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Abstract. We will consider braid relations between autoequivalences of derived cat-
egories of symmetric algebras. We first recall the construction of spherical twists for
symmetric algebras and the braid relations that they satisfy, as illustrated by Brauer
tree algebras. Then we explain the construction of periodic twists, which generalise
spherical twists for symmetric algebras. Finally, we explain a lifting theorem for peri-
odic twists, and show how this gives a new interpretation of the action on the derived
Picard group of lifts of longest elements of the symmetric group to the braid group.

1. Preliminaries

Let k be an algebraically closed field. All algebras we consider will be finite-dimensional
k-algebras, and for simplicity we will also assume that A is basic. We will denote the
category of finite-dimensional left A-modules by A -mod, and of finite-dimensional right
A-modules by mod-A.

Given an algebra A and a left (or right) A-module M , we have a right (or left, respec-
tively) A-module M∗ = Homk(M,k) with A-action fa(m) = f(am) for m ∈ M , f ∈ M∗,
and a ∈ A. This gives a duality

(−)∗ : A -mod
∼→ mod-A.

Similarly, if M is an A-B-bimodule for algebras A and B, then M∗ is a B-A-bimodule.
There is another way to construct a right module from M ∈ A -mod: we set M∨ =

HomA(M,A), where the action is given here by fa(m) = f(m)a for m ∈ M , f ∈ M∨,
and a ∈ A. This defines a functor

(−)∨ : A -mod → mod-A.

but in general this is not an equivalence. However, in the cases we consider below this
will be an equivalence.

Any algebra A has a natural structure of an A-A-bimodule given by the multiplication.
We say that A is a symmetric algebra if there exists an isomorphism of A-A-bimodules
A

∼→ A∗. Symmetric algebras have various equivalent definitions: one is that (−)∗ and
(−)∨ are natually isomorphic functors, and another is a Calabi-Yau type condition on the
derived category. For more information on this, we refer the reader to [Ric2, Section 3].

We will be interested in bounded derived categories of module categories over algebras
A, which we will denote Db(A). We refer the reader to [Wei, Chapter 10] for their definition
and basic properties. In partuicular, we will study autoequivalences of Db(A). Clearly the
autoequivalences form a group, but in fact we can restrict ourselves to a particular subset.
One way to define an endofunctor of Db(A) is to take the derived tensor product with
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a cochain complex X of A-A-bimodules. If this gives us an equivalence of triangulated
categories, we call X a two-sided tilting complex [Ric1]. Rickard showed that tensoring
with two-sided tilting complexes does give a subgroup of the group of autoequivalences
[Ric1]. We call this subgroup the derived Picard group of A, and denote it DPic(A). Here
we can work with ordinary tensor products, and will not need to consider derived tensor
products, as all our two-sided tilting complexes will be presented as cochain complexes of
A-A-bimodules which are projective on both sides.

2. Spherical Twists and Braid Relations

Let A be a symmetric algebra and let P be a projective A-module. Following [ST], we
say that P is spherical if EndA(P ) ∼= k[x]/〈x2〉. In this case, consider the cochain complex
of A-A-bimodules

P ⊗k P
∨ → A

concentrated in degrees 1 and 0, where the nonzero map is given by evaluation. We will
denote this complex by XP . It defines an object in the bounded derived category Db(A),
which we will also denote by XP . Then tensoring with XP defines an endofunctor

XP ⊗A − : Db(A) → Db(A)

which we denote by FP .

Theorem 1 ([RZ] for Brauer tree algebras, [ST] in general). If the projective A-module
P is spherical then FP is an autoequivalence.

Now let P1, . . . , Pn be a collection of n spherical projective A-modules. Following [ST],
we say that {P1, . . . , Pn} is an An-collection if

dimk HomA(Pi, Pj) =

{
0 if |i− j| > 1;
1 if |i− j| = 1

for all 1 ≤ i, j ≤ n.

Theorem 2 ([RZ] for Brauer tree algebras, [ST] in general). If {P1, . . . , Pn} is an An-
collection then the spherical twists Fi = FPi

satisfy the braid relations

• FiFj
∼= FjFi if |i− j| > 1;

• FiFjFi
∼= FjFiFj if |i− j| = 1

for all 1 ≤ i, j ≤ n.

Another way to say this is as follows: let Bn+1 be the braid group on the letters
{1, . . . , n, n+ 1}. This is generated by elements s1, . . . , sn and has relations

• sisj = sjsi if |i− j| > 1;
• sisjsi = sjsisj if |i− j| = 1.

If A has an An-collection then we have a group homomorphism

Bn+1 → DPic(A)

which sends si to the spherical twist Fi.
Let Sn+1 be the symmetric group on the letters {1, . . . , n, n + 1}. We also denote the

generators of Si by s1, . . . , sn, and there is an obvious group epimorphism Bn+1 � Sn+1.
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3. Periodic Twists

We now describe a generalization of the spherical twists described above.
An algebra E is called twisted periodic if there is an algebra automorphism σ : E

∼→ E
and an exact sequence of E-E-bimodules

0 → Eσ → Yn−1 → Yn−2 → · · · → Y1 → Y0 → E → 0

where each Yi is a projective E-E-bimodule. This just says that the E-E-bimodule E has
a periodic resolution which is projective up to some automorphism (twist). We say that
E has a period n.

