
　

EXAMPLE OF CATEGORIFICATION OF A CLUSTER ALGEBRA

LAURENT DEMONET

Abstract. We present here two detailed examples of additive categorifications of the
cluster algebra structure of a coordinate ring of a maximal unipotent subgroup of a
simple Lie group. The first one is of simply-laced type (A3) and relies on an article by
Geiß, Leclerc and Schröer. The second is of non simply-laced type (C2) and relies on an
article by the author of this note. This is aimed to be accessible, specially for people
who are not familiar with this subject.

1. Introduction: the total positivity problem

Let N be the subgroup of SL4(C) consisting of upper triangular matrices with diagonal
1. We say that X ∈ N is totally positive if its 12 non-trivial minors are positive real
numbers (a minor is non-trivial if it is not constant on N and not product of other
minors). As a consequence of various results of Fomin and Zelevinsky [3] (see also [1]), in
a (very) special case, we get

Proposition 1 (Fomin-Zelevinsky). X ∈ N is totally positive if and only if the minors
∆1

4(X), ∆12
34(X), ∆123

234(X), ∆12
24(X), ∆2

4(X), ∆3
4(X) are positive.

where ∆`1...`k
c1...ck

(X) is the minor of X with rows `1, . . . , `k and columns c1, . . . , ck.
Remark that, as the algebraic variety N has dimension 6, we can not expect to find a

criterion with less than 6 inequalities to check the total positivity of a matrix.
To prove this, just remark that we have the following equality:

∆12
24∆

23
34 = ∆123

234∆
2
4 +∆3

4∆
12
34

which immediately implies that ∆1
4(X), ∆12

34(X), ∆123
234(X), ∆12

24(X), ∆2
4(X), ∆3

4(X) are
positive if and only if ∆1

4(X), ∆12
34(X), ∆123

234(X), ∆23
34(X), ∆2

4(X), ∆3
4(X) are positive.

Such an equality is called an exchange identity. In Figure 1, we wrote 14 sets of minors
which are related by exchange identities whenever they are linked by an edge. As every
minor appears in this graph, it induces the previous proposition.

These observations lead to the definition of a cluster algebra [4]. A cluster algebra is an
algebra endowed with an additional combinatorial structure. Namely, a (generally infi-
nite) set of distinguished elements called cluster variables grouped into subsets of the same
cardinality n, called clusters and a finite set {xn+1, xn+2, . . . , xm} called the set of coef-
ficients. For each cluster {x1, x2, . . . , xn}, the extended cluster {x1, . . . , xn, xn+1, . . . , xm}
is a transcendence basis of the algebra. Moreover, each cluster {x1, x2, . . . , xn} has n

The paper is in a final form and no version of it will be submitted for publication elsewhere.

–30–



1
4,

12
34,

123
234,

12
24,

2
4,

3
4

1
4,

12
34,

123
234,

12
24,

2
4,

12
23

1
4,

12
34,

123
234,

12
24,

1
2,

3
41

4,
12
34,

123
234,

23
34,

2
4,

3
4

1
4,

12
34,

123
234,

13
34,

1
2,

3
41

4,
12
34,

123
234,

13
34,

23
34,

3
4

1
4,

12
34,

123
234,

23
34,

2
4,

2
3

1
4,

12
34,

123
234,

12
23,

2
4,

2
3

1
4,

12
34,

123
234,

12
24,

1
2,

12
23

1
4,

12
34,

123
234,

13
34,

1
2,

1
3

1
4,

12
34,

123
234,

13
34,

23
34,

1
3

1
4,

12
34,

123
234,

23
34,

2
3,

1
3

1
4,

12
34,

123
234,

12
23,

2
3,

1
3

1
4,

12
34,

123
234,

12
23,

1
2,

1
3

����������
?????????

ooo
ooo

oo

$$
$$
$$
$$
$$
$

ZZZZZZ

!!
!!
!!
!!
!!

DD
DD

DD
DD

llll
lll

��
��
��
��
��

OOOOOOOOOOOOOOOOOOOO

���������

''''''''''

ddddddddddddddddddd

ooo
oo

???????

