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Abstract. We introduce the class of n-representation infinite algebras and discuss some
of their homological properties. We also present the family of n-representation infinite

algebras of type Ã.

1. Introduction

This brief survey contains the results from my presentation at the 44th Symposium on
Ring Theory and Representation Theory in Okayama. It is based on joint work Osamu
Iyama and Steffen Oppermann. A detailed final version will be published elsewhere.

The class of hereditary finite dimensional algebras is one of the best understood in terms
of representation theory, especially in the context of Auslander-Reiten theory. This applies
in particular to representation finite hereditary algebras. In higher dimensional Auslander-
Reiten theory an analogue of these algebras is given by the class of n-representation finite
algebras [1, 2]. Recall that a finite dimensional algebra is called n-representation finite
if it has global dimension at most n and admits an n-cluster tilting module. Since a
1-cluster tilting module is the same as an additive generator of the module category,
1-representation finite means precisely hereditary and representation finite.

The aim of this report is to define the class of n-representation infinite algebras, that will
in a similar way be a higher dimensional analogue of representation infinite hereditary
algebras. To do this we begin by recalling some properties of n-representation finite
algebras.

Let K be a field and Λ a finite dimensional K-algebra with gl.dimΛ ≤ n. We always
assume that Λ is ring indecomposable. Denote by modΛ the category of finite dimensional
left Λ-modules and by Db(Λ) the bounded derived category of modΛ. Combining the K-
dual D := HomK(−, K) with the Λ-dual we obtain the Nakayama functor

ν := DRHom(−,Λ) : Db(Λ) → Db(Λ).

It is a Serre functor in the sense that there is a functorial ismorphism

HomDb(Λ)(X, Y ) ' DHomDb(Λ)(Y, ν(X)).

We combine ν with the shift functor on Db(Λ) to obtain the autoequivalence

νn := ν ◦ [−n] : Db(Λ) → Db(Λ).

It plays the role of the higher Auslander-Reiten translation in Db(Λ). More precisely,
define

τn := DExtnΛ(−,Λ) : modΛ → modΛ

The detailed version of this paper will be submitted for publication elsewhere.
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and

τ−n := ExtnΛ(DΛ,−) : modΛ → modΛ.

Then τn = H0(νn−) and τ−n = H0(ν−1
n −). Using these functors we can capture the notion

of n-representation finiteness in the following way.

Proposition 1. [3] Let Λ be a finite dimensional K-algebra with gl.dimΛ ≤ n. Then the
following conditions are equivalent.

(a) Λ is n-representation finite.
(b) For every indecomposable projective Λ-module P , there is a non-negative integer

`P such that ν−`P
n P is an indecomposable injective Λ-module.

We remark that if condition (b) is satisfied then ν−i
n P ' τ−i

n P for all 0 ≤ i ≤ `P and⊕
P

`P⊕
i=0

τ−i
n P =

⊕
P

`P⊕
i=0

ν−i
n P

is an n-cluster tilting Λ-module [1]. Furthermore, since ν−1 sends injectives to projectives
we have

ν−(`P+1)
n P = ν−1(ν−`P

n P )[n] = P ′[n] ∈ modΛ[n]

for some indecomposable projective P ′. We conclude that knowing the τ−n -orbits of the
indecomposable projectives in modΛ is enough to determine their ν−1

n -orbits. Comparing
this to the classical case n = 1 gives us a hint how to define n-representation infinite
algebras.

2. n-representation infinite algebras

Recall that if n = 1 and Λ is representation infinite, then τ−iP is never injective for
an indecomposable projective Λ-module P . In fact ν−i

1 P = τ−iP ∈ modΛ for all i ≥ 0.
Inspired by this we make the following definition.

Definition 2. Let Λ be a finite dimensional K-algebra with gl.dimΛ ≤ n. We say that
Λ is n-representation infinite if

ν−i
n Λ ∈ modΛ

for all i ≥ 0.

We remark that this condition is equivalent to νi
n(DΛ) ∈ modΛ for all i ≥ 0. In the

classical setting of n = 1 every indecomposable module is either preprojective, preinjective
or regular. We define higher analogues of these classes of modules as follows.

Definition 3. Let Λ be an n-representation infinite algebra. The full subcategories of
n-preprojective, n-preinjective and n-regular modules are defined as

P := add{ν−i
n Λ | i ≥ 0},

I := add{νi
n(DΛ) | i ≥ 0},

R := {X ∈ modΛ | ExtiΛ(P, X) = 0 = ExtiΛ(X, I) for all i ≥ 0},

respectively.
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Note that P and I are well-defined as subcategories of modΛ since Λ is n-representation
infinite. Many properties of representation infinite hereditary algebras generalize to n-
representation infinite algebras. For instance n-regular modules can be characterized by
R = {X ∈ modΛ | νi

n(X) ∈ modΛ for all i ∈ Z}. Moreover, one has the following result
about vanishing of homomorphisms and extensions.

Theorem 4. Let Λ be an n-representation infinite algebra. Then the following holds:

HomΛ(R,P) = 0, HomΛ(I,P) = 0, HomΛ(I,R) = 0,
ExtnΛ(P,R) = 0, ExtnΛ(P, I) = 0, ExtnΛ(R, I) = 0.