Let A be a symmetric algebra and P a projective A-module. Let E = EndA(P )op, so
P is an A-E-bimodule, and suppose that E is a periodic algebra. We denote the cochain
complex

Yn−1 → Yn−2 → · · · → Y1 → Y0

concentrated in degrees n−1 to 0 by Y . Then we have a natural map f : Y → E of cochain
complexes of E-E-bimodules. We use this to construct a map g : P ⊗E Y ⊗E P∨ → A of
cochain complexes of A-A-bimodules defined as the following composition

P ⊗E Y ⊗E P∨ → P ⊗E E ⊗E P∨ ∼→ P ⊗E P∨ → A

where the first map is given by P ⊗E f ⊗E P∨ and the last is given by an evaluation map.
We take the cone of the map g to obtain a cochain complex

P ⊗E Yn−1 ⊗E P∨ → P ⊗E Yn−2 ⊗E P∨ → · · · → P ⊗E Y0 ⊗E P∨ → A

concentrated in degrees n to 0, which we denote X. By tensoring over A we obtain an
endofunctor

X ⊗A − : Db(A) → Db(A)

which we denote by ΨP .

Theorem 3 ([Gra]). If the algebra E is twisted periodic then ΨP is an autoequivalence.

Note that the functor ΨP depends on the resolution Y that we choose.
If E ∼= k[x]/〈x2〉 then we recover the spherical twists described above by using the exact

sequence

0 → Eσ → E ⊗k E → E → 0

where σ is the algebra automorphism which sends x to −x.

4. Brauer Tree Algebras of Lines

We define a collection of algebras Γn, n ≥ 1, which are isomorphic to the Brauer tree
algebras of lines without multiplicity. Let Γ1 = k[x]/〈x2〉 and let Γ2 = kQ2/I2, where Q2

is the quiver

Q2 = 1
α

))
2

β

ii
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and I2 is the ideal generated by αβα and βαβ. For n ≥ 3, let Γn = kQn/In where Qn is
the quiver

Qn = 1
α1

))
2

β2

ii

α2 ++ · · ·
β3

ii

αn−1
))
n

βn

kk

and In is the ideal generated by αi−1αi, βi+1βi, and αiβi+1 − βiαi−1 for 2 ≤ i ≤ n − 1.
Note that if we take the indecomposable projective Γn-modules Pi, Pi+1, . . . , Pj for 1 ≤
i < j ≤ n, we have EndA(Pi ⊕ Pi+1 ⊕ . . .⊕ Pj)

op ∼= Γj−i.
One can check that for all n ≥ 1, each indecomposable projective Γn-module is spherical.

Spherical twists for these algebras were studied in detail in [RZ].
We have the following observation:

Lemma 4. Let A be a symmetric algebra. A collection {P1, . . . , Pn} of projective A-
modules is an An-collection if and only if

EndA(
n⊕

i=1

Pi)
op ∼= Γn.

The algebras Γn are of finite representation type, and hence are twisted periodic, but
in fact we can say more.

Theorem 5 ([BBK]). The algebra n is twisted periodic with period n and automorphism
σn induced by the quiver automorphism which sends the vertex i to n− i+ 1.

A natural question is: what do the associated periodic twists look like? It was noted
in [Gra] that periodic twists associated to Γ2 are isomorphic to the composition F1F2F1

of spherical twists. We will show that this pattern continues.

5. A Lifting Theorem

Let A be a symmetric algebra and let P1, . . . , Pn be a collection of indecomposable
projective A-modules. We will use the following notation:

• P =
⊕n

i=1 Pi;
• E = EndA(P )op;
• Ei = EndA(Pi)

op;
• Qi = HomA(P, Pi),
• Q =

⊕n
i=1Qi;

so {Qi|1 ≤ i ≤ n} is a complete set of representatives of the isoclasses of indecomposable
projective E-modules. Note that EndE(Qi)

op ∼= Ei. We will explain a connection between
compositions of periodic twists for E and compositions of corresponding periodic twists
for A.

Theorem 6 (Lifting Theorem). Suppose that E and each Ei are twisted periodic with

fixed truncated resolutions Y and Yi. Let Ψi = ΨPi
: Db(A)

∼→ Db(A) and Ψ′
i = ΨQi

:

Db(E)
∼→ Db(E). If

ΨQ
∼= Ψ′

i`
. . .Ψ′

i2
Ψ′

i1

for some 1 ≤ i1, . . . , i` ≤ n then

ΨP
∼= Ψi` . . .Ψi2Ψi1.
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We now specialise to the case where {P1, . . . , Pn} is an An-collection, so E ∼= Γn, and
Fi = Ψi and F ′

i = Ψ′
i are spherical twists.

Recall that the symmetric group Sn+1 has a unique longest element, often denoted w0.
We choose a particular presentation

w0 = s1(s2s1) . . . (sn . . . s2s1) ∈ Sn+1

and define an element w0 of the braid group by the same presentation. Rouquier and
Zimmermann showed how this element acts on the derived Picard group of an algebra Γn:

Theorem 7 ([RZ, Theorem 4.5]). The image of the element w0 under the group morphism
Bn+1 → DPic(Γn) is the functor −σn [n] which twists on the right by the automorphism σn

and shifts cochain complexes n places to the left.

By Theorem 5 we see that ΨΓn : Db(Γn) → Db(Γn) is the same functor, and hence by
applying the lifting theorem we obtain the following:

Corollary 8. Suppose the symmetric algebra A has an An-collection {P1, . . . , Pn}. Then
the image of w0 in the group morphism Bn+1 → DPic(A) is ΨP , where P =

⊕n
i=1 Pi.

We also obtain a new proof of the braid relations by using Theorem 7 in the case n = 2,
or alternatively by performing a straightforward calculation with Γ2, and then applying
the lifting theorem.
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