands, respectively. Then we
have the following:

Proposition 1.3. For a basic hom-orthogonal partial tilting A-module X having s inde-
composable direct summands, so is A'-module 0 X. The correspondence [X] +— [0 X] gives
a bijection from R to R'. In particular, the numbers that are presented in Theorem 0.1
do not depend on the choice of an orientation of arrows.

Proof. Let Rg, Rg be the representation matrix of the Ringel form of A, A’, respectively.
Let r = r, be the simple reflection on Z™ corresponding to the vertex a (we also denote by
the same r its representation matrix). Then we have Ry = 'r- Rg-r. On the other hand,
we have dim 0 X}, = r-(dim X},) for X} that is not isomorphic to S(a)4, and r(e,) = —e,.
Hence, by calculating with the Ringel form (recall Lemma 1.1), we see that oX is also
a basic hom-orthogonal partial tilting A’-module. This correspondence [X] — [0X] is
obviously a bijection. O

Next we define two subsets of R as follows:
Ry = {[X] € R; X is sincere, but ¢.X is not sincere},
Ry = {[X] € R; X is not sincere, but X is sincere}.

It follows from Lemma 1.2 that the condition “sincere” implies that any representative of
each class of Ry or Ry does not have a direct summand isomorphic to the simple module

S((I)A.

Proposition 1.4. We have §R1 = iRo. In particular, the numbers for sincere modules
that are presented in Theorem 0.3 do not depend on the choice of an orientation of arrows.

Proof. Take the isomorphic class [X] € Ry and let X = ;_, X}, be its indecomposable
decomposition. Then, since 0.X is not sincere, only the a-th entry of dim o X = r-(dim X)
is zero. Hence so is the a-th entry of each r(ay), where we put a = dim X;. On
the other hand, since 0X is a basic hom-orthogonal partial tilting A’-module, we have
'r(ay)-Rg (o) = 0 for any pair of distinct indices. Then we see that 'r(e;)-Ro-r(a;) =
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0, because Rg and R¢ are identical other than the a-th row and the a-th column. Let X
be a A-module corresponding to the sum of positive roots > ;_; 7(c); this is not sincere,

but o X is sincere. Thus we see that the correspondence [X] — [X] gives a bijection from

Rl to RQ. O
2. A,-TYPE

Let () be the equi-oriented quiver 6 36— —3 & of A, -type. In the following,
we will sometimes consider the corresponding things of “Ag-type” or “A_;-type” to be
trivial for simplicity; for example, “A,,_o x A_;-type” means just “A, o-type”, and so on.

Proposition 2.1. For each k = 1,2,...,n, the perpendicular category Per I(k) is equiv-
alent to the module category of a path algebra of type Ap_o X A, _1_ .

Proposition 2.2. Let n and s be positive integers. The number a(n,s) satisfies the
following recurrence formula:

s—1 n—2

(2.1) a(n, s) =a(n —1, S)+Z Z a(m,t)-a(n—3—m, s—1—t).

t=0 m=-—1

Proof. Let X = @5:1 X, be a basic hom-orthogonal partial tilting A-module having
s distinct indecomposable summands. Note that X has at most one injective direct
summand. If X does not have any injective, then the first entry of dim X is zero;
that is, it is a sum of positive roots that come from A, ;-type. So the number for
such modules is equal to a(n — 1, s). Assume that X has just one injective summand,
say I(k). Then, according to Proposition 2.1, X has t and s — 1 — ¢ direct summands
that come from A, _o-type and A,,_,_,-type, respectively. Thus we see that there exist

*oa(k—2,t)-a(n—1—Fk, s—1—t) such modules. Since k runs from 1 to n, we obtain
our assertion. 0

By using the recurrence formula above, we prove Theorem 0.1 for A,-type. Here we
notice that the generating function of a(n,s) = Cy - (";!) can be immediately obtained
from the generalized binomial expansion.

Lemma 2.3. The generating function Fy(x) = > 7 a(n,s)z"™ of a(n,s) for fived s is
given by

Cs . 1.23—1

(1 — z)2s+1°

Proof of Theorem 0.1 for A, -type. First we note that a(n, 1) is nothing but the number
of positive roots of A,-type, which is equal to n(n +1)/2 = C; - ("§!). In the case of
n = 1, our assertion is trivial. So we assume that the assertion (0.2) holds for all positive
integers less than n (> 2). In the recurrence formula (2.1), we note that a(m,t) (resp.
a(n —3—m, s —1—1)) is the coefficient of degree m (resp. n —3 —m) of Fi(z) (resp.
Fs_1_4(x)). The coefficient of degree n — 3 of the Taylor expansion at the origin (z = 0)
of

Fy(x) =

I25_4

Fy(z) X Feo14(w) = Cp - Csqy - (1_—1;)25
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is equal to (951 ); hence we have

n—2

(2.2) > alm, t)-a(n—=3=m,s=1—1)=Cy-Coi_y- (281).

m=—1

By the recurrence formula (2.1) and the assumption of induction, we have

s—1
a(”? 8) - CL(TL - 17 S) + (23711 ) Z Ct : Cs—l—t
t=0

:Cs'(gns)‘f‘(an—l)'Cs:Cs'(n;;l)‘

Next we prove that a(n,s) = 0 if s > (n + 1)/2. Let s be such an integer. Then
we have a(n — 1, s) = 0 by the assumption of induction because s > n/2. Suppose that
t<(m+1)/2and s—1—t < (n—3—m+1)/2 for fixed t. Then we have s—1 < (n—1)/2;
a contradiction. Hence t > (m+1)/2 or s — 1 —t > (n —3 —m + 1)/2, and so that
a(m,t) =0or a(n—3—m, s—1—t) = 0. Thus we conclude a(n, s) = 0 by the recurrence
formula (2.1). Therefore we obtain our assertion for A, -type. O

Remark 2.4. The formula (0.2) has a combinatorial interpretation. According to Araya
[1, Lemma 3.2], for distinct indecomposables X, Y € mod A, their direct sum X @Y is a
hom-orthogonal partial tilting module (or, both (X,Y) and (Y, X) are exceptional pairs)
if and only if the corresponding codes of a circle with n+ 1 points do not meet each other.
It follows from a well-known combinatorics on codes that the number of such codes is
equal to Cy - ("f') = a(n,2). The formula for general s > 2 can be similarly obtained.

Proposition 2.5. Let X be a basic sincere hom-orthogonal partial tilting A-module. Then
X has ezxactly one direct summand isomorphic to I(n).

Proof of Theorem 0.3 for A, -type. Let X be a basic sincere hom-orthogonal partial tilting
A-module. In the case of s = 1 (that is, X itself is indecomposable), it must be isomorphic
to I(n). Hence we have a®(n,1) = 1 for any n. If n = 1 or n = 2, our assertion can
be proved directly. So let n > 3 and s > 2. By Propositions 2.2 and 2.5, the other
summands of X should be taken from a module category of A,,_»-type. The number of
such candidates is equal to a(n — 2, s — 1). We can prove a’(n,s) = 0 for s > (n+1)/2
by a similar manner to the proof of Theorem 0.1. 0J

Theorems for D,,-type and E,-type are shown in a similar way. The detailed proof is
given in our paper which has been submitted for publication elsewhere
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THE NOETHERIAN PROPERTIES OF THE RINGS OF
DIFFERENTIAL OPERATORS ON CENTRAL 2-ARRANGEMENTS

NORIHIRO NAKASHIMA

ABSTRACT. P. Holm began to study the ring of differential operators of the coordinate
ring of a hyperplane arrangement. In this paper, we introduce Noetherian properties of
the ring differential operators of the coordinate ring of a central 2-arrangement and its
graded ring associated to the order filtration.

Key Words:  Ring of differential operators, Noetherian property, Hyperplane ar-
rangement.

2010 Mathematics Subject Classification:  Primary 13N10; Secondary 32522.

1. INTRODUCTION

For a commutative algebra R over a field K of characteristic zero, define vector spaces
inductively by

P°(R) := {0 € Endg(R) | a € R,fa — af = 0},
2™(R):= {0 € Endg(R) |a € R,6a—ab € 2" "(R)} (m>1).

We define the ring Z(R) := o Z™(R) of differential operators of R.
Let S := K|xy,...,z,] be the polynomial ring. The ring Z(.5) is the n-th Weyl algebra

Klzy,...,2,){01,...,0,) where 0; := a%i (see for example [3]). We use the multi-index
notetions, for example, 0% := 97" --- 99" and |a| == a; + -+, for a = (aq,...,a,) €

N". Define 2(™(9) := D |aj=n- Then Z(5) = D, PM(S). Tt is well known Z(R)
that Z(R) is Noetherian, if R is a regular domain (see [3]).

Holm [2] showed that Z(R) is finitely generated as a K-algebra when R is a coordinate
ring of a generic hyperplane arrangement. Holm [1] also proved that the ring of differential
operators of a central 2-arrangement is a free S-module, and gave a basis of it. We can
write any ellement in Z(R) as a linearly combination of this basis ellements.

In this paper, we introduce the Noetherian property of Z(R) when R is the coordinate
ring of a central arrangement. In particular, the case n = 2, Z(R) is a Noetherian ring .
We give an example of a finitely generated ideal in the end of this paper.

The details of this note are in [4].

2. HYPERPLANE ARRANGEMENT

In this section, we fix some notation, and we introduce some properties of the ring of
differential operators of a central arrangement. Let &7 = {H; |i=1,... 7} be a central
(hyperplane) arrangement (i.e., every hyperplane in .2/ contains the origin) in K. Fix a

The detailed version of this paper will be submitted for publication elsewhere.
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polynomial p; with ker(p;) = H;, and put @ := p; -+ p,. Thus @ is a product of certain
homogeneous polynomials of degree 1. Let I denote the principal ideal of S generated by
Q. Then S/I is the coordinate ring of the hyperplane arrangement defined by Q.
For any ideal J of S, we define an S-submodule 2(™(.J) of 2(™)(S) and a subring
2(J) of 2(S) by
2'™(J) = {0 € 2"(S) | 0(J) C J},
2(J) :=4{0€ 2(5) |0(J) C J}.

Holm [2] proved the following proposition.

Proposition 1 (Proposition 4.3 in [2]).

(1) =P 2 1).

m>0

There is a ring isomorphism Z(S/J) ~ 2(J)/J2(S) (see [3, Theorem 15.5.13]). Thus
we can express Z(S/.J) as a subquotient of Weyl algebra.

We can prove that 2(J)/J2(9S) is right Noetherian if and only if Z(J)/J2(S) is left
Noetherian when J # 0 is a principal ideal. Therefore we conclude that Z(S/I) is right
Noetherian if and only if 2(S/1) is left Noetherian.

Theorem 2. Let h # 0 be a polynomial, and let J = hS. Then the ring 2(J)/JP(S) is
right Noetherian if and only if 2(J)/J2(S) is left Noetherian.

Corollary 3. Let I be the defining ideal of a central arrangement. Then the ring 2(S/1)
is right Noetherian if and only if 2(S/1) is left Noetherian.

To prove that Z(S/I) is a Noetherian ring, we only need to prove that Z(S/I) is a
right Noetherian ring.
The operator

m!
Em 1= E —r*0”
ol
|o|=m

is called the Euler operator of order m where a! = (ay!) -+ (a,!) for a = (aq,...,a,).
Then &, = ¢1(e; — 1) -+ (61 —m + 1) [2, Lemma 4.9].
3. n=2

In this section, we assume n = 2 and S = K][z,y]. We introduce the Noetherian
property of the ring Z(S/1) ~ 2(1)/12(S). In contrast, the graded ring Gr Z(S/I)
associated to the order filtration is not Noetherian when r > 2.

Put P, := 1% fori=1,...,r, and define

5 Oy if p;=ar (a€ K*)
’ Oy +a;0, if p;=0aly—ax) (aec K*).

Then 6;(p;) = 0 if and only if ¢ = j.
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Proposition 4 (Paper III, Proposition 6.7 in [1], Proposition 4.14 in [6]). For any m > 1,
P(I) is a free left S-module with a basis

{em, P67, ..., P} if m<r—1,
{Po7",...,Po"}if m=r—1,
(P B, QniT) QT Y i m > — 1,
where the set {87, ..., 0" 777r+17 . ,77m+1} forms a K-basis for 3, _,, KO% if m >r—1.

By Proposition 1, we have

r—2
P()=8S® (@ (Sem ® SPOT ® -+ ® SPman”;))
m=1
® ( P (spoyre- @SSP eSO @ o SQnﬁgﬁl)).
m>r—1
Fori=1,...,r, we define an additive group

Li:=2()N(p1---p:)2(S).
Proposition 5. Fori=1,...,r, the additive group L; is a two-sided ideal of P(I).
We consider a sequence
(3.1) I2=L,CL.1C---CLiCLy=2()
of two-sided ideals of Z(I). If L;_1/L; is a right Noetherian Z(I)-module for any 4, then

2(1)/12(S) is a right Noetherian ring. By proving that L; 1/L; is right Noetherian for
all 7, we obtain the following main theorem.

Theorem 6. The ring 2(S/1) ~ 2(1)/12(S) of differential operators of the coordinate
ring of a central 2-arrangement is Noetherian (i.e., 2(S/I) is right Noetherian and left
Noetherian).

In contrast, Gr Z(S/1I) is not Noetherian when r > 2.

Remark 7. The graded ring Gr Z(S/I) associated to the order filtration is a commutative
ring. We consider the ideal M := (P;§* | m > 1) of Gr 2(S/I).

Assume that M is finitely generated with generators 7,...,7,. Then there exists a
positive integer m such that

M:<7717...,77[> <P1(51,...,P1571n71>.
Since P07" € M, we can write
(3.2) PP =Py -0y + -+ P60

for some 64,...,0,_1 € 2(I).

If 0 € (1) with ord(d) < 1, then the polynomial degree of # is greater than or equal
to 1 by Proposition 4. Since the order of the LHS of (3.2) is m, there exists at least one
¢; such that the order of §; is greater than or equal to 1. Thus the polynomial degree of
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the RHS of (3.2) is greater than r — 1. However, the polynomial degree of the LHS of
(3.2) is exactly 7 — 1. This is a contradiction.

Hence M is not finitely generated, and thus we have proved that Gr Z(S/I) is not
Noetherian.

4. EXAPLE

Let n =2 and S = K[z,y|. Let Q@ = xy(x —y) and I = QS. Put p; = x,py = y,p3 =
r —y. Then P, = y(z —y) and 0, = J,. We consider the right ideal (y(z —y)9;"* | m > 1)
of 2(I).

For ¢ > 4, we have

y(@ — )9y - y(z — )0 =y (x — y)*0 " + y(x — 2y)0, ",
y(x — )02 - y(x — y)0, = y*(x — y)?0 "> + 2y(x — 2y)0, ™" — 2y(x — ),
y(x —y)0 - ylx —y)0, " =y (x — y)*0," + 3y(z — 2y)0 " — 6y(x — y) ..

Y
Thus we obtain

y(z—y)0y-y(e—y)d, " = 2y(x—y)0y-y(x —y)d,+y(z —y)d; - y(r—)9, ™" = —2y(z—y)J,,.
This leads to
y(x —y)d, € (y(z —y)9y" | m =1,2,3)
since y(r — y)9;" € Z(I) for any m > 1. We have the identity
(Y@ =)oy [m =1) = {ylx —y)9" | m=1,2,3)
as right ideals. Hence the right ideal (y(z —y)d;" | m > 1) is finitely generated.

In contrast, the right ideal (y(z — )9 | m > 1) of Gr Z(S/I) is not finitely generated
by Remark 7.
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O

HOCHSCHILD COHOMOLOGY OF QUIVER ALGEBRAS DEFINED
BY TWO CYCLES AND A QUANTUM-LIKE RELATION

DAIKI OBARA

ABSTRACT. This paper is based on my talk given at the Symposium on Ring Theory
and Representation Theory held at Okayama University, Japan, 25-27 September 2011.
In this paper, we consider quiver algebras A, over a field k£ defined by two cycles and
a quantum-like relation depending on a non-zero element ¢ in k. We determine the
ring structure of the Hochschild cohomology ring of A, modulo nilpotence and give a
necessary and sufficient condition for A, to satisfy the finiteness condition given in [19].

1. INTRODUCTION

Let A be an indecomposable finite dimensional algebra over a field k. We denote by A°
the enveloping algebra A ®; A of A, so that left A°~-modules correspond to A-bimodules.
The Hochschild cohomology ring is given by HH*(A) = Ext’. (A, A) = @n>0Ext (A, A)
with Yoneda product. It is well-known that HH*(A) is a graded commutative ring, that
is, for homogeneous elements n € HH™(A) and § € HH"(A), we have nf = (—1)""6n. Let
N denote the ideal of HH*(A) which is generated by all homogeneous nilpotent elements.
Then N is contained in every maximal ideal of HH*(A), so that the maximal ideals of
HH*(A) are in 1-1 correspondence with those in the Hochschild cohomology ring modulo
nilpotence HH*(A)/N.

Let ¢ be a non-zero element in k and s, ¢ integers with s,¢ > 1. We consider the quiver
algebra A, = k(Q)/1, defined by the two cycles @) with s+t — 1 vertices and s + ¢ arrows
as follows:

as <2 a by «ovne-

as / I\al B1 /\
ay 1 bi—o
]as Bt ’\ \/Bt—Z
...... aq b &b,
and the ideal I, of k() generated by
Xsa’ Xsyt - thXS, Ytb

for a,b > 2 where we set X:= a1 +as+---+a, and Y:= 31 + B + - - - + ;. We denote
the trivial path at the vertex a(i) and at the vertex b(j) by e,;) and by ey;) respectively.
We regard the numbers 7 in the subscripts of e,(;y modulo s and j in the subscripts of ey
modulo ¢. In this paper, we describe the ring structure of HH*(A,)/N.

In [17], Snashall and Solberg used the Hochschild cohomology ring modulo nilpotence
HH*(A)/N to define a support variety for any finitely generated module over A. This

led us to consider the structure of HH*(A)/A. In [17], Snashall and Solberg conjectured
that HH*(A)/AN is always finitely generated as a k-algebra. But a counterexample to
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this conjecture was given by Snashall [16] and Xu [21]. This example makes us consider
whether we can give necessary and sufficient conditions on a finite dimensional algebra A
for HH*(A)/N to be finitely generated as a k-algebra.

On the other hand, in the theory of support varieties, it is interesting to know when the
variety of a module is trivial. In [4], Erdmann, Holloway, Snashall, Solberg and Taillefer
gave the necessary and sufficient conditions on a module for it to have trivial variety under
some finiteness conditions on A. In [19], Solberg gave a condition which is equivalent to
the finiteness conditions. In the paper, we show that A, satisfies the finiteness condition
given in [19] if and only if ¢ is a root of unity.

The content of the paper is organized as follows. In Section 1 we deal with the definition
of the support variety given in [17] and precedent results about the Hochschild cohomol-
ogy ring modulo nilpotence. In Section 2, we describe the finiteness condition given in
[19] and introduce precedent results about this condition. In Section 3, we determine
the Hochschild cohomology ring of A, modulo nilpotence and show that A, satisfies the
finiteness condition if and only if ¢ is a root of unity.

2. SUPPORT VARIETY

In [17], Snasall and Solberg defined the support variety of a finitely generated A-module
M over a noetherian commutative graded subalgebra H of HH*(A) with H° = HH(A).
In this paper, we consider the case H = HH*(A).

Definition 1 ([17]). The support variety of M is given by
V(M) = {m € MaxSpec HH*(A) /N| AnnExt (M, M) C m’'}

where AnnExt’ (M, M) is the annihilator of Ext’ (M, M), m' is the pre-image of m for
the natural epimorphism and the HH*(A)-action on Ext’ (A, A) is given by the graded
algebra homomorphism HH*(A) N Ext’ (M, M).

Since A is indecomposable, we have that HH"(A) is a local ring. Thus HH*(A)/A has a
unique maximal graded ideal m,, = (rad HH*(A), HH='(A))/A. We say that the variety
of M is trivial if V(M) = {my, }.

In [16], Snashall gave the following question.
Question ([16]). Whether we can give necessary and sufficient conditions on a finite di-
mensional algebra for the Hochschild cohomology ring modulo nilpotence to be finitely
generated as a k-algebra.

With respect to sufficient condition, it is shown that HH*(A)/N is finitely generated
as a k-algebra for various classes of algebras by many authors as follows:

(1) In [6], [20], Evens and Venkov showed that HH*(A)/N is finitely generated for
any block of a group ring of a finite group.

(2) In [7], Friedlander and Suslin showed that HH*(A) /N is finitely generated for any
block of a finite dimensional cocommutative Hopf algebra.

(3) In [9], Green, Snashall and Solberg showed that HH*(A)/N is finitely generated
for finite dimensional self-injective algebras of finite representation type over an
algebraically closed field.
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(4) In [10], Green, Snashall and Solberg showed that HH*(A)/N is finitely generated
for finite dimensional monomial algebras.

(5) In [11], Happel showed that HH*(A) /N is finitely generated for finite dimensional
algebras of finite global dimension.

(6) In [15], Schroll and Snashall showed that HH*(A)/N is finitely generated for the
principal block of the Heche algebga H,(S5) with ¢ = —1 defined by the quiver

o=ty
and the ideal I of k() generated by
ag, ae,éa, e — aa, £ — aa.
(7) In [18], Snashall and Taillefer showed that HH*(A)/N is finitely generated for a
class of special biserial algebras.
(8) In [12], Koenig and Nagase produced many examples of finite dimensional algebras
with a stratifying ideal for which HH*(A)/N is finitely generated as a k-algebra.

(9) In [16] and [21], Snashall and Xu gave the example of a finite dimensional algebra
for which HH*(A)/N is not a finitely generated k-algebra.

Example 2. ([16, Example 4.1]) Let A = kQ/I where @ is the quiver

a

)

O

b
and I = (a? b ab — ba,ac). Then HH*(A)/N is not finitely generated as a k-
algebra.

Xu showed this in the case chark = 2 in [21].

3. FINITENESS CONDITION

In [4], Erdmann, Holloway, Snashall, Solberg and Taillefer gave the following two con-
ditions (Fgl) and (Fg2) for an algebra A and a graded subalgebra H of HH*(A).
(Fgl) H is a commutative Noetherian algebra with H° = HH"(A).
(Fg2) Ext’(A/rad A, A/rad A) is a finitely generated H-module.
In [19], Solberg showed that the finiteness conditions are equivalent to the following
condition.
(Fg) HH*(A) is Noetherian and Ext’(A/radA, A/radA) is a finitely generated
HH*(A)-module.
In [4], under the finiteness condition (Fg), some geometric properties of the support vari-
ety and some representation theoretic properties are related. In particular, the following
theorem hold.

Theorem 3 ([4, Theorem 2.5]). Suppose that A satisfies (Fg).

(a) A is Gorenstein, that is, A has finite injective dimension both as a left A-module
and as a right A-module.
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(b)

The following are equivalent for an A-module M.
(i) The variety of M is trivial.

(ii) The projective dimension of M is finite.

(iii) The injective dimension of M is finite.

There are some papers which deal with the finiteness condition (Fg) as follows.

(1)

In [2], Bergh and Oppermann show that a codimension n quantum complete in-
tersection satisfies (Fg) if and only if all the commutators ¢;; are roots of unity.

Definition 4. Let n be integer with n > 1, a; integer with a; > 2 for 1 <i < n,
and ¢;; a non-zero element in k for every 1 <+¢ < j7 <n. A codimension n quantum
complete intersection is defined by

k(l’l, e ,LCn)/[
where [ generated by
xit i — qjriey; for 1 <i<j<n.

In [5], Erdmann and Solberg gave the necessary and sufficient conditions on a
Koszul algebra for it to satisfy (Fg).

Theorem 5 (][5, Theorem 1.3]). Let A be a finite dimensional Koszul algebra over
an algebraically closed field, and let E(A) = Ext’y(A/rad A, A/rad A). A salisfies
(Fg) if and only if Z, (E(A)) is Noetherian and E(A) is a finitely generated
Zg(E(A))-module.

In [8], Furuya and Snashall provided examples of (D, A)-stacked monomial alge-
bras which are not self-injective but satisty (Fg).

Example 6. ([8, Example 3.2]) Let @ be the quiver

[0
R

(%)
= =
W — N

)

%
gl
and I the ideal of k() generated by

afyoaf, yoaByo.
Then, A = kQ/Z is not self-injective but satisfies (Fg).

In [15], Schroll and Snashall show that (Fg) hold for the principal block of the
Heche algebra H,(S5) with ¢ = —1.
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4. QUIVER ALGEBRAS DEFINED BY TWO CYCLES AND A QUANTUM-LIKE RELATION

In this section, we consider the quiver algebras A, = kQ)/I, defined by the quiver Q) as
follows:
as <= ay by «oven-

as / NG B1 N

Qy 1 bt—2

/‘as Bt ,\ 5 \//Bt—Q

and the ideal I, of k@) generated by

Xsa’ XSYt - thXS, Ytb
for a,b > 2 where we set X:= a; +as + -+ az and Yi= 5y + B + - + (4, and ¢ is
non-zero element in k. Paths are written from right to left.

In the case s =t = 1, A, is called a quantum complete intersection (cf. [1]). In this
case, when a = b = 2, the Hochschild cohomology ring HH*(A,) of A, was described by
Buchweitz, Green, Madsen and Solberg [3] for any ¢ € k. Moreover, in the case where
s =t=1,a,b> 2 Bergh and Erdmann [1] determined HH*(A,) if ¢ is not a root of
unity. And in the same case, Bergh and Oppermann [2] show that A, satisfies (Fg) if
and only if ¢ is a root of unity. In [4], Erdmann, Holloway, Snashall, Solberg and Taillefer
describe that if an algebra A satisfies (Fg) then HH*(A) is a finitely generated k-algebra.
Therefore, we consider the case where s > 2 or t > 2.

In this paper, we determine the Hochschild cohomology ring of A, modulo nilpotence
HH*(A,)/N and show that A, satisfies (Fg) if and only if ¢ is a root of unity.

In [13] and [14], we determined the ring structure of HH*(A,) by means of generators
and Yoneda product. By this ring structure of HH*(A4,), we have the following results.

Theorem 7. In the case where q is a root of unity, HH*(A,) is finitely generated as a
k-algebra.

Theorem 8. In the case where q is a root of unity, HH*(A,)/N is isomorphic to the
polynomial ring of two variables. In the case s,t > 2, r > 1, we have

k[WOQI),OJ W22rr,0,0] if s,t >2,a# 075 #0,

kW3t o0 Wioel  ifs,t>2,a=0,b#0,

kW3 o0 Wargol if s,t>2,a#0,b=0,

kW00 Wiool ifs,t>2a=0b=0,

where for any integer z, Z is the remainder when we divide z by r, and forn > 1,

HH" (4,)/N =

t
Wty = Xy Wen) + ) Y Xy e for 0 <1 <a—1and 0 <1 <b,

j=2

W;ﬁl’l, = Xyt 6(21?1) + ZXS(l_l)H_lY” XS_”lez’&) for0<i<aand0<l <b-—1.
i=2
In the case where s =1 ort =1, we have similar results.
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Theorem 9. In the case where q is not a root of unity, HH*(A,) is not a finitely generated
k-algebra.

Theorem 10. In the case where q is not a root of unity, HH*(A,)/N = k.

There exists an example of our algebra A, which is not self-injective, monomial or Koszul.
Moreover this example of A, have no stratifying ideal.

Example 11. In the case where s = 2, ¢t = 1 and a = b = 2, A, is not self-injective,
monomial or Koszul. Moreover A, have no stratifying ideal.

Therefore A, is new example of a class of algebras for which the Hochschild cohomology
ring modulo nilpotence is finitely generated as a k-algebra.

Next, we give the necessary and sufficient condition for A to satisfy (Fg). Now, we
consider the case where ¢ is an r-th root of unity for » > 1, s, > 2 and a, b # 0.

Let p: HH'(A4,) = E(4A,) == ®n>oExt] (A4/rad Ay, Aj/rad A;) be a homomorphism
of graded rings given by ¢(n) = n ®a, As/rad A;. Then it is easy to see that E(A,)":=
Ext) (Ag/rad Ay, A,/rad A,) =~ [[L, kel @ szz key ) @ [1i—s kegy;), and that the image

s 2r

of ¢ is precisely the graded ring k[z, y| where x := 23:1 egfj) andy =) ., €a(s in degree
2r. Then, we have the following proposition.

Proposition 12. E(A,) is a finitely generated left k[x, y]-module.

In the other cases, we have same results as Proposition 12. Then we have the following
immediate consequence of Proposition 12.

Theorem 13. In the case where s > 2 ort > 2, if q is a root of unity then A, satisfies
(Fg).

By [2], Theorem 9 and 13, we have the necessary and sufficient condition for A, to
satisfy (Fg).

Theorem 14. A, satisfies (Fg) if and only if q is a root of unity.

Remark 15. By Theorem 2.5 in [4] and Theorem 14, in the case where ¢ is a root of unity,
we have the following properties

(1) A, is Gorenstein.
2) The support variety of an A,-module M is trivial if and only if the projective
q
dimension of M is finite.
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ALTERNATIVE POLARIZATIONS OF BOREL FIXED IDEALS AND
ELTAHOU-KERVAIRE TYPE RESOLUTION

RYOTA OKAZAKI AND KOHJI YANAGAWA

1. INTRODUCTION

Let S := k[zy,...,z,] be a polynomial ring over a field k. For a monomial ideal
I C S, G(I) denotes the set of minimal (monomial) generators of I. We say a monomial
ideal I C S is Borel fived (or strongly stable), if m € G(I), z;jm and j < ¢ imply
(xj/x;) - m € I. Borel fixed ideals are important, since they appear as the generic initial
ideals of homogeneous ideals (if char(k) = 0).

A squarefree monomial ideal [ is said to be squarefree strongly stable, if m € G(I),
x;lm, z; fm and j < ¢ imply (z;/z;) - m € I. Any monomial m € S with deg(m) = e has
a unique expression

e
(1.1) m:II@“\mm 1<ap<as<- - <a,<n.
=1

Now we can consider the squarefree monomial

e
sq _
m™ = H-rai—i-i—l
i=1

in the “larger” polynomial ring 7' = k|[xy,...,zy]| with N > 0. If [ C S is Borel fixed,
then 9 := (m* | m € G(I)) C T is squarefree strongly stable. Moreover, for a Borel
fixed ideal I and all 7, j, we have ij(l ) = lTJ(I s4). This operation plays a role in the
shifting theory for simplicial complexes (see [1]).

A minimal free resolution of a Borel fixed ideal I has been constructed by Eliahou
and Kervaire [7]. While the minimal free resolution is unique up to isomorphism, its
“description” depends on the choice of a free basis, and further analysis of the minimal
free resolution is still an interesting problem. See, for example, [2, 9, 10, 11, 13]. In this
paper, we will give a new approach which is applicable to both I and 7*9. Our main tool
is the “alternative” polarization b-pol(I) of I.

Let

Si=k[z;;|1<i<n, 1<j<d]
be the polynomial ring, and set
@:{mz,l—wm|1§2§n,2§j§d}C§

The first author is partially supported by JST, CREST.
The second author is partially supported by Grant-in-Aid for Scientific Research (c¢) (no.22540057).
The detailed versions of this paper will be submitted for publication elsewhere.
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Then there is an isomorphism S/(0) 2 S induced by S 3 z;; — x; € S. Throughout

this paper, S and © are used in this meaning.
Assume that m € G(I) has the expression (1.1). If deg(m) (= e) < d, we set

(1.2) b-pol(m H:ca” €s.

Note that b-pol(m) is a squarefree monomial. If there is no danger of confusion, b-pol(m)
is denoted by m. If m =[], z{", then we have

1127

m (= b-pol(m)) = H T € S, where b; = Zal.
=1

1<i<n
bi—1+1<5<b;

If deg(m) < d for all m € G(I), we set
b-pol(I) := (b-pol(m) | m € G(I)) C S.

The second author ([16]) showed that if I is Borel fixed, then I := b-pol(I) is a “polar-
ization” of I, that is, © forms an S/[-regular sequence with the natural isomorphism

S/(I+(©)) = S/1.

Note that b-pol(—) does not give a polarization for a general monomial ideal, and is
essentially different from the standard polarization. Moreover,

@’:{xm—xiﬂﬁ-_l|1§i<n,1<j§d}C§

forms an S/I-regular sequence too, and we have S/(I + (©')) = T/I*% through S >
Tij — Tivj—1 € T (if we adjust the value of N = dimT'). The equation 32,(I) = ], (1*9)
mentioned above easily follows from this observation. L

In this paper, we will construct a minimal S-free resolution P, of S/I, which is analogous
to the Eliahou-Kervaire resolution of S/I. However, their description can not be lifted to
I, and we need modification. Clearly, P, ®5S/(©) and P, ®5 S/(©’) give the minimal
free resolutions of S/I and T'/I*% respectively.

Under the assumption that a Borel fixed ideal I is generated in one degree (i.e., all
elements of G(I) have the same degree), Nagel and Reiner [13] constructed I =hb- pol([ ),
and described a minimal S-free resolution of I explicitly. Their resolution is equivalent
to our description. In this sense, our results are generalizations of those in [13].

In [2], Batzies and Welker tried to construct a minimal free resolutions of monomial
ideals J using Forman’s discrete Morse theory ([8]). If J is shellable (i.e., has linear
quotients, in the sense of [9]), their method works, and we have a Batzies- Welker type
minimal free resolution. However, it is very hard to compute their resolution explicitly.

A Borel fixed ideal I and its polarization I = b-pol([) is shellable. We will show that
our resolution P, of § / I and the induced resolutions of S /I and T'/I*9 are Batzies-Welker
type. In particular, these resolutions are cellular. As far as the authors know, an ezplicit
description of a Batzies-Welker type resolution of a general Borel fixed ideal has never
been obtained before. Finally, we show that the CW complex supporting P, is regular.
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2. THE ELIAHOU-KERVAIRE TYPE RESOLUTION OF S/ b-pol([)

Throughout the rest of the paper, I is a Borel fixed monomial ideal with degm < d
for all m € G(I). For the definitions of the alternative polarization b-pol(I) of I and

n

related concepts, consult the previous section. For a monomial m = [[I_, zi* € S, set

u(m) :== min{i | a; > 0} and v(m) := max{i | a; > 0}. In [7], it is shown that any
monomial m € [ has a unique expression m = my-my with v(m;) < p(my) and my € G(I).
Following [7], we set g(m) := my. For ¢ with i < v(m), let

bi(m) = (z;/xx) - m, where k:=min{j | a; >0, 7 > i}.
Since [ is Borel fixed, m € [ implies b;(m) € I.

Definition 1 ([14, Definition 2.1]). For a finite subset F' = { (i1, j1), (2, j2), . - ., (i, Jq)
of N x N and a monomial m = [[7_, o, = [[_, 27" € G(I) with 1 < a; < ay < --- <
ae < m, we say the pair (F, ) is admissible (for b-pol(I)), if the following are satisfied:
(a) 1 <y <ig < -+ <iy<v(m),
(b) 7, = max{l | oy <, } + 1 (equivalently, 7, = 1+ Z;T:l a;) for all r.

For m € G(I), the pair (), m) is also admissible.
The following are fundamental properties of admissible pairs.
Lemma 2. Let (F,m) be an admissible pair with F = { (i1, j1), ..., (iq,jq) } and m =
[[z{" € G(I). Then we have the following.
(i) 1 <ja < < g
(i) =, - b-pol(b;.(m)) = z;,_,, - b-pol(m), where k = min{l|{>i,,a; > 0}.

For m € G(I) and an integer ¢ with 1 < < v(m), set m¢; := g(b;(m)) and my; =
b-pol(my;). If i > v(m), we set m;, := m for the convenience. In the situation of Lemma 2,
m;,y divides z; ; -mforall 1 <r <gq.

For F = { (i1, 1) ., (ig,Jq) } and r with 1 < r < g, set E, := F\ {(ir,j,) }, and for
an admissible pair (£, m) for b-pol(]),

B(F,m):={r|(F, M(;,y) is admissible }.

P

Lemma 3. Let (F,m) be as in Lemma 2.
(i) For all r with 1 <r < g, (ﬁr, m) is admissible.
(i) We always have q € B(F, ).
(i) Assume that (ﬁr,ﬁ<iT>) satisfies the condition (a) of Definition 1. Then r €
B(ﬁ, m) if and only if either j,. < j..1 orr =q.
(iv) Forr,s with 1 <r < s < q and j,. < js, we have b; (b;.(m)) = b; (b;.(m)) and
hence (ﬁ]<ir>)<i5> = (ﬁ]<i5>)<ir>.
(v) Forr,s with 1 <r < s <q and j, = js, we have b; (m) = b; (b;,(m)) and hence
M) = (M) ) i)
Example 4. Let I C S = k[x1, 29, 23, 4] be the smallest Borel fixed ideal containing
m = (z1)%z374. In this case, miy = g(bi(m’)) for all m" € G(I). Hence, we have m(;) =

(z1)324, mgy = (21)*2224 and mgy = (z1)?(z3)% The following 3 pairs are all admissible.
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o (F,m) = ({(1,3),(2,3),(3,4) b 1,1 12753 74,4)
(F2a ) = {(1,3),(3,4) }, z1,1 12 023 T4,4)
(F3, ) ({( ) ( ) )}>$1,1£U1,2$3,3$3,4)
(For this F, i, = r holds and the reader should be careful). However, (ﬁl,ﬁ<1>) =
({(2,3),(3,4) },x11 x12 71,3 T4,4) does not satisfy the condition (b) of Definition 1. Hence
B(F,m) = {2,3}.

The diagrams of (admissible) pairs are very useful for better understanding. To draw
a diagram of (F,m), we put a white square in the (i,)-th position if (i,5) € F and
a black square there if x;; divides m. If F is maximal among F’ such that (F’,m) is
admissible, then the diagram of (F, m) forms a “right side down stairs” (see the leftmost

and rightmost diagrams of the table below). If (F, M) is admissible but F is not maximal,
then some white squares are removed from the diagram for the maximal case. If the pair
is admissible, there is a unique black square in each column and this is the “lowest” of
the squares in the column. N
If (F,m) is admissible and r € B(F, m), then we can get the diagram of (F,, m m;,y) from
that of (F',m) by the following procedure.
(i) Remove the (sole) black square in the j.-th column.
(ii) Replace the white square in the (i, j,.)-th position by a black one.
(iii) If my,y # by, (m), erase some squares from the lower-right of the diagram. (This
step does not occur in the next table.)

J J J J
123 4 1234 123 4 1 2 3 4
1 1 1 1
.2 .2 .2 .2
L3 L3 3 3
4 4 4 4
(F,m) (Fy, fgy) (Fy, M) (F3, M)
admissible not admissible admissible admissible

Next let I’ be the smallest Borel fixed ideal containing m = (z1)%z3x4 and (z;)?z,. For
F =1{(1,3),(2,3),(3,4)}, (F,) is admissible again. However fy = (z;)%r, in this
time, and (Fy, m mey) = ({(1,3),(3,4) }, 21,1 21,2 723) is no longer admissible. In fact, it
does not satisfy (a) of Definition 1. Hence B(F,m) = {3} for b-pol(I’).

For F' = {iy,...,i,} C N with i; < --- < i, and m € G(I), Eliahou-Kervaire call the
pair (F, m) adm1581ble for I,ifi, < 1/( ). In this case, there is a unique sequence ji, . .., j,
such that (F, ) is admissible for I, where F' = { (i1, 1), ..., (ig, j;) }. In this way, there
is a one-to-one correspondence between the admissible pairs for I and those of I. As the
free summands of the Eliahou-Kervaire resolution of I are indexed by the admissible pairs
for I, our resolution of I are indexed by the admissible pairs for I
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We will define a 7Z"*?_graded chain complex P, of free S-modules as follows. First, set
PO — 5. For each q > 1, we set

A, = the set of admissible pairs (F,m) for b-pol(I) with #F = q,

and

P, = Se(F,m),
(F,m)eAq_1

where e(F, m) is a basis element with

We define the S-homomorphism 0 : P, — P,_; for ¢ > 2 so that e(F,m) with F =
{(i1, 1), ., (ig, Jg)} 1s sent to

T -~ T xir; jr -m o~
Z (_1) ' ’I.iryjr : e(F"'7 m) - Z (_1) : r"ﬁ]— : 6<Fr7 m<ir>)7
1sr=q reB(F.,f) (ir)
and §: P, — By by e(d,m) — m € S =R, Clearly, 9 is a Z"*?-graded homomorphism.
Set

Theorem 5 ([14, Theorem 2.6]). The complex P, is a Zm*d- graded minimal S -free reso-
lution for S/ b-pol(I).

Sketch of Proof. Calculation using Lemma 3 shows that 0 o d(e (F,m)) = 0 for each ad-
missible pair (F m). That is, P, is a chain complex.

Let [ = (my,...,m;) with m; > --- > m,, and set I, :== (my,...,m,). Here > is the
lexicographic order with @y > @ > - -+ > x,. Then I, are also Borel fixed. The acyclicity
of the complex P can be shown inductively by means of mapping cones. 0

Remark 6. Herzog and Takayama [9] explicitly gave a minimal free resolution of a mono-
mial ideal with linear quotients admitting a regular decomposition function. A Borel fixed
ideal I satisfies this property. However, while I has linear quotients, the decomposition
function can not be regular. Hence the method of [9] is not applicable to our case.

3. APPLICATIONS AND REMARKS

Let I C S be a Borel fixed ideal, and © C S the sequence defined in Introduction. As
remarked before, there is a one-to-one correspondence between the admissible pairs for 1
and those for 7, and if (F', m) corresponds to (F, m) then #F = #F. Hence we have

(3.1) B85.(1) = B2.(I)

for all 7, 7, where .S and S are considered to be Z-graded. Of course, this equation is clear,
if one knows the fact that I is a polarization of I ([16, Theorem 3.4]). Conversely, we can
show this fact by the equation (3.1) and [13, Lemma 6.9].
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Corollary 7 ([16, Theorem 3.4]). The ideal I is a polarization of I.

The next result also follows from [13, Lemma 6.9].
Corollary 8. P, ®z S/(©) is a minimal S-free resolution of S/I.

Remark 9. (1) The correspondence between the admissible pairs for I and those for f,
does not give a chain map between the Eliahou-Kervaire resolution and our P, @ g 5/(0).
In this sense, two resolutions are not the same. See Example 21 below.