ZZZ

ddddddd
ddddddd

ddddddd
ddddddd

ddddddd
dddd

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

OOO
OOO

OOO
O

������������������������������������������

///////////////////////////////////////////

Figure 1. Exchange graph of minors

neighbours obtained by replacing one of its elements xk by a new one x′
k related by a

relation

xkx
′
k = M1 +M2

where M1 and M2 are mutually prime monomials in {x1, . . . , xk−1, xk+1, . . . , xm}, given
by precise combinatorial rules. These replacements, called mutations and denoted by µk

are involutive. For precise definitions and details about these constructions, we refer to
[4].

In the previous example, the coefficients are ∆1
4, ∆

12
34 and ∆123

234 and the cluster variables
are all the other non-trivial minors. The extended clusters are the sets appearing at the
vertices of Figure 1.
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The aim of the following sections is to describe examples of additive categorifications
of cluster algebras. It consists of enhancing the cluster algebra structure with an additive
category, some objects of which reflect the combinatorial structure of the cluster algebra;
moreover, there is an explicit formula, the cluster character associating to these particular
objects elements of the algebra, in a way which is compatible with the combinatorial
structure. The examples we develop here rely on (abelian) module categories. They are
particular cases of categorifications by exact categories appearing in [6] (simply-laced case)
and [2] (non simply-laced case). The study of cluster algebras and their categorifications
has been particularly successful these last years. For a survey on categorification by
triangulated categories and a much more complete bibliography, see [7].

2. The preprojective algebra and the cluster character

Let Q be the following quiver (oriented graph):

1
α

((
2

β∗
66

α∗
hh 3

β
vv

As usual, denote by CQ the C-algebra, a basis of which is formed by the paths (including
0-length paths supported by each of the three vertices) and the multiplication of which is
defined by concatenation of paths when it is possible and vanishes when paths can not be
composed (we write here the composition from left to right, on the contrary to the usual
composition of maps). Thus, a (right) CQ-module is naturally graded by idempotents
(0-length paths) corresponding to vertices and the action of arrows seen as elements
of the algebra can naturally be identified with linear maps between the corresponding
homogeneous subspaces of the representation. We shall use the following right-hand side
convenient notation:

C

 0
−1


++ C2 1 0

0 1


44(

1 0
)ii C2

 0 0
1 0


tt

=

2
����
�

��<
<<

1
−1 ��<

<< 3
����
�

2
��<

<<

3

where each of the digits represents a basis vector of the representation and each arrow a
non-zero scalar (1 when not specified) in the corresponding matrix entry.

Let us now introduce the preprojective algebra of Q:

Definition 2. The preprojective algebra of Q is defined by

ΠQ =
CQ

(αα∗, α∗α + β∗β, ββ∗)

the representations of which are seen as particular representations of CQ (in other
words, modΠQ is a full subcategory of modCQ).
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Example 3. Among the following representations of CQ, the first one and the second
one are representations of ΠQ:

1
��<

<<

2
��<

<<

3

;

2
����
�

��<
<<

1
−1 ��<

<< 3
����
�

2

; 1 %%2ee ;

2
����
�

��<
<<

1
−1 ��<

<< 3
����
�

2
��<

<<

3

.

One of the property, which is discussed in many places (for example in [6]), of the
preprojective algebra of Q, fundamental for this categorification, is

Proposition 4. The category modΠQ is stably 2-Calabi-Yau. In other words, for every
X,Y ∈ modΠQ,

Ext1(X,Y ) ' Ext1(Y,X)∗

functorially in X and Y , where Ext1(Y,X)∗ is the C-dual of Ext1(Y,X). In particular, it
is a Frobenius category (is has enough projective objects and enough injective objects and
they coincide).

Let us now define the three following one-parameter subgroups of N :

x1(t) =


1 t 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 x2(t) =


1 0 0 0
0 1 t 0
0 0 1 0
0 0 0 1

 x3(t) =


1 0 0 0
0 1 0 0
0 0 1 t
0 0 0 1

 .

For X ∈ modΠQ and any sequence of vertices a1, a2, . . . , an of Q, we denote by

ΦX,a1a2...an =

{
0 = X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X | ∀i ∈ {1, 2, . . . , n}, Xi

Xi−1

' Sai

}
the variety of composition series of X of type a1a2 . . . an (Sai is the simple module, of
dimension 1, supported at vertex ai). This is a closed algebraic subvariety of the product
of Grassmannians

Gr1(X)×Gr2(X)× · · · ×Grn(X).