3. n-representation infinite algebras of type Ã

In this section we assume that K is an algebraically closed field of characteristic zero.
We shall present a family of n-representation infinite algebras by generalizing one of the
simplest classes of representation infinite hereditary algebras, namely path algebras of

extended Dynkin quivers of type Ã.

On can construct extended Dynkin quivers of type Ã by taking the following steps.
Start with the double quiver of A∞

∞:

· · · −2
++ −1

((
kk 0kk

((
1

((
hh 2hh · · ·

Identify vertices and arrows modulo m for some m ≥ 1 and remove one arrow from each
2-cycle. For instance, choosing m = 2 and removing the arrows starting in the odd vertex
gives the Kronecker quiver:

0
))
55 1.

We shall construct the n-representation infinite algebras of type Ã similarly. First we
define the covering quiver Q. As vertices in Q we take the lattice

Q0 = G :=

{
v ∈ Zn+1

∣∣∣∣∣
n+1∑
i=1

vi = 0

}
.

It is freely generated as an abelian group by the elements fi := ei+1 − ei for 1 ≤ i ≤ n.
We also define fn+1 := e1 − en+1, so that

∑n+1
i=1 fi = 0. As arrows in Q we take

Q1 := {ai : v → v + fi | v ∈ G, 1 ≤ i ≤ n+ 1}.

Then Q is the double of A∞
∞ for n = 1. For n ≥ 2 we need to introduce certain relations.

Let v ∈ Q0 and i, j ∈ {1, . . . , n+1}. We consider the relation rvij := aiaj − ajai from v to
v + fi + fj and let I be the two-sided ideal in KQ generated by

{rvij | v ∈ Q0, 1 ≤ i, j ≤ n+ 1}.

Since G is an abelian group it acts on itself by translations. This extends to a unique
G-action on the quiver Q. We say that a subgroup B ≤ G is cofinite if G/B is finite.
In that case we define Γ(B) as the orbit algebra of KQ/I. More explicitly we define
Q/B := (Q0/B,Q1/B) and set

Γ(B) := K(Q/B)/〈rvij | v ∈ Q0/B, 1 ≤ i, j ≤ n+ 1〉
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where rvij := aiaj−ajai and a denotes the B-orbit of a. As motivation for this construction
we remark that Γ(B) is isomorphic to a skew group algebra K[x1, . . . , xn+1] ∗H for some
finite abelian subgroup H < SLn+1(K).

Next we consider the analogue of 2-cycles. For every v ∈ Q0 and permutation σ of
1, . . . , n + 1, there is a cyclic path aσ(1) · · · aσ(n+1) from v to v. We call such cyclic paths
small cycles. A subset C ⊂ Q1 is called a cut if it contains precisely one arrow from every
small cycle. The symmetry group of C is defined as

SC := {g ∈ G | gC = C} ≤ G.

We say that a cut C is acyclic if all paths in QC := (Q0, Q1 \ C) have length bounded
by some N ≥ 0, and periodic if SC is cofinite in G. If both these conditions are satisfied
and B ≤ SC is cofinite we say that

Γ(B)C := Γ(B)/〈a | a ∈ C/B〉

is n-representation finite of type Ã. The name is justified by the following Theorem.

Theorem 5. If C is an acyclic periodic cut and B ≤ SC is cofinite, then Γ(B)C is
n-representation finite.

We remark that if n = 1, then Γ(B)C is a path algebra of an acyclic quiver of type Ã
constructed exactly as explained above. For n = 2, Q0 is a triangular lattice in the plane
and Q is
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where the small cycles are formed by the small triangles.
Finally we shall generalize the alternating orientation of A∞

∞. To do this define ω : G →
Z/(n+ 1)Z by ω(fi) = 1 and set

C := {ai : v → v + fi | ω(v) = 0, 1 ≤ i ≤ n+ 1}.

Then every path inQ of length n+1 intersects C and so C is acyclic. Moreover, SC = kerω
and so C is periodic.

For n = 1, QC is

· · · −2 −1
((

kk 0 1
((

hh 2 · · ·
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For n = 2, QC is

• • • • • • •

• • • • • •

• • • • • • •

• • • • • •

• • • • • • •

· · ·

· · ·

· · ·

· · ·

...
...

...
...

//

XX111
//

XX111
//

XX111
//

XX111��





//

XX111

��





//

XX111

��





//

XX111

��





XX111��





//

XX111

��





//

XX111

��





//

XX111

��





//

XX111��





//

XX111

��





//

XX111

��





//

XX111

��





XX111��





//

��





//

��





//

��





//

where the dotted lines indicate commutativity relations in Γ/〈C〉.
Now let’s consider Γ(B)C for B = SC . Then we can identify Q0/B with Z/(n+1)Z via

ω and C/B consists of all arrows from n+ 1 to 1. Hence Γ(B)C is the Beilinson algebra:

1

a1

...
!!

an+1

== 2

a1

...
!!

an+1

== 3 · · · n
a1

...
&&

an+1

99n+ 1 , aiaj = ajai.

and for n = 1 we obtain the Kronecker algebra:

1
))
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