(2) The lem lattice of I and that of I are not isomorphic in general. Recall that the
lem-lattice of a monomial ideal J is the set LCM(J) := {lem{m |m € o} | o C G(J)}
with the order given by divisibility. Clearly, LCM(J) is a lattice. For the Borel fixed ideal
I = (2% 2y, 22,9, yz2), we have 1y V 2z = zy Vyz = 12V yz = xyz in LCM(I). However,
TYV Tz = T1Ys22, TY V Yz = T1y1Y222 and Tz V Yz = 11y 29 are all distinct in LCM(IN) )

(3) Eliahou and Kervaire ([7]) constructed minimal free resolutions of stable monomial
ideals, which form a wider class than Borel fixed ideals. However, b-pol(.J) is not a
polarization for a stable monomial ideal J in general, and our construction does not
work.

Let a = {ag,a1,as,...} be a non-decreasing sequence of non-negative integers with
ap = 0, and T" = k[zy,...,2n]| a polynomial ring with N > 0. In his paper [12],
Murai defined an operator (—)”®) acting on monomials and monomial ideals of S. For a
monomial m € S with the expression m = [[;_; zo, as (1.1), set

€
m7(@ .= H Tojta;, €T,

i=1
and for a monomial ideal I C S,
M@= (m@ | meGI)cT.

If a;y1 > a; for all i, then 1"(® is a squarefree monomial ideal. Particularly in the case
a; = i for all i, (=)@ is just (—)% mentioned in Introduction.

The operator (—)7(® also can be described by b-pol(—) as is shown in [16]. Let L, be
the k-subspace of S spanned by {x;; — g s | i +a;.1 =i +a;_1}, and O, a basis of L.
For example, we can take {z;; — ;411 | 1 <i<n, 1 <j <d} as O, in the case a; =i
for all 7. With a suitable choice of the number N, the ring homomorphism S — T with
Tij &> Tiyq, , induces the isomorphism S /(©,) =T.

Proposition 10 ([16, Proposition 4,1]). With the above notation, ©, forms an S/I-
reqular sequence, and we have (S/(0,)) ®g (S/I) = T/1"@.

Applying Proposition 10 and [5, Proposition 1.1.5], we have the following.

Corollary 11. The complez P, Rz S/(8,) is a minimal T-free resolution of T/I7®. In
particular, a minimal free resolution of T'/1%9 is given in this way.

For a Borel fixed ideal I generated in one degree, Nagel and Reiner [13] constructed a
CW complex, which supports a minimal free resolution of I (or I, I°9).
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Proposition 12 ([14, Proposition 4.9]). Let I be a Borel fixed ideal generated in one
degree. Then Nagel-Reiner description of a free resolution of I coincides with our P,.

We do not give a proof of the above proposition here, but just remark that if [ is
generated in one degree then m, = b;(m) for all m € G(I) and P, becomes simpler.

4. RELATION TO BATZIES-WELKER THEORY

In [2], Batzies and Welker connected the theory of cellular resolutions of monomial
ideals with Forman’s discrete Morse theory ([8]).

Definition 13. A monomial ideal J is called shellable if there is a total order C on G(J)
satisfying the following condition.

(x) For any m;m’ € G(J) with m O m’, there is an m” € G(J) such that m J m”|

deg (M) =1 and lem(m, m”) divides lem(m, m’).
For a Borel fixed ideal I, let C be the total order on G(I) = {m | m € G(I)} such that
m’ = m if and only if m" >= m in the lexicographic order on S with x; = x9 = -+ = x,.
In the rest of this section, C means this order.

Lemma 14. The order C makes I shellable.

The following construction is taken from [2, Theorems 3.2 and 4.3]. For the background
of their theory, the reader is recommended to consult the original paper.

For ) # o C G(I), let m, denote the largest element of o with respect to the order L,
and set lem(o) :=lem{m | m e o }.

Definition 15. We define a total order <, on G(I) as follows. Set
Na = { (Fﬁa')<i) | 1 S 1< V(mg), (ﬁ]‘,)<i> divides ICHI(U) }

For all m € N, and m" € G(I) \ N,, define m <, m’. The restriction of <, to NN, is set to

be , and the same is true for the restriction to G(I) \ N,.

Let X be the (#G(I) — 1)-simplex associated with 26(0) (more precisely, 2G(0) \ {0}).
Hence we freely identify ¢ C G(I) with the corresponding cell of the simplex X. Let

Gx be the directed graph defined as follows. The vertex set of Gy is 2¢() \ {}. For

) # 0,0 C G(I), there is an arrow o — ¢’ if and only if o D ¢’ and #0 = #0’ + 1. For
o={my,mg,...,mg} with m; <, my <, -+ <, mg (=m,) and [ € Nwith 1 <[ <k, set
oy :={ Mgy, Mp_i41,..., My } and

u(o) == sup{l| Im € G(I) s.t. m <, My, and M| lem(a;) }.
If u:=wu(o) # —o0, we can define n, := min_{ m | m divides lem(o,) }. Let Ex be the
set of edges of Gx. We define a subset A of Ex by

A:={oU{n,} = o |u(o)# —oo,n, €o}.

It is easy to see that A is a matching, that is, every o occurs in at most one edges of A.

We say ) # o C G(I) is critical, if it does not occurs in any edge of A.
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We have the directed graph G4 with the vertex set 240\ {()} (i.e., same as G'x) and
the set of edges (Ex \ A)U{o — 7| (1 = o) € A}. By the proof of [2, Theorem 3.2], we
see that the matching A is acyclic, that is, G§ has no directed cycle. A directed path in
G% is called a gradient path.

Forman’s discrete Morse theory [8] guarantees the existence of a CW complex X4 with
the following conditions.

e There is a one-to-one correspondence between the i-cells of X4 and the critical

i-cells of X (equivalently, the critical subsets of G(I) consisting of i + 1 elements).
e X, is contractible, that is, homotopy equivalent to X.

The cell of X4 corresponding to a critical cell o of X is denoted by o4. By [2, Proposi-
tion 7.3], the closure of o4 contains 74 if and only if there is a gradient path from o to 7.
See also Proposition 18 below and the argument before it.

Assume that ) £ 0 C G (f ) is critical. Recall that m, denotes the largest element of o

with respect to . Take m, = [],_, ;" € G(I) with m, = b-pol(m,), and set ¢ := #o — 1.
Then there are integers iy,...,4, with 1 <4; < ... < i, <v(m,) and
(4.1) o={(Ms)i) [1<r<q}uU{ms}
(see the proof of [2, Proposition 4.3]). Equivalently, we have ¢ = N, U {m,}. Set
Jei= 1430 a for each 1 < r < ¢, and F, := { (i1, 71), ..., (ig, jq) }. Then (F,,m,)
is an admissible pair for I Conversely, any admissible pair comes from a critical cell
o C G(:f ) in this way. Hence there is a one-to-one correspondence between critical cells
and admissible pairs.

Let X? denote the set of all the critical subset o € G(I) with #0 =i+ 1, and for (not

necessarily critical) subsets o, 7 of G(I), let P, , denote the set of all the gradient paths
from o to 7. For o € X of the form (4.1), e(o) denotes a basis element with degree
deg(lem(c)) € Z™4. Set

Q=D Se0) (420,
The differential map @q — @q_l sends e(o) to
D S A AR (C AT G D DI lem(o)

r=1 TEXf;l
PEPo\(fg},r

where m(P) = £1 is the one defined in |2, p.166].
The following is a direct consequence of [2, Theorem 4.3] (and [2, Remark 4.4]).

Proposition 16 (Batzies-Welker, [2]). Q. is a minimal free resolution of I, and has a
cellular structure supported by X 4.

Theorem 17 ([14, Theorem 5.11]). Our description of Ps (more precisely, the truncation

Ps1) coincides with the Batzies- Welker resolution Qe. That is, Ps is a cellular resolution
supported by a CW complex X 4, which is obtained by discrete Morse theory.

First, note that the following hold.
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(1) If o is critical, so is o\ { (M), } for 1 <7 < gq.

(2) Let o and 7 be (not necessarily critical) cells with P, # &. Then lem(7) divides
lem(o).

(3) Let 0 € X%, 7 € X% " and assume that there is a gradient path o — o\ {m} =
og —~ 0y —> -+ —>0, =71. Then #0, 1 =#7+1=q+ 1, #0, = qor ¢+ 1 for
each i, and o; is not critical for all 0 < ¢ < [. Hence, if [ > 1, then m must be m,.

Next, we will show the following.

Proposition 18. Let 0,7 be critical cells with #0 = #7 + 1, and (ﬁ,, m,) and (ﬁ, m,)
the admissible pairs corresponding to o and T respectively. Set F,, = {(t1,71), -+, (igs Jg) }
with iy < -+ < iq. Then Po\(m,1,r # D if and only if there is some r € B(ﬁ,, m,) with
(F,,m,) = (Fy)r, (Mo)@,y). If this is the case, we have #P (w1, = 1.

Sketch of Proof. Only if part follows from the above remark. Note that the second index
J of each z; ; € S restricts the choice of paths and it makes the proof easier.

Next, assuming F, = (F,), and m. = (m,);,) for some r € B(F,, m,), we will construct
a gradient path from o\ {m,} to 7. For short notation, set mp := (My)(;,) and My, =
((Mo) (i) y- By (4.1), we have op := (0 \ {ms}) = {my [ 1 < s < ¢} and 7 =
{mpg |1 <5 < g5 #rpu{my}t. We can inductively construct a gradient path
g —» 01 — +r+ = 0p —> - Oq—rs1)r—2 as follows. Write ¢ = 2pr + A with ¢ # 0,
0<p<g—r,and 0 <A< 2r. For 0 <t <2(q—r), we set

o1 U{My_pg } if A\=2s—1 for some 1 < s <r;

0y = Q 0¢—1 \ { Mg—ps1,6 } if A =2s for some 0 < s < 7;
o \ { Myg—p+1) } if A=0,
where we set my1q = myg for all s. In the case mj;y = M1, it seems to cause a

problem, but skipping the corresponding part of path, we can avoid the problem. Since
r € B(F,,m,), we have m(,,) = m, 4 for all s > 7 by Lemma 3 (iv). Hence

O2(q—r) = {r’ﬁ[,ﬂ_i_l,s} | 1<s <T}U{ﬁ1[r]}U{ﬁ1[r,5] | r < SS(]}.
Now for s with 0 < s < r —1, set oy with 2(¢ —r)r <t < 2(¢ —r + 1)r — 2 to be
or—1U{mp g }if sis odd and otherwise oy—1 \ { mj41,4 }. Then we have oag—pi1),—2 = T,

and the gradient path o~ 7.
The uniqueness of the path follows from elementally (but lengthy) argument. O

Sketch of Proof of Theorem 17. Recall that there is the one-to-one correspondence be-
tween the critical cells ¢ € G(I) and the admissible pairs (F,, m,). Hence, for each ¢, we
have the isomorphism Q, — P, induced by e(c) — e(F,, m,).

By Proposition 18, if we forget “coefficients”, the differential map of @. and that of P,

are compatible with the maps e(c) —s e(F,, M,). So it is enough to check the equality
of the coefficients. But it follows from direct computation. O

Corollary 19 ([14, Corollary 5.12]). The free resolution ﬁ.@gg/(@) (resp. ﬁ.®§§/(®a))
of S/I (resp. T/I"9) is also a cellular resolution supported by X 4. In particular, these
resolutions are Batzies- Welker type.
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We say a CW complex is reqular, if for all ¢ the closure & of any i-cell ¢ is homeomorphic
to an i-dimensional closed ball, and @ \ o is the closure of the union of some (i — 1)-cells.
This is a natural condition especially in combinatorics.

Mermin [11] (see also Clark [6]) showed that the Eliahou-Kervaire resolution is cellular
and supported by a regular CW complex. Hence it is a natural question whether the CW
complex X 4 supporting our P, is regular. (Since the discrete Morse theory is an “existence
theorem” and X4 might not be unique, the correct statement is “can be regular”. This is
a non-trivial point, but here we do not show how to avoid it).

Theorem 20 ([15]). The CW complex X s of Theorem 17 is reqular. In particular, our
resolution P, is supported by a reqular CW complex.

Sketch of Proof. We basically follow Clark [6], which proves the corresponding statement
for the Eliahou-Kervaire resolution.
We define a finite poset P4 as follows:

(i) As the underlying set, Py = (the set of the cells of X4) U {0}. Here 0 is the least
element.
(ii) For cells o and 7 of X4, 0 = 7 in P, if and only if the closure of ¢ contains 7.
It suffices to show that P4 is a CW poset in the sense of [4], and we can use [4,

Proposition 5.5]. By the behavior of the differential map of ]3., we can check that Py
satisfies the following condition.

e For 0,7 € P4 with ¢ > 7 and rank(c) = rank(7) + 2, there are exactly two
elements between ¢ and 7.

Now it remains to show that the interval [0, o] is shellable for all o, but we can imitate
the argument of Clark [6]. In fact, [0, o] is EL shellable in the sense of [3]. O

Example 21.

Tyw T2W

TYyw o

FiGure 1 FIGURE 2
Consider the Borel fixed ideal I = (22, xy?, ryz, ryw, x2*, xzw). Then b-pol(l) =
(X129, T1Y2Y3, T1Y223, T1Y2Ws3, T12223, T123W3), and easy computation shows that the CW
complex X 4, which supports our resolutions P, of S/I and P, ®gS/(©) of S/I, is the
one illustrated in Figure 1.
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The complex consists of a square pyramid and a tetrahedron glued along trigonal faces
of each. For a Borel fixed ideal generated in one degree, any face of the Nagel-Reiner CW
complex is a product of several simplices. Hence a square pyramid can not appear in the
case of Nagel and Reiner.

We remark that the Eliahou-Kervaire resolution of I is supported by the CW complex
illustrated in Figure 2. This complex consists of two tetrahedrons glued along edges of
each. These figures show visually that the description of the Eliahou-Kervaire resolution
and that of ours are really different.
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SHARP BOUNDS FOR HILBERT COEFFICIENTS OF PARAMETERS

KAZUHO OZEKI

ABSTRACT. Let A be a Noetherian local ring with d = dim A > 0. This paper shows
that the Hilbert coefficients {ef,(A)}1<i<q of parameter ideals @ have uniform bounds if
and only if A is a generalized Cohen-Macaulay ring. The uniform bounds are huge; the
sharp bound for e?Q (A) in the case where A is a generalized Cohen-Macaulay ring with
dim A > 3 is given.

Key Words: commutative algebra, generalized Cohen-Macaulay local ring, Hilbert
coefficient, Castelnuovo-Mumford regularity.
2000 Mathematics Subject Classification:  Primary 13D40; Secondary 13H10

1. INTRODUCTION

This is based on [5] a joint work with Shiro Goto.

The purpose of this paper is to study the problem of when the Hilbert coefficients of
parameter ideals in a Noetherian local ring have uniform bounds, and when this is the
case, to ask for their sharp bounds.

To state the problem and the results also, let us fix some notation. In what follows,
let A be a commutative Noetherian local ring with maximal ideal m and d = dim A > 0
denotes the Krull dimension of A. For simplicity, we assume that the residue class field
A/m of A is infinite. Let £4(M) denote, for an A-module M, the length of M. Then for
each m-primary ideal I in A, we have integers {e%(A)}o<i<q such that the equality

s =g ("5 7) e (") s ot

holds true for all n > 0, which we call the Hilbert coefficients of A with respect to I.
With this notation our first purpose is to study the problem of when the sets
Ai(A) = {et(A) | Q is a parameter ideal in A}

are finite for all 1 <7 < d.
Then the first main result is stated as follows. We say that our local ring is a generalized

Cohen-Macaulay ring, if the local cohomology modules H (A) are finitely generated for
all 7 # d.

Theorem 1. Let A be a commutative Noetherian local ring with d = dim A > 2. Then
the following conditions are equivalent.

(1) A is a generalized Cohen-Macaulay ring.
(2) The set A;(A) is finite for all 1 <1i <d.

The detailed version of this paper has been submitted for publication elsewhere.
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Although the finiteness problem of A;(A) is settled affirmatively, we need to ask for the
sharp bounds for the values of eéz(A) of parameter ideals (), which is our second purpose
of the present research. Let h'(A) = £4(H!,(A)) for each i € Z.

When A is a generalized Cohen-Macaulay ring with d = dim A > 2, one has the

inequalities
— (d—2
1 - i
024z -3 (i_ 1)h (4)

for every parameter ideal @ in A ([9, Theorem 8|, [3, Lemma 2.4]), where the equality
eh(A) = — Zj - (f ?)h'(A) holds true if and only if @ is a standard parameter ideal in A
([10, Korollar 3.2], [4, Theorem 2.1]), provided depth A > 0. The reader may consult [2]
for the characterization of local rings which contain parameter ideals @ with eg(A) = 0.
Thus the behavior of the first Hilbert coefficients eb (A) for parameter ideals () are rather
satisfactorily understood.

The second purpose is to study the natural question of how about eé (A). First, we will
show that in the case where dim A = 2 and depth A > 0, even though A is not necessarily
a generalized Cohen-Macaulay ring, the inequality

—h'(A) < (A) <0

holds true for every parameter ideal ) in A. We will also show that eé(A) = 0 if and
only if the ideal @) is generated by a system a, b of parameters which forms a d-sequence
in A in the sense of C. Huneke [7]. When A is a generalized Cohen-Macaulay ring with
dim A > 3, we shall show that the inequality

2
d—3\,
_ ) <er(A) < h (A
2 (o saws S (T
holds true for every parameter ideal () (Theorem 13). The following theorem which is the
second main result of this paper shows that the upper bound €3 (4) < Zd 2 (d YhI(A)

is sharp, clarifying when the equality eé(A) = Zj f (“j :1)’) h7(A) holds true.

Theorem 2. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A > 3
and depth A > 0. Let QQ be a parameter ideal in A. Then the following two conditions are
equivalent.

(1) e}(A) = Y12 () m(A).

(2) There exist elements ay,as, -+ ,aq € A such that
(a) Q = (a17a27 T 7ad);
(b) the sequence ay,as,- - ,aq is a d-sequence in A, and

(c) Q-HL(A/(ar, a9, - ,ax)) = (0) for all j > 1 and k > 0 with j +k < d — 2.
When this is the case, we furthermore have the following :
(i) (=1)"eh(A) =200 ()I(A) for3<i<d—1 and
(ii) eQ(A) 0.

At this moment we do not know the sharp uniform bound for e},(A) for parameter
ideals @ in a generalized Cohen-Macaulay ring A with dim A > 3.
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Let us briefly note how this paper is organized. We shall prove Theorem 1 in Section 2.
Theorem 2 will be proven in Section 4. Section 3 is devoted to some preliminary steps for
the proof of Theorem 2. We will closely study in Section 3 the problem of when €3 (A) =0
in the case where dim A = 2.

In what follows, unless otherwise specified, for each m-primary ideal I in A, we put

R(I) = A[lt], R'(I)=A[lt,t7"], and G(I) =R'(I)/t"'R'(I),
where ¢ is an indeterminate over A. Let M = mR + R, be the unique graded maximal
ideal in R = R(I). We denote by H,(x) (i € Z) the i local cohomology functor of R([)
with respect to M. Let L be a graded R-module. For each n € Z let [H,(L)], stand

for the homogeneous component of H (L) with degree n. We denote by L(«), for each
a € Z, the graded R-module whose grading is given by [L(«)], = Lay, for all n € Z.

2. PROOF OF THEOREM 1

In this section, we shall prove Theorem 1.

The heart of the proof of the implication (1) = (2) is, in the case where A is a
generalized Cohen-Macaulay ring, the existence of uniform bounds of the Castelnuovo-
Mumford regularity reg G(Q) of the associated graded rings G(Q) of parameter ideals Q.
So, let us briefly recall the definition of the Castelnuovo-Mumford regularity.

Let @ be a parameter ideal in A and let

R(Q) = A[Q1], R(Q)=A[Qt,t7"], and G(Q)=R(Q)/t'R'(Q)
respectively, denote the Rees algebra, the extended Rees algebra, and the associated

graded ring of ). Let M = mR + R, be the unique graded maximal ideal in R = R(Q).
For each 7 € Z let

2;(G(Q)) = max{n € Z | [Hj,(G(Q))] # (0)}
and put
regG(Q) = max{a;(G(Q)) +1i | i € Z},
which we call the Castelnuovo-Mumford regularity of the graded ring G(Q).
Let us now note the following result of Linh and Trung [8], which gives a uniform bound
for reg G(Q) for parameter ideals () in a generalized Cohen-Macaulay ring.

Theorem 3 ([8], Theorem 2.3). Suppose that A is a generalized Cohen-Macaulay ring
and let () be a parameter ideal in A. Then

(1) reg G(Q) < max{I(A) — 1,0}, if d = 1.

(2) reg G(Q) < max{(4I(A))d=V' —I(A) — 1,0}, if d > 2.

Thus, the following result is the key for our proof of the implication (1) = (2) in
i d—1 (d— j

Theorem 1, where h;(A) = £4(H(A)) and 1(A) = Y257 (1) hi(A).
Theorem 4. Suppose that A is a generalized Cohen-Macaulay ring. Let Q) be a parameter
ideal in A and put r = reg G(Q). Then

(1) Jeh(A)] <104).
(2) lep(A)| <3-272(r + 1) I(A) for2 <i < d.

Proof. See [5, Section 2]. O
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Therefore, thanks to the uniform bounds [8, Theorem 2.3] of reg G(Q)) for parameter
ideals @ in a generalized Cohen-Macaulay ring A, we readily get the finiteness in the set
A;(A) for all 1 <i <d.

We are now in a position to finish the proof of Theorem 1.

Proof of Theorem 1. We may assume that A is complete. Also we may assume A is not
unmixed, because A;(A) is a finite set (cf. [2, Proposition 4.2]). Let U denote the unmixed
component of the ideal (0) in A. We put B = A/U and t = dims U (< d—1). We must
show that B is a generalized Cohen-Macaulay ring and ¢ = 0.

Let @ be a parameter ideal in A. We then have

Ca(A/Q") = La(B/Q™'B) + La(U/Q" N )

for all integers n > 0. Therefore, the function ¢4(U/Q™™ N U) is a polynomial in n > 0
with degree ¢ and there exist integers {sf,(U)}o<i<; with s¢,(U) = e, (U) such that

@i no) =3 (")

; t—1
=0

for all n > 0, whence

d . n+d—1 ! o n+t—1
i@ = e (") s ().
i=0 0

Consequently

i (CLE(B) £ (<) i 0<i<t,

(=17 e (4) = { (—1)=e%(B) if t+1<i<d.
Therefore, if t < d — 1, we have ep(A) = esH(B), so that Ay(B) = Ay(A) is a finite
set. If t = d — 1, we get —ep(A) = —ef(B) + su(U). Since ep(A),eh(B) < 0 and
so(U) = e(U) > 1, A1(B) is a finite set also in this case. Thus the set A;(B) is finite in
any case, so that the ring B a generalized Cohen-Macaulay ring.

We now assume that ¢ > 1 and choose a system ay,as, - -- ,aq of parameters in A so
that (@41, a0, - ,aq)U = (0). Let £ > 1 be an integer such that m is standard for the
ring B and choose integers n > ¢. We look at parameter ideals ) = (af,a},--- ,a}) of A.
Then

-1
(- e '(B) =) < . 1) W (B)
Jj=1 J
by [10, Korollar 3.2], which is independent of the integers n > ¢. Therefore, since
SOQ<U) - e(()a?,a;,m,a?)(U) = nt'e(()ahag,--',at)(U) Z nt7
we see

(C1)" Ul (A) = (—1) el (B) + ()

t

t—1\. .

= Z (] o 1) h](B) + nt'e?a1,a2,~--,at)(U) Z ,nt’
7=1
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whence the set Ay_;(A) cannot be finite. Thus ¢t = 0 and A a generalized Cohen-Macaulay
ring. ([l

. THE SECOND HILBERT COEFFICIENTS e F PARAMETER
3. THE SECOND H Cco C S%AO ARA S

In this section we study the second Hilbert coefficients eé(A) of parameter ideals Q.
The purpose is to find the sharp bound for e (A). The bound [e3(A)] < 3(r 4 1)I(A)
given by Theorem 1 is too huge in general and far from the sharp bound.

Let us begin with the following.

Lemma 5. Suppose that d = 2 and depth A > 0. Let Q = (x,y) be a parameter ideal in
A and assume that x is superficial with respect to Q. Then

€3 (A) = L, (W) (1‘7{2 N Qe) <0

for all £ > 0.

Proof. Let £ > 0 be an integer which is sufficiently large and put I = Q. Let G = G(I)
and R = R(I) be the associated graded ring and the Rees algebra of I, respectively. We
put M =mR+ R,. Then [H),(G)], = (0) for all integers i € Z and n > 0, thanks to
[6, Lemma 2.4]. We put a = z° and b = 3*. Then the element a remains superficial with
respect to I and the equality I? = (a,b)I holds true, whence ay(G) < 0.

We furthermore have the following.

Claim 6. [H(R)]o = [H\((@)]o as A-modules for all i € Z. Hence H},(G) = (0), so
that f = at € R is G-regular.

Proof of Claim 6. Let L = R, and apply the functors Hi(*) to the following canonical
exact sequences

0-L—+R%5A—-0 and 0—L(1)—R—G—0,
where p denotes the projection, and get the exact sequences
(1) -+ —HLY(A) —» Hy (L) —» H(R) = H,(A) = -+ and

(2) = HGH(G) = Hy(L)(1) = Hiy(R) = Hyy(G) — HEH(L)(1) = -

of local cohomology modules. Then by exact sequence (2) we get the isomorphism
[H((L)]n+1 = [Hy(R)]n
for n > 1, because [H''(G)],, = [Hi (@)}, = (0) for n > 1, while we have the isomorphism
[ (L)1 2= [ ()]

for n > 1, thanks to exact sequence (1). Hence [H),(R)], = [Hy((R)],11 for n > 1, which
implies [H),(R)], = (0) for all ¢ € Z and n > 1, because [H,(R)],, = (0) for n > 0. Thus
by exact sequence (1) we get [H),(L)(1)],, = (0) for all i € Z and n > 0, so that by exact

sequence (2) we see [Hy(R)]o = [H\,(G)]o as A-modules for all i € Z. Considering the
case where ¢ = 1 in exact sequence (2), we have the embedding

0 — Hyy(G) — Hjy(L)(1),
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so that [H,(G)]o = (0), because [H,(L)(1)]o = [HY(L)]: = (0). Hence HY,(G) = (0),
so that f is G-regular, because (0) :¢ f is finitely graded. ([l
Thanks to Serre’s formula (cf. [1, Theorem 4.4.3]), Claim 6 shows that

2

e (A) =D (—1)La([Hiy(G)]o) = —La([Hi (G)]o),

i=0
since ay(G) < 0. Therefore to prove

-0, (1102,

it is suffices to check that
[Hi(G)]o =

as A-modules. 3 _ 3
Let A = A/(a) and I = IA. Then G/fG = G(I), because f = at is G-regular (cf.

Claim 6). We now look at the exact sequence
0= HYL(G(D) = Hi(G)(~1) & Hi(G)
of local cohomology modules which is induced from the exact sequence
0= G(-1)L 6= ad) =0
of graded G-modules. Then, since [H},

(

[H (G = [Hp(G)lo

of A-modules and the vanishing [HS,(G(1)], = (0) for n > 2.
Look now at the homomorphism

) b)N I

SN0
of A-modules defined by p(T) = Tt for each z € [(a) : b] N I, where T and Tt denote
the images of z in A and @t € [R(I)]; in G(I), respectively. We will show that the
map p is an isomorphism. Take ¢ € [H}( (G(I))]; and write ¢ = @t with x € I. Since
[HY(G(I))]2 = (0), we have bt - Tt = bxt? = 0 in G(I), whence bz € [(a) + I*}] N I? =
[(a) N I%] + I3 = al + bI? (recall that I? = (a,b)I and that a is super-regular with respect
to I). So, we write bx = ai + bj with i € I and j € I?. Then, since b(x — j) = ai € (a),

G)], = (0) for all n > 1, we have an isomorphism

— [H(G())]:

we have x — j € [(a) : b] N I, whence p = Tt = (z — j)t. Thus the map p is surjective.
To show that the map p is injective, take 2 € [(a) : b]NI and suppose that p(T) = Tt = 0
in G(I). Then

x € [(a):b)N[(a) + I?] = (a) + [((a) : b) N I?].

To conclude that x € (a), we need the following.
Claim 7. Let n > 2 be an integer. Then [(a) : b]NI" C (a) + [((a) : b) N "]
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Proof of Claim 7. Take y € [(a) : bjNI™. Then, since by € (a), we see bt-gt" = bytn+! =0
in G(I). Hence yt* € [H,(G(I))],, because bt is a homogeneous parameter for the graded
ring G(I). Recall now that n > 2, whence [H%,(G())], = (0), so that yt* = 0. Thus
y € (a) + I whence y € (a) + [((a) : b) N 1™, as claimed. O

Since x € (a) + [((a) : b) N I?], thanks to Claim 7, we get x € (a) + [ for all n > 1,
whence z € (a), so that the map p is injective. Thus
[(a):b]N T
(a)

as A-modules. O

1%

[Hu(G)lo

Theorem 8. Suppose that d = 2 and depth A > 0. Let Q = (x,y) be a parameter ideal
in A and assume that x is superficial with respect to Q. Then

~RY(A) < e} (A) <0
and the following three conditions are equivalent.
(1) ezQ(A) =0.

(2) z,y forms a d-sequence in A.
(3) 2%, y" forms a d-sequence in A for all integers £ > 1.

Proof. By Lemma 5 we have
AN ¢
[(=) -y [N (2, y) ) <0

O

for all integers £ > 0. To show that —h'(A) < e3(A), we may assume that Hy (A) is

finitely generated. Take the integer ¢ > 0 so that the system a = z°, b = y* of parameters
of A is standard. Then since

[(a) : 0] N Q° c (a) : b

5 o = A/ (@) 2= B (4),

we get —h'(A) < e (A).
Let us consider the second assertion.
(1) = (3). Take an integer N > 1 so that

2o (1@ YN (2, )
e
for all £ > N (cf. Lemma 5); hence
() : '] N ()" = (2).
Claim 9. [(z%) : ¢*] N (2, y)" = (a%) for all £ > 1.

Proof of Claim 9. We may assume that 1 < ¢ < N. Take 7 € [(z) : ¥*] N (x,y)". Then,
since yN (xVN ) = yN N (ytr) € (a), we have 2V € [(2V) 1 yN] N (x,9) Y = (V).
Thus 7 € (), because x is A-regular (recall that depth A > 0 and x is superficial with
respect to Q). O
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Since z* is A-regular and [(z*) : ] N (2%, 4*) = (2°) by Claim 9, we readily see that
zt,y’ is a d-sequence in A.

(3) = (2) This is clear.

(2) = (1) It is well-known that e%x’y) (A) = 0, if depth A > 0 and the system x,y of
parameters forms a d-sequence in A; see Proposition 11 below. O

Passing to the ring A/H? (A), thanks to Theorem 8, we readily get the following.
Corollary 10. Suppose that d = 2 and let ) be a parameter ideal in A. Then
h'(A) — h'(A) < ej(A) < hO(A).
The results in the following proposition are, more or less, known.

Proposition 11. ([5, Proposition 3.4]) Suppose that d > 0 and let Q = (a1, az, - ,aq)
be a parameter ideal in A. Let G = G(Q) and R =R(Q). Let fi =a;t € R for1 <i <d.
Assume that the sequence ai,as,--- ,aq forms a d-sequence in A. Then we have the
following, where Q; = (ay,ag, -+ ,a;) for 0 <i <d.

(1) )(4) = €a(A/Q) €4 ([Qu-r : aul/Quv).
1)'e(A) = h°(A/Qq—i) — h°(A/Qa—i—1) for 1 < i < d—1 and (—1)%hH(A) =

(3) A(A/Q"+1) S (= 1)l (A) (") for alln > 0, whence £4(A/Q) = 37 (—1)%eh(A).
(4) fl, fay o+, fa forms a d-sequence in G.
(5) HY\(G) = [HY(G)]o = HA(A), where M =mR + R,

6) [Hy(G)]n = (0) for alln > —i and i € Z, whence reg G = 0.

Let us note one example of local rings A which are not generalized Cohen-Macaulay
rings but every parameter ideal in A is generated by a system of parameters that forms
a d-sequence in A.

Example 12. Let R be a regular local ring with the maximal ideal n and d = dim R > 2.
Let X1, Xo, -+, X4 be aregular system of parameters of R. Weput p = (X3, Xo, -+, X4-1)
and D = R/p. Then D is a DVR. Let A = R x D denote the idealization of D over R.
Then A is a Noetherian local ring with the maximal ideal m = n x D, dim A = d, and
depth A = 1. We furthermore have the following.

(1) A;(A) = {0} for all 1 < ¢ < d such that i #d — 1.

(2) Ag(A)={n|0<neZ}and Ay 1(A) ={(-1)Tn|0<necZl

(3) After renumbering, every system of parameters in A forms a d-sequence.
The ring A is not a generalized Cohen-Macaulay ring, because H. (A) (= H(D)) is not a
finitely generated A-module.

In the rest of Section 3 let us consider the bound for eé(@) in higher dimensional cases.
In the case where dim A > 3 we have the following.

Theorem 13. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A > 3.
Let Q = (ay, a9, -+ ,aq) be a parameter ideal in A. Then

-3 (43 < <X (4 e

=1

<
||
N

<.
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We have Q-HJ (A/(a1, a2, - ,a;)) = (0) for allk >0 and j > 1 with j+k < d—2, if

e%(A) = Z?;f (;l:il)’) hi(A) and if a1, a9, - ,aq forms a superficial sequence with respect
to Q.
Proof. See [5, Theorem 3.6]. O

The following result guarantees the implication (2) = (1) and the last assertion in
Theorem 2.

Proposition 14. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A >
3 and let Q = (ay,a9,--- ,aq) be a parameter ideal in A. Assume that the sequence
ai,agz, -+ ,aq forms a d-sequence in A and Q-HZ (A/(ay,az,--- ,ax)) = (0) for all k >0
and 7 > 1 with j +k <d—2. Then

- i -1\
1) = X (1T ey
j=1
for2 <i<d—1 and (—1)%}(A) = h°(A).
Proof. See [5, Proposition 3.7]. O

4. PROOF OF THEOREM 2

The purpose of this section is to prove Theorem 2. Thanks to Proposition 11 and 14,
we have only to show the following.

Theorem 15. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A > 3
and depth A > 0. Let Q be a parameter ideal in A and assume that €}y (A) = Sz (d_S) hi(A).

j=1 \j-1
Then @Q is generated by a system of parameters which forms a d-sequence in A.

For each ideal a in A (a # A) let U(a) denote the unmixed component of a. When
a = (a) with a € A, we write U(a) simply by U(a). We have

Ua) = [ [(@) :a m"],

if A is a generalized Cohen-Macaulay ring with dim A > 2 and «a is a part of a system
of parameters in A (cf. [11, Section 2]). The following result is the key in our proof of
Theorem 15.

Proposition 16. Suppose that A is a generalized Cohen-Macaulay ring with d = dim A >
2 and depth A > 0. Let Q = (ay,a9,--- ,aq) be a parameter ideal in A. Assume that
agHL (A) = (0) and that the sequence a1, as, -+ ,aq_1 forms a d-sequence in the generalized
Cohen-Macaulay ring A/U(aq). Then

U(ar) N[Q + U(aq)] = (aq).
Proof. See [5, Proposition 4.2]. O

We are now ready to prove Theorem 15.
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Proof of the Theorem 15. We proceed by induction on d. Choose aj,as, -+ ,aq € A so
that @ = (aq, a9, -+ ,aq) and for each 1 < i < d—2, the i+2 elements ay, as, - -+ , a;, 441, aq
form a superficial sequence with respect to ). We will show that there exist by, bs, - -+ , by €
A such that by = ag_1,bo, b3, -+, bg forms a d-sequence in A and @ = (by, by, -+ ,bq). We
put A= A/(a;), Q@ = QA, and C = A/HY(A) (= A/U(ay)).
Suppose that d = 3. Then
eto(C) = eg(A) — h°(A) = egy(A) — h°(A) = h'(A) — h(A) =0,

because h'(A) = h°(A) (recall that QHL(A) = (0) by Proposition 13). Hence, thanks
to Proposition 8, as, a3 forms a d-sequence in C', because a, is superficial for the ideal
QC = (ag,a3)C. Therefore, since a;HL (A) = (0), we have

Ufaz) N[Q + U(ar)] = (a2),

by Proposition 16. Let @ = (as,as,bs) and B = A/U(ay). Then since egp(B) = 0, by
Proposition 8 the sequence by = ag, bs forms a d-sequence in B, because by is superficial
for @B. Therefore, since U(az) N Q C U(az) N [Q + U(ay)] = (az), the sequence by, bs
forms a d-sequence in A/(as), so that by = ag, by, by forms a d-sequence in A, because b;
is A-regular.

Assume that d > 4 and that our assertion holds true for d—1. Then, thanks to Theorem
13 and its proof, we have

_ d—4 )
j=1
d—3
d—4 —
=y ( . 1)hJ(A)
=1 M T
d—2
d—3\, ; 9
J=1
because Q-H (A) = (0) for 1 < j < d — 3. Hence
d—3
d—4Y\
egc(C) =) ( - >hﬂ(0).
=Vl
Therefore, because QC = (ag,az, - - ,aq)C and the sequence ag,as, - - - ,a;, Gg_1, aq iS Su-

perficial in the ideal QC for all 1 < ¢ < d — 2 where @; denotes the image of a; in C, the
hypothesis of induction on d yields that there exist 9,73, - ,74-1 € C such that the se-
quence vy, = Gg_1,%2,73, "+ »Ya—1 forms a d-sequence in C' and QC = (1,72, ,v4-1)C.
Let us write v; = ¢; for each 2 < j < d — 1 with ¢; € @, where ¢; denote the image
of ¢; in C. We put q = (a1, a4-1,Ca2,¢3, -+ ,cq—1). Then q is a parameter ideal in A,
aiHL(A) = (0), and ag_1,c,¢3,- -+ ,c4-1 forms a d-sequence in C. Therefore

U(aa-1) N[Q + U(ar)] = Ulaa-1) N g + Ular)] = (aa-1)
by Proposition 16, whence U(ag—1) N Q = (a4—1).
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Let B = A/U(aq-1). We then have

on(B :§<J—1) (5)

7j=1

for the same reason as for the equality e3(C) = Zj f(j DR (C) (in fact, to show
eoe(C) = Z;l ’ (;l 1)h(C), we only need that a; is superficial with respect to Q). There-
fore, by the hypothesis of induction on d, we may choose elements s, 83, , B4 € B so
that QB = (B2, 3, -+, f4)B and the sequence [, B3, - -+ , By forms a d-sequence in B.
We put by = aq—1 and write 3; = E with b; € @ for 2 < j < d, where E denotes the
image of b; in B. We now put q" = (b1, b, -+ ,b4). Then ¢’ is a parameter ideal in A and
because U(by) N Q = (by1), we get

QC+Ub)INQ=q+[Ub)NQICq +(br) =1}
hence Q = ¢'. Thus the sequence by, bs,- - , by forms a d-sequence in A/(by), so that

by, bo, -+, by forms a d-sequence in A, because b is A-regular. This complete the proof
of Theorem 15 and that of Theorem 2 as well. O
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PREPOJECTIVE ALGEBRAS
AND CRYSTAL BASES OF QUANTUM GROUPS

YOSHIHISA SAITO

ABSTRACT. At the end of the last century, Kashiwara and the author ([10]) made a bride
between representation theory of quantum groups and one of quivers. More precisely,
consider the variety X (d) of representations of a double quiver, with a fixed dimension
vector d. It is known that there is a nice Lagrangian subvariety A(d) of X(d). In a
geometric point of view, A(d) is defines as the variety of zero points of the moment
map for the action of a certain reductive group on X(d). Let IrrA(d) be the set of all
irreducible components of A(d). We proved that LigIrrA(d) is isomorphic to the “crystal
basis” B(co) of the negative half of a quantum group. This is one of the main results in
[10].

On the other hand, in a representation theoretical point of view, the variety A(d) is
nothing but the variety of nilpotent representations of the corresponding preprojective
algebra. Namely, the results of [10] tell us that there is a “nice” correspondence between
preprojective algebras and crystal basis of quantum groups. In this note, we try to
explain what is the meaning of this correspondence. Adding to that, we also discuss
resent progress around this area.