We denote by χ the Euler characteristic. Using results of Lusztig and Kashiwara-Saito,
Geiß-Leclerc-Schroër proved the following result:

Theorem 5 ([6]). Let X ∈ modΠQ. There is a unique ϕX ∈ C[N ] such that

ϕX (xa1(t1)xa2(t2) . . . xa6(t6)) =
∑

i1,i2,...,i6∈N

χ
(
Φ

X,a
i1
1 a

i2
2 ...a

i6
6

) ti11 t
i2
2 . . . ti66

i1!i2! . . . i6!

for every word a1a2a3a4a5a6 representing the longest element of S4 (a
ik
k is the repetition

ik times of ak).

The map ϕ : modΠQ → C[N ] is called a cluster character.

Remark 6. (1) The uniqueness in the previous theorem is easy because it is well known
that

xa1(t1)xa2(t2) . . . xa6(t6)

runs over a dense subset of N ;
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X ∈ modΠQ S1 S2 S3

1
��<

<<

2

2
����
�

1

2
��<

<<

3

3
����
�

2

ϕX ∈ C[N ] ∆1
2 ∆2

3 ∆3
4 ∆12

23 ∆1
3 ∆23

34 ∆2
4

X ∈ modΠQ

2
����
�

��<
<<

1 3

1
��<

<< 3
����
�

2

1[dr]

2
��<

<<

3

2
��<

<<
����
�

1
��<

<< 3
����
�

2

3
����
�

2
����
�

1

ϕX ∈ C[N ] ∆13
34 ∆12

24 ∆123
234 ∆12

34 ∆1
4

Figure 2. Cluster character

(2) the existence is much harder and strongly relies on the construction of semi-
canonical bases by Lusztig [8]. In particular, the fact that it does not depend
on the choice of a1a2a3a4a5a6 is not clear a priori (see the following examples).

Example 7. We suppose that a1a2a3a4a5a6 = 213213. Then

xa1(t1)xa2(t2)xa3(t3)xa4(t4)xa5(t5)xa6(t6) =


1 t2 + t5 t2t4 t2t4t6
0 1 t1 + t4 t1t3 + t1t6 + t4t6
0 0 1 t3 + t6
0 0 0 1

 .

• The module S1 has only one composition series, of type 1. Therefore Φ1(S1) is
one point and Φa(S1) = ∅ for any other a. Identifying the two members in the
formula of the previous theorem,

ϕS1 (xa1(t1)xa2(t2)xa3(t3)xa4(t4)xa5(t5)xa6(t6)) = t2 + t5 = ∆1
2.

• The module

P2 =

2
��<

<<
����
�

1
��<

<< 3
����
�

2
has two composition series, of type 2312 and 2132. Therefore,

ϕP2 (xa1(t1)xa2(t2)xa3(t3)xa4(t4)xa5(t5)xa6(t6)) = t1t2t3t4 = ∆12
34.

Remark that, in this case, the only composition series which is playing a role
is 2132, even if the situation is symmetric. This justify the second part of the
previous remark.

The other indecomposable representations of ΠQ and their cluster character values are
collected in Figure 2.

Two important properties of this cluster character were proved by Geiß-Leclerc-Schroër
(see for example [6]):

Proposition 8. Let X,Y ∈ modΠQ.

(1) ϕX⊕Y = ϕXϕY .
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(2) Suppose that dimExt1(X, Y ) = 1 (and therefore dimExt1(Y,X) = 1) and let

0 → X → Ta → Y → 0 and 0 → Y → Tb → X → 0

be two (unique up to isomorphism) non-split short exact sequences. Then

ϕXϕY = ϕTa + ϕTb
.

3. Minimal approximations

This section recall the definition and elementary properties of approximations. It is
there for the sake of ease. In what follows, modΠQ can be replaced by any additive
Hom-finite category over a field.

Definition 9. Let X and T be two objects of modΠQ. A left add(T )-approximation of
X is a morphism f : X → T ′ such that

• T ′ ∈ add(T ) (which means that every indecomposable summand of T ′ is an inde-
composable summand of T ) ;

• every morphism g : X → T factors through f .