1. INTRODUCTION

O000000000Kashiwara-S (100000000000 0000O0O0O 1997000
ooooobodboomobooobooobooobooobooboobbuoooboobo
O00000000 LiedODO0OO0ODOOOODODOO LietheoreticDOOOOOOOOOO
googobogobdoobbooboooboobobooboooobobboboon
O0D00OD000ODOO preprojective algebral 00D 0000000 OOO0ODOODOODOO
goboboobobbboooooobbobobboooooubbbbboooooobbbo
[10] O preprojective algebra0 D000 0000000000000 OOOOOOOOO
gooboooobobbuoooobbbuooooboobog

O0000000O0000000 Geiss-Leclerc-Schéer 00 0000000407000
Jo0oooboobooboobboobboooboobboooobooobooon
Demonet U0 DO UOODOUOODOOODOODODOOOOODOOOO

O00000o0o0o0ooO0ObO0b0b00000ooooooobobobobobboboobbD
0000000000000 000000000000b0O000 preprojective algebra O O
gooboboooobobooooobbboooobobbboooobbLbbooog
preprojective algebraO OO0 “0D000000000O0O0O0OO0OO0OOO0OOODOOO
O00000000000000o0ooooooooooooooto

oI UO0ODLDUODLDDUODLDOOLDOODLDOODLOODLOOUODLOOODLODD
oo ooooooon

DoD0DO0D0D0D0000000000000000000000000000000000000Q0aQ
[600000000000000000000UO00O0DO0O0OO0
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obobboboobooboobooboobobboboobob

e 100000 UD ODOOOOOquiverd I'=(7,Q)0000000000071000
OooQUibO0o0boo0ooooobobobd.el/0D000jel0000OO00reQnOOn
O0i=out(r)Jj=in(r)000000CCCOCOODO reQ00O0O0O000000O0O0O0OO
gobobooogbbrs0o0bo

i O— 0 j i O<LO J
[ I = I I
out(r)  in(7) in(7) out(7)

oooboose,kel00:00y000070y,00 A0000c000O0O0ODOOO
D000 000000000 pathOOODOOOOOOO pathOO7ec00O00OO0T
gboboboogagn

i J k i k
OO0 Oalgebra ADDO OO A-module0 000 left module 00D ODOOOOODOOMO
0000700000 or 0000000 O0ODOO0ODOOODOODODO

Dbhooobooobobooobboobboobboobboooboboooboon
gboobobodobboobbobobuoobboobuoobbodgboobbodoon
gbobobooaogn

2. VARIETIES OF REPRESENTATIONS

21. Quiver OO OOOODO.

KOOOr=(/,Q)000 quivee 000000000T000000000 V =(V,B)
00000000000000

oV =0P,;V; 00000 I-graded vector space,
® B = (B;)req 0 K-linear maps B, € Homg (Vout(r), Vint-) 0 0 0
00000 rooov=(v,Boooo

dimV = (dlmK ‘/i)iej € leo

0 V O dimension vector OO OOOMMBOOODDODODODODO I-graded vector space
V=q,/V;000000000 dimension vector dimV 00 0O 0O O O O

0O00T000V=(V,B)0 V' =(V,B)OOOOVOD VOO0 (morphism)e =
(¢:)ier 000 K-linear maps ¢, : V; = V/ (1€ ) 0000000000 7reQO0000O

Gin(r)Br = B} dout(r) (2.1.1)

O000000000000000 ¢ = (vi)ier 0 I-graded vector space D0 O000OOO
ooovovoooopooooodao
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d:(di)ieleZéODDDDDDDDD@V:dDD I-graded vector space 0 O 0O O
Oo0o00?0000 V(d)DDDDDDDDDDVectorspaceDDDDDD

Eq(d) == %gHomK(VﬁﬂmuquTdXMﬂ)

BeEo(d)0000V=(V(d),B)000000000dimV=dO0O0T0000000
00 dmV=d00TI000000000000000000000Eg(d)0 dim=4d
000 Tr0000000000000000000000000 Eod)000dim=4d
0ro000000000o0o0nooooon

Eo(d) 000 G(d) = [[,.; GL(V(d),) O

B=(B.) = 9B = (gunBriylin) (9= (9)ier € G(A))

00000Oquiver 00000 ¢ =(¢;)0000000000000000 ¢; 0 GL(V(A),)
0000000000000000000 (21.1)0000000

0000 Eo(d)000

bobrobobib < g g abitnoooo

gbooboooobbbugbuoooobbboooobobboooon

{ dim=d0O0O

IEDDDDDD} &3 {Eo(d) D G(d)-orbit}

O00000000000rcoo0o00ooo0oooOooOO0O0OOn path algebra KT
OO moduleD00OO00O0OD0O0ODOODOOOOOOODOODOO

dim=d0O0O 1:1 dim=d0O0O 1:1 )
{KM%WMEDDDD}<_+{FDDDDDDD}<_+HQMM]m®@mM
O000000000000000000000000B = (B,)req € Eq(d)0DO0O0ODOO
000000000 I-graded vector space V(d) O O K[[']-module structure J O7 € K[I']
ooob g, 0bdobobobobooboobooboobooboobo

2.2. Relation OO quiver 0 O 0O.

00000007 =(,Q000 =K[I]moduless 000D O0O0OOO0O0O0DODOOOO
OO00000o00o0o0b0oooo0b0oooobooOooo0oboOogn relation D O quiver
gboooooobod

A=K[l/JOO0O0O0OOOO0O0O000O0O JO relations py,---,p 00000000
ideal 0O0DOOV O Amoduled dimV =d00000000000000AOO0OOO
00 1,000000000 1A:ZigeiDDVDD I-graded vector space J 0 00O OO
O0O0000V,:=VO00000000000V =¢,/V;0000007€Q0VO
00000 linear map B, € Homg (Vou(r), Vin-) 00000000 TIO000V =(V,B)

0000000000000 000000000000000000000000000000000
goooooboooobooboooooo
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O0000000000000000 B =(B,)0O relations py,---,p 000000000
oooabodo p; 00000

pj:Zakhkzwwkﬂ_’fﬂ—kz"'Tkj (1§j§l’ak1’k2""’kj GK)
O00000000oooooB=(B,)O0OO0O

pi(B) = @hips by Broy Bryy -+ B, =0 (1< <1) (2.2.1)
O000O000o0ooboboooobooboooBO
Aa(d) == {B € Eq(d) | BO (22.1)0000 }
00 Eo(d) 0000000000000 00D00O000000000000 Asd)O
variety of A-modules (of dimension vector d) D0 00000000
gogoooooooobbbbobooooooouoooobobon
dim=d0O0
A-module 0 00O O

gboooogooood

} &3 {Aa(d) O G(d)-orbit}

oboboobooboon

00000 As(d)O O
G(d)-orbit DO OO

Joodooobbooobbbbdoodo Koboooooooooobuoooo
gooooooobuooooobgoooobooooonoooonooooo
OO0 K=COOOOOoODOO

000 AD finite representation type D0 0D O000000D0DO A,(d)DO0DDOCOODO
G(d)-orbit 1000000000 G(d)\Au(d)D0D0D00000000000000
0000000000000 00DO0000D0o00 AOwidOOOoOOoOoOoooDooono
000000000000 0000000000000000 Gd)\A(d)ODODOODOO
00000000000000000000000%0

Oooo ADOogOo «=”

OO000000000b0b0b 00000 b0o0o0ob00obooU0bOond module
0000000000000 000D000O00DO0O0DO0DO0ODOO ADODOO A-module
O00 category OO DO OODOOOO0OO0O0OOO0DOOONO subcategory OO OO OOOONO
goooooboobobobbbobbobbbbbbtbdddddoooooo oo
O00000orbit0 00000000 O0OODODOO0ODOO0ODOO0OO0O0OO0O0ODODODOO
gooobooboboooboboobboobooobboooboooobooooobooon
Jo000o0obo0obobooboooooboooboobboobooboboooboon
000000000000 000b0b0000bO0erbit000000O0OO0OO0OO0DOOOO0

300000000000 0000000000000000000000000000000000
oboooboobobooobobooooobooooooobobooobobooooboboooooD

Gd\A4(d)OUUDODODDOOOOUDOOOOOstack 000000000 0ODOOOOOOOOOOOO
gobooooboobooooboooboooboooobooooooboooobooooooooooooboOoon
O00000wildDDOODOOOO0000000000O0 stackOOO0OO0O00O0O0ODODOOOOOOOO
oo
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OO0000O0oooo0oooooDbo0oooDoooOoboDbDbOOOO variety of A-
module A,(d) 0000000000000 0O00O0O0O0OOOOOOOOOOOOOOO
0000000000000 Ay(d)000000000000O0O0O0O0OOOOO0O0
O0000000000000A(d)00000=00000000000000000
or UOUODOUOOUOOOO0OD or DODOUOOOOODODOOOOOODOO

Ay(d)DOOOOO0DODOOODODOOOOOOODODOO

IrrAs(d) :=A,(d) 0000000000000000000000

Ooooooooobooon G(d)DDDDDDDDDDDDDDDDDDDDD orbit
Oo000o00000000o0oobo00ooooobo0oooooobooooooboooonon
000000000000 00000000000000000000000o0oo00n
obdtoddid=00000t0d0bogooouooototooooooooooonon
0000000000000 0000A-moduleD 0000000000 0O0O00ODOOODO
0000 A0D0D0O0O0O00O0O0O0D00O00O00O0O0ooO0oO0ooOooooooDooOooon
goodooooooooooo

0000000000 O00O00000 dimension vector 0 O O moduled O O O Omodule
DDDDDDDDDDDDDDDDDDDDDDDDDDIrrAA(d)DDDDDdimension
vector HOOOOOO0OOOOO

gbooboooon

000 A0D0DODOODOO0OO0ODO00ODOO0OOO0ODOO0ODOO0OO0O00DODO0OO0DOO0OO0bOOoDbOOOO
00000 AO preprojective algebra0 0 0 0000000000000 0OOODOOODO
00000000 preprojective algebra 0 0 0000000 ODODOOOOOOODOO wild
0000000000 A-module 000000 =orbit0 00000000 O0DODOODODODO
gobogobbooboobboobooobobon udezgolrr/\A(d)DDDD “crystal” [
Jo0obooooobobooboboooon I_IdezéolrrAA(a)DDDDDDDDDDDDD
O0000000Ontroduction0 0000000000000 0O0O0O [10] O preprojective
algebra0 00000000 DOD0OO0O0O0ODOOOO0O0ODODODODOOO0ODOODOOOOODODO
goboboooobobobooon

OO0O0000000bO00b00ob0bob0o0booObOO0oboOo0nOon preprojective al-
gecbra ADDODOODOODODOODOODOODOOODOODOOODODODODODOODOOODOD
gobogobooooboobboobuoobboobboobbooooboobboon
O000000O0000000000Db0bO0O000D000 Geiss-Leclerc-Schroer O O O
00000 45,670 0Kmwrad 004110 00000000000O0O0O0O0OO
oooooo

3. PREPROJECTIVE ALGEBRAS

3.1. 0ggaag.
00T =(/,Q)01loop0 0000000000000 H:=QuQODOOdouble quiver
T:=(,H)0OOOO

‘00000000000 0000000000000
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Definition 1. double quiver I' 0 path algebra C[[]0 000 |I| = n0 O relations

Wi = Z e(T)TT (iel)
TEH
out(r)=:

1 Q
DDDDDDDDDDDDDJDDDDDDDDE(T):{ 1 ETEQ;DDDDDDDDD
— T

P(T) :=C[I]/J

O I'00000 Preprojective algebra0 D0 00O 0OJOO0OODO w; 000 preprojective
relations 0 0O O O

pH)ooOoO0O00OU0OODOOOOOOOOOO

Proposition 2.

(1) A0)D COO0DO0DO0D0O < DO Dynkin quiverd

(2) P(I') O finite representation type < T'0 A, (n=1,2,3,4)00
(3) P(I') O tame representation type < I'0 As or D,0 O

O0ooroooooooooo pHO0wildOODOOOOOOOOOOO

3.2. Varieties of nilpotent representations.

Proposition 2 (1) 000OT'0 non-Dynkin 00000 PN ODOD0O0OODOOOOOOO
gotbbobboooobobobbobbbtbdddoooooobobobboboboooooo
goodoooooooobbon

Definition 3. B € E430 0000 (nilpotent) 0000000000 NOOOOOOOO
ONDOOOOOpatheOOOUOODB, =000000000

O00 module00O0O00D0OBOOOOODOOOO P(I')-moduled VpOOODOO
O00 NOOOOOOpatheOOOODOeV ={0}00000000000O0O0O0O0O0O
DDDDDDDDDDDDDDDDDDDDDDDdEZéODDDDD

X(d) = T?H HomC(V(d)out(T), V(d)in(r))

ggd
A(d):={Be X(d) | w(B)=0((Viel)OO B O nilpotent}

00 X(d)DOOOOOO0OO0OO0O0000000 dimension vector 0 d O O nilpotent P(I')-
moduless 0O O0O0OOOOOOOOOOOO

Remark 4. (1) I'0 Dynkin quiver 000000 B € Eq(d) O w;(B)=0(Viel)O0OO
0000000 BOnilpetent 000000000000 (9)0O000O0OO0OOOOOO
0 A(d) O dimension vector =d 0 P(I')-module 00000000000 OO0O

(2) 00000000 “preprojective algebral 0 0700000000000 A(d)DOO
0000000000 A(d) OO preprojective algebra 00000000 O Oquiver 0 00O
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gobogboobouoboouoboobobobobobbobbobDodbl preprojective
relations 0000 0000000000O0O0O00OOOO0OOOO?

P(I")-nilp 0 nilpotent 00000 P(I')-module D0 0000 categoryD D OO0 ODOODO
00000 =orbitD0000OO0ODOOOOODOO

dim=d0O0
P(T")-nilp O object 0 0 0O

gbbobooggn

Proposition2 000000000000 0ODODOOO0OO00OO0O0O0O0OOO PO wild
0000000000000 0“G(d)-orbit0007000000000000ODODDOO
000000 I(d)Do0oDoo0o0o00oooooooood

IrrA(d)::A(d)DDDDDDDDDDDDDDDDDDDDDDD
OOO0O0O0O dimension vector OO OO QOQOQOOO

B:= |_| IrrA(d)

I
ezl

} &3 {A(d) O G(d)-orbit}

OO0D0O0D0O00BO “crystal”’ 00000000 0O0O0ODOOODOOBOODOOOOODO
0000000000000000g[ojoooo0oooooooon

4. A CRYSTAL STRUCTURE ON B

4.1. Root datum.

crystal DO OO0 00000000000 rootdatumOO00000000O0O0O0O fixd
0000000000000000dimension vectors 0 00O 00O lattice Z! O O O quiver
00000 Cartan matrix 0 0 00O bilinear form 000000000000 0ONO

0000000 “Cartanmatrix” OO0 000000000000 DODODODODOODO Lie theory
000000000000 00000000 Z' 00000 bilinear formO0000000
000 Cartanmatrix OO0 00000000 ODOOOOODOOOOOOOODOOOOOO
gbogbobodboobbobobobuoobboobuoobbodgboobobooon
gbobobooggbbbuooobbbuoooobbouoooobbon

PA(d)00D000000000000000Osymplecticd 00 (X,w)00 LieO GO symplectic form
wOOOOODOOUOO0O0O00000000 (moment map) 0000000 p: X — Lie(G)*000O0O
00000 Lie(G) O GO Lie algebrall Lie(G)* O 00O dual space 0000000 O symplectic0 000
0000000000000symplectic00000 moment map 000 0000 A:=x~%0)00000
gooooooooo«oDO0”’DO000000DbOO00000O0DO00OO00OO0ODODO0DOOoO0ODOooDoDOoDOoO
O0000A=p 30)000000000000000O000DOOOO0O0OD0

00 A(d)D0000X(d) = Eq(d)® Eg(d) 00000000000X(d) 00 bilinear form w O
w(B,B") =% cpe(m)tr(B=B,) 000000000000 D0wO X(d)OOOOOO skew-symmetric
bilinear form (symplectic form) 00000000 G(d) O X(d) DO0OO0O0O0O0OO symplectic form 00O
0000000000000 symplectic 0000000 OO moment map p: X(d) — Lie(G(d))* 0O
00000000000 setting0 p 000 0000 A=x~%0)00000000 variety of nilpotent
representations A(d) 000000

GDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD(Ringel[l?)]
O Assemet. al. [1]00)000000000O0O0O0O0OO0O0O
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o 0 0O0O side

000000000000 =(1,20cycle00000 (acyclic)D0OO0O0O0O00OOOO
ClrjoooO0ooopoooosSHUOoDiel0000O0O simple CI'l-module, P(3) 0O
O projective cover 0O OO0 [ ={1,2,---,n} 0000

Definition 5. n 00000 Cr = (¢)ije; 0000000000
¢i,j = dimgyry (P (i), P(5)) (4,5 €1).
00 Cr O path algebra C[I'] O Cartan matrix 0 00 O

gbobuoooobbbuoooobod

(i) 0000 Cartan matrix Cr 0000000000
(ii) Cartan matrix C 00000 ¢,; 00000000000
(iii) Cartan matrix Cr 000000000000 COO00OO0O00OOODOOCOOOO

000000 Lietheory D 00000000000 0000000000000000
00000000000000000000C Cartan matrix 0000000000000
00030 ()000000000000(G) 0000000000

Ringel 13]0 000002/ 0000000000000000000 s(i) := dimS(5),
p(i) == dimP() 00000
p(i) = s(i)'Cr (4.1.1)
O000000s(v)000+«000010000000000000O0O0O0OOODODOOO
(41.1)00p() 000 ' CrO00:0000000000O0DOOOOOO
C[I'l-mod O C[I']-modules O O O abelian categoryd K (C[I']) := K(C[I'-mod) O OO
Grothendieck D 00D O0OOOOOOODOOO

K(C[T)) > [V] = dimV € Z'
00 Z-module O O O
®r : K(C[I]) = Z*
000000000 [V]O CM)-module VO K(C[I)) 00000000000
C[I'] O hereditary D 0000 S(¢) 0000000 projective resolution 0 0 00 00O

000 K(C[I)000[S@)0[P(G) (jeHODODDO0000000000 &000
7Z'000000000000000 00000 PO0OOOOO

s(1) p(1)
E, = S?) — p@ P (E,0nO0000D0)
s(n) p(n)

00000000 000000000(4.1.1)00 P =t;'0000Gi)0000

CrO0000 z'00 bilinear form O
((x,y) =x("Ct)'y  (xyeZ)
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0000000 Euler form 0007000 (i),(i),(i) 00000000000

e Euler form ((-,-)) 00000000
e Euler form ((-,))0 ZOOODOO0D0D0000000000

Euler formO0 000000000 AODOODOOODOOODOOOOODOOOODO
000000A0DO0ODOO0O0O0O0O0O0O0O0O00O®OV O projective dimension 00 O
A-module, W O injective dimension 0 0 0 0 A-module 00000

((dimV, dimW)) = " dimc Ext'y(V, W)

1>0
000000 A=C[000000
((dimV,dimW)) = dim¢ Homery(V, W) — dime Extepry(V, W)
0000000 V,W O simple module 00 0 O
((s(i),8(4))) = di; — dime Exteqry(S(), S(7))

_J1 (i=17),
_{—MDDDiDDjDDDDmmeDD)@#ﬁ
DO000“00000”0000000

Euler formO0 000000
(X,¥)alg := %x (Ct+'Crh)ty (x,y € Z")

00 Z'00 symmetric bilinear form 000007 = ([,Q)0 arrow 000000000
000 quiverO I':=([,Q) 0000000000

Cs="Cr
00O 00 O symmetric bilinear form (-, ) g, O O

good %(tCrl—l—tCFl) 00000 symmetric bilinear form

Oo0000O000oooooooood

(5(6),5(1))atg = 4 _ (i =),
54 ) Jalg —~(H=QuQODO0OO0i00,;0000arrowd00)/2 (i # )
Jdo0o0o0oooooooodgn

o Lie theory side

O00quiver I' = (I,Q) 0 cycle 0000000000 loop0O0O0O0O0OODOODOOT
OO0 arow UOOO0O0O0O000O0O00O0O00O00 I'py, 00000 py, 0 quiver I' 0
(underlying) Dynkin diagram 0 0 O °00

‘oooo (,yOOOOOOOOOOOO (,HOUOOODUODOOODUOOOOOOOO

8000 AO global dimension D0 OO0 O0ODOOO0OO

9¢Dynkin” 0000000000000 O0 Lietheory 0000000 ODOOOO CI000O000O
000000 “Dynkin case”’0 00000000 “non-Dynkin case” 000 O 0O Lie theory 00O C[I'] OO
ooo0obo000000000000000 I'py,, 0000 “Dynkin diagram” 000000000000
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Definition 6. n x n 0 O A(FDyn> = (ai,j)lgi,jgn Oooooooooo

[ 2 (i =),
%%—{—@wﬂnmumjmmmmmmm)@#ﬁ.

00 A(Tpys) = (a;;) O O Dynkin diagram I'p,,, 0 0 0 0 0 O Cartan matrix 0 O O *°00

O Lie theoretic O O Cartan matrix A(I'p,,,) 00000000000

(i) Cartan matrix A(I'p,,,) 00000000000

(ii)” Cartan matrix A(I'p,,,) 00000 ;000000000000 0OC0O0O0OCO0O
goboboooobb2b0000oboboooobon

(iii)” Cartan matrix A(T'p,,,) 00000000 ODOOMO

000 sided Cartan matrix Cr D00 (i)~(ii) 0000000000000 OOOO
0000000000000000000000000000D00000® 00000
guogoooooobbbbbooodod

A= A(p,,) 00 00OZ' 00 bilinear form O

(X7 Y)Lie = XAty <X7 yc ZI)

O0000A(I'p,) 000000000000 symmetric bilinear form 0000000
Alp,,)D00O0DODOODODOOOODOO

- 5 i=7),
@@ﬁmhw:{_@mJMHMDjDDDDDDD)&#%

ODOH=QuQOO004:00,;0000 arrow 00000y, 0000700000
gbobobouoogon

(8(4),8(3)) i = 2(s(2), 8(4))atg
0000000000000000000 Cartan matrix 0000000000

ot
AlCpyn) =25 (65t +1¢i)
OO000D0D00000 CartanmatrixD OO0 OD0OOOOOOOOOOODOODO

0000000000 Z'00 symmetric bilinear fom 000 (), 0000000
0000000000000000 (,-) 0000

Remark 7. Lie theory 0 000 0 00O Cartan matrix A(I'p,,) 00 00O Lie algebra O
O0O00000000D0O0O Lie algebra [ Kac-Moody Lie algebraO0 00O OO OOOO

000000000 Lie theory 0 “Dynkin diagram” 000 0000000000000000O000O0OO
000000 I'py, O Dynkin diagram 00 0 symmetric0000000000000000O
OgpOoO0OO000lop00000D0OID cycle 0000000000 O00O0O
U000 'O extended DynkinO Lie theory 0 O affine00000000000A(Tpy,) 0 corank 10
ooo
POppoDoO00000000000000000000000000000000000000 Lie
theoreticOOOOOOOOOOOODOO
BopoDO0DO0000DO0000000000000000Lie theoretic 0000 “2? 000000
o00o0ooo0oogoooooo0ooooOoooooOoooDoooooDooo
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0 symmetric Kac-Moody Lie algebrad 000000000000 Lie algebra 0 00O
O0000000000000000000000O0Tp, 0 A, D, EO0O0O0O0O0OOO
0000 Dynkin case0 000 00000D0OO0O

Definition 8. I' = (/,Q) 0 loop0 0 00O qulverDDDD(ZI)@)Q QIonoooo
{s(i)]ie I}, 0000000 bilinear form (-,-) 30 (Q,{s(i)}, (-,)) O Dynkin diagram
FDynDDDDDrootdatumDDDDDDDD(-,~)DDDDDDDZ 00O bilinear form
0000000 Q00000000ooooon

Remark 9. OO 0000 Lie theoryUODOOOOO root datum OO0 0O OO O0OOOO
000000000000000000000000000000000000¥3Lie
theory OO OO root datum OO0 0000000000 O0DOOOODOONO Cartan matrix O
symmetric 000 000000000000 ODO0O00O0OOOO0OODOO0OOODO quiver
OO00000D000D0O0OCartan matrix 0 symmetric 0 00000000 O O Cartan
matrix 0 symmetric0 0000000000000 0OO0OOOOOOO

42. Crystal DO OO0OOOO

OO000OC0Ocystal DOO0O0O0OD0OO0ODOODOOO0OOOOOOOOODODOODOD
cystal U0 OO 0ODOODO0OO0OO0OOO0O0OO0O0OOO0OO00O0OOOOODbOODODbDOoDOonDGg
ooooboboob0 “cobobobo’obooboobooboobobobobooobogo

000000 root datum (Q, {s(i)},(-,-)) 0 ixO00O0O000O {s(:)} 00000 Q'O
Z-submodule [

Q = & Zs(i)
i€l

0000000 root lattice 00000000 Q' 000000000000 POO
gboood:

(a) PO Q'O rank n = |I|0 Z-submodule 0 0 O O

(b) (z,Q) C Z for every z € P.

(c) s(i) € P for every i € I.
(cD000DQ@cCcPOOODOODOOOOOOO

Remark 10. (1) bilinear form (-, ) 0000000000000 O A D,EOOOOO
0000 (a), (b), ()00000000000000000 canonical 000000000
00 PODDODOOOOOOOOOOO

P:={zcQ'|(z,Q) CZ}

OO0000000 lattieceD DO OD0ODOO0O0O0OO00ODOQOOdual latticeD OO OO
gbooboooon

O00(,)0000000000000 T 0 extended Dynkin0O00OOOOOO00OO
0000000 POZOODOOOOOOOOOOOO ()OO0 O0O0OO0OOOOOOO
canonical 1 PU choice 0D ODOODOOODOODOOODOOOOODODOOODOOO

14symmetric[||][II:II:II:IDDA(FDW)DDDDDDDDDDDDDDDDDDDDDD Kac-Moody

Lie algebraD 0 OO0O0D0O0O0O00O Cartan matrix 000000000000
BoOopDOo000000 Lietheory 000000000 000O0D0O0OO
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goobooooboood
(2) PO 0O Lie theory O weight lattice 0 000000000

O0000000000000000000 aystal 0000000000 OOOMO
Definition 11. 00 BOOOO0O
wt:B—P, ¢ :B—=>ZU{-x}, ¢ :B—ZU{—00},
G:B—BU{0}, fi:B—BU{0} (ic))
DDDDDDDDDDDDDD(&WW%Q@JDDmm¢mm(@ﬂdMKy»DD
000 crystal 0 0 OO
(C)DDOiel,beBOODOO

pi(b) = &i(b) + (s(i), wt(b)).
(C2)beBOOebeBOOOD
wt(Eb) = wt(b) +s(i), ei(E@b) =¢e;(b) — 1, @i(Eb) = i(b) + 1.
(C2y beBODO fibe BOOOO
wt(fib) = wt(b) —s(i), ei(fib) =ei(b) + 1, @i(fib) = ¢i(b) — 1.
(C3) bt e BOODODODO -
V==cb < b=/fl.
(C4) beBOOOOOg() =-00c0000
&b = fib=0.

OOooo0oboobOobbobOobobooon “—eo”b “0"0000000OzZODODO
O0extralO00OOBO0O0000 extral0 0000000000 0OOODOODODOODO
OO00obO0bobob0b0—-ccO0OOOooozbUObOO ‘OO0

(—o0)+a=a+(—o0) =—00 (a€Z)
0000000000000 00Y0000000000000000
sz(b):_oo <~ €Z‘(b>:—OO.

000beBOOOOOwH(h) e POOOOOOODODODO (s(d),wt(h)) €Z0OO0O00OO
00000 (C1O“00700000000¢(b) =-000 &(b)=-0o0000000
0oooo

0000 erystal 000000 (Bywt,e;, 04,6, /) 0000000000000000
0000000000000 0000aystal B0000000000000

crystal U0 0000000000000 0DOOOecerystal graphDO00OO0O00O00OO0OOOO

b«gop”000000000root datum OO0 000000000 quivee 000000000000
0000000000000 DO000D0O0O0Orootdatum DO O0O0O0D0OOOODOO

D00 0OO0000000000000000000000000000000—-0c00000000
gbooobogoboooo
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Definition 12. BO crystal D00 O00OO000 BOOOOOOOOO0ODOOOOOODOO
O0O00000D0000D0 BO crystal graph 00 00
DDDDb’:ﬁbDDDDDDbDD VOOOOO:e/000000000DODOO0O

i

b —— 10

Example 13. I'0 A, 00 quiver O O O orientation 0 00000 000w, € PO
(wi,8(i)) = 01,4
oboobodbo»n+1000000000
B(wy) := {bo, b1, - ,b,}

0000000 wt,e, 9,6, ;0000000000
k

wt(be) =wi — »_s(i) (0<k<n),

i=1

(b = {1 (i = k), e {(1) (i=k+1),

0 (otherwise (otherwise),
by bp—1 (1= k:),‘ Fby = beyr (1=k —|— 1),
0 (otherwise), 0 (otherwise).

0000 B(wy)O cerystal 000000 crystal graph 0000000000

bo 1 b, 2 by 3 Lbn

00 B(w)O0OA, 00000 vector 000 crystal basisD 00000000 crystal 00O
gotgtbobbbbdobbooouoboonbbobbboduoooooobobobooa
guooooooobobobboooooad

Example 14. I'U loopO 00000 quiver U0 OO0OO je/O0000O0O0O0ODOZODO
gboobooogoood

Bj:={b;(k) | k € Z}
0000000 wte, 96, ;0000000000
wt(b;(k)) :== ks(j) (k € Z),

si<bj<k>>::{"“ o soi(bj(k))rz{lioo i
)

J {o Gty 7 0 G #3)
0000 B0 crystal DO O0O00ODO crystal graph OO0 00000000

J J J J J
~O ® ~O e
bj(k—1) bj(k) bj(k+1) bj(k+2)
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Example 15. I'0 loop0 00000 quive D00OXN € POODOOODOOOOOODOO
Th = {tr}
00 wt,e;, 05,6, ;0000000000
wh(ta) = A, i(t)) = @it)) := —o0, &ta= fitr:=0 (Viel).

0000 7,0 crystal DO O Ocrystal graph OO0 0000000000 O0OOODOODO
ooo

43.BOOO.
B =|]IrrA(d) OO0 (Q), {s(i)}, (-,-)) root datum OO O crystal 000000000

owtOOODA€rA(d) 000D
wt(A) = —d.

OéiDDDDBEA(d)DDDDDEi(B)EZZODDDDDDDDDD
g;(B) := dim¢ Coker ( D V(d)out(r) ®B¢ V(d)i) i
TEH;in(T)=i

B = (B;)ren € A(d) 00 00 0O I-graded vector space V(d) O P(I')-module 0 O 00O
0000000000000 000000000000 B)0000de I 0000
P(I")-module V(d) O top (i-th top) 00O O0O00OOO0O

O00 AelrA(d)DDOODOOAD generic00 Be AOOOO

ei(A) = =i(B)
ooooon

09, 0000wt0 00000000 (C1)0000 000000000
pi(A) = ei(A) + (s(2), wt(A)).

o, 000000
(IrrA(d) ) = {A € IrrA(d) | &;(A) = p}

DDDDDDDDhmmﬂ]mmm»mmmmmmmmwmmmmmmmmmm
IrrA(d) = (IrrA(d)), ol (IrrA(d)), , U (rA(d)), , U - - - U (IrrA(d))

¢,dime V(d);*
DO0000(IrA(d)),, (0<p<dimcV(d),) 0000000000000 OOOO0OO
D00A € (IrA(d)),,000A0000 genericd0 BOOOOOO000O0O
I =¢;(B)= P(I')-module V(d) O i-th topO OO
000000000000
V(d)O P(T')-submodule V"O000000V(d)/V" = S()® (i-th top of V(d))
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O00000000V"O ¢-thradicalDOODOOOO0O0O
I-graded vector space D OO0 O0OV"=V(d")D0ODOOOOOd :=d-Is(zx)0000O
00000000 I-graded vector space V(d”) 0 O P(I')-module structure 0 0 0 O O

0 V(@)L v -5 s =0 (4.3.1)
0 P(I)-module 0000000000000 OOO0O0O0DODODN
P(D)-module V(d") 0D D00 A(d") 000 B'O0000O00O0O0
A(d) 3 B — B" € A(d")
00D0000000D0000000000000000000000000
0V(d)DO0DO0D00D é-th radical 0 0 0 O

goooogooog

000000 B—-pB"000000000000000V"=V(d”)0 i-th radical O
O0000000000000000000ooooov(d) oo P(I')-module structure
0000 B"eAd)OOODDOOODOOOOODODODOOOOOOOOODOO

0000000000000 00000000 (4.3.1)0000 I-graded vector space
O00000oooooooov(d 0od P(I')-module structure 00000000000
BeAd)UDODOOODOOODOODOOOOOOOOOOODOODOOO

0000V(d) 00 P(I')-module structure 00 0 000000B" € A(d")00O00O
O000000000000000000000 ¢":v(d”") - Vv(d)O P(I')-module 0O
O00000P(N)-module0000000000Img" 0O B-stableDODOODOODOOOO
000000®00o0D000000 v(d)/ V@) =2S@H® 00000 P(I)-module OO
0000000000000000000000000¢" : V(d) - SH®00000
P(I')-module0 00000

00000000000000000 (B,¢,¢")00000B€A(d) 00 Im¢”0 B-
stable 000 000000000000000000 (B,¢,¢")0000 A(d:d”")000
O00A(d;d”)00 Ad)DAA)OO0D0O000

¢ : A(d;d") 3 (B, ¢, ¢") = B e Ad), ¢:A(d;d") > (B,¢,¢") — B" € A(d”)
D000000D0000000000
A(d”) <2 A(d;d”) 2 A(d) (4.3.2)
000000q,p000000000000000 B—-B/'00000000

gdoooooooood
Proposition 16 (Kashiwara-S [10]). 0O (4.3.2)00000
(IrrA(d))“ = (IrrA(d”))i’O
By I-graded vector space 0 0000000 Im¢” O V(d) O I-graded vector subspace 0 0000
000 Im¢” = &e;(Img”), 0 0000000000000 reH00000

B (Im¢//)out(r) c (Im(b”)in(r)
O00000Img” O B-stableOOOOODOO
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oboobod

O00mooooO0 P(T)-module0 000000 i-thradicalDOODOOOOOOOO
B —- B'0000000 wel-definedODOO0ODODO0O0OOOOD0ODOOOOOOOOO
well-defined OO OO0 OO0 0O0O0ODO0ODOOOOOOOOODOODO

000 ¢, 000000000000000000O00O0O00O0O0O0ODOOO0O ([10)0
gooboodgd

gooogd
e s (IrA(d)),, = (IrrA(d")), ,

OO00000o0O0oDpOobDOoob0egOO000bOOO0OO0OU0ODODOUOOODOOOO
0000000000000 0 e 0000000DODO0OOOO

apa NG . .
s (A(d))“ “— (A(d - ls(z)))i,O — (A(d- s(z)))i’l_1 if 1 >0,
(A(d)),, — {0} if 1 =0.
0000000000 “00”0000000000000e;,00
000000 P(I')-module O é-th top O generic0 000000

00000000000Y000000004-thtopd 0000000l =0000000
gbobobuoooobbbooobbboooobob oo buoogoobood

B:udezéolrrA(d)DDDDDDDDDDDDDD component 0000000 e 00
ooooo
& :B—BU{0)
O well-defined D0 000000 OO0OOOODO

oﬁDDDDDDDDDD’é}’-””DDDDDDDDD

~ 'e';ma;v . (g?maz)—l .
fi:(A(d))i’l—> (A(d—ls(z)))i’0 —  (A(d+5s(2)))
oooooolo ODDDDDDDDDDDDDDDDDDED ‘00700
000000 P(I')-module O é-th top O generic0 0000000

ooooboooono/obobooobodooboouooboooooooood
Ooooooooooooof0b00bbo0ooboooboobboboobooobooon
goo

B+

fi:B—B
0000

PoopDoooOooDODOO0O0OO0O0O0DOOOO0OO0Od P(T')-module O 4-th top O generic 0 00O
oooooOoO000egOO0O0OQOOOOOOODOOOOOODOOOOOOOOOOOOOOOOOOOOO0
gbobooboboooobobooooobooooboobooonoo

(IrrA(d))ilg(IrrA(dfs(i)))“_l
gogbogoboobboobobodboooboobboobboobbboobobooon (IrrA(d”))iO
goooobbbbuooooooobooobog
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Dboboobooboobooboobobbobboobooon

Proposition 17 ([10]). O (B;Wt,&“i, goi,'éi,ﬁ-) O O root datum (QI, {s(i)}, (-, )) oood
O crystal0 00O 0O

Proof. 00 (C1)D(C4)00000000000000 (CHO(C3)000000000
0 (C4)000000¢(A)=-0c000AeBO000000000OKD O

44. 000000,
OO0 B= |_|d€ZI>O IrrA(d) O O crystal structure 0 000 00000 OO preprojective

algebraJ 000000000 DOOO0ODOOOOOODOODOOOOODOOOOODOOOOO
gbbobuoooobbbouodgbbbooodobbobuoooobbboobooon

QU crystal structure 0000000000000 0O0OOOOOO
0000000000 0o0ooooooooon

00000 preprojective algebra D 00000000000 0ODOOO0OO0OOOO0OO
cystal OO O0OO00O0OO0O0OOODOOOOOOODO

Theorem 18 (Kashiwara-S [10]). crystal0 00 BO B(oo)DO OO OO,

000 B(eo)OODO“0O0O0OOOODODODO crystal basis” 00000 crystal0 000
ooooooo0o0ooOopoOoooooOoooooOoooooOoooooOooooboOoo
O0000oDoo0o0oooooooo0ooobo“ocbobo000DOn crystal basis” 00
ODO0000O0O00bOOo00obbO0ooboO0ooboO0o0b0OTheorem 1800000000
ooo0boo0oooooooooOobobooooooooooon

Alcrystal 00000000000 DODODOOOO0OODODODOOOO preprojective
algebra [ nilpotent 0 0000000 variety UOD DD O0000OO0O0OO0O

goobgboboobobobobobobooboooobobobobobobo
gbobobooodgobbod

I'D Dynkincase 000000 AODOODDOOOODOOOOSO00000000DO0OO
gboboboooobbbuooon

4.5. Another crystal structure on B.

43000000 crystal structure OO0 000000000 “O00 topO 0O OO 0O
OO00D0000b00o0oo0b0oooooooboooobooooodDbDtepdoog
O0000000Osocle0 0000000 0O0OOOOOOODODOODODOODOODO
O000 OKOOtopO socle0O0O0D0O0OOOOO BOO crystal structure 0 00 0O O
J00D0D00000b0bOb00o0o0oobooDOg BOO crystal structured 04300000
O000000OO000OO0o0ooOoobooDbo

DoOooboobbouodbwtd 430000000000 000000 4300
oboboboobooboobooboobob«b0b0guboobobbon

20 erystal 0000000000000 O0O0000OO0OOO00O0OODOO000O000O00OO0O0OO0O
oooo
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BeAd)ODODODO
@(B)::dhnCKfr(Vﬁbi@E§ o quxmﬂ)
Te€H;0ut(7)=1
00000000000 P(I)-moduleD i-thsocleDOODOOOOOOO
O000AelrA(d)DDOO0O AO generic00 Be AOOOO

&/ (A) = ¢€i(B)
00000000

pi(A) = ei(A) + (s(i), wt(A))
00000

43000 ¢ =i-thtop0 000 IrA(d)DO00O0O00000O0 ef =id-thsocledOO
gooboooooboood
IrrA(d) = |_| (IrrA(d))?, where (IrrA(d))f = {A € IrA(d) | €] (A) = p}.
p>0

oooo43000000000o0u0on
@) (rA(d)); & (irA(d))]

7

000000000 d :=d-Is(@)000?0000000000000000000
0000000000000 00000 topd socle000000000OO0OODODO(4.3.1)
UbbbU00U0mapd oo

0— S0 25 vd) - vd) = o. (4.5.1)
0000000 (432)000000000000000000000000 (&)™*00
0000000000000000000(&)™ 00000i-th cosocle 0000000
000000

000 ()™ 0000000

&:B—-BU{0}, [ :B—B
000000000000000000000000
Theorem 19 ([10)). (1) O (B;wt,ef, ¢, &%, f7) O O root datum (Q, {s()}, (-,-)) 00O
00 cerystal 00O 0O
(2) erystal DO O (B;wt,ef, 9%, ¢, f7) 0 B(oo) 00O DOOD

P )

(2) 0000000000 Theorem 180 Theorem 1900000
(B;Wt,gi,QOi,a,ﬁ)gB(OO)g(B;Wt,&:,g@:,a,ﬁ*)
gooooobobobooogobobobbobobobooobobooouooobooouuuooa
0000000000000 D00O0D00O0DO0ODbO0ODoDOo0OooOOoOoOoOnOng crystald

OOobOoboboooboobooboboobogon “g=g7b00bobobooboobgon
gboboboogobobobooooboon

Otop0OO0O0OOO0OO0OOOsocleI00000O0ODOO0ODOOODOODODDOODOOOO
2lpppoooDO00d =d’0000000000000000000000
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OO000000b0O00DmtepO00O0000O0OOODOsocleO0O000O0O0ODODO
Ooboobobooooobooobobooo “borgobooboboo

5. DYNKIN CASE

5.1. 0 0O0O.