If, moreover, there is no strict direct summand T ′′ of T ′ and left add(T )-approximation
f ′ : X → T ′′, then f is said to be a minimal left add(T )-approximation.

In the same way, we can define

Definition 10. Let X and T be two objects in modΠQ. A right add(T )-approximation
of X is a morphism f : T ′ → X such that

• T ′ ∈ add(T ) ;
• every morphism g : T → X factors through f .

If, moreover, there is no strict direct summand T ′′ of T ′ and right add(T )-approximation
f ′ : T ′′ → X, then f is said to be a minimal right add(T )-approximation.

Now, a classical proposition which permits to explicitly compute approximations:

Proposition 11. Let X and T ' T i1
1 ⊕T i2

2 ⊕· · ·⊕T in
n be two objects in modΠQ (the Ti’s

are non-isomorphic indecomposable). For i, j ∈ {1, . . . , n}, we denote by Iij the subvector
space of Hom(Ti, Tj) consisting of the non-invertible morphisms (Iij = Hom(Ti, Tj) if
i 6= j). Thus, for j ∈ {1, . . . , n}, we obtain a linear map⊕

i∈{1,...,n}

Iij ⊗ Hom(X,Ti)
ϕj−→ Hom(X,Tj)

(g, f) 7→ g ◦ f.

Let Bj be a basis of cokerϕj lifted to Hom(X,Tj). Then the morphism

X
(f)j∈{1,...,n},f∈Bj−−−−−−−−−−→

⊕
j∈{1,...,n}

T
#Bj

j

is a minimal left add(T )-approximation of X. Moreover, any minimal left add(T )-
approximation of X is isomorphic to it.

–35–



The previous proposition has a dual version which permits to compute minimal right
approximations. In practice, this computation relies on searching morphisms up to fac-
torization through other objects. There is an explicit example of computation in Example
19.

4. Maximal rigid objects and their mutations

Let us introduce the objects the combinatorics of which will play the role of the cluster
algebra structure.

Definition 12. Let X ∈ modΠQ.

• The module X is said to be rigid if it has no self-extension, (i.e., Ext1(X,X) = 0).
• The module X is said to be basic maximal rigid if it is basic (i.e., it does not
have two isomorphic indecomposable summands), rigid, and maximal for these
two properties.

Remark 13. A basic maximal rigid ΠQ-module contains ΠQ as a direct summand (because
ΠQ is both projective and injective and therefore has no extension with any module).

Example 14. The object

1
��<

<< 3
����
�

2
⊕

3
����
�

2
⊕

1
��<

<<

2
⊕

1[dr]

2
��<

<<

3

⊕
2

��<
<<

����
�

1
��<

<< 3
����
�

2

⊕
3

����
�

2
����
�

1

,

the last three summands of which are the indecomposable projective-injective ΠQ-modules,
is basic maximal rigid. It is easy to check that it is basic and rigid, but more difficult to
prove that it is maximal for these properties (see [6] for more details).

Remark 15. We can prove that all basic maximal rigid objects have the same number of
indecomposable summands (six in the example we are talking about).

The following result permits to define a mutation on basic maximal rigid objects. Con-
sidered as an operation on isomorphism classes of basic maximal rigid objects, the induced
combinatorial structure will correspond to the one of a cluster algebra.

Theorem 16 ([6]). Let T ' T1 ⊕ T2 ⊕ T3 ⊕ P1 ⊕ P2 ⊕ P3 ∈ modΠQ be basic maximal
rigid such that P1, P2 and P3 are the indecomposable projective ΠQ-modules and T1, T2

and T3 are indecomposable non-projective ΠQ-modules. Then, for i ∈ {1, 2, 3}, there are
two (unique) short exact sequences

0 → Ti
f−→ Ta

f ′
−→ T ∗

i → 0 and 0 → T ∗
i

g−→ Tb
g′−→ Ti → 0

such that

(1) f and g are minimal left add(T/Ti)-approximations ;
(2) f ′ and g′ are minimal right add(T/Ti)-approximations ;
(3) T ∗

i is indecomposable and non-projective ;
(4) dimExt1(Ti, T

∗
i ) = dimExt1(T ∗

i , Ti) = 1 and the two short exact sequences do not
split ;

(5) µi(T ) = T/Ti ⊕ T ∗
i is basic maximal rigid ;

–36–



(6) Ta and Tb do not have common summands.

Remark 17. In the previous theorem, the existence and uniqueness, regarding the first
two conditions, are automatic, except the fact that the extremities of the two short exact
sequences coincide up to order. This fact strongly relies on the stably 2-Calabi-Yau
property. It implies that µi is involutive.

Definition 18. In the previous theorem, µi is called the mutation in direction i. The
short exact sequences appearing are called exchange sequences.

Example 19. Let

T =
1

��<
<< 3

����
�

2
⊕

3
����
�

2
⊕

1
��<

<<

2
⊕

1[dr]

2
��<

<<

3

⊕
2

��<
<<

����
�

1
��<

<< 3
����
�

2

⊕
3

����
�

2
����
�

1

.

Using Proposition 11, we get a left add

(
T/

3
����
�

2

)
-approximation of

3
����
�

2
:

3
����
�

2
→

1
��<

<< 3
����
�

2

and computing the cokernel, we get the exchange sequence:

0 →
3

����
�

2
→

1
��<

<< 3
����
�

2
→ S1 → 0

so that

µ2(T ) =
1

��<
<< 3

����
�

2
⊕ S1 ⊕

1
��<

<<

2
⊕

1[dr]

2
��<

<<

3

⊕
2

��<
<<

����
�

1
��<

<< 3
����
�

2

⊕
3

����
�

2
����
�

1

.

Doing mutation in the reverse direction:

0 → S1 →
3

����
�

2
����
�

1

→
3

����
�

2
→ 0.

Let us now compute µ1µ2(T ) with its two exchange sequences:

0 →
1

��<
<< 3

����
�

2
→ S1 ⊕

2
��<

<<
����
�

1
��<

<< 3
����
�

2

→
2

����
�

1
→ 0

0 →
2

����
�

1
→

1
��<

<<

2
⊕

3
����
�

2
����
�

1

→
1

��<
<< 3

����
�

2
→ 0

µ1µ2(T ) =
2

����
�

1
⊕ S1 ⊕

1
��<

<<

2
⊕

1[dr]

2
��<

<<

3

⊕
2

��<
<<

����
�

1
��<

<< 3
����
�

2

⊕
3

����
�

2
����
�

1

.
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Computing inductively all the mutations, we obtain the exchange graph of maximal
rigid objects of ΠQ (Figure 3).

Then, using Proposition 8 and Theorem 16 together with other technical results, we
get the following proposition:

Proposition 20 ([6]). If we project the mutation of maximal rigid objects to C[N ] through
the cluster character ϕ, we get a cluster algebra structure on C[N ] (in the sense of [4]).
Moreover, this structure is the one proposed combinatorially in [1]. Under this projection,
we get the correspondence:

{non projective indecomposable objects} ↔ {cluster variables}
{projective indecomposable objects} ↔ {coefficients}

{basic maximal rigid objects} ↔ {extended clusters}

Example 21. Taking the notation of Example 19 and looking at Figure 2, we get:

∆1
2∆

2
4 = ϕS1ϕ 3

����
�

2

= ϕ1
��<

<< 3
����
�

2

+ ϕ 3
����
�

2
����
�

1

= ∆12
24 +∆1

4

and

∆12
24∆

1
3 = ϕ1

��<
<< 3

����
�

2

ϕ 2
����
�

1

= ϕ

S1⊕

2
��<

<<
����
�

1
��<

<< 3
����
�

2

+ ϕ
1

��<
<<

2
⊕

3
����
�

2
����
�

1

= ϕS1ϕ 2
��<

<<
����
�

1
��<

<< 3
����
�

2

+ ϕ1
��<

<<

2

ϕ 3
����
�

2
����
�

1

= ∆1
2∆

12
34 +∆12

23∆
1
4.

which can be easily checked by hand. These are part of the equalities which appear in
the proof of Proposition 1.