0000007 = (1,Q)0 Dynkin quiverd A, D, E0000000000000 sided
000000000000 PM)000000O000000O000000O0000000
0000000000000000000000000

Proposition 20 (Lusztig [9]). ' = (1,Q) O Dynkin quiver 0000000000000
000 AelrA(d) 00000 Eq(d) 0 G(d)-orbit O 0000000000

A =Ts Eq(d)
0000000000000 Eo(d)d G(d)-orbit Oo 000 0T Eo(d) € rA(d) 0O
OO000DO00O0000000O0Db0obooOo
{Eq(d) 0 G(d)-orbit} 3 Oq +— T3 Eq(d) € IrA(d). (5.1.1)
00000000000 000D0Ts,Ea(d)0 “Oq0 conormal bundle”0 T4, Eq(d)
O “00 closure” 00000 O00OOOconormal bundleDO0 O O0O0O00OOOOOO setting

gbogbobouoobbooboobobuoobbooobbooboobbodoboon
gogdbobboooobbbuoooobbbuoooobbbuoooobobbooan

0o
X(d) = &P HOHIC(V(d)OHt(T), V(d)in(r)) = EQ(d) D Eﬁ(d)

TeEH
D00000000000000 mqq: X(d) = Eq(d) 000700 Ad)DOO0O0O
TA@.0 = Tdalyq 00000000 myaeD0 00000000000 A(d)0OO

A(d) = |_| 7TX(l(:l),Q (Oq)
Oq;G(d)-orbit

O00000TD Dynkin typeO OO OO0OODOOODO disjoint union 0 O O DT('X(ld)Q(OQ)

0Ad)0 GA)D 0000000000000 0000O0DO0O0O000000D0O0 G(d)-
orbit 0O DOODOO0OOODOODOODODODODLOOOO

Proposition 21 ([9]). I' 0 Dynkin type D 0 00O
Ty (Oa) = T, Eo(d)
gboboooobooboooobon
Ta@.e (On) = T¢, Ea(d)
00000000 conormal bundle0000000000000O00CO 7'(_/:(1(1),9(09)['
gboboboooobboooaoon

Proposition 210 “007 0000000000 AelrA(d)DO0O0ADODOODO generic
0 (B.),exy 00DOODOODO
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0 I-graded vector space V(d) O O (B;).eg 0000
nilpotent P(I")-module 0 0O 0O

000000000000 ma@e((Br)ren) = (B0 000000000
000000 P(T)-module V(d)OO7€QO0000
D00D0D0D0D00D0OC[)-moduled 000
00000000000000000 Proposition 21 0

5 Fo(d) = V(d) OO P(I')-module structure 0 0 00 0000
0ol =\ C[[Mmodule 000D DOOODODOOODOOO

gboboboogooboboogooboon

OO000000000D0TI'D Dynkin typeOOODOOD0O0ODO0 GabrielOOODOOOO
0000 C[I'-module0 0000 dimension vector 0 0 00 0000000000000
000 DynkinO0O I'p,,, 00000 positiveroot 0 00 O0O0000O00O0O000O0O0OO
000000000 CI'-module V(d) O

V(d)= & Vo(B)"*
BeA+
000000000000000 AT =A*(Tpy,) O positive root 00 00 00 V(B) O
peATO00000O00OC[I-module0 00000000 OOOOOOOODOO

ag = (ag)penr € ZZ, (N :=|A%])
oooo

gbooodg

(i) AelirA(d) D0 O0ADOOO genericO (B;)reg 0000

(i) ma@.0 (Bo)ren) = (By)req 00000 V(d) O C[I)-module 0 0000

(iii) C[T)-module V(d)JDDODO0DO0DO00D0 DO D multiplicity ] 000 0 O
ooo aQ:(ag,Q),geA+ EZ];[ODDDDDD

000000000000 Vg :IirA(d) —» 25, 000000000000 (5.1.1)00
Ve 0000000000000 DO0dimension vector d0000000000000
D0oo00oooooon

T : B> 75,
00000000000 ¥,':2Y S BO00am Ty Eo(d) 0000000000 Oa
D0aczy¥ 00000 G(d)-orbit0 000

O crystal structure OO0 000000 cerystal graph OO OO0 OO0 O000O0OOOO
OO0000b0000o00oo0o0obobodg BOO crystal structure 000000000000
graph0 0000000000 O0OO0OODOO0OO0OODOO0O0O0O0O0O0O0O0O I'D Dynkin
type 00000 DZY,0000000000000000000000O0O0O0OOO0O
0000000000000 ¥o:B=2ZY0000BO0OO0OOO crystal structure 0
Z]>V0DDDDDDDDDDDDDDDD@DDDDDDD”D

22DDDDDZ§ODDDDDDDD graphD 0000000 0ODOOOOOOODOOOOODOOO
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DO0D0000 ¥g:B = ZY, 0 orientation Q00000 depend 00 000QOO0O0
0 zY, 000 crystal structure 000 00000000%ZY, 00000 crystal structure
0000000000000 DO0bO0b0ob00U0D BpOobOobobobboooboo

Bq = {aQ = (ap.0)gen+ } aga € Lo for every g € AT } )

52. A00000000O00O0

0000 T =(,20 A,00 Dynkin quivee 0 0000000000000 positive
root 000 AT =A(A,)"T000000000O0

J
A+:{@w:§:ﬁw 1§¢§j§n},
k=i
oooooo
N:|A+|:n(n2+1)'

00 \I/Q:IB%QZQODDDDDDD orientation QU O OO ODOODOODOODOODOODO
gboboogobood

QQZ O——0O0——0O0O——=— ... e O 0O—<20.
1 2 3 n—2 n-—1 n

godooooooogo
Qij = ag, ;1.0 (1<i<j<n+1),

Bo, = {a = (ai;)1<icj<nt1 | aij € Zxo}
000000000®00000BO000000000 crystal structure (B; wt, &5, 95, &, f7)

000 (Bywt,ef,¢f, e, f;) 000 ¥g,: B By, 0000 By, 278, 00000000
000000000000000000000000000000000000020

owt0DOD0O0aez),0000

i n+l
wt(a) = — Zdis(i), where d; = Z Z ag; (iel).
i€l k=1 1=i+1

oe, el i, pt0000iel0000

k
Al(cl) (a) = Z(as,i+1 - asfl,i> (1 S k S Z);

s=1

2B0poooooo
a;j=ag,; (1<i<j<n)
D0D0000000000000000 erystal 0000000000000 0O0DO0OO0 jO000000
000000000000000000000000000000000000000000000000
ooooo
20p0000000000000000000 Reineke [12], Savage [18], 00 [17]0 00000000
00000000000 0000000D0000000000
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n+1

A9 () = > (ai = aipren) (<1< n)
t=I+1
Uboduoboaobodbid a; =a++2=000000000000000

£i(a) = max {Agi)(a)’ e ’Az(i)(a)} . wi(a) =¢g(a) + (s(i),wt(a)),
£f(a) := max {A;‘(i)(a), e ,A;‘l(i)(a)} ., pi(a):=cf(a) + (s(i), wi(a)).

o0&, fi, e 0000

ky ::min{lgkgi

gi(a) = A,(f)(a)}, k_ = max{l <k<i

L= max{i <1< | ef(a) = /0@ ), L =min{i <1 <n

DDDDaGZ%DDDDDDDDDDDDDDDDamh:aﬁvezg(ﬁ:tp:
1,2)00000000

ap, ;i =1 (k=ky,l=1),

A5 = i F1 (b=l =i+ 1),

7y (otherwise).

i Fl o (k=i I=1L+1),
al(<:2,l’i) = Giy1pom1£1 (k=i+1, =1+ 1),

ag (otherwise).

gbboboogagn

gobooo

gboodgboboobobogbobboobobuogboobboobbooobooboonon
gbodbobbbatdbboboogooobobogd

12 Air3 Qa4 - a1,n A1,n+1
az3 A4 - A2n a2 n+1

azq4 - a3 n a3 n+1

Ap—1n QApn—1,n+1
an,n+1

gboobooggn
O0eg000000000O0O0O0ODO
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e +100%®00000000000000100000;00000000000
gi1obood
e 0D .0DOUOUO0OLDDLDDOUOOOODLDD,+100U000DLDO 1DUOO0O0OO

000000000000
Di+100000i0000000000001000000
0000000000000000000000 . 0000000
De(a)=AY00001<k<i000000000000
0000

00000

o +10000ODOOOOO0O0O0O00ODI0O0O0O0O0O.0000ODODODOOOO0
gi1good
e 00 :0DOOUO0O0ODLDDDOUOOOODLDD:+100000O0DO 1DOO0O0OO

0oooooo
0i+100000:000000000001000000
00000000000
Dei(a) =AY 00001<k<i000000000000
0oooooo

Ej,ﬁ*DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
gooo

Dooboobod BQO§Z§0DDDDDDDDDDDDDDDDDDDDD

Proposition 22 ([12),[18],[17)). (1) (Bay; wt, i, 95,6, f;) D00 (Bay; wt, 5, 97, &5, f7)
0000 erystal0 OO0
(2) 000000000 Vg, :B = By, 00 crystal 000000

\IJQO : (B7Wt7817g017glaﬁ) :> (BQQ;Wt7€i7§0i7giaﬁ)7
Wo, : (Bywt,eb, 00, e, 1) = (Baygs wt, €5, 07, 25, f7)
ddoodoagn

53. A000D0O0O0OODO

0000000000000 0000000000000000000000O0O0Oon
0»,=3000000000000000000000?2%0

O0O00O0ON=3(3+1)/2=6000a000000000000000000000
000000000 oooooog

Q12 Q13 A14
a= 23 A24
a3.4

0p0000000000000000000000000 @;,0000000000000
%0000.=1,20000000000000000000000000000000000
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ogoooooooooooo
Wt(a) = (_d17_d2a_d3)7
di =ap+a13+a14, de=aiz3+aia+asz+ass, d3=ais+azs+asa.
D000 ab000000O0Ooooggs1iooooobald (C[Fo]—moduleD Iydooo

000000 multiplicity DODOO000000O0O0O Ty :=(,Q)000000000
ooooorlryooobooooooobooboo

(T {0} « {0})os
(T« C « fopeos
(C «
({0}«
({0}
({0} ¢ {0} - €)oo

000000 V(d)O0O0O000 Eg(d) 0 G(d)-orbit 0,0, 0000000000000
Ay = qug(a):Tga%EQO(d) ooooooo

— C )EB!Z1,4
V(d) = (D 0o0d:= (dl,dz,dg) = —wt(a))

— {op)eens

YA (C )@QQA

Padadad ad

gboobuooouooogooboogd

Aﬁ” = a1,2,

A(12) = @13, A(Q) =a13+ (az3 — a12),

Af)’) = a4, A( ) = = a14 + (ag4 — a1 3), A;(gg) = a14+ (ag4 — a13) + (aza — az3),
Az(l) = a14, A;(l) =ay4+ (13 — az4), Ai(l) = a1a+ (a13 — az4) + (a12 — az3),
AZ;@) = Q24 A;(Q) = ag4 + (az3 — asa),

AS(S) = Q34

, 14+ (24 — a1 3) + (ass — ass)},

*

e1(a) =max{ay 4, a14+ (@13 —as4), a14+ (@13 — ass) + (@12 — azs)},
*

es(a) = max{aza, aza+ (azz —asa)}t,

8; a) = asy

gbbboodaobood

A, 0000 genericO P(Iy)-module0 000000
00 é-th topO-thsocle D0 DO ODOOOOOOODOO
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0000000000o00o0
Kashiwara operators] &, f;,¢f,/; 0 000 000000000000000000000
0000000000000000006D /00000000000

Example 23. a0 0 0O0000O00OO0ODO0O

4 1
a—= 2

N W =

0000
0000000+=30000000

AP =1, AP =1+3-1=2 AP =1+3-1)+2-2)=2

goodoo
e3(a) = max{1,2,2} = 2.

00000 es(a) =AY 000 k02000300004 0000000000 k00
0000000000000000k, =2000000000000100000000
0Doooo0o00o00

4 4

1 ) 1
2 N 3

N W
N DN =

o 000

00000 e(a)=AY000%k02000300000k 0000000000 kO
00000000000000000k =300000000000010000000
0000000000000 a;00000000000as,0100000000000

411 _ 411
93 By 23
9 3

gj,ﬁ*DDDDDDDDDDDDDDDDETD E“DDDDDDDDDDDDDDDD
gbooboooobooooboboodgd

411 410 411 511

2 3 — 2 4 2 3 s 2 3

2 3 2 3

n=3000000000000000000000O00000O00
54. A0D0DOO0O0O0OO0O
0000000 orientation 0 O O O

Qoi O——0O—<—0O—=<— ... e O—<—0O—<—20

1 2 3 n—2 n-—1 n
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OoooooboooooOoooboobbo0oobooobbooboboooDooDoobD Quoooo
gbobboobooboobuooboobooboooboob

QDDDDDDDQDDDDwmmﬁm%%ﬁ)DDDU%WWQW;aEﬂDDD
0000oo0o0ooooo

gbooooog BQ%“ZJZVODDDDDDDDDDD
QD’ONODOOO0OO0O00DO ag = (aga)sea+r € BoO0OD 00000000000 00OO
gboboooooboood

oobooboobooboobooboobooboobboob“cboobborbon
ooooo
O0000000000000D0D0O0 orientation 2, 000 O crystal 0 0 O

Rgl = W O\Ifs_zl : Bg SBS Bay

O Bo OO Bo OO transition map O 00 “crystal DO D07 00000000 O0OOO0O
OO000000000000000O000O00DO00OO00DO00DOD00O0O0O0DOO00on
OO000D0D0DOO00OO00oooooooogn

(i) DDO0000 a0 000000000000 multiplicity 0 0 00O C[I'-module
Oooboooooon

(i) 00 mya,e 0000000000000 P(I')-moduled0 00000

(i) 00000 closure0 000

(iv) 000 closure 0 000 generic 0000007 € Q0000000000000
00 C[IM-moduleD 0 OO OO0 IM:=(,Q)0

(v) OOOO C[I"module 00000000 multiplicity 000000000

gbobogooobooaobon

Remark24. 00000 (i) OO closure 0 0000 (iv) DO generic0 000000000
gboobodboogbbooboobobuoobboobuoobbogboobobooon
gbobobooooobbbooooobbbooogbon aQDDDDbQ/::Rgl(aQ)D
googooobodg

mr.0(0a0) = T o (Ova) (& o Eald) =15, Ea(d))
goodooooooood
”X(ld),ﬂ(oaﬂ) 7 7TX(ld),Q/(Ob,Q’)

OO0DO000000O0closwreJ 00000000 0ODOOO generic0O00O0OOO0O0OODO
gboboboooobbooooobon

DDDDDDDDR&DR&:(&Q*DDDDDDDommmmm%DDDDDD
crystal structure (Bay; wt, e, 05,65, ;) 00 0000000000000 RS O Ry OO
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DDDDDDDDwmmwm%ajﬁDDDDDDDDDDDDDD%MDDDawml
structure 0000 00000000000O0O0O0O

QOOooooog QDDDDR&)D RgODDDDDDDDD
obobooboobod

A0000000O0O000000O0000 (38,(17)000000000000000
000000000000000000000000000000000

5.5. Open problems.
OO000000O000O00DOO0O0DbOo0bOOoDbOOoDoOoooOoao

Problem 10 D00 ED OO 25, 0 crystal structure 0 O O
D000000000B=UglrA(d)0D 25,0000 N=|AT000000

v:B 5 ZE,

OO0 =(/,Q) 0 Dynkin quivee D0 0000000000000 O0O0O0O0ADODDOOO
0O DODOFOOOBOOD crystal structure 0 Yo O OO0 ZY, 00000000000
0000000000000000000000000000000000000000
OooOoo0oooooooooooobooooobboooooobOoboooADboOoo
00002Z% 00 crystal structure 00 00 0000000000000000DOO0

Problem 20 Tame caseld

00 B B(eo)OJOOODO loopO 00 quiver 'O 00 0OOOOODynkin case 0 0 0
O0000000tamed0O000O00OODO I'O extended Dynkin 0 O O O O O O Lie theory
side0 00000 “affinecase” OO OONO

0000000000000 B(o)D00000oooooooooooobooOod
O0000000000000000A(d)ODODODOO000000O0O0OOOODODODOOO
Oo0ooooogn

Problem 30 Rigid crystals
ooood

O variety of nilpotent representations A(d) O G(d)-0 O
0 O dimension vector d O nilpotent P(I')-module 0 00 0O
goboboooogn
Ad)0000000000000000 rA(d)D0000

2Igpgoo00 e 0000O00O0DO
giaQ = (Rgo o a' o Rgo) (aQ) (aQ S BQ)

0000000000000000000000000000000000000000 ¢,00Bq,0 0
O0005.200 explicit formula0 000000000 R%UD RSODDDDDDDDDDDDDDDDD
oooooo
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O0000000000O0000D00000000O00O0O0OO0OOOOOOOOO “A(d)O
Gd-OO0oooo”0000000U0O0OooOooOO00UoooDoooOOoOUOooDoOoODO
oboooobood

Definition 25. A € rA(d) 0000 G(d)-00 0000000AD rigid0000000

AeTrrA(d) 0 rigid 000 00AD P(M)-module 000 0000000000000
0000000000000000000000000000

Proposition 26 ([5]). Be A(d)0D 000000 P(I')-moduleD VpOOOOOOOOO
(a) Extpry(Va, Va) = 0.
(b) BODOO Ad)D G(d)-000 00000000 € hrA(d)D0D000OA =00
rigidd
0000000000000 (x)0O0O0O0O0OD “igd000000ODOOOOOOO0
guoooooooobbobbd

¢4, (1<n<4)000000000A€B=_UglrA(d) D rigid0 000
e0000000000rgd000000000000000

gboooogboobdado
Q30rigidODO0O00ODOO0OOODOODOODODOO

0000000000000 000000000000 A4, 000000000000
000000000dO000000000001gid0000R<400000000
O0rgid000000000000000000O0R>500000rigd00O0O0OO
00000dO00000000000000000000O01igid000000O0000

000000000 q6nMgd0000000MO000000000000000000
0A,00000000000000000000 sided Lie theory side0 0000000
0000000000000 000000000000000000000000000
0000000000000 000000000000000O0O0o0Oooooooon
O000000000?2%g

Example 27. A;00 0000

T1 T2 T3 T4

Qy: O—~—0—=—0—~0—20

1 2 3 4 5
O0 orientation 00O 0O000ae B, UOODDOOOOOOODOODO
01000
0010
a=— 1 0 0.
01

0000000000000 A Origd000D0O00OO0DOO0OOOOODOOOODOOO

®Opooo0000000000000000000000000000000
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al0000T,=(1,Q) 00000

(C < C « {0}« {0} < {0})
S
({0}« C < C « C «+ {0})
Va(do) = < (000 do = (1,2,2,2,1) = —wt(a)).
({0} {0} = C « {0} « {0})
D
({0} « {0} + {0}« C « C)

000000000000 00000000000 Ba=(B,,B.,,B.,,B,) 0000

0 0 10 0
B, = (1 0), BTQ_<1 0), BTB_(O 0), BT4_(1) (5.5.1)

0000B, 000 Eg,(do) 0 G(dp)-orbit 0 O, 000000000

Aa = T (a0).00(Oasn) = G(do) * Ty (a,) a0y (Ba)

gbobobodo

A0 rigidD < G(do) ) 71'X(ldo),QO (Ba) O dense G(do)—Orbit gogg
= 7T/:(ldo),QO<Ba) O dense G(do)Ba-Orbit googg

god
G(do)p, :={9 € G(dy) | g- Ba = Ba} (Ba O stabilizer)

00007y g.0,(Ba) 0 G(do)p, 00000000000000000

BTlB?1 = 07 B?lBTl = BTQB?W
71-X(ldo),Qo (Ba) = (BTl7 Bsz,, Bz, Br ) Bz,B:, = By, Bz,, Bz, B, = B, Bz,,
Bs, By, =0
0000 B, (l = 1,2,3,4) U

B7

cire2 e B2 e

000000000 preprojective relations 000000000000 000O00O0O (5.5.1)
Oo00o0o0ooooooooon

o= {((). 9 9t )

O00000OOstabilizer OO0 OOOOOOO
G(do)p. = {9 = (1,92, 93, 91, g5) € GL1(C) X (GLy(C))* x GLy(C) ‘ g+ Ba=Ba}

= (669 9))
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000000000000 0DbO0bO0000ooOooDOoono
0 s 0 0 0
()G 0)- (2 0)
g 0 a~les 0 0 0 .
— ((alcs>’(a1dt O>’(clfu dlfv)’(c Ju O)>

0000b0 e0000000D00D000D000D000OD000O000O000 “00” 0
D0a,cd f0000000000 (CX)'000000000000000000

(€)' At
0o0oon s, t,u,v0 generic OO0 0000000 O0O0ON j—uDDDDDDDD
v

goo

les-e7lfu  su

su g, a” _
tv a-ldt-d-v  ty’

D0D0D000 G(do)p, O Tyiy0,Ba) =C!00000O0C' 000000000

su
— = const
tv

O0000000000000000orbit0 00000000000 OOOOdense orbit
Oo0o00o0o0?g

gboboogobbod

02000 010710
0020 0101
2 00, 010

0 2 0 1

0 0

O00000000000rigdd0 00000000 0OExample 270 a0000O0OOO
oboboboboboooboobob02ab00b0000000000O0OOODOO0
OO0 (000000 ka00O00O0OD0O0OOOOOODOODOODOODOOO

Aa O non-rigid = Aga (k € Z+o) O non-rigid

OO0000o0oD0o0obOooooboo0boboobooook0bobOooDboooobogooo
0000000 primitive O rigid component D 0 D OO0 0000 0O0O0OOOOOOOO
Jo000o0ooboooobooboooon
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MATRIX FACTORIZATIONS, ORBIFOLD CURVES
AND
MIRROR SYMMETRY

ATSUSHI TAKAHASHI (0O OO)

ABSTRACT. Mirror symmetry is now understood as a categorical duality between alge-
braic geometry and symplectic geometry. One of our motivations is to apply some ideas
of mirror symmetry to singularity theory in order to understand various mysterious
correspondences among isolated singularities, root systems, Weyl groups, Lie algebras,
discrete groups, finite dimensional algebras and so on.

In my talk, I explained the homological mirror symmetry conjecture between orbifold
curves and cusp singularities via Orlov type semi-orthogonal decompositions. I also gave
a summary of our results on categories of maximally-graded matrixfactorizations, in par-
ticular, on the existence of full strongly exceptional collections which gives triangulated
equivalences to derived categories of finite dimensional modules over finite dimensional
algebras.

1. 004

gbogobogobuogobuooobuoonoobooboboobobuoobboonbn
obO.0b0b00o0bobooboboobobooboboobooboobbooabo
gbobbobouoogobbob...ogbbbbtbooooobbbbbuoooobodn
OoO0obooOoooobooooooboboou4oDobo0oooooooDb AmoldOOOOO
gogobbbbbbbbb3stddiiidooooooooooooooobobo
000000000000 0D0O00DOO0OAmedODOODOOODOOOOOOODOOO
GablielovO OO OOOOOOOOOOOGablielovOD O 4000000000000O0
goboobogbbooboobobbobboboboobogbooboobobood
googbobbogbogbboobugbooobodbogbboobuooboon
googobuodboboooboboobboobuoobbooboobobooboon
O0O00 AmoldO0O0O0000OO0OOCOODOOODOOOOOOODOOOD

000000000000000 f(z,y,2)0000eC30000000000000O
O0000f0 MilmorOOOOODOOODOOO Lagrangian 0 0 O O 0O O distinguish basis
000000000000 A-0 Fuk™(f)0000000000000000 DPFuk™(f)
gbogbboobbuobogoboooboobbboobboobboobboobon
ooobobofob0Oobobo0obOobobobOOobOoooobobooobOobooobOobOooo
00000 D°Fuk™(f) O full exceptional collection 000000 O00.

O0000f(x,y,2) 0000000000000 00OOOO0DODOOOODOOOODOOO

0000 HMFY (f)0000000000000000S8:=Clz,y,20L, 000000

DDDDDfDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDHMFéf(f)
ooooboboboooooboooboobobooooogoDoboboboboooooo

Calabi-YauOOOODOOODOODOOOODOOOODOODOO Landau-Ginzburg O
OO00000ob00O0bO0o0bO0ooooboobo0ooooboooooboooooboOoboboOgoD
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O00000000D0DO Berglund-HibschOOODOOOOODOODOOOO Calabi-Yau O
gbodgbbobobuodboobbooboobboobuooboobobooboon
gbbbuooobobbboooobbbuooobbboood

Conjecture 1 ([12][13]). f(z,y,2)000000000.
() 00000 (Q,)OoOODOOo

(1.1) HMF (f) ~ D*(mod-CQ/I) ~ D"Fuk ™~ (f*)

0000000000000
(2) 00000 (Q,I000000

(1.2) D’coh(Cq,) ~ D"(mod-CQ'/I') ~ D"Fuk (T

Y1298)
O000000OC00OC0OO0O0ODODODODDODOO0O0O0O0O0OO (1y)yobooooooooo
O0Ce, 0 fO0O000DOOD G,00000000D0DOODOT,,,4000
goboboogon.

goobobboboboobbbbobtbotoddgoooooooooooobbbobobb
000000000000 (Q, 0000000000 T(n,y,v) 00000000
g2000b0og0boogboogboooboboobobogbobboobooon
OTheorem 360 0000000 OOO0OODOOOO

2.00000

f(z1,...,7,)0000000000000. 00000000 wy,...,w, 000 d00
AeC 0000 f(A\ay,...,\"z,) = A%f(zy,...,2,) 00000000000000
00 (wy,...,w,;d)000000000. ged(wy,...,w,,d)=1000,0000000
00000000000 000000000000000000

Definition 2. 000 000000000000C0OO f(xy,...,2,) 00000000000

() 0000 (=n)0 f(z1,...2,)0000000000000000000a¢; € C*
0000000 Ey04,j=1,...,n000000

n n

E..

flay, ... x,) = Zainj”
=1 j=1

godd

(2) 00000 (wy,...,w,;d) 00 f(21,...,2,) 00 000ged(wy,...,w,;d) 000
000000000000oo00ooo0,00 E:=(E;)00000QO00
godd

n n

E..
[y, ) = Zainj”,
=1 j=1

00000000 f(zy,...,z,) 0 Berglund—Hiibsch 00 f*(zy,...,2,) 000
0eCr00000000DO00D0ONDOOY, ff0 JacobiO Jac(f), Jac(f?)

0 0
Jac(f) := C[Il,...,xn]/(a—i,...,ag>
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oft oft
Jac(f") = C[xl"“’x"]/(a_;""’agn)

000000000 CO00000000000 dime Jac(f), dime Jac(f!) > 1
ooo.

obhooobooobboobooobooobboobboobboooboon
gbogbobouoobboobbboobbobobuoobbooboobbooboon
OO00000000bO0o0ogoDOon Calabi-YauOOOOOOOOOOOOOOOOD
000000000 Kreuzer 9000000000,

Definition 3. f(z1,...,2,) =Y.' ¢ [[, 2" 000000000. 000

Jj=1"j
wWq 1
El | =det(E)|:], d:=det(F).
W, 1
000000000000000 (wy,...,w,;d) 0 fO00O0O0O0OOCOOCOOW,00
oodd

Remark 4. OODOODOODOOODOOOOOODOODODOOOOO wy,...,w, 0OO0OO
gbobobooogooboobod

Definition 5. f(z1,...,2,) 0000000W; = (wy,...,w,;d) 0000000000
ogood.oood
cp = ged(wy, . .., Wy, d)

0ooooo

Definition 6. f(z1,....2,) = Y, ¢ [[},2;" 000000000, 000 2,0 =
1,...,n000000 #000000 fO000000 fO00000000O000000
00 e ZéeZf 0000000 00000000 00000 L,000

Ly =Pz o zf /1

=1

oooooooboooooor,od
f—ZE,]xZ, z':l,...,n
j=1

goboboooobbobooon
Remark7. L, 000 10000000000000000O00O0O0OO0O0O00OO0O0O0O0O00O

Definition 8. f(z,...,2,)0000000L,00000000000f0000000O
0G,00

G = Spec(CLy)
O00000oooooo0ooooooocCLy,0 L, 0000000000000000O

Gy = {(Al,...,)\n) € (CH™ H)\JEU S H}\fna}
j=1 j=1
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EREREEN

Ooooo fo GfDDDDDDDDDDDDDDDDDDDDDDDO\M”.,)\”)GGfD
n I n E,;
A= A = =, A 00000

Jj=1""
f()\lwl, RN ,/\an?n) = )\f(ﬂ?l, . ,.Tn)
Ooooon

3. 0b0ougooboooao

f00000000000000 Clay,...,7,)0 S0000000 RO Ry == S/(f)
0000000000 L,-0000 R-00000 gelv-R, 0000000000 grls-Ry
00000 proj-R; 000000

Definition 9. 0 OO

L )
(3.1) Dgl(Ry) := D"(gr™'-Ry) /K" (proj™'-Ry)
go0o0oouoououoouoooog.

Remark 10. 0 R; 0000000000000 D%grls-Ry) ~ K*(proj™’-R;) 0000
00000 DY(R)0000 {f=0}000000000000000F.
Remark 11. OO0 0O0O0ODOO0OOOOO
— — L —
C(l) :== (Ry/m)(1) € Dgy(Ry), L€ Ly,
goooooooooooonoooooo

goo Dg;(Rf)DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
gboogbobodboobbuoobbobuoooobuoobbooboobbooboon
gboboboooobbobuoooobbbuoooboboboooobon

Definition 12. M € gr*/-R; [
Extiqf(Rf/m, M) =0, i<dimRy,
O00000000000000 Cohen-MacauleyR,-000000000

R;0000000 Gorenstein 00000 00000 e L, 000 shiftd00
000

(3.2) Kr, ~ Ry(=&), &= @~ f,
=1

gbobboogobbbuoooobbodo

Lemma 13 (Auslander). 000000 Cohen-Macauley R;-0 000 CM™ (Ry) C grls-R;
O Frobeniuvs U 00D O00OO0D0O0O0OODOODODOODODDOODOOODDOODOODOODO
obogboboobooboobooboobobooboobd 0J
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Definition 14. 0 CM™(R,) 00000000000
Ob(CM™ (Ry)) = Ob(CM™ (Ry)),
CMY (Ry)(M, N) := Homys, (M, N)/P(M,N).

OD000geP(M,N)0DDODOOODOOOD POO0OOG:M—P,¢":P—NO
g=¢'og0000000D000DO00ODOOODOO0O
0 CM™(R;)0 CM™(R;) 00000000

00000000000000000000

Proposition 15 (Happel[7]). 0 CM™(R,) 00000000000 O
000f0000000000000000000D0O00O0000000

Proposition 16. CM™/(R,) 0000000000

> dimy CM™ (Ry,, )(M, T°N) < o0,

goboboooobbbooooobbooooboboboooobbbooo U
goo CMLf(Rf)DDDDDDDDDDDDDDDD

Proposition 17 (Auslander-Reiten[2]). CM™(R;) 0000 S = T" %0 (—¢f) O Serre
guoooooooboogooooood

CMY (Ry,, )(M, N) = Homy (CM™ (R, )(N, SM), k)
0ooooo 0

RfDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDMECMLf(Rf)
00000g-SO0000000O0

0—>F1f$FO—>M—>O

000000000000 0000f0 MOODOOODOOOOODOOOOO0OOO0OO0OOO
0000000000000 f: Fy— £ 0

fifo=f-idgr, fofi=f-idp

OO0b00bD0bo0oOooooboOoOooOo0nbdEisenbud 00O OOOO matrix factoriza-
tion O OOO0Ooooo

Definition 18 (Eisenbud[4)). Fo, F OO000000O0O0O0O0O0Ofy: Fo — F, fi: F —
FoO fifo=fidm, fofi = f-idp, 00000000 S-0000000000000
(Fo, i, fo, )0 f0000000000O00O0000O

_ fo
F::(Fo ? Fl)

oboooo
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Example 19. 00 0

f=xmfitzafot - +anfu
O0oo00doo0dno ffem,i=1,...,n0000000000000D000O0O0OO0DDOO0
DDDDDDD?;(RJ[)DDD C(f)DDDDDD

Lemma 20. fO0000000O0O MFéf(f)D Frobenius 0 0 0000000000000
0d

HMFg (f) := ME¢’ (f)
doooooogggdg ]

Lemma 21. 0 HMF{/ (/)0 0000072 = (f)00000000007000000
0000000000000HMF (f)D00 (n—2)—2;£0000 Calabi-YauO OO

—

O000000e¢s :=deg(ef) and hy :=deg(f) 0000 O

— fi
ooooo Fz(Fo — F1>DDDD Coker(f,)000000000CMY(Ry)0

f
gogoooboboogooobooooooooboooooboboooobbobogd
ggopoogogoo

Theorem 22 (c.f., Buchweitz, Orlov[10]). 00 OO
HMF ¢/ (f) ~ CM" (R;) =~ Dg!(Ry)
gooooo U
OrlovO0 D 0OO0OOODOOOOOODOOODOODOO
Ay, = [Spec(Rp)\{0} /Spec(C - Ly)]
0000000000000 Dbeoh(Xy,) ~ D¥(grks-Ry)/D(tork-R;) 00000000

Proposition 23 (c.f., Orlov[10]). OO0 OOO0OOO0OOOO :
(1) ¢ >00000

L

Dcoh(Xy,) ~ <DS§(Rf), A0), ..., Aley — 1)>

(3) ¢, <0000D
Dgg(Rf) ~ (Dcoh(Xy,),K(0), ..., K(—ef +1))
DDDDDDDDK(i)::<C(f)>d 50000
eg(l)=i

O

gboodbbodgbbuoobboobobboobbuoobbooobobboab
opoooubooooo A, 0ioioooouoooooooooood
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4. DOLGACHEV

gbuodgboboobobodboobboobuobbobooboobbobooboonb
gboboboogoobboagn

Proposition 24 ([1]). f(z,y,2)0000000000000000000000000
00000000000 f0 Teble 10000 50000000000000000 O

| Type | Class | f | ft |
I I Pl + ym + b3 xP1 + ypz + b3
(p1, P2, p3 € Z>2) (p1,p2,p3 € Z>2)
11 17 Pt 4 ym + yz% Pt 4 yp22 + v
(p1,p2, B2 € Z>5) (1,2, B € Z>5)

III IV TPl 4 zyQ2+1 + yZKI3+1 TPl + nyI2+1 + yZQ3+1
(p1 € Z>, 92,43 € Z>1) (p1 € Z>, E € Z>1)

A% V P +xyp1 —I—yzpz xp1y+yplz—|—zp2
(1, B € Z2y, B2 € Zz1) || (p1, B2 € Zza, 22 € L)

Vv Vil oy +yPz + 28 2z 4 xy®? 4 y2 B

(91,92, g3 € Z>1) (91, 42, g3 € Z>1)

TaBLE 1. 300000000

O00O0OTable lOOOOCOTypeDOOOOOODOOOOOOOOO 11JOOOOO
00000000010 00000ClassD0000O0O0ODOODODODODOO
00000 f(z,y,2) 0000000000

(4.1) Co, = [fH(0\{0} /Gy]
ooooobb0oobooobbooobb0o0 x4, 000000000000 0eC*O0
O000000000G,0100000000C 000 c¢O0O0O0O0O0OOODOOOO
000000000000 Cg, 0 Deligne-Mumford 000 0000000000000
gbbbuoodobobbbooobbbuoooobbbooobbbooaobobo

Theorem 25 ([5)). f(z,59,2) 00000000000000000000 G, 0003
000000000000P 000000000000000000000 20000
ay,a0,0; 00000000000000000 «>2000i000000 0

Definition 26. Theorem 2500000 (a3, 0, 03) 00 (f,Gy) 000 0O Dolgachev O
O000Aq, 00000,

000 Theorem 250 Orlov 00000 O OO Theorem 23 O Geigle-Lenzing[6] O O O
goodooooooobbbbbooooobbbbboboogo

Corollary 27 ([12][13]). OO OOOOOOOOOOO HMFgf (f) O full exceptional col-
lection 0 O OO 0

gboooobbooooobobodoo
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| Type | f(z,y,2) \ (a1, a2, 3)

I aPt 4 P2 4 2P3 (p1,p2,p3)

II Pt 4 P2 + yZ%g (ph B (p2 — 1)p1>

IT || 2P + 2y 2T BTl (p1, P1g2, P143)

v 2P ayn 4 yze (53@1—1ﬁ§p2—p1+1)

4 vy +yPz+ 2% | (e -+ 1Laa—a+1L,ap —q¢@+1)

TABLE 2. O (f,G;) 0000 Dolgachev O

Theorem 28 ([8|[13]). D0 ODOOOOOOOOOO HMFgf(f) O full strongly excep-
tional collection 0 000D O0D0O0O0OODO QUUOODDOOO CLOOOODDODOO IO00O

0000 Dg/(Ry) ~ D¥(mod-CQ/)DDD0DDONODDONODDONONOODDOOND

C/I0DD0000D0 300000000 full strongly exceptional collection 0 0 0 0 0O O
oood O

gbbboodgbobbbooodgbbboooobbbuooon

() Jo0o0ooooooOoO0oOoooooooood
(2) 00000000 DDO strongly exceptional collection 0 00000000

(3) 00O Category Generating Lemma 0 0 0 0 00 O strongly exceptional collec-
tiond fullODOOOOOODO

Theorem 29 (Category Generating Lemma). HMF? (/)ODOO0O00000 7'0 excep-
tional collection (F4,...,E,)0000000000000000O0O0OO0OOOODODOO

(1) 770 (), e L, 0000000000
(2) 00 EeT'00 Dg/(R)00DDOO0COOO00DDOODDOODOOD
000007 ~HMFY (f/)000000
0000000000000000770 right admissible 10000000000
Lemma 30. X € HMFL/ (f/)0000000000
N—-X—>M-—=TN
OONe7'000 Hom(N,M)=00000000000000 0
0000
HMFL (f)(ED), T'M) =0 TeL; YieZ
Exty (R /m, M) =0 (i # d)
M € CM" (Ry) is Gorenstein
M € CM™ (Ry) is free
M =~ 0 in CM"™ (Ry)
'~HMF/ (f)0000000000

rrua

goooooon

\"
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Y1+y2+vy3—1
[ ]

AN

Y . o ) Y ) e Y
1+v2+73—2
o Y1+y2—2 / Y1+v2+7v3—3 Yi+y2—1
/ y1—1

=

[ ]
1

F1GUure 1. Coxeter-Dynkin O O T'(y1, v2,73)

5. GABRIELOV [J

gbbbuoogobbbuoooobbboooobbbooodgbbbboooobbn
gbbbuoodgbobobboooobbooodn

Definition 31. 00 71,7, 00000000
oy 4 2% —tryz, t e C\{0},
07T, -00000000.
000000 (a,b,c) 00000
A(a,b,c) :=abc — bec — ac — ab

0000A(y, ,7s) >000007T,.,.,-000000000000000000000
0000 A(y,7,7) >000000000000000000000

Ty rps-0 00000 Coxeter-Dynkin 000 T(y1,7,7) 0000000 100000
T(71,72,73) DO A(y,72,75) > 0000000000 Ty, =00 (C3,00000000
0000A(y,7,73) <0000000007T,.,.,,=00C?000000000000
OOMinor 0000000000000000000000000000000000
0000000000000 7=(;)00000 0000 I;=-20200 000
o, 0000000000000 ;=00000

Iz‘j:1<:> o,

.j7 11]2—2/;} .i:::.j

goobooogn
Theorem 32 ([5]). f(z,y,2) 0000000000 Table 30000000000
Y1572,y 0000000

(i) A(m,72,73) < 00000000 C*0000000000000000000
00 f(z,y,2) —2yz0 T, ,,,,-00000000000

-1 y2—1 y3—1
My + 2 —xyz + Z a;x + Z bjyj + Z Cka +¢, a;,bj,cp,c €C
i=1 j=1 k=1
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goodd

(i) A(71,72,73) = 00000000 C*0000000000000000000
O f(z,y,2) —teyz000 a€C* 0000 Ty, 000000000

(iii) A(y,72,73) >00000000eC} 000000000000 O0OOOOO0
O f(z,y,2) —xyz0 T -Oooooooog

71,725,773

Type | F@,y.2) | (71,72, 73)
i aPt 4 yP? 4 P8 (p1, 2, p3)
Jii aPt 4 yP2 4 yz% (plap% (5 - 1)p1>
OT [ P 4 2y ¥+ yz (1, 2142, P103)
Ja% P —|—:cy% +yz% <p17(%_1>p17%_%2+1>
vV ey +yPz+ 2% | (e —e+lea—a+1ap—qa+1)

TaBLE 3. f0 0 00O Gabrielov O

O

Definition 33. Theorem 320000000000 (v1,72,73) 0 f0O Gabrielov O OO
Or,00000.

Corollary 34. f(z,y,2) 00000007 = (7,7%,73) D00 GabrielovO 00 0.

(i) ACy) <00D0D00f0 Milnor0000D0 f(z,y,2) =10 Ty pre-0 00000
Milnor00OOOOO00000O.
(i) AT;)>00000000 f(z,y,2)0 T, ,,-00000000000000.

OO0 fO0000¢g0000D00OO00OOg0O Coxeter-DynkinOOODOOOOOOOO
OO0 f0O Coxeter-Dynkin OO OO O UOD0OOO0OOO0OO0OOOOODOOOO

Corollary 35. f(z,y,2) 000000075y = (y1,7%,73) 000 GabrielovO O OO .

(i) A(T'y) <00000 f0O Coxeter-Dynkin 00 0 T'(y1,72,7) 000000000,
f O Coxeter-Dynkin 0 0 0 ADEODOODOO
(ii) A(l'y) =00000 fO Coxeter-Dynkin 00 O T'(y1,72,7;) 000000
(ili) A(T'y) >00000T(y1,72,73) 0 fO Coxeter- Dynkin0 00000000

0000, Corollary 340000 DPFuk™(f) 000 DYFuk™ (T}, ,-,) 0000000

71,72,73

0000000000000 000000000000 Dy(R)000000000D0
0 (cf,[10)00000000000000

6. gooono

ODOoO0DO0o0bOoOO0oobooobobo0oboOo0oooOooDoooDbAmelddOOOODO
O0Ostrange dualityD 000 0000000000000 0ODO0OOOOO0OOOOOODO
gboboogobood

Theorem 36 ([5]). f(z,y,2)00000000000000
(6.1) Ag; =Tp, Ag, =T}

—205—



D0000000000 (f,Gy) 0000 Dolgachevd Ag, O f O Berglund-Hiibsch 0 O
ft0 GabrielovO I'p 000000 (f, Gy) 0000 Dolgachev O Ag,, O fO Gabrielov

or,00o0o0od U
| Type || Ag, = (o, a0,a3) =T'ye | I'y = (1,7%,7) = A,
I (p1,p2; p3) (P1,p2; 3)
1 <p1, i—g’ (p2 — 1)]01) (2%2927 (Z_z - 1)?1)
11 (P1:P192, P1G3) (P1: P12, P1g3)
1V <§,f—j,(p1—1)§—§,p2—p1+l> (pl,(ﬁ—j—l)pl,ﬁ—f—ﬁ—jJrl)
V [(es-—@as+laa—a+lap—@+1) | (e —-—@e+l,aga—@ag+1,ap—qg+1)

TaBLE 4. O UOODODO

OO0D0O0ODO0O0OO0O Conjecture 1000 0OO0OO0OOODOODODOOODO

Theorem 37. f(z,y,2)0000000Lf = (11,7%,73) 000 GabrielovOD OO O . Z?:l(l/%’) >
1go0ooooogad

(6.2) Db(cohIP}YmmS) ~ D’(mod-CA,, -, ;) =~ DFuk ™ (T}, 1, 1s)
0000000000P, ., .. = Ca,, O Dolgachev 0 (y1,72,75) 0000000000

O0A s 0 (71,72,73)-0000 Dynkin0 0 000
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0
ON A GENERALIZATION OF COSTABLE TORSION THEORY

YASUHIKO TAKEHANA

ABSTRACT. E. P. Armendariz characterized a stable torsion theory in [1]. R. L. Bern-
hardt dualised a part of characterizations of stable torsion theory in Theorem1.1 of [3], as
follows. Let (7,F) be a hereditary torsion theory for Mod-R such that every torsionfree
module has a projective cover. Then the following are equivalent. (1) F is closed under
taking projective covers. (2) every projective module splits. In this paper we generalize
and characterize this by using torsion theory. In the remainder of this paper we study
a dualization of Eckman and Shopf’s Theorem and a generalization of Wu and Jans’s
Theorem.