5. From simply-laced case to general one

Define the following symplectic form:

Ψ =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


and the subgroup

N ′ = {M ∈ N |tMΨM = Ψ} or, equivalently N ′ = NZ/2Z

where Z/2Z = 〈g〉 acts on N by M 7→ Ψ−1 (tM−1)Ψ. The group N ′ is a maximal
unipotent subgroup of a symplectic group of type C2.
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1
��<

< 3
����

2
⊕ 3

����
2

⊕ S3

1
��<

< 3
����

2
⊕ 3

����
2

⊕ 1
��<

<
2

1
��<

< 3
����

2
⊕ S1 ⊕ S3

2
��<

<
3
⊕ 3

����
2

⊕ S3

2
���� ��<

<
1 3

⊕ S1 ⊕ S3

2
���� ��<

<
1 3

⊕ 2
��<
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Figure 3. Exchange graph of maximal rigid objects (up to projective summands)

The only non-trivial action of Z/2Z on Q induces an action on ΠQ and therefore on
modΠQ. Denote by π : C[N ] → C[N ′] the canonical projection. We can now formulate
the following result:

Theorem 22 ([2]). (1) If T is a Z/2Z-stable basic maximal rigid ΠQ-module, then
µ1µ3(T ) = µ3µ1(T ). Moreover, µ1µ3(T ) and µ2(T ) are also Z/2Z-stable.

(2) If X ∈ modΠQ, then π (ϕX) = π (ϕgX).
(3) If we denote µ̄2 = µ2 and µ̄1 = µ1µ3 = µ3µ1, acting on the set of Z/2Z-stable

maximal rigid ΠQ-modules, µ̄ induces through π ◦ ϕ the structure of a cluster
algebra on C[N ′], the clusters of which are projections of the Z/2Z-stable ones of
C[N ].
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Example 23. We have

∆12
23


1 a12 a13 a14
0 1 a23 a24
0 0 1 a34
0 0 0 1

 = a12a23 − a13 and ∆2
4


1 a12 a13 a14
0 1 a23 a24
0 0 1 a34
0 0 0 1

 = a24.

Moreover,

Ψ−1

t 
1 a12 a13 a14
0 1 a23 a24
0 0 1 a34
0 0 0 1


−1

Ψ

=


1 a34 a23a34 − a24 a12a23a34 − a12a24 − a13a34 + a14
0 1 a23 a12a23 − a13
0 0 1 a12
0 0 0 1


which implies that, as expected,

π
(
∆12

23

)
= πϕ1

��<
<<

2

= πϕ 3
����
�

2

= π
(
∆2

4

)
.

The exchange graph of the Z/2Z-stable basic maximal rigid objects of modΠQ is pre-
sented on Figure 4, in relation to the exchange graph of the basic maximal rigid objects.
It permits, in view of Figure 1 to describe the clusters of C[N ′]:

∆1
4 = ∆123

234,∆
12
34,

∆13
34,∆

23
34 = ∆1

3

∆1
4 = ∆123

234,∆
12
34,

∆13
34,∆

1
2 = ∆3

4

∆1
4 = ∆123

234,∆
12
34,

∆12
24,∆

1
2 = ∆3

4MMMMMM
∆1

4 = ∆123
234,∆

12
34,

∆12
24,∆

2
4 = ∆12

23

qqq
qqq

∆1
4 = ∆123

234,∆
12
34,

∆2
3,∆

2
4 = ∆12

23

∆1
4 = ∆123

234,∆
12
34,

∆2
3,∆

23
34 = ∆1

3

MMM
MMM qqqqqq

.

6. Scope of these results and consequences

The example presented here can be generalized to the coordinate rings of:

• The groups of the form

N(w) = N ∩
(
w−1N−w

)
and Nw = N ∩ (B−wB−)
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Figure 4. Exchange graph of Z/2Z-stable maximal rigid objects

where N is a maximal unipotent subgroup of a Kac-Moody group, N− its opposite
unipotent group, B− the corresponding Borel subgroup, and w is an element of the
corresponding Weyl group. In particular, if N is of Lie type and w is the longest
element, then N(w) = N .

• Partial flag varieties corresponding to classical Lie groups.

These results were obtained in [5] and [6] for the simply-laced cases and in [2] for the
non simply-laced cases.

It permits for example to prove in these cases that all the cluster monomials (products
of elements of a same extended cluster) are linearly independent (result which is now
generalized but was new at that time) and other more specific results (for example the
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classification of partial flag varieties the coordinate rings of which have finite cluster type,
that is a finite number of clusters).
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