1. INTRODUCTION

Throughout this paper R is a right perfect ring with identity. Let Mod-R be the
categories of right R-modules. For M € Mod-R we denote by [0 — K (M) — P(M) ™
M — 0 ] the projective cover of M, where P(M) is projective and kermy, is small in
P(M). A subfunctor of the identity functor of Mod-R is called a preradical. For a
preradical o, 7, := {M € Mod-R ; o(M) = M} is the class of o-torsion right R-modules,
and F, := {M € Mod-R ; o(M) = 0} is the class of o-torsionfree right R-modules.
A right R-module M is called o-projective if the functor Hompg(M, ) preserves the
exactness for any exact sequence 0 - A - B — C' — 0 with A € F,. A preradical o is
idempotent[radical] if o(c(M)) = o(M)[o (M /o(M)) = 0] for a module M, respectively.
A preradical o is called epi-preserving if o (M/N) = (6(M)+ N)/N holds for any module
M and any submodule N of M. For a preradical o, a short exact sequence [0 — K, (M) —

P, (M) ™M - 0] is called o-projective cover of a module M if P,(M) is o-projective,
K,(M) is o-torsion free and K, (M) is small in P,(M). If o is an idempotent radical
and a module M has a projective cover, then M has a o-projective cover and it is given
K,(M)=K(M)/o(K(M)),P,(M) = P(M)/o(K(M)). For X, Y € Mod-R we call an
epimorphism g € Hompg(X,Y) a minimal epimorphism if g(H) ; Y holds for any proper
submodule H of X. It is well known that a minimal epimorphism is an epimorphism
having a small kernel. For a preradical ¢ we say that M is a og-coessential extension of X
if there exists a minimal epimorphism h : M — X with kerh € F,.

For a module M, P,(M) is a o-coessential extension of M. We say that a subclass C of
Mod-R is closed under taking o-coessential extensions if : for any minimal epimorphism
f: M — X with kerf € F, it X € C then M € C. For the sake of simplicity we say
that M is a o-coessential extension of M/N if N is a o-torsionfree small submodule of
M. We say that a subclass C of Mod-R is closed under taking o-coessential extensions if
:if M/N € C then M € C for any o-torsion free small submodule N of any module M.

The final version of this paper will be submitted for publication elsewhere.
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We say that a subclass C of Mod-R is closed under taking F,-factor modules if : if M € C
and N is a o-torsionfree submodule of M then M/N € C.

2. COSTABLE TORSION THEORY

Lemma 1. Let o be an idempotent radical. For a module M and its submodule N,
consider the following diagram with exact rows.

0= K,(M) — P,(M) & M =0

i
0— K,(M/N)— P,(M/N) :? M/N — 0,

where f and g are epimorphisms associated with the o-projective covers and j is the
canonical epimorphism. Since g is a minimal epimorphism, there exists an epimorphism
h:P,(M)— P,(M/N) induced by the o-projectivity of P,(M) such that jf = gh. Then
the following conditions hold.

(1) If M is a o-coessential extension of M/N, then h : P,(M) — P,(M/N) is an
1somorphism.

(2) Moreover if o is epi-preserving and h : P,(M) — P,(M/N) is an isomorphism,
then M is a o-coessential extension of M/N.

Proof. (1): Let N € F, be a small submodule of a module M. Since jf is an epimor-
phism and g is a minimal epimorphism, h is also an epimorphism. Since j(f(kerh)) =
g(h(ker h)) = g(0) = 0, it follows that f(kerh) C kerj = N € F,, and so f(kerh) € F,.
Let flern be the restriction of f to ker h. Then it follows that ker(f|xern) = ker hNker f =
kerh N K,(M) C K,(M) € F,. Consider the exact sequence 0 — ker f|ierp — kerh —
f(ker h) — 0. Since F, is closed under taking extensions, it follows that kerh € F,. As
P,(M/N) is o-projective, the exact sequence 0 — kerh — FP,(M) — B,(M/N) — 0
splits, and so there exists a submodule L of P,(M) such that P,(M) = L @ kerh. So
it follows that f(P,(M)) = f(L) + f(kerh). As f(kerh) C N and f(P,(M)) = M,
M = f(L)+ N. Since N is small in M, it follows that M = f(L). As f is a minimal
epimorphism, it follows that P,(M) = L and kerh = 0, and so h : P,(M) ~ P,(M/N),
as desired.

(2): Suppose that h : P,(M) ~ P,(M/N). By the commutativity of the above diagram
with h, it follows that h(f~*(N)) C K,(M/N) € F,. Since h is an isomorphism, f~!(N) €
Foo As flp=1vy 1 f7HN) = N — 0 and o is an epi-preserving preradical, it follows that
N € F,. Next we will show that N is small in M. Let K be a submodule of M
such that M = N+ K. If f7Y(K) & P,(M), then h(f~"(K)) & P,(M/N) as h is an
isomorphism. Since g(h(f~H(K))) =j(f(fYK))) =j(K)= (K + N)/N = M/N and g
is a minimal epimorphism, this is a contradiction. Thus it holds that f~'(K) = B,(M),
and so K = f(f~Y(K)) = f(P,(M)) = M. Thus it follows that N is small in M. O

We call a preradical ¢t o-costable if F; is closed under taking o-projective covers. Now
we characterize o-costable preradicals.

Theorem 2. Let t be a radical and o be an idempotent radical. Consider the following
conditions.
(1) t is o-costable.
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(2) P/t(P) is o-projective for any o-projective module P.
(3) For any module M consider the following commutative diagram, then t(P,(M)) is

contained in kerf.

r(M) b M =0

by \y
Py (M/t(M)) zj«ﬁf/t(ﬂ4) — 0,

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is a morphism induced by o-projectivity of P,(M).

(4) Fi is closed under taking o-coessential extensions.

(5) For any o-projective module P such that t(P) € F,, t(P) is a direct sumand of P.

Then (1) <= (5) <= (2) <= (1) < (3),(4) = (1) hold. Moreover if F; is closed
under taking F,-factor modules, then all conditions are equivalent.

Proof. (1) — (2) : Let P be a o-projective module. Since P/t(P) € F;, it follows that
P,(P/t(P)) € F; by the assumption. Consider the following commutative diagram.

P

fw dh
0= Ko(P/H(P)) = Py (P/(P)) = P/t(P) =0,

where h is a canonical epimorphism, g is an epimorphism associated with the o-
projective cover of P/t(P) and f is a morphism induced by o-projectivity of B,(P/t(P)).
Since f(t(P)) C t(P,(P/t(P))) =0, f induces f' : P/t(P) — P,(P/t(P)) (x + t(P) —>
f(z)). Thus for z € P, h(z) = gf(x) = gf'h(z). So the above exact sequence splits.
Therefore P/t(P) is a direct summand of o-projective module P,(P/t(P)), and so P/t(P)
is also a o-projective module, as desired.

(2) — (5) : Let P be o-projective and ¢(P) € F,. By the assumption P/t(P) is o-
projective. Thus the sequence (0 — ¢(P) — P — P/t(P) — 0) splits, and so t(P) is a
direct summand of P.

(5) = (1) : Let M be in F;. Consider the exact sequence 0 — K, (M) — P,(M) 7)

M — 0. Since f(t(P,(M))) Ct(M) =0, K,(M) =ker f D t(P,(M)). As K,(M) € F,,
t(P,(M)) € F,. Since P,(M) is o-projective, t(P,(M)) is a direct summand of P, (M)
by the assumption. Thus there exists a submodule K of P,(M) such that P,(M) =
t(P,(M)) ® K. Since K,(M) =ker f D t(P,(M)), P,(M) = K,(M) + K. As K,(M) is
small in P,(M), P,(M) = K. Thus t(P,(M)) = 0, as desired.

(1) — (3) : Consider the following commutative diagram.

P(M) & M=o
fi 17
Py (M/t(M)) 2 M/t(M) — 0,

where j is a canonical epimorphism, A and g are epimorphisms associated with their
projective covers and f is a morphism induced by o-projectivity of P,(M). As g is a
minimal epimorphism, f is an epimorphism. By the assumption P,(M/t(M)) € F;, and
so f(t(P,(M))) C t(P,(M/t(M))) = 0. Hence t(P,(M)) C ker f.
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(3) = (1) : Let M be in F;. By the above commutative diagram, f is an identity. Thus
by the assumption ¢(P,(M)) C ker f = 0, as desired.

(1) = (4) : Let N € F, be a small submodule of a module M such that M/N € F;. By
the assumption P,(M/N) € F;. By Lemmal, P,(M/N) ~ P,(M), and so P,(M) € F;.
Consider the sequence 0 — K,(M) — P,(M) — M — 0. Since F; is closed under taking
F,-factor modules, it follows that M € F;, as desired.

(4) — (1) : Since P,(M) is o-coessential extension of a module M in F;, F; is closed
under taking o-projective covers. 0

Remark 3. Tt is well known that ¢ is epi-preserving if and only if ¢ is a radical and F; is
closed under taking factor modules. Therefore if ¢ is epi-preserving and ¢ be an idempotent
radical, then all conditions in Theorem 2 are equivalent.

Next if ¢ is identity, then the following corollary holds. The following have the another
characterization of Theoreml.1 of [3].

Corollary 4. For a radical t the following conditions except (4) are equivalent. Moreover
if t is an epi-preserving preradical, then all conditions are equivalent.

(1) t is costable, that is, F; is closed under taking projective covers.

(2) P/t(P) is projective for any projective module P.

(3) P(M) & M=o

L1 1
P(M/t(M)) — M/t(M) — 0,
9

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is induced by the projectivity of P(M). Then t(P(M)) is contained
wn kerf.

(4) Fi is closed under taking coessential extensions.

(5) For any projective module P, t(P) is a direct summand of P.

3. DUALIZATION OF ECKMAN & SHOPF'S THEOREM

In [8] we state a torsion theoretic generalization of Eckman & Shopf’s Theorem, as
follows. Let o be a left exact radical and 0 — M — FE be a exact sequence of Mod-R.
Then the following conditions from (1) to (4) are equivalent. (1) E is o-injective and o-
essential extension of M. (2) E is minimal in {Y € Mod-R|M < Y and Y is o-injective}.
(3) F is maximal in {Y € Mod-R|M — Y and Y is o-essential extension of M}. (4) E
is isomorphic to E,(M), where o(E(M)/M) = E,(M)/M. Here we dualised this.

Lemma 5. If P is o-projective, then P,(P) is isomorphic to P.

Theorem 6. Let P 5 M — 0 be a exact sequence of Mod-R. Let o is an idempotent
radical. Consider the following conditions, then the implications (1) <= (3) and (1) =
(2) hold. Moreover if o is an epi-preserving preradical, then all conditions are equivalent.

, . f : . .
1) P 1is o-projective and P — M is a o-coessential extension of M.
]
2) P is a minimal o-projective extension of M (i.e. P is o-projective and if I is o-
proj proj

h
projective and P — I, I — M, then h is an isomorphism.).
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(8) P is a mazximal o-coessential extension of M (i.e. P — M is o-coessential extension

h h
of M and if there exists an epimorphism [ — P and I — P — M is o-coessential of M,

then h is an isomorphism.).
(4) P is isomorphic to P,(M).

Proof. (1)—(2): Let P be o-projective and P 2, M be a o-coessential extension of M.
Consider the following diagram.
0O—kerh— P25 10
N by
M,
where [ is o-projective, g and h are epimorphisms such that gh = f.
Since F, > f71(0) = h=(g71(0)) D h=1(0), it follows that F, > h=1(0) = ker h. As f is
a minimal epimorphism and g is an epimorphism, A is also a minimal epimorphism. Since
I is o-projective, there exists a submodule L of P such that P = kerh & L and L = 1.
As ker b is small in P, P= L, and so P = I.
(2)—(1): Let o be an epi-preserving idempotent radical and P be a minimal o-
projective extension of M. Consider the following commutative diagram.
P,(P) 5L P =0
g1 Lf
Py(M) 2 M — 0,
where h and j are epimorphisms associated with the projective covers of M and P
respectively and ¢ is an induced epimorphism by the o-projectivity of P,(P). Since P is
o-projective, j is an isomorphism by Lemma 4. As P,(P) and P,(M) are o-projective,

g is an isomorphism by the assumption. By Lemma 1, it follows that P LM S 0isa
o-coessential extension of M.

(1)=(3): Let I % P be an epimorphism. Let P L M and I 5 M be o-coessential
extensions of M such that fg = h. Consider the following exact diagram.
I

g 1 h
P— M0

Since f is a minimal epimorphism, ¢ is an epimorphim. As h and f are minimal
epimorphisms, ¢ is a minimal epimorphim. Since F, > h~*(0) = g~ }(f'(0)) 2 g~ *(0), it
follows that F, 3 ¢~1(0). Since P is o-projective, 0 — ker g — I % P — 0 splits, and so
there exists a submodule H of I such that H = P and [ = kerg ® H. As ker g is small
in I, ] =H = P, as desired.

(3)—(1): We show that P is o-projective. Since P N M is a o-coessential extension
of M by the assumption, an induced morphism P,(P) — P,(M) is an isomorphism by
Lemma 1. Consider the following commutative diagram.

P,(P) = P =0

1 \
Py(M) = M — 0.
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Since P,(P) ~ P,(M) — M is a o-coessential extension of M and P L Misao-
coessential extension of M, it follows that P,(P) = P by the assumption, and so P is
o-projective.

(1)—(4): By Lemma 1, P,(P) ~ P,(M). By Lemma 4, P,(P) ~ P, and so P ~ P,(M)
as desired.

(4)—(1): Tt is clear. O

In Theorem 5, if 0 = 1, then the following corollary is obtained.

Corollary 7. Let P LM = 0 be a eract sequence of Mod-R. Then the following
conditions are equivalent.

f
(1) P is projective and P — M is a coessential extension of M (that is, kerf is small

(2) P is a minimal projective extension of M (i.e. P is projective and if I is projective
h
and P — I, I — M, then h is an isomorphism).
(3) P is a mazimal coessential extension of M (i.e. P = M is coessential extension of

h h
M and if there exists an epimorphism [ — P and I — P — M 1is coessential of M, then

h is an isomorphism.).
(4) P is isomorphic to P(M).

4. A GENERALIZATION OF WU, JANS AND MIYASHITA’S THEOREM
AND AZUMAYA’S THEOREM

In [8] we state a torsion theoretic generalization of Johnson and Wong’s Theorem.
Here we study a dualization of this. For a module M and N, we call M o-N-projective
if Homp(M, ) preserves the exactness of the short exact sequence 0 - K — N —
N/K — 0 with K € F,.

Theorem 8. Let M and N be modules. Consider the following conditions for an idem-
potent radical o.

(1) 1Ko (M)) C K,(N) holds for any v € Homa(P,(M), P,(N)).

(2) M is o-N -projective.

Then the implication (1)—(2) holds. If o is epi-preserving, then the implication (2)— (1)
holds.

Proof. (1)—(2): Let f be in Homg(M,N/K) with K € F,. Then there exists h €
Hompg(P,(M),N) such that fn§, = nh, where n is a canonical epimorphism from N to
N/K. And there exists v € Hompg(P,(M), P,(N)) such that h = 7$. So we have the
following commutative diagramm.
P (M) 2 M
e bn by
P,(N) - N — N/K
s n
By the assumption, v induces ' : P,(M)/K,(M) — P,(N)/K,(N), and so 7" induces
~" M — N such that f =~"n, as desired.
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1): o be epi-preserving and vy € Hompg(P,(M), P,(N)). We will show that
(K, (M)) Q K (N). We put T'=v(K,(M)) + K,(N). Since T 2 vy(K,(M)), v induces
VM = By (M) /Ky (M) = Py(N)/4(Ky(M)) — Po(N)/T — N/x(T) (x5,(x) <
7+ Ky (M) = A(2) + (K, (M) = 4(2) + T = 18,(1(x)) + 75(T)). Let ny be a
canonical epimorphism from N to N/7$(T'). Since 7(T) = 75 (v(K,(M)) + K,(N)) =
7 (V(Ky(M)), K,(M) € F, and F, is closed under taking factor modules, it follows that
7% (T) € F,. Since M is o-N-projective, there exists § : M — N such that v/ = nyp.
Therefore we have the following commutative diagramm.

M

B 1Y
0—7n%(T) = N — N/7%(T) = 0

By the o-projectivity of P,(M), there exists a : P,(M) — P,(N) such that 7§a =
B7q;. Thus we have the following commutative diagramm.

0 — K, (M) — P, (M) ™ M 0

\Loa i/ﬁ
0— K,(N)— FP,(N) - N—0
T

Thus by the commutativity of the above diagram, we have a(K,(M)) C K,(N).

We put X = {z € P,(M)|y(z) — a(x) € Ky(N)}. We will show that X + K,(M) =
P,(M). For any x € P,(M) it follows that 7/ (7§, (x)) = 7% (v(x))+7%(T), (nnB) (75, (z)) =
B(nx) + 7% (T) and v = nyp, it follows that 7% (v(x)) + 7% (T) = B(7§x) + 7% (T), and
so % (v(x)) = B(r§x) € w§(T). Since 1o = 7, it follows that 7§ (y(x)) — 7§ (a(x)) €
7%(T), and so y(z) — a(z) € T+ (7%)"H0) =T + K,(N) = v(K,(M)) + K,(N). Thus
there exists m € K,(M) such that v(z) — a(x) — y(m) € K,(N), and so v(z —m) —
a(r —m) € a(m) + K,(N) C a(K,(M)) + K,(N) = K;(N). Therefore it follows that
x—m € X, and so x € K,(M)+ X. Thus we conclude that P,(M) = K,(M) + X.
Since K,(M) is small in P,(M), it holds that X = P,(M). Thus it follows that
{r € P,(M)|v(z) — a(zx) € K,(N)} = P,(M). Thus if x € K,(M)(C P,(M)), then
v(z) — a(X) € K,(N), and so y(z) € a(x) + K,(N) C o(K,(M)) + K,(N) = K,(N),
and so it follows that v(K,(M)) C Ky(N). O

In Theorem 7 we put o = 1, then we have a generalization of Azumaya’s Theorem in
[2]. In Theorem 7 we put M = N and o = 1, then we have a generalization of Wu, Jans
and Miyashita’s Theorem in [9] and [5].
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GRADED FROBENIUS ALGEBRAS AND QUANTUM BEILINSON
ALGEBRAS
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ABSTRACT. Frobenius algebras are one of the important classes of algebras studied in
representation theory of finite dimensional algebras. In this article, we will study when
given graded Frobenius Koszul algebras are graded Morita equivalent. As applications,
we apply our results to quantum Beilinson algebras.
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1. INTRODUCTION

This is based on a joint work with Izuru Mori.

Classification of Frobenius algebras is an active project in representation theory of
finite dimensional algebras. This article tries to answer the question when given graded
Frobenius Koszul algebras are graded Morita equivalent, that is, they have equivalent
graded module categories.

This problem is related to classification of quasi-Fano algebras. It is known that ev-
ery finite dimensional algebra of global dimension 1 is a path algebra of a finite acyclic
quiver up to Morita equivalence, so such algebras can be classified in terms of quivers.
As an obvious next step, it is interesting to classify finite dimensional algebras of global
dimension 2 or higher. Recently, Minamoto introduced a nice class of finite dimensional
algebras of finite global dimension, called (quasi-)Fano algebras [2], which are a very
interesting class of algebras to study and classify. It was shown that, for a graded Frobe-
nius Koszul algebra A, we can define another algebra VA, called the quantum Beilinson
algebra associated to A, and with some additional assumptions, VA turns out to be a
quasi-Fano algebra. Moreover, it was shown that two graded Frobenius algebras A, A’
are graded Morita equivalent if and only if VA, VA’ are isomorphic as algebras, so clas-
sifying graded Frobenius (Koszul) algebra up to graded Morita equivalence is related to
classifying quasi-Fano algebras up to isomorphism (see [3] for details).

In addition, this problem is related to the study of AS-regular algebras which are the
most important class of algebras in noncommutative algebraic geometry (see [8]).

Our main theorem (Theorem 9) is as follows. For every co-geometric Frobenius Koszul
algebra A, we define another graded algebra A, and see that if two co-geometric Frobenius
Koszul algebras A, A’ are graded Morita equivalent, then A, A’ are isomorphic as graded
algebras. Unfortunately, the converse does not hold in general. On the other hand,
the converse is also true for many co-geometric Frobenius Koszul algebras of Gorenstein
parameter —3.

The detailed version of this paper will be submitted for publication elsewhere.
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2. FROBENIUS KOSZUL ALGEBRAS

Throughout this paper, we fix an algebraically closed field k of characteristic 0, and
we assume that all vector spaces and algebras are over k£ unless otherwise stated. In this
paper, a graded algebra means a connected graded algebra finitely generated in degree
1, that is, every graded algebra can be presented as A = T(V)/I where V is a finite
dimensional vector space, T'(V') is the tensor algebra on V' over k, and [ is a homogeneous
two-sided ideal of T'(V'). We denote by GrMod A the category of graded right A-modules.
Morphisms in GrMod A are right A-module homomorphisms preserving degrees. We say
that two graded algebras A and A" are graded Morita equivalent if GrMod A = GrMod A'.

For a graded module M € GrMod A and an integer n € Z, we define the truncation
M, = @,.,, M; € GrMod A and the shift M(n) € GrMod A by M(n); := M,y for
i € Z. For M, N € GrMod A, we write

Hom ,(M, N) := @D Homeavioa 4(M, N(n)).
neZ

We denote by V* the dual vector space of a vector space V. If M is a graded right
(resp. left) module over a graded algebra A, then we denote by M* := Hom, (M, k) the
dual graded vector space of M by abuse of notation, i.e. (M*); := (M_;)*. Note that M*
has a graded left (resp. right) A-module structure.

Let A be a graded algebra, and 7 € Auty A a graded algebra automorphism. For a
graded right A-module M € GrMod A, we define a new graded right A-module M, €
GrMod A by M, = M as a graded vector space with the new right action m *a := m7(a)
for m € M and a € A. If M is a graded A-A bimodule, then M, is also a graded A-A
bimodule by this new right action. The rule M — M, is a k-linear autoequivalence for
GrMod A.

A graded algebra A is called quadratic if A = T(V)/(R) where R C V ®; V is a
subspace and (R) is the ideal of T'(V') generated by R. If A = T(V)/(R) is a quadratic
algebra, then we define the dual graded algebra by A' := T(V*)/(R*) where

R-={DecV'@, V"= (Ve,V) | Ar)=0foralrc R}

Clearly, A' is again a quadratic algebra and (A')' = A as graded algebras.

We now recall the definitions of Koszul algebras and graded Frobenius algebras. Frobe-
nius algebras are one of the main classes of algebras of study in representation theory of
finite dimensional algebras.

Definition 1. Let A be a connected graded algebra, and suppose k& € GrMod A has a
minimal free resolution of the form

= DL A(=sy) = = D)L, A(—so;) =k —0.
The complexity of A is defined by
cq:=inf{d € R" | r; < ¢i’ 'for some constant ¢ > 0,7 > 0}.
We say that A is Koszul if s;; =4 for all 1 < j <r; and all i € N.
It is known that if A is Koszul, then A is quadratic, and its dual graded algebra A' is
also Koszul, which is called the Koszul dual of A.
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Definition 2. A graded algebra A is called a graded Frobenius algebra of Gorenstein
parameter ¢ if A* = ,A(—/) as graded A-A bimodules for some graded algebra automor-
phism v € Auty A, called the Nakayama automorphism of A. We say that A is graded
symmetric if A* = A(—/) as graded A-A bimodules.

A skew exterior algebra

A=k(xy, .. 2, (qjaie; + xjx, 1)

(2
where «;; € k such that ;05 = a5 = 1 for 1 < 4,57 < n is a typical example of a
Frobenius Koszul algebra.

At the end of this section, we give an interesting result about graded Morita equivalence
of graded skew exterior algebras. It is known that every (ungraded) Frobenius algebra
which is Morita equivalent to symmetric algebra is symmetric. The situation in the graded
case is different as the following theorem shows.

Proposition 3. [7] Every skew exterior algebra is graded Morita equivalent to a graded
symmetric skew exterior algebra.

For example, a 3-dimensional skew exterior algebra
A= k(z,y, 2)/(ayz + 2y, Bza + w2, yay + yo,2°, y%, 2°)

is graded Morita equivalent to a symmetric skew exterior algebra
A=Kz, y, 2) /(Y abyyz + 2y, ¥/ afyee + vz, 3/ abyay + ya, 2%, y?, 2°).
3. CO-GEOMETRIC FROBENIUS KOSZUL ALGEBRAS

In order to state our main result, let us define a co-geometric algebra (see [4] for details).

Definition 4. [4] Let A =T(V)/I be a graded algebra. We say that N € GrMod A is a

co-point module if N has a free resolution of the form

= A(=2) = A(—1) = A =N 0.

For a graded algebra A = T(V)/I, we can define the pair P'(A) = (E, ) consisting of
the set £ C P(V) and the map o : F — E as follows:

o E:={peP(V)| N, :=A/pA € GrMod A is a co-point module}, and
e the map o : £ — I is defined by QN,(1) = Ny().

Meanwhile, for a geometric pair (F, o) consists of a closed subscheme E C P(V) and an
automorphism o € Auty, E, we can define the algebra A'(E, o) as follows:

A(B,0) = (T(V")/(R))" where R:= {f € V" @, V" | f(p,o(p)) = 0,¥p € E}.
Definition 5. [4] A graded algebra A = T'(V')/I is called co-geometric if A satisfies the
following conditions:

e P'(A) consisting of a closed subscheme E C P(V) and an automorphism o €
AU_tk E s
e A'is noetherian, and

o A A(PA)).
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Example 6. [4] Let A = k(z,y)/(azy + yz, 2% y*) be a 2-dimensional skew exterior
algebra. Then for any point p = (a,b) € P(V) = P!, N, = A/(ax + by)A has a free
resolution of the form

(a2az+by)- (aaz+by)- (az+by)-

A N, —0.

e A(-2) A(-1)

Since QN,(1) = A/(aax + by)A, it follow that
P'(A) = (P, 0), where o(a,b) := (aa,b).
In fact, A is co-geometric.

Example 7. The algebras below are examples of co-geometric algebras.

e A Frobenius Koszul algebra of finite complexity and of Gorenstein parameter —3.
For example, if A = k(x,y, z) with the defining relations

ar? —yyz, ay? —yzx, a2’ — vy,

Byz —azy, Pzr—arz, Lry— ayz.

for a generic choice of «, 3,7 € k, then A = A'(E, o) is a Frobenius Koszul algebra
of complexity 3 and of Gorenstein parameter —3 such that

E=V(apy(@®+y*+ 2°) — (o® + B ++*)ayz) C P?

is an elliptic curve and o € Auty E is the translation automorphism by the point

(a,8,7) € E.
e The skew exterior algebra.

Let A = A'(E, o) be a co-geometric Frobenius Koszul algebra of Gorenstein parameter
—{ with the Nakayama automorphism v € Aut, A. The restriction v|4, = 7|y induces an
automorphism v € Aut, P(V). Moreover, v € Aut, P(V) restricts to an automorphism
v € Auty F by abuse of notation (see [5] for details). We can now define a new graded
algebra A as follows:

A= A(E,va").
Example 8. If A = k(z,y, z) with the defining relations
22+ Bxz, zx+xz, 22
v tayz, zy+yz, ay+yr— (B4 )z — (a+y)yz,

where o, 3,7 € k,a+ B+ # 0, then A = A(E,0) is a Frobenius Koszul algebra of
complexity 3 and of Gorenstein parameter —3 such that

E=V(z)UV(y)UV(z —y) C P

is a union of three lines meeting at one point, and o € Aut, F is given by
oy (0,b,¢) = (0,0, b + ¢),
v (a,0,¢) = (a,0, fa+ c),

0-|V(xfy) (CL, a, C) = (aa a, —vya + C)
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In this case, v € Auty E induced by the Nakayama automorphism v € Aut, A is given by
v(a,b,c) = (a,b,(a+v—28)a+ (B+v—2a)b+c)
It follows that A = A'(E,vo?) is k(x,y, z) with the defining relations
2+ (a+B+v)zz, z2x+zz, 22
vV 4 (a4 B+y)yz, 2y +yz, ay+yr—2a+B+y)zz—2(a+ B+ 7)yz.
Our main result is as follows.
Theorem 9. [7] Let A, A’ be co-geometric Frobenius Koszul algebras. Then
GrMod A = GrMod A’ = A =2 A’ as graded algebras.

In particular, let A = A(E,0), A" = A(E',0') be Frobenius Koszul algebras of finite
complezities and of Gorenstein parameter —3 such that E = E'. Suppose that E = P? or
E is a reduced and reducible cubic in P2, then

GrMod A = GrMod A’ <= A = A’ as graded algebras.
4. QUANTUM BEILINSON ALGEBRAS
Finally, we apply our results to quantum Beilinson algebras.

Definition 10. [1], [6] Let A be a graded Frobenius algebra of Gorenstein parameter —/.
Then the quantum Beilinson algebra of A is defined by

Ay Ay - Ay
0 A, --- A,
VA:=| . ,0 ) 6,2
0 0 - A

Theorem 11. [3] Let A, A" be graded Frobenius algebras. Then
GrMod A = GrMod A" <= VA = VA’ as algebras.

By the above theorem, classifying graded Frobenius algebras up to graded Morita equiv-
alence is the same as classifying quantum Beilinson algebras up to isomorphism.

Quasi-Fano algebras introduced by Minamoto [2] are one of the nice classes of a finite
dimensional algebras of finite global dimensions (see [3], [6] for details).

Definition 12. A finite dimensional algebra R is called quasi-Fano of dimension n if
gldim R = n and wy' is a quasi-ample two-sided tilting complex, that is, hi((wgl)@’lf%j) =0
for all i # 0 and all j > 0, where wg := R*[—n].

Let A be a graded Frobenius Koszul algebra of Gorenstein parameter —d. Assume that
A has the Hilbert series

Hy(t) == (dimy A)t' = (1 +t)*
and that A'is noetherian. Then VA is a quasi-Fano algebra of dimension d — 1.

In general, it is not easy to check if two algebras given as path algebras of quivers with
relations are isomorphic as algebras by constructing an explicit algebra isomorphism. On
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the other hand, it is much easier to check if two graded algebras T'(V')/I and T'(V')/I’
generated in degree 1 over k are isomorphic as graded algebras since any such isomorphism
is induced by the vector space isomorphism V — V’. In this sense, our main result is
useful for the classification of a class of finite dimensional algebras of global dimension 2,
namely, quantum Beilinson algebras of global dimension 2.

Fix the Beilinson quiver

and let
B=kQ/I, B =kQ/I', B'=kQ/I"
be path algebras with relations
I = (ay122 + 2192, Bz122 + T122, YT1Y2 + Y172, T1T2, Y1Y2, 2122)
I' = (z122 4+ o'y122, 192 + 8’2129, 2122 + 7 2192, 2192, T122, Y172)
1" = (a"y122 + 2192, 8" 2129 + 2122, 872192 + Y122, L1702 + Y122, Y1Y2, 2122)
where a8y # 0,1, /8"y #0,1,a"(8")* # 0,1. Then B, B’, B” are the quantum Beilinson
algebras of co-geometric Frobenius Koszul algebras A, A’, A” of Gorenstein parameter —3
A=A(E,0) =k(z,y,2)/(ayz + zy, Bzx + 2z, yoy + yx,2°, 4%, 2°),
A= A(E o) = klx,y, 2) /(2> + o'yz,9y? + B2z, 2% + 2y, 2y, v2,yz),
A/, = A!(E,/7 0-/,) = k<x7 y? Z>/<O//yz + Zy? /Bllzx + xz? /B/,xy + yx7 xz + y'Z7 y27 22)7
where E is a triangle and o € Auty E stabilizes each component, E’ is a triangle and
o’ € Aut, E' circulates three components, and E” is a union of a line and a conic meeting

at two points and ¢” € Aut, E” stabilizes each component and two intersection points.
Since

E~F 2 FE,
we see that
B%B" B #%B.
Moreover, it is not difficult to compute
A= A(E,vc®)
= k(r,y, 2)/(aByyz + 2y, afyze + xz, afyxry + yz, 352, 927 22>7
A= A(E V' (0')?)
=k(z,y,2)/(yz + B 2y, 20 + By 2z, 2y + o By yz, 22, 4%, 7).

Since A, A’ are skew exterior algebras, it is easy to check when they are isomorphic as
graded algebras. Using theorems, the following are equivalent.

(1) B= B’ as algebras.

(2) GrMod A = GrMod A’.

(3) A A’ as graded algebras.

(4) o

= (afy)*!
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ABSTRACT. This article addresses some foundational issues that arise in the study of
linear codes defined over finite rings. Linear coding theory is particularly well-behaved
over finite Frobenius rings. This follows from the fact that the character module of a
finite ring is free if and only if the ring is Frobenius.
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1. INTRODUCTION

At the center of coding theory lies a very practical problem: how to ensure the integrity
of a message being transmitted over a noisy channel? Even children are aware of this
problem: the game of “telephone” has one child whisper a sentence to a second child,
who in turn whispers it to a third child, and the whispering continues. The last child says
the sentence out loud. Usually the children burst out laughing, because the final sentence
bears little resemblance to the original.

Using electronic devices, messages are transmitted over many different noisy channels:
copper wires, fiber optic cables, saving to storage devices, and radio, cell phone, and
deep-space communications. In all cases, it is desirable that the message being received
is the same as the message being sent. The standard approach to error-correction is to
incorporate redundancy in a cleverly designed way (encoding), so that transmission errors
can be efficiently detected and corrected (decoding).

Mathematics has played an essential role in coding theory, with the seminal work of
Claude Shannon [27] leading the way. Many constructions of encoding and decoding
schemes make strong use of algebra and combinatorics, with linear algebra over finite
fields often playing a prominent part. The rich interplay of ideas from multiple areas has
led to discoveries that are of independent mathematical interest.

This article addresses some of the topics that lie at the mathematical foundations of
algebraic coding theory, specifically topics related to linear codes defined over finite rings.
This article is not an encyclopedic survey; the mathematical questions addressed are ones
in which the author has been actively involved and are ones that apply to broad classes
of finite rings, not just to specific examples.

Prepared for the 44th Symposium on Rings and Representation Theory Japan, 2011.
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The topics covered are ring-theoretic analogs of results that go back to one of the early
leaders of the field, Florence Jessie MacWilliams (1917-1990). MacWilliams worked for
many years at Bell Labs, and she received her doctorate from Harvard University in 1962,
under the direction of Andrew Gleason [22]. She is the co-author, with Neil Sloane, of
the most famous textbook on coding theory [23].

Two of the topics discussed in this article are found in the doctoral dissertation of
MacWilliams [22]. One topic is the famous MacWilliams identities, which relate the
Hamming weight enumerator of a linear code to that of its dual code. The MacWilliams
identities have wide application, especially in the study of self-dual codes (linear codes that
equal their dual code). The MacWilliams identities are discussed in Section 4, and some
interesting aspects of self-dual codes due originally to Gleason are discussed in Section 6.

The other topic to be discussed, also found in MacWilliams’s dissertation, is the
MacWilliams extension theorem. This theorem is not as well known as the MacWilliams
identities, but it underlies the notion of equivalence of linear codes. It is easy to show that
a monomial transformation defines an isomorphism between linear codes that preserves
the Hamming weight. What is not so obvious is the converse: whether every isomorphism
between linear codes that preserves the Hamming weight must extend to a monomial
transformation. MacWilliams proves that this is indeed the case over finite fields. The
MacWilliams extension theorem is a coding-theoretic analog of the extension theorems
for isometries of bilinear forms and quadratic forms due to Witt [30] and Arf [1].

This article describes, in large part, how these two results, the MacWilliams identities
and the MacWilliams extension theorem, generalize to linear codes defined over finite
rings. The punch line is that both theorems are valid for linear codes defined over finite
Frobenius rings. Moreover, Frobenius rings are the largest class of finite rings over which
the extension theorem is valid.

Why finite Frobenius rings? Over finite fields, both the MacWilliams identities and
the MacWilliams extension theorem have proofs that make use of character theory. In
Earticular, finite fields F have the Eimple, but crucial, properties that their characters
F form a vector space over F and F = [F as vector spaces. The same pAroofs will work
over a finite ring R, provided R has the same crucial property that R = R as one-
sided modules. It turns out that finite Frobenius rings are exactly characterized by this
property ([14, Theorem 1] and, independently, [31, Theorem 3.10]). The character theory
of finite Frobenius rings is discussed in Section 2, and the extension theorem is discussed
in Section 5. Some standard terminology from algebraic coding theory is discussed in
Section 3.

While much of this article is drawn from earlier works, especially [31] and [33], some of
the treatment of generating characters for Frobenius rings in Section 2 has not appeared
before. The new results are marked with a dagger (f).

Acknowledgments. 1 thank the organizers of the 44th Symposium on Rings and Repre-
sentation Theory Japan, 2011, especially Professor Kunio Yamagata, for inviting me to
address the symposium and prepare this article, and for their generous support. I thank
Professor Yun Fan for suggesting subsection 2.4 and Steven T. Dougherty for bringing
the problem of the form of a generating character to my attention (answered by Corol-
lary 15). T also thank M. Klemm, H. L. Claasen, and R. W. Goldbach for their early work
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on generating characters, which helped me develop my approach to the subject. Finally,
I thank my wife Elizabeth S. Moore for her encouragement and support.

2. FINITE FROBENIUS RINGS

In an effort to make this article somewhat self-contained, both for ring-theorists and
coding-theorists, I include some background material on finite Frobenius rings. The goal
of this section is to show that finite Frobenius rings are characterized by having free
character modules. Useful references for this material are Lam’s books [19] and [20].

All rings will be associative with 1, and all modules will be unitary. While left modules
will appear most often, there are comparable results for right modules. Almost all of the
rings used in this article will be finite, so that some definitions that are more broadly
applicable may be simplified in the finite context.

2.1. Definitions. Given a finite ring R, its (Jacobson) radical rad(R) is the intersection
of all the maximal left ideals of R; rad(R) is itself a two-sided ideal of R. A left R-module
is simple if it has no nonzero proper submodules. Given a left R-module M, its socle
soc(M) is the sum of all the simple submodules of M. A ring R has a left socle soc(gR)
and a right socle soc(Rg) (from viewing R as a left R-module or as a right R-module);
both socles are two-sided ideals, but they may not be equal. (They are equal if R is
semiprime, which, for finite rings, is equivalent to being semisimple.)

Let R be a finite ring. Then the quotient ring R/ rad(R) is semi-simple and is isomorphic
to a direct sum of matrix rings over finite fields (Wedderburn-Artin):

(2.1) R/ xad(R) = D M, (Fy,).

where each ¢; is a prime power; F, denotes a finite field of order ¢, ¢ a prime power, and
M,,(F,) denotes the ring of m x m matrices over F,,.

Definition 1 ([19, Theorem 16.14]). A finite ring R is Frobenius if r(R/rad(R)) =
soc(rR) and (R/rad(R))r = soc(Rg).

This definition applies more generally to Artinian rings. It is a theorem of Honold [15,
Theorem 2] that, for finite rings, only one of the isomorphisms (left or right) is needed.

Each of the matrix rings M,,,(F,,) in (2.1) has a simple left module T} := M,,,«1(F,,),
consisting of all m; x 1 matrices over IF,, under left matrix multiplication. From (2.1) it
follows that, as left R-modules, we have an isomorphism

(2.2) r(R/rad(R)) = @mT

It is known that the T;, i = 1,..., k, form a complete list of simple left R-modules, up to
isomorphism.

Because the left socle of an R-module is a sum of simple left R-modules, it can be
expressed as a sum of the T;. In particular, the left socle of R itself admits such an
expression:
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(2.3) soc(gR) = 6987L

for some nonnegative integers si,..., Sk. Thus a finite ring is Frobenius if and only if
m; =s; forallt=1,... k.

2.2. Characters. Let G be a finite abelian group. In this article, a character is a group
homomorphism w : G — Q/Z. The set of all characters of G forms a group called the
character group G = Homgz(G,Q/Z). 1Tt is well-known that |G| = |G|. (Characters
with values in the multiplicative group of nonzero complex numbers can be obtained
by composing with the complex exponential function a — exp(2mia), a € Q/Z; this
multiplicative form of characters will be needed in later sections.)

If R is a finite ring and A is a finite left R-module, then A consists of the characters
of the additive group of A; Ai is naturally a right R-module via the scalar multiplication
(wr)(a) = w(ra), for w € A, r € R, and a € A. The module A will be called the
character module of A. Similarly, if B is a right R-module, then B is naturally a left
R-module.

Example 2. Let F, be a finite field of prime order. Define 9, : F, = Q/Z by ¥,(a) = a/p,
where we view [, as Z/pZ. Then 9, is a character of IF,,, and every other character w of
[F, has the form w = av,, for some a € F, (because F » Is a one-dimensional vector space
over ).

Let [F, be a finite field with ¢ = p* for some prime p. Let tr, /p - Fq — ), be the trace.
Define 9, : F; — Q/Z by ¥, = ¥, o trg/,. Then ¥, is a character of Fy, and every other
character @ of F, has the form w = av,, for some a € F,.

Example 3. Let R = M,,(F,) be the ring of m x m matrices over a finite field I, and
let A = M,,«x(F,) be the left R-module consisting of all m x k matrices over F,. Then

A Mpsm(F,) as right R-modules. Indeed, given a matrix @ € Myxn,(F,), define a
character wg of A by wg(P) = ¥,(tr(QP)), for P € A, where tr is the matrix trace and

Y, is the character of F, defined in Example 2. The map My, (F,) — A\, Q) — wq is the
desired isomorphism.

Given a short exact sequence of finite left R-modules 0 - A — B — C — 0, there is
an induced short exact sequence of right R-modules

(2.4) 0C—B—A-0
In particular, if we define the annihilator (B : A) := {w € B : @w(A) = 0}, then
(2.5) (B:A)=C and |(B:A)|=1C|=|B|/|A|l

2.3. Generating Characters. In the special case that A = R, R is both a left and
a right R-module. A character w € R induces both a left and a right homomorphism
R—R (r — rw is a left homomorphism, while r — wr is a right homomorphism). The
character w is called a left (resp., right) generating character if r — rw (resp., r — wr) is
a module isomorphism. In this situation, the character w generates the left (resp., right)
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R-module R. Because |R| = |R|, one of these homomorphisms is an isomorphism if and
only if it is injective if and only if it is surjective.

Remark 4. The phrase generating character (“erzeugenden Charakter”) is due to Klemm
[17]. Claasen and Goldbach [6] used the adjective admissible to describe the same phe-
nomenon, although their use of left and right is the reverse of ours.

The theorem below relates generating characters and finite Frobenius rings. While the
theorem is over ten years old, we will give a new proof.

Theorem 5 ([14, Theorem 1], [31, Theorem 3.10]). Let R be a finite ring. Then the
following are equivalent:

(1) R is Frobenius;
(2) R admits a left generating character, i.e., R is a free left R-module;
(3) R admits a right generating character, i.e., R is a free right R-module.

Moreover, when these conditions are satisfied, every left generating character is also a
right generating character, and vice versa.

Example 6. Here are several examples of finite Frobenius rings and generating characters
(when easy to describe).

(1) Finite field IF, with generating character 9, of Example 2. Note that ¥, is injective,
but that for ¢ > p, ker ¥, = ker tr,/, is a nonzero F-linear subspace of F,. However,
ker 9, is not an F -linear subspace. (Compare with Proposition 7 below.)

(2) Integer residue ring Z/nZ with generating character ¥,, defined by 9, (a) = a/n,
for a € Z/n’Z.

(3) Finite chain ring R; i.e., a finite ring all of whose left ideals form a chain under
inclusion. See Corollary 15 for information about a generating character.

(4) If Ry, ..., R, are Frobenius with generating characters g1, ..., g,, then their direct
sum R = @®R; is Frobenius with generating character o = > g;. Conversely, if
R = ®R; is Frobenius with generating character g, then each R; is Frobenius, with
generating character g; = g o ¢;, where ¢; : R; — R is the inclusion; o = ) o;.

(5) If R is Frobenius with generating character g, then the matrix ring M,,(R) is
Frobenius with generating character g o tr, where tr is the matrix trace.

(6) If R is Frobenius with generating character ¢ and G is any finite group, then
the group ring R[G] is Frobenius with generating character g o pr,, where pr, :
R[G] — R is the projection that associates to every element a = 3 a,9 € R[G]
the coefficient a. of the identity element of G.

In preparation for the proof of Theorem 5, we prove several propositions concerning
generating characters.

Proposition 7 ([6, Corollary 3.6]). Let R be a finite ring. A character w of R is a left
(resp., right) generating character if and only if kerw contains no nonzero left (resp.,

right) ideal of R.

Proof. By the definition and |R| = |R|, @ is a left generating character if and only if
the homomorphism f : R — R, r + rw, is injective. Then r € ker f if and only if the
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principal ideal Rr C kerw. Thus, ker f = 0 if and only if ker @ contains no nonzero left
ideals. The proof for right generating characters is similar. ([l

Proposition 8 ([31, Theorem 4.3]). A character o of a finite ring R is a left generating
character if and only if it is a right generating character.

Proof. Suppose o is a left generating character, and suppose that I C kerp is a right
ideal. Then for every r € R, Ir C kerp, so that I C ker(rp), for all r € R. But
every character of R is Aof the form ro, because p is a left generating character. Thus the
annihilator (R : I) = R, and it follows from (2.5) that [ = 0. By Proposition 7, g is a
right generating character. 0

-~

Proposition 9 ([33, Proposition 3.3]). Let A be a finite left R-module. Then soc(A) =
(A/rad(R)A)

Proof. There is a short exact sequence of left R-modules
0 —rad(R)A — A — A/rad(R)A — 0.

Taking character modules, as in (2.4), yields
0 — (A/rad(R)A) — A — (rad(R)A)  — 0.

Because A/rad(R)A is a sum of simple modules, the same is true for (4/rad(R)A) =
(A : rad(R)A). Thus (A : rad(R)A) C soc(A).

Conversely, soc(A) rad(R) = 0, because the radical annihilates simple modules [7, Ex-
ercise 25.4]. Thus soc(A) C (A : rad(R)A), and we have the equality soc(A) = (A :
rad(R)A). Now remember that (A : rad(R)A) = (A/rad(R)A) . O

Using Proposition 7 as a model, we extend the definition of a generating character to
modules. Let A be a finite left (resp., right) R-module. A character w of A is a generating
character of A if ker w contains no nonzero left (resp., right) R-submodules of A.

Lemma 10 (}). Let A be a finite left R-module, and let B C A be a submodule. If A
admits a left generating character, then B admits a left generating character.

Proof. Simply restrict a generating character of A to B. Any submodule of B inside the
kernel of the restriction will also be a submodule of A inside the kernel of the original
generating character. 0

Lemma 11 (}). Let R be any finite ring. Define o : R — Q/Z by o(w) = @(1), evaluation
at 1 € R, forw € R. Then 0 1s a left and right generating character of R.

Proof. Suppose wy # 0 has the property that Rwy C ker p. This means that for every
r € R, 0= o(rwg) = (rwo)(1) = wo(r), so that wy = 0. Thus p is a left generating
character by definition. Similarly for ¢ being a right generating character. U

Proposition 12 (). Let A be a finite left R-module. Then A admits a left generating
character if and only if A can be embedded in R.
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Proof. If A embeds in ﬁ, then A admits a generating character, by Lemmas 10 and 11.
Conversely, let o be a generating character of A. We use o to define f : A — ﬁ, as
follows. For a € A, define f(a) € R by f(a)(r) = o(ra), r € R. It is casy to check that
f(a) is indeed in R, ie., that f(a) is a character of R. It is also easy to verify that f is
a left R-module homomorphism from A to R. If a € ker f, then o(ra) = 0 for all r € R.

Thus the left R-submodule Ra C ker 0. Because p is a generating character, we conclude
that Ra = 0. Thus a = 0, and f is injective. U

When A = R, Proposition 12 is consistent with the definition of a generating character
of a ring. Indeed, if R embeds into R, then R and R are isomorphic as one-sided modules,
because they have the same number of elements.

Theorem 13 (). Let R = M,,(F,) be the ring of m x m matrices over a finite field F,,.
Let A = M,,«(F,) be the left R-module of all m x k matrices over F,. Then A admits a
left generating character if and only if m > k.

Proof. It m > k, then, by appending m — k columns of zeros, A can be embedded inside
R as a left ideal. By Example 3 and Lemma 10, A admits a generating character.
Conversely, suppose m < k. We will show that no character of A is a generating
character of A. To that end, let @ be any character of A. By Example 3, @ has the
form wq for some k£ x m matrix ) over F,. Because k > m, the rows of () are linearly
dependent over F,. Let P be any nonzero matrix over [, of size m x k such that PQ) = 0.
Such a P exists because the rows of () are linearly dependent: use the coefficients of a
nonzero dependency relation as the entries for a row of P. We claim that the nonzero
left submodule of A generated by P is contained in kerwg. Indeed, for any B € R,
@o(BP) = Jy(tr(Q(BP))) = Jy(tr((BP)Q)) = J4(tr(B(PQ))) = 0, using PQ = 0 and
the well-known property tr(BC) = tr(C'B) of the matrix trace. Thus, no character of A
is a generating character. 0

Proposition 14 (}). Suppose A is a finite left R-module. Then A admits a left generating
character if and only if soc(A) admits a left generating character.

Proof. If A admits a generating character, then so does soc(A), by Lemma 10.
Conversely, suppose soc(A) admits a generating character ¢. Utilizing the short exact
sequence (2.4), let o be any extension of ¢ to a character of A . We claim that o is
a generating character of A. To that end, suppose B is a submodule of A such that
B C ker p. Then soc(B) C soc(A) Nker p = soc(A) Nkerd, because p is an extension of
Y. But 9 is a generating character of soc(A), so soc(B) = 0. Since B is a finite module,
we conclude that B = 0. Thus p is a generating character of A. 0

Corollary 15 (). Let A be a finite left R-module. Suppose soc(A) admits a left generating
character 9. Then any extension of ¥ to a character of A is a left generating character
of A.

We now (finally) turn to the proof of Theorem 5.

(1) Proof of Theorem 5. Statements (2) and (3) are equivalent by Proposition 8. We next
show that (3) implies (1).
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By Example 3, the right R-module (R/rad(R))r equals the character module of the
left R-module g(R/rad(R)). By Proposition 9 applied to the left R-module A = rR, we
have (r(R/ rad(R)))A = SOC(RR) =~ soc(Rpg), because R is assumed to be right free. We
thus have an isomorphism (R/rad(R))r = soc(Rg) of right R-modules. One can either
repeat the argument for a left isomorphism (using (2)) or appeal to the theorem of Honold
[15, Theorem 2] mentioned after Definition 1.

Now assume (1). Referring to (2.1), we see that R being Frobenius implies that soc(R)
is a sum of matrix modules of the form M,,,(F,,). By Theorem 13 and summing, soc(R)
admits a left generating character. By Propositions 7 and 14, R itself admits a left
generating character. Thus (2) holds. O

2.4. Frobenius Algebras. In this subsection I want to point out the similarity between
a general (not necessarily finite) Frobenius algebra and a finite Frobenius ring. I thank
Professor Yun Fan for suggesting this short exposition.

Definition 16. A finite-dimensional algebra A over a field F' is a Frobenius algebra if

there exists a linear functional A : A — F such that ker A contains no nonzero left ideals
of A.

It is apparent that the structure functional A plays a role for a Frobenius algebra
comparable to that played by a left generating character o of a finite Frobenius ring. As
one might expect, the connection between A\ and p is even stronger when one considers
a finite Frobenius algebra. Recall that every finite field F, admits a generating character
94, by Example 2.

Theorem 17 (f). Let R be a Frobenius algebra over a finite field F,, with structure
functional A : R — F,. Then R is a finite Frobenius ring with left generating character
0="1"g0A\.

Conversely, suppose R is a finite-dimensional algebra over a finite field F, and that R
15 a Frobenius ring with generating character 0. Then R is a Frobenius algebra, and there
exists a structure functional X : R — F, such that o =Y, 0 \.

Proof. Both R* := Homg, (R,F,) and R = Homy(R, Q/Z) are (R, R)-bimodules satisfying
|R*| = |R| = |R|. A gencrating character Y, of F, induces a bimodule homomorphism
f: R — R via A — Yg0A. We claim that f is injective. To that end, suppose A € ker f.
Then ¥,0\ = 0, so that A(R) C kerd,. Note that A(R) is an F,-vector subspace contained
in kery, C F,. Because v, is a generating character of F,, A\(R) = 0, by Proposition 7.
Thus A = 0, and f is injective. Because |R*| = |R|, f is in fact a bimodule isomorphism.

We next clalm that the structure functionals in R* correspond under f to the generating
characters in R. That is, if @ = = f(\), where A € R* and w € R, then X satisfies the
condition that ker A contains no nonzero left ideals of R if and only if @ is a generating
character of R (i.e., ker w contains no nonzero left ideals of R).

Suppose w is a generating character of R, and suppose that [ is a left ideal of R with
I C ker \. Since w = 9,0\, we also have I C ker w. Because w is a generating character,
Proposition 7 implies I = 0, as desired.

Conversely, suppose A satisfies the condition that ker A contains no nonzero left ideals
of R, and suppose that [ is a left ideal of R with I C kerw. Then A([/) is an F,-linear
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subspace inside ker 9, C F,. Because 9, is a generating character of F, we have A\(I) = 0,
i.e., I C ker A\. By the condition on A, we conclude that I = 0, as desired. ([l

Remark 18. The proof of Theorem 17 shows the equivalence of the Morita duality functors
«and  when R is a finite-dimensional algebra over a finite field F (cf., [31, Remark 3.12]).
For a finite R-module M, observe that M* := Homy(M,F) = Hompg(M, R*) and M =
Homy(M,Q/Z) = Homp(M, R).

3. THE LANGUAGE OF ALGEBRAIC CODING THEORY

3.1. Background on Error-Correcting Codes. Error-correcting codes provide a way
to protect messages from corruption during transmission (or storage). This is accom-
plished by adding redundancies in such a way that, with high probability, the original
message can be recovered from the received message.

Let us be a little more precise. Let I be a finite set (of “information”) which will
be the possible messages that can be transmitted. An example: numbers from 0 to 63
representing gray scales of a photograph. Let A be another finite set (the “alphabet”);
A = {0,1} is a typical example. An encoding of the information set I is an injection
f I — A" for some n. The image f(I) is a code in A™.

For a given message x € I, the string f(x) is transmitted across a channel (which could
be copper wire, fiber optic cable, saving to a storage device, or transmission by radio or
cell phone). During the transmission process, some of the entries in the string f(x) might
be corrupted, so that the string y € A™ that is received may be different from the string
f(z) that was originally sent.

The challenge is this: for a given channel, to choose an encoding f in such a way that
it is possible, with high probability, to recover the original message x knowing only the
corrupted received message y (and the method of encoding). The process of recovering x
is called decoding.

The seminal theorem that launched the field of coding theory is due to Claude Shannon
[27]. Paraphrasing, it says: up to a limit determined by the channel, it is always possible
to find an encoding which will decode with as high a probability as one desires, provided
one takes the encoding length n sufficiently large. Shannon’s proof is not constructive;
it does not build an encoding, nor does it describe how to decode. Much of the research
in coding theory since Shannon’s theorem has been devoted to finding good codes and
developing decoding algorithms for them. Good references for background on coding
theory are [16] and [23].

3.2. Algebraic Coding Theory. Researchers have more tools at their disposal in con-
structing codes if they assume that the alphabet A and the codes C' C A™ are equipped
with algebraic structures. The first important case is to assume that A is a finite field
and that C' C A™ is a linear subspace.

Definition 19. Let F be a finite field. A linear code of length n over F is a linear subspace
C C F". The dimension of the linear code is traditionally denoted by k = dimp C'.

Given two vectors © = (x1,...,2,), ¥ = (y1,...,yn) € F", their Hamming distance
d(xz,y) = |{i : x; # y;}| is the number of positions where the vectors differ. The Hamming
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weight wt(z) = d(x,0) of a vector x € F" equals the number of positions where the
vector is nonzero. Note that d(x,y) = wt(z — y); d is symmetric and satisfies the triangle
inequality. The minimum distance of a code C' C F" is the smallest value d¢ of d(x,y)
for x # y, x,y € C. When C is a linear code, d¢ equals the smallest value of wt(z) for
x#0,zeC.

The minimum distance of a code C'is a measure of the code’s error-correcting capability.
Let B(z,r) = {y € F" : d(z,y) < r} be the ball in F" centered at x of radius r. Set
ro = [(de —1)/2], the greatest integer less than or equal to (dc — 1)/2. Then all the balls
B(z,rg) for x € C are disjoint. Suppose x € C' is transmitted and y € F" is received.
Decode y to the nearest element in the code C' (and flip a coin if there is a tie). If at
most ry entries of x are corrupted in the transmission, then this method always decodes
correctly. We say that C' corrects ry errors. The larger d¢ is, the more errors that can be
corrected.

3.3. Weight Enumerators. It is useful to keep track of the weights of all the elements
of a code C. The Hamming weight enumerator Wo(X,Y) is a polynomial (generating
function) defined by

Wc(X,Y ZXn wt(z th(x ZA X zyz

zeC

where A; is the number of elements of weight 7 in C'. Only the zero vector has weight 0.
In a linear code, Ag =1, and A; =0 for 0 < i < d.
Define an F-valued inner product on F” by

x-y:inyi, r=(21,....2,), y=Y1,...,yn) € F".

Associated to every linear code C' C F" is its dual code C*:
t={yeF:2-y=0,2¢cC}.

If k¥ =dimC, then dimC+ =n — k.

One of the most famous results in algebraic coding theory relates the Hamming weight
enumerator of a linear code C' to that of its dual code C*: the MacWilliams identities,
which is the subject of Section 4.

Theorem 20 (MacWilliams Identities). Let C' be a linear code in Fyy. Then

Wo(X,Y)= ——Wer (X +(g—1)Y, X —Y).

\CLI

Of special interest are self-dual codes. A linear code C' is self-orthogonal if C C C+; C
is self-dual if C' = C*+. Note that a self-dual code C' of length n and dimension k satisfies
n = 2k, so that n must be even.
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3.4. Linear Codes over Rings. While there had been some early work on linear codes
defined over the rings Z/kZ, a major breakthrough came in 1994 with the paper [13].
(There was similar, independent work in [25].) It had been noticed that there were
two families of nonlinear binary codes that behaved as if they were duals; their weight
enumerators satisfied the MacWilliams identities. This phenomenon was explained in [13].
The authors discovered two families of linear codes over Z/4Z that are duals of each other
and, therefore, their weight enumerators satisfy the MacWilliams identities. In addition,
by using a so-called Gray map g : Z/AZ — F3 defined by ¢g(0) = 00, g(1) = 01, g(2) = 11,
and ¢(3) = 10 (g is not a homomorphism), the authors showed that the two families of
linear codes over Z/47 are mapped to the original families of nonlinear codes over Fs.
The paper [13] launched an interest in linear codes defined over rings that continues to
this day.

Definition 21. Let R be a finite ring. A left (right) linear code C' of length n over R is
a left (right) R-submodule C' C R™.

It will be useful in Section 5 to be even more general and to define linear codes over
modules. These ideas were introduced first by Nechaev and his colloborators [18].

Definition 22. Let R be a finite ring, and let A (for alphabet) be a finite left R-module.
A left linear code C over A of length n is a left R-submodule C' C A™.

The Hamming weight is defined in the same way as for fields. For x = (zy,...,2,) € R"
(or A™), define wt(x) = |[{i : z; # 0}|, the number of nonzero entries in the vector x.

4. THE MACWILLIAMS IDENTITIES

In this section, we present a proof of the MacWilliams identities that is valid over any
finite Frobenius ring. The proof, which dates to [31, Theorem 8.3], is essentially the same
as one due to Gleason found in [3, §1.12]. While the MacWilliams identities hold in even
more general settings (see the later sections in [33], for example), the setting of linear
codes over a finite Frobenius ring will show clearly the role of characters in the proof.

Let R be a finite ring. As we did earlier for fields, we define a dot product on R" by

n
x~y:inyi, r=(21,...,%,), Y= (Y1,...,yn) € R".
i=1

For a left linear code C' C R", define the right annihilator r(C) by r(C) = {y € R" :
x-y = 0,2 € C}. The right annihilator will play the role of the dual code C*+. (Because R
may be non-commutative, one must choose between a left and a right annihilator.) The
Hamming weight enumerator W (X,Y) of a left linear code C' is defined exactly as for

fields.

Theorem 23 (MacWilliams Identities). Let R be a finite Frobenius ring, and let C C R"
be a left linear code. Then

()]
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4.1. Fourier Transform. Gleason’s proof of the MacWilliams identities uses the Fourier
transform and the Poisson summation formula, which we describe in this subsection. Let
(G,+) be a finite abelian group.

Throughout this section, we will use the multiplicative form of characters; that is,
characters are group homomorphisms 7 : (G, +) — (C*,+) from a finite abelian group to
the multiplicative group of nonzero complex numbers. The set G of all characters of G
forms an abelian group under pointwise multiplication. The following list of properties of
characters is well-known and presented without proof (see [26] or [28]).

Lemma 24. Characters of a finite abelian group G satisfy the following properties.
Gl =ia;
(2) (Gl X Gg) = G1 X GQ;

G|, m=1,
) Seeonle) =4 17 T
G prm—
B I

(5) The characters form a linearly independent subset of the vector space of complez-
valued functions on G. (In fact, the characters form a basis.) ([l

Let V be a vector space over the complex numbers. For any function f : G — V, define
its Fourier transform f : G — V by

zeG

Given a subgroup H C @, define the annihilator (G : H) = {r € G : 7(H) = 1}. As we
saw in (2.5), |(G : H)| = |G|/|H]|.

The Poisson summation formula relates the sum of a function over a subgroup to the
sum of its Fourier transform over the annihilator of the subgroup. The proof is an exercise.

Proposition 25 (Poisson Summation Formula). Let H C G be a subgroup, and let
f:G =V be any function from G to a complex vector space V. Then

> f) Z f(m
xeH 7r€ GH)

The next technical result describes the Fourier transform of a function that is the
product of functions of one variable. Again, the proof is an exercise for the reader.

Lemma 26. Suppose V' is a commutative algebra over the complex numbers, and suppose
fi G —=V,i=1,...,n, are functions from G to V. Let f : G" — V be defined by
flxy, ..o xn) =110, fi(z:). Then

f(my, ... m) = H (7).



4.2. Gleason’s Proof.

Proof of Theorem 23. Given a left linear code C' C R", we apply the Poisson summation
formula with G = R", H = C, and V = C[X,Y], the polynomial ring over C in two
indeterminates. Define f; : R — C[X,Y] by fi(z;) = X'™¥t@)yw@) 5. ¢ R, where
wt(r) =0 for r =0, and wt(r) = 1 for r # 0 in R. Let f: R* — C[X, Y] be the product
of the f;; i.e.,

f(xh o >xn) _ Hlewt(xi)th(zi) _ anwt(a:)th(x)’
i=1
where = (71,...,2,) € R". We recognize that ) __, f(z), the left side of the Poisson
summation formula, is simply the Hamming weight enumerator We (X, Y).
To begin to simplify the right side of the Poisson summation formula, we must calculate
f By Lemma 26, we first calculate fz

film) =Y mila) fila) = D mi(a) X OV = X 43 (o

a€ER acER a#0
X -Y, m; # 1.

At the end of the first line, one evaluates the case a = 0 versus the cases where a # 0. In
going to the second line, one uses Lemma 24. Using Lemma 26, we see that

f(m) = (X + (IR| = DY)"™0(X =y,

where 7 = (m,...,m,) € R" and wt(7) counts the number of m; such that m; # 1.

The last task is to identify the character-theoretic annihilator (G : H) = (R" : C') with
r(C), which is where R being Frobenius enters the picture. Let p be a generating character
of R. We use p to define a homomorphism 5 : R — R. Forre R, the character (r) € R
has the form S(r)(s) = (rp)(s) = p(sr) for s € R. One can verify that 5 : R — R is an
isomorphism of left R-modules. In particular, wt(r) = wt(8(r)).

Extend 8 to an isomorphism 3 : R" — R™ of left R-modules, via 3(z)(y) = p(y - x), for
z,y € R". Again, wt(z) = wt(8(x)). For z € R", when is 8(z) € (R : C)? This occurs
when [(z)(C) = 1; that is, when p(C - ) = 1. This means that the left ideal C' - x of
R is contained in ker p. Because p is a generating character, Proposition 7 implies that
C -z =0. Thus z € r(C). The converse is obvious. Thus (C) corresponds to (R" : C)
under the isomorphism f.

The right side of the Poisson summation formula now simplifies as follows:

|< 71'6 (G:H) ( )| zET(C)
1

= |7’(C)’WT(C)<X + (|R| — 1)Y,X — Y),

as desired. 0
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5. THE EXTENSION PROBLEM

In this section, we will discuss the extension problem, which originated from under-
standing equivalence of codes. The main result is that a finite ring has the extension
property for linear codes with respect to the Hamming weight if and only if the ring is
Frobenius.

5.1. Equivalence of Codes. When should two linear codes be considered to be the
same? That is, what should it mean for two linear codes to be equivalent? There are
two (related) approaches to this question: via monomial transformations and via weight-
preserving isomorphisms.

Definition 27. Let R be a finite ring. A (left) monomial transformation T : R™ — R"
is a left R-linear homomorphism of the form

T(x1,...,%) = (To)U, - - - Tom)Un), (T1,...,2,) € R",

for some permutation o of {1,2,...,n} and units uy,...,u, of R.
Two left linear codes C,Cy C R"™ are equivalent if there exists a monomial transfor-
mation 7' : R™ — R" such that T'(C}) = Cs.

Another possible definition of equivalence of linear codes C1,Cy C R™ is this: there
exists an R-linear isomorphism f : ¢} — C5 that preserves the Hamming weight, i.e.,
wt(f(x)) = wt(z), for all z € C. The next lemma shows that equivalence using monomial
transformations implies equivalence using a Hamming weight-preserving isomorphism.

Lemma 28. If T : R" — R" is a monomial transformation, then T preserves the Ham-
ming weight: wt(T'(z)) = wt(x), for allz € R"™. If linear codes Cy,Cy C R™ are equivalent
via a monomial transformation T, then the restriction f of T to C4 is an R-linear iso-
morphism Cy; — Cy that preserves the Hamming weight.

Proof. For any r € R and any unit v € R, r = 0 if and only if ru = 0. The result follows
easily from this. 0

Does the converse hold? This is an extension problem: given Cy,Cy C R" and an
R-linear isomorphism f : Cy — C5 that preserves the Hamming weight, does f extend to
a monomial transformation 7" : R" — R™? We will phrase this in terms of a property.

Definition 29. Let R be a finite ring. The ring R has the eztension property (EP) with
respect to the Hamming weight if, whenever two left linear codes C7,Cy C R" admit an
R-linear isomorphism f : C; — C5 that preserves the Hamming weight, it follows that f
extends to a monomial transformation 7" : R — R".

Thus, the two notions of equivalence coincide precisely when the ring R satisfies the
extension property. Another important theorem of MacWilliams is that finite fields have
the extension property [21], [22].

Theorem 30 (MacWilliams). Finite fields have the extension property with respect to the
Hamming weight.
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Other proofs that finite fields have the extension property with respect to the Hamming
weight have been given by Bogart, Goldberg, and Gordon [5] and by Ward and Wood
[29]. We will not prove the finite field case separately, because it is a special case of the
main theorem of this section:

Theorem 31. Let R be a finite ring. Then R has the extension property with respect to
the Hamming weight if and only if R is Frobenius.

One direction, that finite Frobenius rings have the extension property, first appeared in
[31, Theorem 6.3]. The proof (which will be given in subsection 5.2) is based on the linear
independence of characters and is modeled on the proof in [29] of the finite field case. A
combinatorial proof appears in work of Greferath and Schmidt [12]. More generally yet,
Greferath, Nechaev, and Wisbauer have shown that the character module of any finite
ring has the extension property for the homogeneous and the Hamming weights [11]. Ideas
from this latter paper greatly influenced the work presented in subsection 5.4.

The other direction, that only finite Frobenius rings have the extension property, first
appeared in [32]. That paper carried out a strategy due to Dinh and Lépez-Permouth [§].
Additional relevant material appeared in [33].

The rest of this section will be devoted to the proof of Theorem 31.

5.2. Frobenius is Sufficient. In this subsection we prove half of Theorem 31, that a
finite Frobenius ring has the extension property, following the treatment in [31, Theo-
rem 6.3].

Assume C4,Cy C R™ are two left linear codes, and assume f : C; — (5 is an R-linear
isomorphism that preserves the Hamming weight. We want to show that f extends to
a monomial transformation of R". The core idea is to express the weight-preservation
property of f as an equation of characters of C'; and to use the linear independence of
characters to match up terms.

Let pry,...,pr, : R* — R be the coordinate projections, so that pr;(z1,...,z,) = x;,
(x1,...,2,) € R". Let Aj,..., A\, denote the restrictions of pry,...,pr, to C; C R™.
Similarly, let p1,..., 1, : C1 = R be given by p; = pr,of. Then A\y,... A\, b1, ..., tpn €
Hompg(C4, R) are left R-linear functionals on Cy. It will suffice to prove the existence
of a permutation o of {1,...,n} and units u,...,u, of R such that y; = A;yu;, for
1=1,...,n.

For any = € (4, the Hamming weight of = is given by wt(z) = > " wt(\;(z)), while
the Hamming weight of f(x) is given by wt(f(z)) = > wt(u;(x)). Because f preserves
the Hamming weight, we have

(5.1) Zwt(&(ﬂ?)) = Zwt(m(fv))-

Using Lemma 24, observe that 1 —wt(r) = (1/|R|) >_ .z 7(r), for any » € R. Apply this
observation to (5.1) and simplify:

(5.2) SN ri@) =)0 w(wix), ze€Ch.

i=1 cR =1 rcR
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Because R is assumed to be Frobenius, R admits a (left) generating character p. Every
character 7 € R thus has the form 7 = ap, for some a € R. Recall that the scalar
multiplication means that 7(r) = (ap)(r) = p(ra), for r € R. Use this to simplify (5.2)
(and use different indices on each side of the resulting equation):

(5.3) D> poha) =) po(ub).

i=1 a€R j=1 beR

This is an equation of characters of Cy. Because characters are linearly independent, we
can match up terms from the left and right sides of (5.3). In order to get unit multiples,
some care must be taken.

Because (' is a left R-module, Hompg(CY, R) is a right R-module. Define a preorder <
on Hompg(Cy, R) by A < p if A = pr for some r € R. By a result of Bass [4, Lemma 6.4],
A= pand g < X\ imply u = Au for some unit u of R.

Among the linear functionals Ai, ..., Ay, ft1, ..., i, (a finite list), choose one that is
maximal in the preorder <. Without loss of generality, assume g is maximal in <. (This
means: if gy < A for some A, then g3 = Au for some unit u of R.) In (5.3), consider the
term on the right side with j =1 and b = 1. By linear independence of characters, there
exists i1, 1 < i3 < n, and a € R such that po (\;;a) = po ;. This equation implies
that im(u; — Aj,a) C ker p. But im(p; — A\ a) is a left ideal of R, and p is a generating
character of R. By Proposition 7, im(p; — Aj,a) = 0, so that pu; = A; a. This means that
1 = A;,. Because p; was chosen to be maximal, we have p; = \;,u;, for some unit u; of
R. Begin to define a permutation o by o(1) = ;.

By a reindexing argument, all the terms on the left side of (5.3) with ¢ = ¢; match the
terms on the right side of (5.3) with j = 1. That is, Y .ppo (Ni,a) = > ,cpp o (1b).
Subtract these sums from (5.3), thereby reducing the size of the outer summations by
one. Proceed by induction, building a permutation ¢ and finding units u,,...,u, of R,
as desired.

5.3. Reformulating the Problem. The proof that being a finite Frobenius ring is suf-
ficient for having the extension property with respect to the Hamming weight was based
on the proof of the extension theorem over finite fields that used the linear independence
of characters [29]. In contrast, the proof that Frobenius is necessary will make use of
the approach for proving the extension theorem due to Bogart, et al. [5]. This requires a
reformulation of the extension problem.

Every left linear code C' C R™ can be viewed as the image of the inclusion map C' —
R™. More generally, every left linear code is the image of an R-linear homomorphism
A : M — R" for some finite left R-module M. By composing with the coordinate
projections pr;, the homomorphism A can be expressed as an n-tuple A = (Aq,..., \y),
where each \; € Homg(M, R). The A; will be called the coordinate functionals of the
linear code.

Remark 32. It is typical in coding theory to present a linear code C' C R™ by means of
a generator matriz G. The matrix G has entries from R, the number of columns of G
equals the length n of the code C, and (most importantly) the rows of G generate C' as
a left submodule of R".
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The description of a linear code via coordinate functionals is essentially equivalent to
that using generator matrices. If one has coordinate functionals Ay, ..., \,, then one can
produce a generator matrix GG by choosing a set vy,...,v; of generators for C' as a left
module over R and taking as the (i, j)-entry of G the value \j(v;). Conversely, given
a generator matrix, its columns define coordinate functionals. Thus, using coordinate
functionals is a “basis-free” approach to generator matrices. This idea goes back to [2].

We are interested in linear codes up to equivalence. For a linear code given by A =
(A, ..., An) : M — R™ the order of the coordinate functionals Ay, ..., A, is irrelevant, as
is replacing any A; with \;u;, for some unit u; of R. We want to encode this information
systematically. Let U be the group of units of the ring R. The group U acts on the module
Homp(M, R) by right scalar multiplication; let O denote the set of orbits of this action:
Of = Hompg(M, R)/U. Then a linear code M — R", up to equivalence, is specified by
choosing n elements of Of (counting with multiplicities). This choice can be encoded
by specifying a function (a multiplicity function) n : O — N, the nonnegative integers,
where () is the number of times A (or a unit multiple of \) appears as a coordinate
functional. The length n of the linear code is given by >, o n(A).

In summary, linear codes M — R™ (for fixed M, but any n), up to equivalence, are
given by multiplicity functions 7 : O — N. Denote the set of all such functions by
F(O% N) = {n: O - N}, and define Fy(O¥ N) = {n € F(O* N) : n(0) = 0}.

We are also interested in the Hamming weight of codewords and in how to describe
the Hamming weight in terms of the multiplicity function 7. Fix a multiplicity function

n: O = N. Define W, : M — N by

(5.4) Wylz) = Y wt(Mx))n(), x €M

Then W, (z) equals the Hamming weight of the codeword given by « € M. Notice that
W,(0) = 0.

Lemma 33. For x € M and unit u € U, W,(ux) = W,(z).

Proof. This follows immediately from the fact that wt(ur) = wt(r) for r € R and unit
u € U; that is, ur = 0 if and only if r = 0. 0

Because M is a left R-module, the group of units ¢ acts on M on the left. Let O denote
the set of orbits of this action. Observe that Lemma 33 implies that W), is a well-defined
function from O to N. Let F(O,N) denote the set of all functions from O to N, and
define Fy(O,N) = {w € F(O,N) : w(0) = 0}. Now define W : F(O* N) — Fy(O,N) by
n € F(O,N) — W, € Fy(O,N). (Remember that W,(0) = 0.) Thus W associates to
every linear code, up to equivalence, a listing of the Hamming weights of all the codewords.
The discussion to this point (plus a technical argument on the role of the zero functional,
which is relegated to subsection 5.5) proves the following reformulation of the extension

property.

Theorem 34. A finite ring R has the extension property with respect to the Hamming
weight if and only if the function

W Fy(OF N) — Fy(O,N), 5+ W,
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is injective for every finite left R-module M.

Observe that the function spaces Fy(O* N), Fy(O,N) are additive monoids and that
W Fy(O%N) — Fy(O,N) is additive, i.e., a monoid homomorphism. If we tensor
with the rational numbers Q (which means we formally allow coordinate functionals to
have multiplicities equal to any rational number), it is straight-forward to generalize
Theorem 34 to:

Theorem 35. A finite ring R has the extension property with respect to the Hamming
weight if and only if the Q-linear homomorphism

W Fy(O4,Q) = Fr(0,Q), 0= W,
is injective for every finite left R-module M.

Theorem 35 is very convenient because the function spaces Fy(O%, Q), Fy(O, Q) are Q-
vector spaces, and we can use the tools of linear algebra over fields to analyze the linear
homomorphism W. In fact, in [5], Bogart et al. prove the extension theorem over finite
fields by showing that the matrix representing W is invertible. The form of that matrix
is apparent from (5.4). Greferath generalized that approach in [10].

For use in the next subsection, we will need a version of Theorem 35 for linear codes
defined over an alphabet A. Let A be a finite left R-module, with automorphism group
Aut(A). A left R-linear code in A™ is given by the image of an R-linear homomorphism
M — A", for some finite left R-module M. In this case, the coordinate functionals will
belong to Hompg(M, A). The group Aut(A) acts on Homp(M, A) on the right; let O
denote the set of orbits of this action. A linear code over A, up to equivalence, is again
specified by a multiplicity function n € F(O* N).

Just as before, the group of units U of R acts on the module M on the left, with set O
of orbits. In the same way as above, we formulate the extension property for the alphabet
A as:

Theorem 36. Let A be a finite left R-module. Then A has the extension property with
respect to the Hamming weight if and only if the linear homomorphism

WFO(OﬁaQ) _>F0(Oa@)7 7]'_>Wn7
15 injective for every finite left R-module M .

5.4. Frobenius is Necessary. In this subsection we follow a strategy of Dinh and Lopez-
Permouth [8] and use Theorem 35 to prove the other direction of Theorem 31; viz., if a
finite ring has the extension property with respect to the Hamming weight, then the ring
must be Frobenius.
The strategy of Dinh and Lépez-Permouth [8] can be summarized as follows.
(1) If a finite ring R is not Frobenius, then its left socle contains a left R-module of
the form M, (F,) with m < k, for some ¢ (cf., (2.1) and (2.3)).
(2) Use the matrix module M,,x(F,) as the alphabet A. If m < k, show that A does
not have the extension property.
(3) Take the counter-examples over A to the extension property, consider them as R-
modules, and show that they are also counter-examples to the extension property
over R.
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The first and last points were already proved in [8]. Here’s one way to see the first point.
We know from (2.3) that soc(gR) is a sum of matrix modules M,,, s, (Fy,). If m; > s; for
all 7, then each of the M,,, ., (IF,,) would admit a generating character, by Theorem 13. By
adding these generating characters, one would obtain a generating character for soc(gR)
itself. Then, by Proposition 14, R would admit a generating character, and hence would
be Frobenius by Theorem 5.

For the third point, consider counter-examples C;,Cy C A™ to the extension property
for the alphabet A with respect to the Hamming weight. Because A™ C soc(gR)" C rR",
C4,Cy can also be viewed as R-modules via (2.1). The Hamming weight of an element
x of A" equals the Hamming weight of x considered as an element of R", because the
Hamming weight just depends upon the entries of « being zero or not. In this way, C1, Cs
will also be counter-examples to the extension property for the alphabet R with respect
to the Hamming weight.

Thus, the key step remaining is the second point in the strategy. An explicit con-
struction of counter-examples to the extension property for the alphabet A = M, (F,),
m < k, was given in [32]. Here, we give a short existence proof; more details are available
in [32] and [33].

Let R = M,,(F,) be the ring of m x m matrices over F,. Let A = M,,«(F,), with
m < k; Ais a left R-module. It is clear from Theorem 36 that A will fail to have the
extension property with respect to the Hamming weight if we can find a finite left R-
module M with dimg Fy(O% Q) > dimg Fy(O, Q). It turns out that this inequality will
hold for any nonzero M.

Because R is simple, any finite left R-module M has the form M = M,,,(F,), for some
(. First, let us determine O, which is the set of left /-orbits on M. The group U is the
group of units of R, which is precisely the general linear group GL,,(F,). The left orbits
of GL,(F,) on M = M,,»,(F,) are represented by the row reduced echelon matrices over
F, of size m x £.

Now, let us determine O, which is the set of right Aut(A)-orbits on Homg (M, A). The
automorphism group Aut(A) equals GL(F,), acting on A = M,,«x(F,) by right matrix
multiplication. On the other hand, Hompg(M, A) = M (F,), again using right matrix
multiplication. Thus OF consists of the right orbits of GLx(F,) acting on My (F,). These
orbits are represented by the column reduced echelon matrices over F, of size ¢ x k.

Because the matrix transpose interchanges row reduced echelon matrices and column
reduced echelon matrices, we see that |Of| > |O| if and only if & > m (for any positive ).
Finally, notice that dimg Fy(O%, Q) = |Of| -1 and dimg Fy(O, Q) = |O]|—1. Thus, for any
nonzero module M, dimg Fy(OF, Q) > dimg Fy(O, Q) if and only if m < k. Consequently,
if m < k, then W fails to be injective and A fails to have the extension property with
respect to Hamming weight.

5.5. Technical Remarks. Here is the technical argument regarding the zero functional
needed to justify Theorem 34.

Remark 37. For n € F(O% N), define the length of n to be I(n) = >, o:n(A) and the
essential length of 1 to be lo(n) = 32, ,m(A). The length I(n) equals the length of the

IProf. Yamagata tells me that the Japanese name for this concept translates literally as “step matrices.”
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linear code defined by 7; the reduced length ly(n) equals the length of the linear code
defined by 7 after any all-zero positions have been removed. (In terms of a generator
matrix, one removes all the zero columns.)

Assume the extension property holds with respect to the Hamming weight. This means
that if n,n € F(O% N) satisfy {(n) = I(n) and W,, = Wy, then n = 5. That is, W is
injective along the level sets of the length function . If [(n') < I(n) and W, = W,,, then
we can append zeros to 7’ until its length is the same as {(n) without changing W, . More
precisely, define " by n”(A) = n’(\) for A # 0 and set ”(0) = 1'(0) + I(n) — (). Then
I(n") = l(n) and W,y = W,. Then " = n, by the extension property. In particular, the
reduced lengths are equal: ly(n) = lo(n") = lo(n").

There is a projection pr : F(O* N) — Fy(O% N) which sets (prn)(0) = 0 and leaves
the other values unchanged, (prn)(A) = n(A), A # 0. This projection splits the monoid
as F(O'N) = Fy(O%,N) @ N. The argument of the previous paragraph shows that if
W, = W, then prn = prn’ as elements of Fy(O* N).

Conversely, suppose W : Fy(O% N) — Fy(O, N) is injective. Let n,n’ € F(O* N) satisfy
l(n) = l(n') and W, = W,,. Because the value of n(0) does not affect W,, we see that
Wyrn = Wiy, By assumption, W is injective on Fy(Of, N), so that prn = prr/. In
particular, ly(n) = lo(n). Since I(n) = I(n"), we must also have n(0) = 7/(0), and thus
n=rn.

6. SELF-DuAL CODES

I want to finish this article by touching on a very active research topic: self-dual codes.

As we saw in subsection 3.3, if C' C F" is a linear code of length n over a finite field T,
then its dual code C* is defined by C+ = {y € F* : 2 -y = 0,2 € C}. A linear code C
is self-orthogonal if C C C* and is self-dual if C = C*. Because dimC+ = n — dim C,
a necessary condition for the existence of a self-dual code C' over a finite field is that the
length n must be even; then dim C' = n/2.

The Hamming weight enumerator of a self-dual code appears on both sides of the
MacWilliams identities:

1
We(X,Y) = EWC(X +(¢—-1)Y, X -Y),

where C is self-dual over F,. As |C| = ¢"/% and the total degree of the polynomial
We(X,Y) is n, the MacWilliams identities for a self-dual code can be written in the form

X+(q-1)Y X—Y)
Vi oo Ve )
Every element x of a self-dual code satisfies x - x = 0. In the binary case, ¢ = 2, notice
that = - x = wt(x) mod 2. Thus, every element of a binary self-dual code C' has even

length. This implies that We (X, —=Y) = We(X,Y).
Restrict to the binary case, ¢ = 2. Define two complex 2 x 2 matrices P, () by

- (U ) o-(3 )
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Notice that P? = Q? = I. Let G be the group generated by P and @ (inside GLy(C)).
Define an action of G on the polynomial ring C[.X, Y] by linear substitution: (fS)(X,Y) =
f(X,Y)S) for S € G. The paragraphs above prove the following

Proposition 38. Let C be a self-dual binary code. Then its Hamming weight enumerator
We(X,Y) is invariant under the action of the group G. That is, We(X,Y) € C[X,Y]Y,
the ring of G-invariant polynomials.

Much more is true, in fact. Let Cy C F2 be the linear code Cy = {00,11}. Then Cj is
self-dual, and W, (X,Y) = X? + Y2 Let Eg C F3 be the linear code generated by the
rows of the following binary matrix

11110000
00111100
00001111
10101010

Then Fs is also self-dual, with W, (X,Y) = X® + 14X4Y* + v8.

Theorem 39 (Gleason (1970)). The ring of G-invariant polynomials is generated as an
algebra by We, and Wg,. That s,

CIX,Y]9 = C[X?+ Y% X® + 14X*YV* + V¥

Gleason proved similar statements in several other contexts (doubly-even self-dual bi-
nary codes, self-dual ternary codes, Hermitian self-dual quaternary codes) [9]. The results
all have this form: for linear codes of a certain type (e.g., binary self-dual), their Ham-
ming weight enumerators are invariant under a certain finite matrix group G, and the ring
of G-invariant polynomials is generated as an algebra by the weight enumerators of two
explicit linear codes of the given type.

Gleason’s Theorem has been generalized greatly by Nebe, Rains, and Sloane [24]. Those
authors have a general definition of the type of a self-dual linear code defined over an
alphabet A, where A is a finite left R-module. Associated to every type is a finite group
G, called the Clifford-Weil group, and the (complete) weight enumerator of every self-
dual linear code of the given type is G-invariant. Finally, the authors show (under certain
hypotheses on the ring R) that the ring of all G-invariant polynomials is spanned by
weight enumerators of self-dual codes of the given type.

In order to define self-dual codes over non-commutative rings, Nebe, Rains, and Sloane
must cope with the dlfﬁculty that the dual code of a left linear code C'in A" is a right linear
code of the form (A" :C) C An (cf., the proof of Theorem 23 in subsection 4.2). This
difficulty can be addressed first by assuming that the ring R admits an anti-isomorphism ¢,
i.e., an isomorphism ¢ : R — R of the additive group, with e(rs) = e(s)e(r), for r, s € R.
Then every left (resp., right) R-module M defines a right (resp., left) R-module e(M).
The additive group of (M) is the same as that of M, and the right scalar multiplication
on (M) is mr :=e(r)m, m € M, r € R, where £(r)m uses the left scalar multiplication
of M. (And similarly for right modules.)

Secondly, in order to identify the character-theoretic annihilator (A\” :C) C A" with
a submodule in A™, Nebe, Rains, and Sloane assume the existence of an isomorphism
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¢+ e(A) — A. In this way, C := e7L=1(A" : C) can be viewed as the dual code of C';
O+ is a left linear code in A™ if C'is. With one additional hypothesis on v, C* satisfies all
the properties one would want from a dual code, such as (C+)+ = C and the MacWilliams
identities. (See [34] for an exposition.)

There are several questions that arise immediately from the work of Nebe, Rains, and
Sloane that may be of interest to ring theorists.

(1) Which finite rings admit anti-isomorphisms? Involutions?

(2) Assume a finite ring R admits an anti-isomorphism . Which finite left R-modules
A admit an isomorphism 1 : £(A) — A?

(3) Even in the absence of complete answers to the preceding, are there good sources
of examples?

There are a few results in [34], but much more is needed. Progress on these questions may
prove helpful in understanding the limits and the proper setting for the work of Nebe,
Rains, and Sloane.
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O
REALIZING STABLE CATEGORIES AS DERIVE CATEGORIES

KOTA YAMAURA

ABSTRACT. In this paper, we compare two different kinds of triangulated categories.
First one is the stable category modA of the category of Z-graded modules over a pos-
itively grade self-injective algebra A. Second one is the derived category DP(modA) of
the category of modules over an algebra A. Our aim is give the complete answer to
the following question. For a positively graded self-injective algebra A, when is modA
triangle-equivalent to DP(modA) for some algebra A ? The main result of this paper
gives the following very simple answer. modA is triangle-equivalent to DP(modA) for
some algebra A if and only if the 0-th subring Ay of A has finite global dimension.

1. MAIN RESULT

There are two kinds of triangulated categories which are important for representation
theory for algebras. First one is the derived category D”(modA) of the category modA of
modules over an algebra A. Second one is algebraic triangulated categories, that is the
stable categories of Frobenius categories (cf. [5]). A typical example is the stable category
modA of the category modA of modules over a self-injective algebra A.

In this paper, our aim is to compare derived categories of algebras and the stable
categories of self-injective algebras, and find a "nice” relationship between them. If we
find it, then those triangulated categories can be investigated from mutual viewpoints.

There several method to compare derived categories of algebras and the stable categories
of self-injective algebras. We focus on the following Happel’s result. For any algebra A,
one can associate a self-injective algebra A which is called the trivial extension of A.
A admits a natural positively grading such that A = A where A is the 0-th subring.
Therefore A is a positively graded self-injective algebra. So the stable category mod”A of
the category mod?A of Z-graded A-modules has the structure of triangulated category.
In this setting, D. Happel [6] showed that A has finite global dimension if and only if
there exists a triangle-eqiuvalence

(1.1) mod”A ~ DP(modA).

This equivalence gives a "nice” relationship between derived category D”(modA) and the
stable categories mod”A. The above result asserts that sometimes representation theory
of A and that of A are deeply related.

We consider the drastic generalization of the above Happel’s result. Happel started
from an algebra A, and constructed the special positively graded self-injective algebra of
A. In contrast, we start from a positively graded self-injective algebra A = @,-, A;, and
suggest the following question.
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Question. When is mod”A triangle-equivalent to the derived category DP(modA) for
some algebra A 7

The following result is main theorem of this paper which gives the complete answer to
our question.

Theorem 1. Let A be a positively graded self-injective algebra. Then the following are
equivalent.

(1) The global dimension of Aq is finite.
(2) There exists an algebra A, and a triangle-equivalence

(1.2) mod”A ~ D" (modA).

The aim of the rest of this paper is to give an explanation of the proof of Theorem 1,
and some examples. Our plan is as follows.

In Section 2, we give two preliminaries. First we recall that mod”A for a positively
graded algebra A is a Frobenius category, and so its stable category mod”A is an alge-
braic triangulated category. Secondly we give an explanation of Keller’s tilting theorem.
Our approach to the question is using Keller’s titling theorem for algebraic triangulated
categories. B. Keller [7] introduced and investigated differential graded categories and
its derived categories. In his work, it was determine when is an algebraic triangulated
category triangle-equivalent to the derived category of some algebra by the existence of
tilting objects (tilting theorem). In Section 3, we apply Keller’s tilting theorem to our
study.

In Section 3, we give an outline of the proof of Theorem 1. We omit the proof of (2) =
(1). We give proofs (1) = (2). We start from finding a concrete tilting object in mod”A
which has ”good” properties. After finding it, we show two ways to prove (1) = (2). The
first proof is based on Keller’s tilting theorem, namely we entrust with constructing the
triangle-equivalence (1.2). The second proof is direct more than the first one, namely we
construct the triangle-equivalence (1.2) explicitly.

In Section 4, we give some examples of Theorem 1. In particular as an application of
our main theorem, we show Happel’s result, and its generalization shown by X-W Chen

2].

Throughout this paper, let K be an algebraically closed field. An algebra means a
finite dimensional associative algebra over K. We always deal with finitely generated
right modules over algebras. For an algebra A, we denote by modA the category of A-
modules, projA the category of projective A-modules. The same notations is used for
graded case. For an additive category A, we denote by K”(A) the homotopy category of
bounded complexes of A. For an abelian category A, we denote by DP(A) the bounded
derived category of A.

2. PRELIMINARIES

In this section, we recall basic facts about representation theory of a positively graded
algebras, and tilting theorem for algebraic triangulated categories for the readers conve-
nient.
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2.1. Positively graded self-injective algebras. In this subsection, our aim is to recall
that the stable category of Z-graded modules over positively graded self-injective algebras
are algebraic triangulated categories. Most of results stated here are due to Gordon-Green
[3, 4]. In details, readers should refer to [3, 4].

We start with setting notations. Let A = @,., A; be a positively graded self-injective
algebra. We say that an A-module is Z-gradable if it can be regarded as a Z-graded
A-module. For a Z-graded A-module X, we write X; the i-degree part of X. We denote
by mod”A the category of Z-graded A-modules. For Z-graded A-modules X and Y, we
write Hom4 (X, Y)o the morphism space in mod*A from X to Y.

We recall that mod?A has two important functors. The first one is the grading shift
functor. For i € Z, we denote by

(1) : mod”A — mod”A
the grading shift functor, that is defined as follows. For a Z-graded A-module X,
e X (i) := X as an A-module,
e Z-grading on X (7) is defined by X (i), := X4, for any j € Z.
This is an autofunctor on mod”A whose inverse is (—i).
The second one is the K-dual. It is already known that there is the standard duality

D := Homg(—, K) : modA — modA°P.

This functor induces the following duality. For a Z-graded A-module X, we regard DX as
a Z-graded A°°-module by defining (DX); := D(X_;) for any i € Z. By this observation,
we have the duality

D : mod?A — mod%A°P.

Next we recall a few important facts about objects and morphism spaces in mod”A.
The following results are two of the most basic categorical properties of mod”A.

Proposition 2. mod?A is a Hom-finite Krull-Schmidt category

Proposition 3. [3, Theorem 3.2. Theorem 3.3.] The following assertions hold.

(1) A Z-graded A-module is indecomposable in mod”A if and only if it is an inde-
compsable A-module.

(2) Any direct summand of a Z-gradable A-module is also Z-gradable.

(3) Let X and Y be indecomposable Z-graded A-modules. If X and Y are isomorphic
to each other in mod A, then there exists i € Z such that X and Y (i) are isomorphic
to each other in modZA.

Next we recall what are projective objects and injective objects in mod”A. A is natu-
rally regarded as a Z-graded A-module. By Proposition 3 (2), any projective A-modules
are Z-gradable. Moreover it is easy to check that all projective object in mod?A is given
by projective A-modules. By the standard duality, the same argument hold for injective
objects in mod”A.

Proposition 4. A complete list of indecomposable projective objects in mod”A is given

by
{P(i) | i € Z, P is an indecomposable projective A-module}.
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Dually a complete list of indecomposable injective objects in mod”A is given by
{I(7) | i € Z, I is an indecomposable injective A-module}.

If A is self-injective, then mod”A is a Frobenius category by Proposition 3 and Proposi-
tion 4. So in this case, the stable category mod”A has a structure of triangulated category
by [5].

Lemma 5. If A is self-injective, the following assertions hold.

(1) mod?A is a Frobenius category.
(2) mod?A has a structure of triangulated category whose shift functor [1] is given by
the graded cosyzygy functor @~ : mod?A — modZA.

2.2. Tilting theorem for algebraic triangulated categories. In this subsection, we

recall tilting theorem for algebraic triangulated categories which is due to Keller [7]. It

is a theorem which provides a method for comparison of given triangulated category and

homotopy category of bounded complexes of projective modules over some algebra.
First let us recall the definition of algebraic triangulated categories again.

Definition 6. A triangulated category 7T is algebraic if it is triangle-equivalent to the
stable category of some Frobenius category.

A class of algebraic triangulated categories contains the following important examples.

Example 7. (1) Let Z be an abelian group, and A a Z-graded self-injective algebra.
Then modZA is a Frobenius category, and the stable category mod”A is an algebraic
triangulated category (Lemma 5).

(2) Let A be an algebra. The category CP(projA) of bounded complexes of projective
A-modules can be regarded as a Frobenius category whose stable category is the homotopy
category KP(projA) of bounded complexes of projective A-modules (cf. [5]).

In tilting theory, tilting objects which is defined as follows play an important role.

Definition 8. Let 7 be a triangulated category. An object T € T is called a tilting object
in 7T if it satisfies the following conditions.
(1) Homy (T, T[i]) = 0 for i # 0.
(2) T = thickT.
Here thickT is the smallest triangulated full subcategory of 7 which contains 7', and is
closed under direct summands.
The following is a typical example of tilting objects.

Example 9. Let A be a ring. A can be regarded as a complex which concentrates in
degree 0. So A is contained in a triangulated category KP(projA). It is a tilting object in
KP(projA).

The following result is Keller’s tilting theorem which determine when is an algebraic
triangulated category triangle-equivalent to KP(projA) for some algebra A,

Theorem 10. [7, Theorem 4.3.] Let T be an algebraic triangulated category. If T has a
tilting object 'T', then there exists a triangle-equivalence up to direct summands

T ~ K"(projEnds(T)).
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By the above result, finding tilting objects is a basic problem for the study of a given
algebraic triangulated category. We will consider this problem for Example 7 (1) in the
next section (Theorem 11).

3. TRIANGLE-EQUIVALENCES BETWEEN STABLE CATEGORIES AND DERIVED
CATEGORIES

Throughout this section, let A be a positively graded self-injective algebra. In this
section, we discuss triangle-equivalences between the stable category mod”A and derived
categories of algebras.

First we prove Theorem 1 in the half of this section. We omit the proof of (2) = (1).
We prove (1) = (2). We begin the proof from giving the necessary and sufficient condition
for existence of tilting objects in the stable category mod”A. The necessary and sufficient
condition is described by important homological property of the subring A, of A which is
stated as follows.

Theorem 11. mod?A has a tilting object if and only if Ay has finite global dimension.

We omit the proof of only if part of Theorem 11. In the following, we show the proof
of if part of Theorem 11 which is given by constructing a tilting object in mod”A. To
construct it, we consider truncation functors

(—)>i : modA — modA
and
(—)<i : modA — modA
which are defined as follows. For a Z-graded A-module X, X, is a Z-graded sub A-module

of X defined by
0 (j<1)
(X>i)j = o
X; (G =1),
and X; is a Z-graded factor A-module X/X>;41 of X.
Now we define

(3.1) T := EBA(@')SO.

which is an object in Mod”A but not an object in mod”A. However since A(i)<o = A(4)
for enough large i, T can be regarded as an object in mod”A.
Then we have the following result.

Theorem 12. Under the above setting, the following assertions hold.
(1) T is a tilting object in thickT.
(2) If A has finite global dimension, then T is a tilting object in mod”A.
It is proved that T satisfies the first condition in Definition 8 with no assumptions for

A, and T satisfies the second condition in Definition 8 if Ay has finite global dimension.
Then we finish the proof of if part of Theorem 11. 0
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Now we keep the notation as above and put
[':= End ,(T)o.

the endomorphism algebra of 7' in mod”“A. This endomorphism algebra T' has a nice
homological property if so does Aj.

Theorem 13. If Ay has finite global dimension, then so does I
Now we ready to prove Theorem 1 (1) = (2).

Theorem 14. Under the above setting, the following assertions hold.

(1) There exists a triangle-equivalence
thickT — KP(projI).

(2) If Ay has finite global dimension, then there exists a triangle-equivalence
mod”A — D" (modT).

Proof. (1) By Theorem 10 and Theorem 12 (1), we have the triangle-equivalence thickT —
KP(projl).

(2) We assume that Ay has finite global dimension. First by Theorem 10 and Theorem
12 (2), we have the triangle-equivalence mod”A —s KP(projI'). Next by Theorem 13, the
natural triangle-functor K®(projA) — DP(modTI') is an equivalence. Finally by composing
these equivalences, we have a triangle-equivalence

mod”A — D(modI).
UJ

In the above proof, the triangle-equivalence mod?A — DP(modI") was given by the
existence of tilting object 7' in mod”“A and Keller’s Theorem 10 automatically. In the
rest of this section, we construct a triangle-equivalence DP(modI’) — mod?A by derived
tensor functor directly.

To construct the triangle-equivalence, first we want to consider the derived tensor func-

tor — %p T : D*(modI') — DP(mod*A). However T' does not act on T naturally since I
is defined by the morphism space in the stable category mod”A. To solve this problem,
we give the description of 7' in mod%A below. The description allow us to realize I as the
morphism space in the category mod”A.

Proposition 15. T is decomposed as'T' =T & P where T is a direct sum of all indecom-
posable non-projective direct summand of T'. Then the following assertions hold.

(1) T is in mod”A.

(2) T and T are isomorphic to each other in mod”A.

(3) There exists an algebra isomorphism I' ~ End(T)o.

Let T'=T'& P be the decomposition which was given in Proposition 15. By Proposition
15 (3), T is regarded as a Z-graded '’ @ x A-module naturally. So we have the left derived
tensor functor

L z
—@r1: Db(modF) — Db(mod A).
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Next we consider the quotient category DP(mod”A)/KP(proj”A) of DP(mod”A), and
the quotient functor

DP(mod*A) — DP(mod”A)/KP(projZA).

The following triangle-equivalence is the realization of mod”A as the quotient category
DP(mod”A)/KP(projZA). The ungraded version of this realization was studied by several
authors [1], [8] and [9].

Theorem 16. [9, Theorem 2.1.] The natural embedding mod”A — DP(mod”A) induces
a triangle-equivalence
mod”A — DP(mod”A)/K"(proj”A)

Now we consider the following composition of the above three functors

L
G : DP(modl') —2X DP(mod?A) —» D" (mod%A)/KP(proj%A) — mod?A.
where the second one is the quotient functor, and the third one is a quasi-inverse of
Theorem 16. This is the triangle-functor which we want.

Theorem 17. Under the above setting, the following assertions hold.
(1) G is fully faithful on K®(projl’).
(2) Ao has finite global dimension if and only if G is a triangle-equivalence.

Proof. (1) It is easy to check that G(I") is isomorphic to T', so is isomorphic to T'. Moreover
by Theorem 12 (1), G induces an isomorphism

Hompp eary (I', I'[#]) ~ Hom 4 (G(T'), G(I')[i])o

for any i € Z. By this and thickl' = K"(projI'), G is fully faithful on K®(projI’). Thus G
induces a triangle-equivalence K”(projI’) — thickT.

(2) We assume that A, has finite global dimension. Then I' has finite global dimension
by Theorem 13. Thus we have thickl' = D"(modI'), and so G is fully faithful. Again since
Ay has finite global dimension, we have thickT = mod*A by Theorem 12 (2). Thus G is
dense.

We omit the proof of converse. O

4. EXAMPLES

In this section, we show some examples and applications of results which was shown in
previous section.

First example is famous Happel’s result [6], which gives a relationship between represen-
tation theory of algebras and that of the trivial extensions. We show it as an application
of Theorem 1.

Example 18. If an algebra is given, then we can always construct a positively graded self-
injective algebra called trivial extension, which contains original algebra as a subalgebra.
Let us recall the definition of trivial extensions. Let A be an algebra. The trivial extension
A of A is defined as follows.

e A:=A® DA as an abelian group.
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e The multiplication on A is defined by

(@, f) - (v, 9) = (zy, 29 + fy).
for any z,y € A and f,g € DA. Here zg and fy is defined by (A, A)-bimodule
structure on DA.

This A becomes an algebra with respect to the above operations. Moreover it is known
that A is self-injective.
Now we introduce a positively grading on A by

0 (i>2).

Then obviously A = P, A; becomes a positively graded self-injective algebra.
Under the above setting, we apply Theorem 17 to the trivial extension A of an algebra
A. Then we have the following Happel’s triangle-equivalence.

Theorem 19. [6, Theorem 2. 3.] Under the above setting, the following are equivalent.

(1) A has finite global dimension.
(2) There exists an triangle-equivalence

mod”A ~ D" (modA).
Proof. We calculate T' constructed in (3.1) for our setting. Then one can check that

T = A, and End, (7)o = Enda(T)o ~ A. Thus the assertion follows from this and
Theorem 17. O]

Next example is X-W Chen’s result [2] which gives a generalization of Happel’s result.

Example 20. Chen [2] studied relationship between the stable category mod”A of a
positively graded self-injective algebra A which has Gorenstein parameter and the derived
category DP(modI') of the Beilinson algebra I' of A. The notion of Gorenstein parameter
is defined as follows.

Definition 21. Let A be a positively graded self-injective algebra. We say that A has
Gorenstein parameter ¢ if SocA is contained in Ay.

Let A be a positively graded self-injective algebra of Gorenstein parameter ¢. The
Beilinson algebra I' of A is defined by

Ag Ay - Aps Ap
Ay - Ay Ars
I':= i : :
Ay Ay
0 Ay

Then Chen showed the following result.

Theorem 22. [2, Corollary 1.2.] Under the above setting, the following are equivalent.
(1) Ao has finite global dimension.
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(2) There exists a triangle-equivalence
mod”A ~ D" (modT).

As an application of Theorem 12, we give a proof of the above result. Let T be the
object defined in (3.1), and T the direct summand of 7" defined in Proposition 15. We
calculate T' and the endomorphism algebra End,(7"),. Then since A has Gorenstein
parameter ¢, those can be represented as the following explicit form.

Proposition 23. Under the above setting, the following assertions hold

(1) T = @y Ali)<o-
(2) There exists an algebra isomorphism End ,(T)g ~T.

Proof. Since A has Gorenstein parameter ¢, we have T = @f;é A(i)<o by the definition
of T. Moreover it is easy to calculate that there is an algebra isomorphism End ,(7")y =

End, (@) Ali)<0) ~T. 0

Proof of Theorem 22. The assertion follows from Theorem 17 and Proposition 23. U

Remark 24. The trivial extensions of algebras are positively graded self-injective algebras
of Gorenstein parameter 1. Thus Theorem 22 contains Theorem 19.

Next we show a concrete examples.

Example 25. We consider A := K|x]/(2"™!), and define a grading on A by degz := 1.
Then A is a positively graded self-injective algebra of Gorenstein parameter n.

Since the global dimension of Ay = K is equal to zero, mod”A has a tilting object by
Theorem 11. Let T be the object in mod”A which was defined in (3.1). Since A has a
unique chain

AD (2)/(@"h) D (&%) /(&™) D+ D (a")/ (2"
of Z-graded A-submodules of A, it is easy to calculate that the endomorphism algebra

[':= End,(T)o of T is isomorphic to the n x n upper triangular matrix algebra over K.
By Theorem 12, there exists a triangle-equivalence

mod”A ~ D" (modI).

We observe the above triangle-equivalences by considering the case that n = 2, namely
the case that A = KJz]/(z®). For i = 1,2, we put X' := (z')/(2?®) the Z-graded A-
submodule of A. Then we have a chain A D X! D X? of Z-graded A-submodules of A. It
is known that {X%(j) | i = 1,2, j € Z} is a complete set of indecomposable non-projective

Z-graded A-modules.
The Auslander-Reiten quiver of mod?A is as follows.

}1(—2)< rrrrrrrr XU(—1)= ol XY= XY(2)
X2(<2)< - >(—1)< rrrrrrrr \X CX(1)= o X2(2)

Here dotted arrows mean the Auslander-Reiten translation in mod?A. We can observe
that the Auslander-Reiten translation coincides with the graded shift functor (—1).
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Next we write the Auslander-Reiten quiver of DP(modI'). In this case, I' = End 4 (7)o
is isomorphic to 2 x 2 upper triangular matrix algebra over K. We put P! := (KK),
P? := (0K) and I' := (K0). It is known that the set {P', P?, I'} is a complete set of
indecomposable I'-modules, and the Auslander-Reiten quiver of D”(modI') is as follows.

11[1] )

P P
Here dotted arrows mean the Auslander-Reiten translatlon in Db(modF).
From shape of the above Auslander-Reiten quivers, one can see that mod”A and

D"(modI") should be equivalent to each other. In fact, we gave a triangle-equivalence
between those.
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The notion of recollement of triangulated categories was introduced in [5] as an analogue
of short exact sequence of modules or groups. In representation theory of algebras it
provides us with reduction techniques, which have proved very useful, for example, in

e proving conjectures on homological dimensions, see [9];
e computing homological invariants, see [11, 12];
o classifying t-structures, see [14].

In this note I will survey on some recent progress in the study of recollements of derived
module categories.

1. RECOLLEMENTS

Let k be a field. For a k-algebra A denote by D(A) = D(Mod A) the (unbounded)
derived category of the category Mod A of right A-modules. The objects of D(A) are
complexes of right A-modules. The category D(A) is triangulated with shift functor ¥
being the shift of complexes. See [10] for a nice introduction on derived categories.

A recollement of derived module categories is a diagram of derived module categories
and triangle functors

(1.1) D(B)

where A, B and C' are k-algebras, such that

(1) (i*,i, = 4,4') and (4, 5" = j7*, j.) are adjoint triples;
(2) ji, s and j, are fully faithful;
(3) j*i, = 0;

The detailed /final/ version of this paper will be /has been/ submitted for publication elsewhere.
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(4) for every object M of D(A) there are two triangles
WitM —— M —— j,j*M — Yii'M
and
gitM ——= M —— i, i*M — %5.5'M |
where the four morphisms starting from and ending at M are the units and counits.
Necessary and sufficient conditions under which such a recollement exists were discussed
in [13, 16].
Example 1. Let A be the path algebra of the Kronecker quiver
1—=2.

The trivial path e; at 1 is an idempotent of A and e; A is a projective A-module. The
following diagram is a recollement

L L
? @aA/Aerl A 7 Qeqde 1A
L
D(A/AelA) -7 ®A/A61AA/A€1A D(A) ? é)AAel D(elAel)
RHom 4 (A/Ae1 A,?) RHom,; e (Ae1,?)

Note that both e; Ae; and A/Ae; A are isomorphic to k.

2. ALGEBRAIC STRATIFICATIONS OF DERIVED MODULE CATEGORIES

Let A be an algebra. An algebraic stratification of D(A) is a sequence of iterated non-
trivial recollements of derived module categories. It can be depicted as a binary tree as
below, where each edge represents an adjoint triple of triangle functors and each hook
represents a recollement
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The leaves of the tree are the simple factors of the stratification. The following questions
are basic:

(a) Does every derived module category admit a finite algebraic stratification?

(b) Do two finite algebraic stratifications of a derived module category have the same
number of simple factors? Do they have the same simple factors (up to triangle
equivalence and up to reordering)?

(c) Which derived module categories occur as simple factors of some algebraic strati-
fications?

The question (c¢) will be discussed in the next section. The questions (a) and (b) ask for
a Jordan—Holder type result for derived module categories. For general (possibly infinite-
dimensional) algebras the answers are negative. Below we give some (counter-)examples.

Example 2. ([2]) Let A =[]y k. Then D(A) does not admit a finite algebraic stratifica-
tion.

Example 3. ([6]) Let A be as in Example 1. Let V' be a regular simple A-module, namely,
V' corresponds to one of the following representations of the Kronecker quiver

k——=k (\ek), k——=k.
A 1
Let ¢ : A — Ay be the corresponding universal localisation. Then T'= A & Ay /¢(A) is
an (infinitely generated) tilting A-module. We refer to [6] for the unexplained notions.
Let B = End4(T"). Then there are two algebraic stratifications of D(B) of length 3 and
2 respectively :

D(B) D(B)
D(k(t)) D(4) D(k[t]) D(k[t])
/ \
D(k) D(k)

Examples of this type are systematically studied in [7].

Notice that the algebra B in the preceding example is infinite-dimensional. For finite-
dimensional algebras, the questions (a) and (b) are open. For piecewise hereditary algebras
the answers to them are positive. Recall that a finite-dimensional algebra is piecewise
hereditary if it is derived equivalent to a hereditary abelian category.

Theorem 4. ([1, 3]) Let A be a piecewise hereditary algebra. Then any algebraic stratifi-
cation of D(A) has the same set (with multiplicities) of simple factors: they are precisely
the derived categories of the endomorphism algebras of the simple A-modules.
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3. DERIVED SIMPLE ALGEBRAS

An algebra is said to be derived simple if its derived category does not admit any
non-trivial recollements of derived module categories. For example, the field k is derived
simple. Derived simple algebras are precisely those algebras whose derived categories
occur as simple factors of some algebraic stratifications.

Example 5. ([17, 4]) Let n € N. Let A be the algebra given by the quiver

1—2

B

with relations (af5)" = 0 = (fa)™ or with relations (af)"a = 0 = B(af)". Then A is
derived simple.

Example 6. ([8]) There are finite-dimensional derived simple algebras of finite global
dimension. In [8], Happel constructed a family of finite-dimensional algebras A,, (m € N)
such that

— the global dimension of A,, is 6m — 3,

— A, is derived simple.
All these algebras have exactly two isomorphism classes of simple modules. For example,
Ay is given by the quiver

1 =522
v

with relations fa = 0 = vf.

The classification of derived simple algebras turns out to be a wild problem. Besides
those in the above examples, only a few families of algebras have been shown to be derived
simple.

Theorem 7. The following algebras are derived simple:

(a) ([2]) local algebras,

(b)

([2
(c) ([4]) indecomposable commutative algebras,
([

(d)

Sketch of the proof for (d): First recall that a block of an algebra is an indecomposable
algebra direct summand.

)
|) simple artinian algebras,
)

15]) blocks of finite group algebras.

Step 1: Let A, B and C be finite-dimensional algebras such that there is a rec-
ollement of the form (1.1). Then i.(B) and j(C) has no self-extensions. Moreover,
i.(B) € D’(mod A), ji(C) € K®(proj A) and i*(A) € K°®(proj B). Here D’(mod) denotes
the bounded derived category of finite-dimensional modules and K®(proj) denotes the ho-
motopy category of bounded complexes of finite-dimensional projective modules. They
can be considered as triangulated subcategories of the (unbounded) derived category.
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Step 2: Let A be a finite-dimensional symmetric algebra, i.e. D(A) = A as A-A-
bimodules. Here D = Homy(?, k) is the k-dual. Then for M, N € K®(proj A), we have

DHomy (M, N) = Hom (N, M).

Step 3: Let A be a finite-dimensional symmetric algebra satisfying the following con-
dition
(#) for any finite-dimensional A-module M, the space @D, , Exty (M, M) is infinite-
dimensional.
Let M € D°(mod A). Then either M € K®(proj A) or the space @, , Homu (M, X' M) is
infinite-dimensional.

Step 4: Let G be a finite group. Then the group algebra kG satisfies the condition (#).
So each block of kG is a finite-dimensional indecomposable symmetric algebra satisfying
the condition (#).

Step 5: Let A be a finite-dimensional indecomposable symmetric algebra satisfying the
condition (#). Then A is derived simple.

To show this, suppose on the contrary that there is a non-trivial recollement of the
form (1.1). Then there is a triangle

(3.1) Jij'(A) —= A — i,i*(A) —= X515 (A).

By Steps 1 and 3, we know that i,(B) € K°(projA), which implies that i,i*(A) €
K"(proj A), and hence jij'(A) € K°(proj A) as well. For any n € Z we have

(3.2) Hom.a (jij' (A), B"i.i* (A)) = Homa(j*(A), £"j"i.i"(A)) = 0,

where the first equality follows from the adjointness of j; and j*, and the second one

follows from the fact that j*i, = 0 (the third condition in the definition of a recollement).
It then follows from the formula in Step 2 that for any n € Z

(3.3) Hom 4 (i,i*(A), £"j,5' (A)) = 0.

Taking n = 1, we see that the triangle (3.1) splits, and hence A = j5'(A) @ i,i*(A). The
formulas (3.2) and (3.3) for n = 0 say that there are no morphisms between jij'(A) and
i+i*(A). Thus we have

A =Endy(A) = Enda(jij'(A) @ i,i*(A)) = End4(j15'(A)) ® Enda(i,i*(A)),

contradicting the assumption that A is indecomposable. 0
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RECOLLEMENTS GENERATED BY IDEMPOTENTS AND
APPLICATION TO SINGULARITY CATEGORIES

DONG YANG

ABSTRACT. In this note I report on an ongoing work joint with Martin Kalck, which
generalises and improves a construction of Thanhoffer de Volcsey and Van den Bergh.
Key Words:  Recollement, Singularity category, Non-commutative resolution.
2010 Mathematics Subject Classification:  16E35, 16E45, 16G50.

In [15] Thanhoffer de Vélesey and Van den Bergh showed that the stable category of
maximal Cohen-Macaulay modules over a local complete commutative Gorenstein algebra
with isolated singularity can be realized as the triangle quotient of the perfect derived
category by the finite-dimensional category of a certain nice dg algebra constructed from
the given Gorenstein algebra. We generalises and improves their construction by studying
recollements of derived categories generated by idempotents.

1. RECOLLEMENTS GENERATED BY IDEMPOTENTS

Let k be a field, let A be a k-algebra and e € A be an idempotent. Let D(A) denote
the (unbounded) derived category of the category of right modules over A. This is a
triangulated category with shift functor ¥ being the shift of complexes. Consider the
following standard diagram

i* J
/\ /A‘\
(1.1) D(A/AeA) —iv=i—— D(A) —j'=j*— D(eAe)
\_/ \_/
i Jx
where
L L
=7 ®A A/AeA, j! =7 ®eAe eA,
i, = RHomu,4c4(A/AeA,?), j' = RHomy(eA,?),
L L
i =7 ®a/aea AJAeA, Jr=7®a Ae,
i' = RHom 4 (A/AeA,?), J» = RHom 4. (Ae, 7).

One asks when this diagram is a recollement ([3]), i.e. the following conditions hold
(1) (i*,i, = 0,4') and (4, j' = j*, j.) are adjoint triples;
(2r) ji and j, are fully faithful;
(21) 4, =4 is fully faithful;

The detailed version of this paper will be submitted for publication elsewhere.
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(3) j¥i. =0;
(4) for every object M of D(A) there are two triangles

WM —— M —— §,5*M —— Yii' M

and
gitM ——= M —— i M — %55'M |
where the four morphisms starting from and ending at M are the units and counits.

This type of recollements attracts considerable attention, see for example [6, 8, 7, 14]. The
conditions (1) and (3) are easy to check, and it is known that (2r) holds (by applying [11,
Proposition 3.2] to eA). However, in general (21) is not necessarily true, as seen from the
next example.

Example 1. Let A be the finite-dimensional algebra given by the quiver

1&2

B

with relation a8 = 0. Take the idempotent e = ey, the trivial path at the vertex 1. Then
the associated functor i, : D(A/AeA) — D(A) is not fully faithful. Indeed, i.(A/AeA)
is the simple A-module at vertex 2, which has non-vanishing self-extensions in degree 2,
while as an A/AeA-module A/AeA has no self-extensions.

Theorem 2. ([8]) The following conditions are equivalent

(i) the standard diagram (1.1) is a recollement,
(ii) the homomorphism A — A/AeA is a homological epimorphism, i.e. the functor
iv : D(AJ/AeA) — D(A) is fully faithful,
L
(iii) the ideal AeA is a stratifying ideal, i.e. the counit Ae ®q4. eA — A induces an
L
1somorphism Ae Q. eA = AeA.
In general, to make the standard diagram (1.1) a recollement, one needs to replace
A/AeA by a dg (=differential graded) algebra, which, in some sense, enhances A/AeA.

For dg algebras and their derived categories, we refer to [13]. We remark that a k-algebra
can be viewed as a dg k-algebra concentrated in degree 0.

Theorem 3. ([12]) Let A and e € A be as above. There is a dg k-algebra B with a
homomorphism of dg algebras f : A — B and a recollement of derived categories

Y N
D(B) —i.=i—> D(A) j'=j*—= D(eAe) ,

such that
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(a) the adjoint triples (i*,i, = iy,i') and (ji, 7' = j*, j.) are given by

L L

=7 XA B, j! =? ®6A6 GA,

i, = RHomp(B,?), j' = RHomy(eA,?),
L L

0 :?®BB7 j* :?®AA€7

i' = RHomy(B,?), 7. = RHom4.(Ae,?),

where B is considered as a left A-module and as a right A-module via the homo-
morphism f;

(b) the degree i component B of B vanishes for i > 0;

(c) the 0-th cohomology H°(B) of B is isomorphic to A/AcA.

As a consequence of the recollement, there is a triangle equivalence
per(B) = (K°(proj A)/ thick(eA))~.

Here per(B) is the smallest triangulated subcategory of D(B) which contains B and which
is closed under taking direct summands, K®(proj A) is the homotopy category of bounded
complexes of finitely generated projective A-modules, thick(eA) is the smallest triangu-
lated subcategory of K®(proj A) which contains eA and which is closed under taking direct
summands, and ()* denotes the idempotent completion.
Assume further that A/AeA is finite-dimensional and that each simple AJ/AeA-module
has finite projective dimension over A. Then
(d) HY(B) is finite-dimensional over k for any i € Z, equivalently, per(B) is Hom-
finite, i.e. Hom(M, N) is finite-dimensional over k for any M, N € per(B),
(e) Dysa(B) C per(B), here Dyqa(B) denotes the full subcategory of D(B) consisting of
those objects whose total cohomology is finite-dimensional over k,
(f) per(B) has a t-structure whose heart is fdmod —A/AeA, the category of finite-
dimensional modules over AJ/AeA,
() if moreover there is a quasi-isomorphism from a dg algebra A = (Ig@, d) to A, where
Q is a graded quiver concentrated in non-positive degrees and d : l@ — l@ s a
continuous k-linear differential satisfying the graded Leibniz rule and d(m) C m?,
such that e is the image of a sum € of some trivial paths of Q, then B is quasi-
isomorphic to A/Zléfl. Here lg@ is the completion of the path algebra k@) with
respect to the m-adic topology in the category of graded algebras for the ideal m
of kQ generated by all arrows, and AEA is the closure of AéA under the m-adic
topology for the ideal m oflga) generated by all arrows.

Thanks to the following lemma due to Keller, Theorem 3 (g) becomes practical when
the global dimension of A is 2.

Lemma 4. Let A = k/@/@ be of global dimension 2, where Q)" is a finite (ordinary)
quiver and R is a finite set of minimal relations. Let Q) be the graded quiver obtained
from Q' by adding an arrow p, of degree —1 from the source of r to the target of r for

—264—



each relation r € R. Let d be the unique continuous k-linear automorphism of@ which
satisfies the graded Leibniz rule and which takes p, to r for each relation r € R. Then
there is a quasi-isomorphism from (kQ,d) to A.

Example 5. Let A be as in Example 1. Let @ be the graded quiver

1=—=2 »
PR
where a and [ are in degree 0 and p is in degree —1. Let d be the unique continuous
k-linear automorphism of l;@ which satisfies the graded Leibniz rule and which takes p
to af8. Then the obvious map from (lg@, d) to A is a quasi-isomorphism.
Let e = e;. The associated dg algebra B as in Theorem 3 is (quasi-isomorphic to) the
dg algebra k[p] with p in degree —1 and with vanishing differential.

2. APPLICATION TO SINGULARITY CATEGORIES

Let k£ be a field, and let R be a Iwanaga—Gorenstein k-algebra, i.e. R is left and right
noetherian as a ring and R has finite injective dimension both as left R-module and as
right R-module. Let mod R denote the category of finitely generated right R-modules.
On the one hand, one defines the singularity category

D.,(R) := D(mod R)/K"(proj R),

which measures the complexity of the singularity of R. (K°(proj R) is considered as the
smooth part.) On the other hand, one defines the category MCM(R) of maximal Cohen—
Macaulay R-modules

MCM(R) := {M € mod R | Ext};(M, R) = 0 for any i > 0}.
The following nice result of Buchweitz relates these categories.

Theorem 6. ([4]) MCM(R) is a Frobenius category whose full subcategory of projective-
injective objects is precisely proj R. Moreover, the embedding MCM(R) — mod R induces a
triangle equivalence from the stable category MCM(R) to the singularity category Dsy(R).

Let My, ..., M, € MCM(R) be pairwise non-isomorphic non-projective R-modules and
let M=ROM & ... M,. Let A= Endg(M) and e = idg considered as an element of
A. Then R = eAe and A/AeA = Endmcm(r)(M). For example, the ring R = k[z]/2* has
a unique simple module S, and letting M = R @ S we obtain that A = Endgr(M) is the
algebra given in Example 1.

There is always an embedding of K°(proj R) into K°(proj A) with essential image being
thick(eA). If the following condition is satisfied

(c1) A has finite global dimension,

then A becomes a non-commutative/categorical resolution of R. The condition (c1) has
an interesting consequence: the object M generates MCM(R) as a triangulated category.
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Cluster-tilting theory comes into the story because cluster-tilting objects are closely re-
lated to Van den Bergh'’s non-commutative crepant resolutions [16], see [10].

The triangle quotient K°(proj A)/ thick(eA) measures the difference between the reso-
lution and the smooth part of the singularity, see [5]. So K°®(proj A)/ thick(eA) is in some
sense a ‘categorical exceptional locus’. A natural question is: how is K®(proj A)/ thick(eA)
related to Dyy(R)?

Consider the following condition

(c2) MCM(R) is Hom-finite.

Theorem 7. ([12]) Keep the above notations and assume that (c1) and (c2) hold. There
is a dg algebra B with a morphism f : A — B such that f induces a triangle equivalence

per(B) = (K°(proj A)/ thick(eA))~.
Moreover, B satisfies the following properties:
(a) B"=0 for any i >0,
(b) HY(B) = A/AeA,
(¢) Dra(B) C per(B),
(d) per(B) is Hom-finite,
(e) there is a triangle equivalence

Dsy(R)” = (per(B)/Dya(B))*.

Theorem 7 (a—d) are obtained by applying Theorem 3, and part (e) needs more work.
This theorem was proved by Thanhoffer de Vélesey and Van den Bergh in [15] for R
being a local complete commutative Gorenstein k-algebra with isolated singularity. As an
application, they proved the following result, which was independently proved by Amiot,
Iyama and Reiten.

Theorem 8. (]2, 15]) Let d € N. Let G C SLy(k) be a finite subgroup, acting naturally
on S = k[zy,...,14] and let R = SY be the ring of invariants. Then MCM(R) is a
generalized (d — 1)-cluster category in the sense of Amiot [1] and Guo [9].
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INTRODUCTION TO REPRESENTATION THEORY OF
COHEN-MACAULAY MODULES AND THEIR DEGENERATIONS

YUJI YOSHINO

ABSTRACT. This is a quick introduction to the theory of representation theory of Cohen-
Macaulay modules and their degenerations.

1. REPRESENTATION THEORY OF COHEN-MACAULAY MODULES.

Let k be a field and let R be commutative noetherian complete local k-algebra with
unique maximal ideal m. We assume k£ = R/m naturally. Then it is known that there is
a regular local k-subalgebra T' of R such that R is a module-finite T-algebra. (Cohen’s
structure theorem for complete local rings.) Note that 7" is isomorphic to a formal power
series ring over k.

Definition 1. (1) R is called a Cohen-Macaulay ring (a CM ring for short) if R
is free as a T-module.
(2) A finitely generated R-module M is called a Cohen-Macaulay module over R,
or a maximal Cohen-Macaulay module (a CM module or an MCM module for
short) if M is free as a T-module.

Given a CM module M, since M = T™ for some n > 0, we have a k-algebra homomor-
phism R — Endp(M) = T™*" which is a matrix-representation of R over T

In the following we always assume that R is a CM complete local k-algebra. We
denote by mod(R) (res. CM(R) ) the category of finitely generated R-modules (resp. CM
modules over R ) and R-homomorphisms.

CM(R) := { CM modules over R} C mod(R) := {finitely generated R-modules }

Since R is complete, mod(R) and CM(R) are Krull-Schmidt categories. Note that CM(R)
is a resolving subcategory of mod(R) in the following sense: Suppose there is an exact
sequence 0 — L — M — N — 0 in mod(R).

(i) If L, N € CM(R) then M € CM(R).

(ii) If M, N € CM(R) then L € CM(R).

Let d be the Krull-dimension of the ring R (so that we can take T = kl[[t1,...,t4]] on
which R is finite). If d = 1 and if R is reduced, then CM modules are just torsion-free
modules. If d = 2 and if R is normal, then CM modules are nothing but reflexive modules.
In general, if d > 3 and if R is normal, then CM(R) C {reflexive modules} but this is not
necessarily an equality. If R is regular (i.e. gl-dimR < oo) then all CM modules over R
are free.

Let Kg := Homp(R,T) and call it the canonical module of R. Since R is a CM ring,
Kgr € CM(R). For any X € mod(R), we have a natural isomorphism Hompg (X, Kg) =
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Homy (X, T). It follows that Hompg(—, Kg) gives duality CM(R) — CM(R)°. Grothendieck’s
local duality theorem claims the existence of natural isomorphisms

Exty(M, Kr) = Homp(Hy (M), Er(k)) (Vi € N)
whenever R is a CM complete ring and M € mod(R). Thus it is easy to see the following

Lemma 2. The following are equivalent for M € mod(R):
(1) M € CM(R),
(2) Exth(M,Kgr) =0 (Vi>0),
(3) H{(M) =0 (Vj<d),
(4) Extlhy(k, M) =0 (Vi <d).

Now recall that R is called an isolated singularity if R, is a regular local ring for
each prime p # m. It is not hard to prove the following

Lemma 3. Let R be a CM local ring as above. The R is an isolated singularity if and
only if Exty (M, N) is of finite length for each M, N € CM(R).

Definition 4. A CM local ring R is said to be of finite CM representation type if
CM(R) has only a finite number of isomorphism classes of indecomposable modules.

The first celebrated result about finiteness of CM representation type was due to
M. Auslander.

Theorem 5. [Auslander, 1986] Let R be a CM complete local ring. If R is of finite CM
representation type, then R is an isolated singularity.

We prove this theorem by using an idea of Huneke and Leuschke [6]. By virtue of
Lemma 3 it is enough to prove the following:

(*) Let ay, as,as, ... be any countable sequence of elements in m and let M, N € CM(R)
be any indecomposable CM modules. Then there is an integer n such that
ayay - apExtp (M, N) = 0.

Actually this will imply that a power of m annihilates Ext}(M, N), hence the length of
Exty(M, N) is finite. To prove (x), take a o € Extp(M, N) that corresponds to a short
exact sequence 0 : 0 - N — Fy — M — 0. Now assume the corresponding sequence
to a1ay - -+ a0 € Extp(M,N)is 0 = N — E, — M — 0 for any integer n. Note that
each F, is a direct sum of indecomposable CM modules and the multiplicity (or the rank
if it is defined) e(E),) is constantly equal to e(M) + e(N). Therefore the possibilities of
such FE, are finite, and hence there are integers n and r > 0 such that F,, = E, .. By
definition, there is a commutative diagram with exact rows:

ar-ano: 0 sy N - E, — M —— 0
b::an+1---an+7,l l \I/:
ai - Apip0 0 > N > En+r _— M — O,

where the first square is a push-out. Hence,

j
0 N W)

» B, & N —— E,., — 0
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is exact. Since E, = E, ., Miyata’s theorem forces that ({)) is a split monomorphism.
Then one can see that j is also a split monomorphism. (pj 4+ gb = 1y in the local ring
Endg(N).) Hence a; - --a,o = 0 as an element of Exty(M, N). O

By a similar idea to the proof above, Huneke and Leuschke [7] was able to prove the
following theorem which had been conjectured by F.-O.Schreyer in 1987.

Theorem 6. [Huneke-Leuschke 2003] Let R be a CM complete local ring and assume
that R is of countable CM representation type (i.e. CM(R) has only a countable number
of isomorphism classes of indecomposable modules). Then the singular locus of R has at
most one-dimension, i.e. Ry is reqular for each prime p with dim R/p > 1.

(PrROOF) Let {M; | i =1,2,...} be a complete list of isomorphism classes of indecom-
posable CM modules, and set

A = {p € Spec(R) | p = Anng Exty(M;, M;) for some 4,7 and dim R/p = 1},

which is a countable set of prime ideals. Let J be an ideal defining the singular locus of
Spec(R) and we want to show dim R/J < 1. Assume contrarily dim R/J > 2. If p € A
then, since (M;), is not free, we have J C p. Thus J C () ., p. By countable prime
avoidance, there is an f € m\ [J,c, p, and we can find a prime q so that g 2 J + fR and
dimR/q = 1. Set X; = Q%(R/q) the ith syzygy for i > 0. Then X; € CM(R) if i > d
and one can show that Anng Exth(Xy, Xar1) = q. The CM modules Xy and X4, is a
direct sum of indecomposables as X; = @221 M;, and X449 = @f}zl M;, . Thus since
q=,,Anng Extp(M;,, M;,), we have ¢ = Anng Extp(M,,, M;,) for some u,v. Thus
q € A, but this is a contradiction for f € q. O

)

Auslander’s original proof of Theorem 5 uses AR-sequences.

Definition 7. A non-split short exact sequence 0 - N — E 5 M — 0 in CM(R) is
called an AR-sequence (ending in M) if

(1) M and N are indecomposable,
(2) if f: X — M is any morphism in CM(R) that is not a splitting epimorphism,
then f factors through p.

We say that the category CM(R) admits AR-sequences if, for any indecomposable M €
CM(R), there is an AR-sequence ending in M.

M.Auslander proved the following theorems.

Theorem 8. Let R be a CM complete local ring and assume that R is of finite CM
representation type. Then CM(R) admits AR-sequences.

Theorem 9. Let R be a CM complete local ring. Then CM(R) admits AR-sequences if
and only if R is an isolated singularity.

The most difficult part of the proofs of Theorems 8 and 9 is to show the implication
"being isolated singularity = admitting AR-sequences”. This implication follows from
the following isomorphism which is called the Auslander-Reiten duality :
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Theorem 10. Assume that a CM complete local ring R is an isolated singularity of
dimension d. Then, for any M, N € CM(R), there is a natural isomorphism

Exth(Homp(N, M), Kg) = Exth(M, Hompg(Qgtr(N), Kg)).

Now we discuss some generalities about stable categories. For this let R be a CM
complete local ring of dimension d. We denote by CM(R) the stable category of CM(R).
By definition, CM(R) is the factor category CM(R)/[R]. Recall that the objects of CM(R)
is CM modules over R, and the morphisms of CM(R) are elements of Homp(M, N) =
Hompg(M,N)/P(M,N) for M, N € CM(R), where P(M, N) denotes the set of morphisms
from M to N factoring through projective R-modules. For a CM module M we denote
it by M to indicate that it is an object of CM(R).

Since R is a complete local ring, note that M is isomorphic to N in CM(R) if and only
if M@®P=Na&(Q in CM(R) for some projective (hence free) R-modules P and Q.

For any R-module M, we denote the first syzygy module of M by Q2zrM. We should
note that {2z M is uniquely determined up to isomorphism as an object in the stable
category. The nth syzygy module Q3 M is defined inductively by Qj3M = €2 R(Q?{IM ),
for any nonnegative integer n.

We say that R is a Gorenstein ring if Kz = R. If R is Gorenstein, then it is easy
to see that the syzygy functor Q4 : CM(R) — CM(R) is an autoequivalence. Hence, in
particular, one can define the cosyzygy functor QI_%I on CM(R) which is the inverse of
Qr. We note from [3, 2.6] that CM(R) is a triangulated category with shifting functor
[1] = Q%' In fact, if there is an exact sequence 0 — L — M — N — 0 in CM(R), then
we have the following commutative diagram by taking the pushout:

0 > L > M » N —— 0
0 > L P Q'L —— 0,
where P is projective (hence free). We define the triangles in CM(R) are the sequences

L—— M N — L[1]

obtained in such a way.
Now we remark one of the fundamental dualities called the Awuslander-Reiten-Serre
duality, which essentially follows from Theorem 10.

Theorem 11. Let R be a Gorenstein complete local ring of dimension d. Suppose that R is
an isolated singularity. Then, for any X, Y € CM(R), we have a functorial isomorphism

Ext®(Homp(X,Y), R) = Hompg(Y, X[d — 1)).
Therefore the triangulated category CM(R) is a (d — 1)-Calabi- Yau category.

2. DEGENERATIONS OF MODULES

Let us recall the definition of degeneration of finitely generated modules over a noe-
therian algebra, which is given in [12].

Let R be an associative k-algebra where k is any field. We take a discrete valuation
ring (V,tV, k) which is a k-algebra and t is a prime element. We denote by K the quotient
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field of V. We denote by mod(R) the category of all finitely generated left R-modules
and R-homomorphisms as before. Then we have the natural functors

mod(R) +—— mod(R ®; V) SN mod(R ®j K),
where r = — ®y V/tV and £ = — @y K. ("r” for residue, and ”¢” for localization.)
Definition 12. For modules M, N € mod(R), we say that M degenerates to N if

there exist a discrete valuation ring (V, ¢V, k) which is a k-algebra and a module @) €
mod(R ®; V') that is V-flat such that ((Q) = M ®; K and r(Q) = N.

The module @), regarded as a bimodule rQy, is a flat family of R-modules with pa-
rameter in V. At the closed point in the parameter space SpecV, the fiber of @) is IV,
which is a meaning of the isomorphism 7(Q)) = N. On the other hand, the isomorphism
0(Q) = M ®; K means that the generic fiber of () is essentially given by M.

Example 13. Let R = k[[z, y]]/(z?), where k is a field. In this case, a pair of matrices

wo=((7).6 7))

over k[[x,y]] is a matrix factorization of z?, giving a CM R-module N that is isomorphic
to an ideal I = (z,y?)R. Thus there is a periodic free resolution of N;

s R2 Y, R2 ¢, g2 Y, g ¥ po s N s 0.

Now we deform the matices to

A (r+ty  y? r—ty —y?
(cD,\I/)_<< —t? :E—ty)’( 2 x+ty

over R ®; V. Since this is a matrix factorization of 2% again, we have a free resolution

2 (Rep V)2 L (Rep V)2 —25 (Re V)? Q 0.
It is obvious to see that 7(Q)) = Q/tQ = N, since ® ®y V/tV = . On the other hand,
0

since t? is a unit in R ®;, K, we have ® @y K = 10

of matrices. Hence, £(Q) = Q: = R ®; K. As a conclusion, we see that R degenerates to
I=(z,y°)R!

Theorem 14 ([12]). The following conditions are equivalent for finitely generated left
R-modules M and N.

(1) M degenerates to N.
(2) There is a short exact sequence of finitely generated left R-modules
¢
0—>ZﬂM@Z—>N—>O,
such that the endomorphism ¥ of Z is nilpotent, i.e. Y™ =0 for n > 1.

O) after elementary transformations

Example 15. In Example 13, we have an exact sequence

(_1’£) -
0 m > Rdm )

such that % : m — m is nilpotent, where m = (z,y)R.

> 1

~
=
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By virtue of this theorem together with a theorem of Zwara [17, Theorem 1], we see that
if R is a finite-dimensional algebra over k, then our definition of degeneration agrees with
the classical (geometric) definition of degenerations using module varieties of R-module
structures.

We prove here the implication (2) = (1).
Suppose that there is an exact sequence of finitely generated left R-modules
(%)

f
0—=+2 — M®dZ— N —Q0,

such that v is nilpotent. Considering a trivial exact sequence

._ (0
O%ZJLQM@Z%M%O,

we shall combine these two exact sequences along a [0, 1]-interval. More precisely, let V'
be the discrete valuation ring k[t] ), where ¢ in an indeterminate over k, and consider a
left R ®; V-homomorphism

g=j@t+fe(l-t) = (1@?—?121@_(?—15)) L@y Vo (MaZ)® V.

We can easily show that g is a monomorphism.
Setting the cokernel of the monomorphism ¢ as ), we have an exact sequence in
modR ®; V:

0= 20 V35 (Z V) (MeRV)—=Q—0.
Since g ®; V/tV = f is an injection and since one can easily show Tor} (Q,V/tV) = 0,

we conclude that ) is flat over V and Q/tQ = N.
Finally note that the morphism g ®j V[%] is essentially the same as the morphism

s
(1 + sw>
—— My Vi & Zer V(3]

where s = 1=t € V[1]. Note that s¢ : Z ®; V[}] = Z ®; V[7] is nilpotent as well as
1, hence 1 + s is an automorphism on Z ®y, V[%] Therefore we have an isomorphism
Q[}] = M @, V[3]. This completes the proof of the theorem. O

Z @y, V3]

We remark from this proof that we can always take k[t];) as V' in Definition 12.

We give an outline of the proof of (1) = (2). (See [12] for the detail.)
We can take @) in Definition 12 so that M ®; V' C (). Then we have an exact sequence

0= Q/(M&p V) - Q/(M @ tV) — Q/tQ — 0

Setting Z = Q/(M ®;. V'), we can see that the middle term will be M @ Z and the right
term is N. O

Lemma 16. If there is an exact sequence 0 — L SMB NS0 mod(R), then M
degenerates to L & N.
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(PROOF)

© (6 1)

0 —— L MoL % NoL — 0
is exact where 0 : L — L is of course nilpotent. O

Such a degeneration given as in the lemma will be called a degeneration by an extension.
There is a degeneration which is not a degeneration by an extension. See the degeneration
of Example 13.

In the rest we mainly treat the case when R is a commutative ring.

Remark 17. Let R be a commutative noetherian algebra over k, and suppose that a finitely
generated R-module M degenerates to a finitely generated R-module N. Then:

(1) The modules M and N give the same class in the Grothendieck group, i.e. [M] = [N]
as elements of Ky(mod(R)). This is actually a direct consequence of 0 — Z — M @
Z — N — 0. In particular, rank M = rank N if the ranks are defined for R-modules.
Furthermore, if (R, m) is a local ring, then e(I, M) = e(I, N) for any m-primary ideal I,
where e(I, M) denotes the multiplicity of M along I.

(2) If L is an R-module of finite length, then we have the following inequalities of
lengths for any integer i:

length (Ext’ (L, M)) < lengthp(Ext% (L, N)),
length (Ext’ (M, L)) < length g (Exth (N, L)).
In particular, when R is a local ring, then
v(M) S v(N), Bi(M) < B(N) and p'(M) < p'(N) (i 20),

where v, 3; and p' denote the minimal number of generators, the ith Betti number and
the 7th Bass number respectively.

(3) We also have pdzM < pdiyN, depth M > depth N and similar inequalities like
G-dimpM < G-dimgN. Roughly speaking, when there is a degeneration from M to N,
then M is a better module than N.

Recall that a finitely generated R-module is called rigid if it satisfies Ext}, (N, N) = 0.

Lemma 18. Let R be a complete local k-algebra and let M, N € mod(R). Assume that
N s rigid. If M degenerates to N, then M = N

(%)

(PROOF) From the sequence 0 — Z —5 M & Z — N — 0, we have an exact sequence

¢
Exty(N, Z) @ Exty(N, M) @ Exth(N, Z) — Extp(N, N),

where 9 is nilpotent and Extp(N, N) = 0. Thus we have Exty(N, Z) = 0. It follows the
first sequence splits, and thus M & Z =2 N @& Z. Since R is complete, it forces M = N. O

We recall the definition of the Fitting ideal of a finitely presented module. Suppose
that a module M over a commutative ring R is given by a finitely free presentation

rm % Rr s M s 0,
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where C' is an n X m-matrix with entries in R. Then recall that the ith Fitting ideal
FR(M) of M is defined to be the ideal I, ;(C) of R generated by all the (n — 4)-minors
of the matrix C. (We use the convention that I.(C) = R for r £ 0 and [,.(C) = 0 for
r > min{m,n}.) It is known that FZ(M) depends only on M and 4, and independent
of the choice of free presentation, and FE(M) C FE(M) C --- C FR(M) = R. The
following lemma will be used to prove the theorem.

Lemma 19. Let f : A — B be a ring homomorphism and let M be an A-module which
possesses a finitely free presentation. Then FP(M ®4 B) = f(F(M))B for all i 2 0.

(PROOF) If M has a presentation A™ SAn 5 M 0, then M ® 4 B has a presentation

B 'Y B 5 M@y B = 0. Thus FE(M @4 B) = Li(f(O)) = f(I,i(C)B =

F(FAQD)B. O

Theorem 20. [Y, 2011 Let R be a noetherian commutative algebra over k, and M and
N finitely generated R-modules. Suppose M degenerates to N. Then we have FE(M) 2
FE(N) for all i = 0.

(PROOF) By the assumption there is a finitely generated R ®; V-module @ such that
Q: = M ®, K and Q/tQ = N, where V = k[t]y) and K = k(t). Note that R ®; V =
STIR[t] where S = k[t]\(t). Since Q is finitely generated, we can find a finitely generated
R[t]-module Q' such that Q' ®pp (R ®, V) =2 Q. For a fixed integer i we now consider
the Fitting ideal J := ]-_iR[t](Q’) € RJt]. Apply Lemma 19 to the ring homomorphism
R[t] = R = R[t]/tR][t], and noting that Q' @z R = N, we have

(2.1) FI(N) = J +tR[t]/tR[t]

as an ideal of R = RJ[t]/tR[t]. On the other hand, applying Lemma 19 to R[t] - R®, K =
T~R[t] where T = k[t]\{0}, we have F/*(M)T'R[t] = JT~'R[t]. Therefore there is an
element f(t) € T such that f(t)J C FE(M)R[t].

Now to prove the inclusion F#(N) € FE(M), take an arbitrary element a € F(N). Tt
follows from (2.1) that there is a polynomial of the form a + byt + bot>+ - - - +b,t" (b; € R)
that belongs to J. Then, we have f(t)(a + bit + bot* + -+ + bt") € Ff(M)R[t]. Since
f(t) is a non-zero polynomial whose coefficients are all in k, looking at the coefficient of
the non-zero term of the least degree in the polynomial f(t)(a+ byt + -- -+ b,t"), we have
that a € FR(M). O

Example 21. Let R = k[[x,y]]/(z? 3*). Note that R is an artinian Gorenstein local ring.
Now consider the modules M) = R/(z — Ay)R for all A € k. We denote by k the unique
simple module R/(z,y)R over R.

(1) R degenerates to M@ M_, for Y\ € k, since there is an exact sequence 0 — M_, —
R — M, — 0.

(2) There is a sequence of degenerations from R @® k? to M, & M,, & k?* for any choice
of A\, € k. (]9, Example 3.1])

(PROOF) There are exact sequences; 0 - m — Rédm/(zy) — R/(xy) — 0,0 — M, —

m—k— 0and 0 — k"=’ R/(vy) = M, — 0 for any A\, € k. Noting m/(zy) = k?,
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we have a sequence of degenerations R ® k* = m @ R/(zy) = (M, ® k)& (My @ k) =
My® M, ®k* O
(3) There is no sequence of degenerations from R to M, & M, if A+ u # 0.

(PrROOF) If there are such degenerations, then we have an inclusion of Fitting ideals;
FE(My @ M,) C FE(R) for all n. Note that FJ*(R) = 0, and

Fo'(My @ M,) = Fo' (M) Fy (M) = (z = Ay)(z — py) R = (A + p)ayR.
Hence we must have A +py = 0. O
This example shows the cancellation law does not hold for degeneration.

Example 22. Let R = k[[t]] be a formal power series ring over a field k£ with one variable
t and let M be an R-module of length n. It is easy to see that there is an isomorphism

(2.2) M=ZR/{t")®--- & R/({™),
where
(2.3) pZpp>->py>0 and Y pi=n.

=1

In this case the ¢th Fitting ideal of M is given as
JT_'ZR(M) — (tpi+1+"‘+p'n) (Z > 0)

We denote by pys the sequence (p1,ps,- -+, pn) of non-negative integers. Recall that such
a sequence satisfying (2.3) is called a partition of n.

Conversely, given a partition p = (p1, pa, - -+ , pn) of n, we can associate an R-module of
length n by (2.2), which we denote by M (p). In such a way there is a one-one correspon-
dence between the set of partitions of n and the set of isomorphism classes of R-modules
of length n.

Let p = (p1,p2, -+ ,pn) and ¢ = (q1,G2, -+ ,qn) be partitions of n. Then we denote
p = q if it satisfies 5:1 Di > Zle q; for all 1 < 7 < n. This > is known to be a partial
order on the set of partitions of n and called the dominance order.

Then we can show that there is a degeneration from M to N if and only if py; > pn.

3. STABLE DEGENERATIONS OF CM MODULES

In this section we are interested in the stable analogue of degenerations of Cohen-
Macaulay modules over a commutative Gorenstein local ring. For this purpose, (R, m, k)
always denotes a Gorenstein local ring which is a k-algebra, and V' = k[t],) and K = k(t)
where t is a variable. We note that R ®;, V and R ®; K are Gorenstein as well as R and
we have the equality of Krull dimension;

dmR®,V =dimR+1, dimR®, K =dimR.

If dim R = 0 (i.e. R is artinian), then the rings R ®; V and R®; K are local. However
we should note that R ®;, V and R ®; K will never be local rings if dim R > 0. Since
R ®;, K is non-local, there may be a lot of projective modules which are not free.
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Example 23. Let R = k[[z, y]]/(z* —y?). It is known that the maximal ideal m = (z,y) is
a unique non-free indecomposable Cohen-Macaulay module over R. See [10, Proposition
5.11]. In fact it is given by a matrix factorization of the polynomial z3 — 3?;

eo=((a3) (5 7))

Therefore there is an exact sequence

y R2 25 gt Y, g2 £, R m 0,
Now we deform these matrices and consider the pair of matrices over R ®; K;

- y—at x—t? y+at —x+t?
(@7\1/)_(( x? y—i—azt)’ (—x2 y — at '

Define the R ®; K-module P by the following exact sequence;
5 (Rep K)? —2 (Rey K)? —25 (Rey K)? s P > 0.

In this case we can prove that P is a projective module of rank one over R ®, K but non-free.
(Hence the Picard group of R ®;, K is non-trivial.)

Let A be a commutative Gorenstein ring which is not necessarily local. We say that a
finitely generated A-module M is CM if Ext’ (M, A) = 0 for all i > 0. We consider the
category of all CM modules over A with all A-module homomorphisms:

CM(A) :={M € mod(A) | M is a Cohen-Macaulay module over A}.

We can then consider the stable category of CM(A), which we denote by CM(A). This
is similarly defined as in local cases, but the morphisms of CM(A) are elements of
Hom,(M,N) := Homa(M,N)/P(M,N) for M,N € CM(A), where P(M,N) denotes
the set of morphisms from M to N factoring through projective A-modules (not neces-
sarily free).

Note that M = N in CM(A) if and only if there are projective A-modules P; and P,
such that M & P, = N & P, in CM(A).

Under such circumstances it is known that CM(A) has a structure of triangulated
category as well as in local cases.

Let x € A be a non-zero divisor on A. Note that x is a non-zero divisor on every
CM module over A. Thus the functor — ®4 A/xA sends a CM module over A to that
over A/zA. Therefore it yields a functor CM(A) — CM(A/xA). Since this functor maps
projective A-modules to projective A/xA-modules, it induces the functor R : CM(A) —
CM(A/zA). It is easy to verify that R is a triangle functor.

Now let S C A be a multiplicative subset of A. Then, by a similar reason to the above,
we have a triangle functor £ : CM(A) — CM(S~'A) which maps M to S™'M.

As before, let (R, m, k) be a Gorenstein local ring that is a k-algebra and let V' = k[t]
and K = k(t). Since R®,V and R®y K are Gorenstein rings, we can apply the observation
above. Actually, t € R ®; V is a non-zero divisor on R ®; V' and there are isomorphisms
of k-algebras; (R ®; V)/t(R®, V) 2 R and (R®; V); = R ®; K. Thus there are
triangle functors £ : CM(R ®; V) — CM(R ®; K) defined by the localization by ¢, and
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R : CM(R®; V) — CM(R) defined by taking —®@pe,v (RQ%V)/t(RRLV) = —@y V/tV.
Now we define the stable degeneration of CM modules.

Definition 24. Let M, N € CM(R). We say that M stably degenerates to N if there
is a Cohen-Macaulay module @ € CM(R®, V') such that £(Q) = M @ K in CM(R®}; K)
and R(Q) = N in CM(R).

Lemma 25. [15, Lemma 4.2, Proposition 4.3]

(1) Let M, N € CM(R). If M degenerates to N, then M stably degenerates to N.
(2) Suppose that there is a triangle in CM(R);

L -5 M -5 N 25 L1
Then M stably degenerates to L & N.

Lemma 26. [15, Proposition 4.4] Let M, N € CM(R) and suppose that M stably degen-
erates to N. Then the following hold.

(1) M[1] (resp. M[—1]) stably degenerates to N[1] (resp. N[—1]).
(2) M* stably degenerates to N*, where M* denotes the R-dual Hompg(M, R).

Lemma 27. [15, Proposition 4.5] Let M, N, X € CM(R). If M & X stably degenerates
to N, then M stably degenerates to N & X[1].

Remark 28. The zero object in CM(R) can stably degenerate to a non-zero object. In
fact, in Example 13 the free module R degenerates to an ideal N. Hence it follows from
Proposition 25(1) that 0 = R stably degenerates to N.

For another example, note that there is a triangle
X 0 — X[1] — X[1],
for any X € CM(R). Hence 0 stably degenerates to X & X[1] by Proposition 25(2).

Let (R, m, k) be a Gorenstein complete local k-algebra and assume for simplicity that
k is an infinite field. For Cohen-Macaulay R-modules M and N we consider the following
four conditions:
(1) R™ @ M degenerates to R" @ N for some m,n € N.
(%)
(2) There is a triangle Z S MaZ— N Z[1] in CM(R), where ¢ is a nilpotent
element of End,(Z).
(3) M stably degenerates to V.
(4) There exists an X € CM(R) such that M & R™ & X degenerates to N & R" & X
for some m,n € N.

In [15] we proved the following implications and equivalences of these conditions:
Theorem 29. (1) In general, (1) = (2) = (3) = (4) holds.
(17) If dim R = 0, then (1) < (2) < (3) holds.
(7i1) If R is an isolated singularity of any dimension, then (2) < (3) holds.
(tv) There is an example of isolated singularity of dim R = 1 for which (2) = (1) fails.
(v) There is an example of dim R = 0 for which (4) = (3) fails.
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We give here an outline of some of the proofs.

Proof of (1) = (2) : By Theorem 14, there exists an exact sequence

6

0—>Z@> (R"eM)®Z - (R"®N)—0,
where 1 is nilpotent. In such a case Z ia a Cohen-Macaulay module as well. Then
converting this into a triangle in CM(R), and noting that the nilpotency of ¢ € Endg(7)
forces the nilpotency of 1) € Endg(Z), we can see that (2) holds. O

~~
[&le
SN~—

Proof of (2) = (3): Suppose that there exists a triangle Z
where 1) is nilpotent. Then we have a triangle of the form;

Mo Z—

=

— Z|[1],

(:f0)
Z& V"5 Moy VeZeV — Q — Z V[l
for a @ € CM(R ®; V). Note L(t + ¢) is an isomorphism in CM(R ®; K). Thus
L£(Q) = LM ®, V) = M & K. On the other hand, since R(t + ) = ¢, R(Q) = N.
Thus M stably degenerates to N. O

Proof of (3) = (1) when dim R = 0: In this proof we assume dim R = 0. Suppose that
M stably degenerates to N. Then there is a @ € CM(R ®; V') with £(Q) = M ®; K
and R(Q) = N. By definition, we have isomorphisms Q; @ P, = (M @, K) ® P, in
CM(R ®; K) for some projective R ®; K-modules Py, P, and Q/tQ & R* & N & R?
in CM(R) for some a,b € N. Since R ®; K is a local ring, P, and P, are free. Thus
Qi (RO K)° = (M ®, K)® (R®, K)®for some ¢,d € N. Setting Q = Q@ (R®;, V)**,
we have isomorphisms

Q= (Mae R e K, Q[IQ=NaR"
Since Q is V-flat, M & Rt degenerates to N & RV*e. O

The difficult part of the proof is to show the implications (3) = (4) and (3) = (2).
Actually it is technically difficult to show the existence of a Cohen-Macaulay module Z
and X in each case. To get over this difficulty, we use the following lemma called Swan’s
Lemma in Algebraic K-Theory.

Lemma 30. [8, Lemma 5.1] Let R be a noetherian ring and t a variable. Assume that an
R[t]-module L is a submodule of W ®g R[t] with W being a finitely generated R-module.
Then there is an exact sequence of R[t]-modules;

0 —— X ®grR[t] —— Y ®r R[{] > L > 0,
where X and Y are finitely generated R-modules.

By virtue of Swan’s lemma we can prove the following proposition that will play an
essential role in the proof of Theorem 29.

Proposition 31. Let R be a Gorenstein local k-algebra, where k is an infinite field.
Suppose we are given a Cohen-Macaulay R®y V-module P" satisfying that the localization
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P = P} by t is a projective R @y K-module. Then there is a Cohen-Macaulay R-module
X with a triangle in CM(R ®, V') of the following form:

(3.1) X@pV — X@,V > P! > X @ V[1].

As a direct consequence of Theorem 29, we have the following corollary.

Corollary 32. Let (Ry,my,k) and (Rz,mg, k) be Gorenstein complete local k-algebras.
Assume that the both Ry and Ry are isolated singularities, and that k is an infinite field.
Suppose there is a k-linear equivalence F : CM(R;) — CM(Rs) of triangulated categories.
Then, for M, N € CM(R,), M stably degenerates to N if and only if F(M) stably
degenerates to F(N).

Remark 33. Let (Ry,my, k) and (R, my, k) be Gorenstein complete local k-algebras as
above. Then it hardly occurs that there is a k-linear equivalence of categories between
CM(R;) and CM(Ry). In fact, if it occurs, then R; is isomorphic to Rs as a k-algebra.
(See [4, Proposition 5.1].)

On the other hand, an equivalence between CM(R;) and CM(Ry) may happen for non-
isomorphic k-algebras. For example, let Ry = k[[z,y, 2]]/(z"+y*+2?) and Ry = k[[z]]/(z")
with characteristic of k& not being 2 and n € N. Then, by Knoerrer’s periodicity ([10, The-
orem 12.10]), we have an equivalence CM(k[[z,y, 2]]/(z™ + y* + 2%)) = CM(k[[z]]/(z")).
Since k[[z]]/(2") is an artinian Gorenstein ring, the stable degeneration of modules over
k[[z]]/(x™) is equivalent to a degeneration up to free summands by Theorem 29(ii). More-
over the degeneration problem for modules over k[[z]]/(z™) is known to be equivalent to
the degeneration problem for Jordan canonical forms of square matrices of size n. (See Ex-
ample 22.) Thus by virtue of Corollary 32, it is easy to describe the stable degenerations
of Cohen-Macaulay modules over k[[x,y, z]]/(z" + y* + 2?).
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SUBCATEGORIES OF EXTENSION MODULES
RELATED TO SERRE SUBCATEGORIES

TAKESHI YOSHIZAWA

ABSTRACT. We consider subcategories consisting of the extensions of modules in two
given Serre subcategories to find a method of constructing Serre subcategories of the
module category. We shall give a criterion for this subcategory to be a Serre subcategory.

1. INTRODUCTION

Let R be a commutative Noetherian ring. We denote by R-Mod the category of R-
modules and by R-mod the full subcategory consisting of finitely generated R-modules.

In [2], P. Gabriel showed that one has lattice isomorphisms between the set of Serre
subcategories of R-mod, the set of Serre subcategories of R-Mod which are closed under
arbitrary direct sums and the set of specialization closed subsets of Spec (R). By this
result, Serre subcategories of R-mod are classified. However, it has not yet classified
Serre subcategories of R-Mod. In this paper, we shall give a way of constructing Serre
subcategories of R-Mod by considering subcategories of extension modules related to Serre
subcategories.

2. THE DEFINITION OF A SUBCATECORY OF EXTENSION MODULES
BY SERRE SUBCATEGORIES

We assume that all full subcategories of R-Mod are closed under isomorphisms. We
recall that a subcategory & of R-Mod is said to be Serre subcategory if the following
condition is satisfied: For any short exact sequence

O—L—M-—=N-=0

of R-modules, it holds that M is in § if and only if L and N are in §. In other words,
S is called a Serre subcategory if it is closed under submodules, quotient modules and
extensions.

We give the definition of a subcategory of extension modules by Serre subcategories.

Definition 1. Let S; and S, be Serre subcategories of R-Mod. We denote by (S1,S) a
subcategory consisting of R-modules M with a short exact sequence

0-X—-M-—=Y —0
of R-modules where X is in & and Y is in S,, that is

there are X € §; and Y € S; such that
(81,82) = < M € R-Mod 0=-X—->M-=>Y—>0
is a short exact sequence.

The detailed version of this paper has been submitted for publication elsewhere.
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Remark 2. Let §; and Sy be Serre subcategories of R-Mod.

(1) Since the zero module belongs to any Serre subcategory, one has S; C (S, S2) and
S C (81, S2).

(2) It holds Sl 2 82 if and OIlly if (31, 82) = 81.
(3) Tt holds S; C s if and only if (S1,Ss) = S.
(4) A subcategory (S1,Ss) is closed under finite direct sums.

Example 3. We denote by Sy, the subcategory consisting of finitely generated R-
modules and by Sa,4, the subcategory consisting of Artinian R-modules. If R is a com-
plete local ring, then a subcategory (Sy.q., Sarin) is known as the subcategory consisting
of Matlis reflexive R-modules. Therefore, (Sy,., Sarin) is a Serre subcategory of R-Mod.

The following example shows that a subcategory (S;,S2) needs not be a Serre subcat-
egory for Serre subcategories §; and Ss.

Example 4. We shall see that the subcategory (Sartin, Sy,.) needs not be closed under
extensions.

Let R be a one dimensional Gorenstein local ring with a maximal ideal m. Then one
has a minimal injective resolution

0—-R— & Er(R/p)— Er(R/m)—0

p € Spec(R)
htp =0

of R. (Er(M) denotes the injective hull of an R-module M.) We note that R and
Er(R/m) are in (Sartin, St.q.)-

Now, we assume that a subcategory (Sartin,Srgy.) is closed under extensions. Then
Er(R) = @np=oLr(R/p) is in (Sartin, Sr.g.). 1t follows from the definition of (Sariin, Sr.g.)
that there exists an Artinian R-submodule X of Eg(R) such that Er(R)/X is a finitely
generated R-module.

If X =0, then Eg(R) is a finitely generated injective R-module. It follows from the
Bass formula that one has dim R = depth R = inj dim Er(R) = 0. However, this equality
contradicts dim R = 1. On the other hand, if X # 0, then X is a non-zero Artinian
R-module. Therefore, one has Assg(X) = {m}. Since X is an R-submodule of Er(R),
one has

Assr(X) C Assg(Er(R)) = {p € Spec(R) | htp = 0}.
This is contradiction as well.

3. THE MAIN RESULT

In this section, we shall give a criterion for a subcategory (Sy,S2) to be a Serre subcat-
egory for Serre subcategories S; and Ss.

First of all, it is easy to see that the following assertion holds.

Proposition 5. Let S; and Sy be Serre subcategories of R-Mod. Then a subcategory
(81, 82) is closed under submodules and quotient modules.
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Lemma 6. Let S; and Sy be Serre subcategories of R-Mod. We suppose that a sequence
0—=L—=M— N —0 of R-modules is exact. Then the following assertions hold.

(1) ]fL €S8 and N € (81,82), then M € (81,82).
(2) [fL € (81,82) and N € 82, then M € (81,82).

Proof. (1) We assume that L is in S; and N is in (81, Ss). Since N belongs to (S1,Sz),
there exists a short exact sequence

0—-X—>N—-=Y—0

of R-modules where X is in &7 and Y is in S;. Then we consider the following pull buck
diagram

0 0
0 y L —— X' » X > 0
I
0 y L —— M » N > 0
Y:Y
0 0

of R-modules with exact rows and columns. Since &) is a Serre subcategory, it follows
from the first row in the diagram that X’ belongs to S;. Consequently, we see that M is
in (S1,Ss) by the middle column in the diagram.

(2) We can show that the assertion holds by the similar argument in the proof of (1). O

Now, we can show the main purpose of this paper.

Theorem 7. Let S, and Sy be Serre subcategories of R-Mod. Then the following condi-
tions are equivalent:

(1) A subcategory (S1,S2) is a Serre subcategory;
(2) One has (82781) g (81,82).

Proof. (1) = (2) We assume that M is in (S2,S1). By the definition of a subcategory
(S2,81), there exists a short exact sequence

0O—-Y—->M-—-X—>0

of R-modules where X isin &; and Y is in S;. We note that X and Y are also in (Si, Ss).
Since a subcategory (S, Sz) is closed under extensions by the assumption (1), we see that
M is in (81, Ss).
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(2) = (1) We only have to prove that a subcategory (Si,Ss) is closed under extensions
by Proposition 5. Let 0 - L — M — N — 0 be a short exact sequence of R-modules
such that L and N are in (S;,S2). We shall show that M is also in (S, Ss).

Since L is in (81, 8s), there exists a short exact sequence
0-S—>L—->L/S—0

of R-modules where S is in Sy such that L/S is in S;. We consider the following push
out diagram

0 0
S _ —— S
0 L y M N 0
I
0 L/S y P N 0
0 0

of R-modules with exact rows and columns. Next, since N is in (S;,S,), we have a short
exact sequence

0—-T—N-—=>N/T—0

of R-modules where T is in Sy such that N/T is in So. We consider the following pull
back diagram

;
T
!
!

of R-modules with exact rows and columns.
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In the first row of the second diagram, since L/S is in S and T is in &;, P’ is in
(S2,S81). Now here, it follows from the assumption (2) that P’ is in (S1,Ss). Next, in the
middle column of the second diagram, we have the short exact sequence such that P’ is
in (81,82) and N/T is in S;. Therefore, it follows from Lemma 6 that P is in (51, Ss).
Finally, in the middle column of the first diagram, there exists the short exact sequence
such that S is in & and P is in (81, S2). Consequently, we see that M is in (S;,S,) by
Lemma 6.

The proof is completed. O

Corollary 8. A subcategory (Syy.,S) is a Serre subcategory for a Serre subcategory S of
R-Mod.

Proof. Let § be a Serre subcategory of R-Mod. To prove our assertion, it is enough to
show that one has (S,Sr,) C (Sy,.,S) by Theorem 7. Let M be in (S,Sy,.). Then
there exists a short exact sequence 0 - Y — M — M/Y — 0 of R-modules where Y
is in S such that M/Y is in Sy,. It is easy to see that there exists a finitely generated
R-submodule X of M such that M = X +Y. Since X @Y is in (Sy,,S) and M is a
homomorphic image of X @Y, M is in (Sy,.,S) by Proposition 5. O

We note that a subcategory S a4, consisting of Artinian R-modules is a Serre subcat-
egory which is closed under injective hulls. (Also see [1, Example 2.4].) Therefore we
can see that a subcategory (S, Sain) is also Serre subcategory for a Serre subcategory of
R-Mod by the following assertion.

Corollary 9. Let Sy be a Serre subcategory of R-Mod which is closed under injective
hulls. Then a subcategory (S1,S2) is a Serre subcategory for a Serre subcategory S; of
R-Mod.

Proof. By Theorem 7, it is enough to show that one has (S, S1) C (S1,Ss).
We assume that M is in (S, S1) and shall show that M is in (81, S2). Then there exists
a short exact sequence
0—=Y—->M-—->X—=0

of R-modules where X isin &7 and Y is in S, Since Ss is closed under injective hulls, we
note that the injective hull Fr(Y') of Y is also in S;. We consider a push out diagram

0 —— Y s M s> X > 0
| | H
0 —— Er(Y) > T > X > 0

of R-modules with exact rows and injective vertical maps. The second exact sequence
splits, and we have an injective homomorphism M — X & Eg(Y). Since there is a short
exact sequence
0—-X—=>X®ER(Y)—Er(Y)—0
of R-modules, the R-module X & Er(Y) is in (S1,S2). Consequently, we see that M is
also in (81, S2) by Proposition 5.
The proof is completed. O
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Example 10. Let R be a domain but not a field and let ) be a field of fractions of R.
We denote by St a subcategory consisting of torsion R-modules, that is

Sror ={M € R-Mod | M ®r Q = 0}.
Then we shall see that one has
(STome.g.) ; (Sf.g.>STor) = {M € R-Mod | dlmQM QR Q < OO}

Therefore, a subcategory (Sy,., Sror) s a Serre subcategory by Corollary 8, but a subcat-
egory (Stor, Sty.) is not closed under extensions by Theorem 7.

First of all, we shall show that the above equality holds. We suppose that M is in
(Stg.,Stor). Then there exists a short exact sequence

00— X—-M-—-Y—0

of R-modules where X is in Sy, and Y is in Szo.. We apply an exact functor — ®z @) to
this sequence. Then we see that one has M ®r Q) = X ®g @ and this module is a finite
dimensional Q)-vector space.

Conversely, let M be an R-module with dimg M ®r @ < oo. Then we can denote
M®@rQ=>1,Q(m;®1lg) with m; € M and the unit element 1, of Q. We consider a
short exact sequence

0—>§:lﬁni—+A4—+A4/§:1%ni—>0
i=1 i=1
of R-modules. It is clear that > | Rm; is in Sp, and M/ )" | Rm; is in Sror. So M is
in (S, Sror). Consequently, the above equality holds.

Next, it is clear that M ®pz () has finite dimension as ()-vector space for an R-module
M of (Sror, Sty.). Thus, one has (Sror, Sr.g.) C (Stg., Stor)-

Finally, we shall see that a field of fractions @ of R is in (Sy4,Sre) but not in
(Stors Str.g.), so one has (Sror, Sr.q.) ; (Sf.g.,S1or). Indeed, it follows from dimg Q ®p Q) =

1 that @ is in (Sy,., Sror). On the other hand, we assume that @) is in (S, Syy.). Since
R is a domain, a torsion R-submodule of @) is only the zero module. It means that )
must be a finitely generated R-module. But, this is a contradiction.
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