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ERIK DARPÖ AND CHRISTOPHER C. GILL

Abstract. The indecomposable modules of a dihedral 2-group over a field of charac-
teristic 2 were classified by Ringel over 30 years ago. However, relatively little is known
about the tensor products of such modules, except in certain special cases. We describe
here the main result of our recent work determining the Loewy length of a tensor product
of modules for a dihedral 2-group. As a consequence of this result, we can determine
precisely when a tensor product has a projective direct summand.

1. Introduction

Let k be a field of positive characteristic p and let G be a finite group. The group algebra
kG is a Hopf algebra with coproduct and co-unit given by ∆(

∑
g∈G rgg) =

∑
g∈G rgg ⊗ g

and ε(
∑

g∈G rgg) =
∑

g∈G rg for rg ∈ k. Thus, there is a tensor product operation on the
category of kG-modules. If M and N are kG-modules, then the tensor product of M and
N is the module with underlying vector space M ⊗k N and module structure given by
g(m⊗ n) = ∆(g)(m⊗ n) = gm⊗ gn for g ∈ G,m ∈ M,n ∈ N . The tensor product is a
frequently used tool in the representation theory of finite groups. However, the problem
of determining the decomposition of a tensor product of two modules of a finite group G
– the Clebsch-Gordan problem – can be extremely difficult.

One approach to understanding tensor products of kG-modules goes via the representa-
tion ring, or Green ring, of kG. The isomorphism classes of finite-dimensional kG-modules
form a semiring, with addition given by the direct sum, and multiplication by the tensor
product of kG-modules. The Green ring, A(kG), is the Groethendieck ring of this semir-
ing, i.e., the ring obtained by formally adjoining additive inverses to all elements in the
semiring. Research in this direction was pioneered by J. A. Green [6], who proved the
Green ring of a cyclic p-group is semisimple. The question of semisimplicity of the Green
ring for other finite groups has been studied by several authors since. Benson and Carlson
[2] gave a method to produce nilpotent elements in a Green ring, and determined a quo-
tient of the Green ring which has no nilpotent elements.

This so-called Benson–Carlson quotient of the Green ring was studied by Archer [1] in
the case of the dihedral 2-groups, who realised it as an integral group ring of an abelian,
infinitely generated, torsion-free group. Archer gave a precise statement relating the
multiplication of two elements in this infinite group to the Auslander–Reiten quiver of
kD4q. The Green ring of the Klein four group V4 was completely determined by Conlon
[4]; a summary of this result can be found in [1].

For the dihedral 2-groups D4q, the indecomposable modules, over fields of characteristic
2, were classified by Ringel [7] over 30 years ago. However, very little progress has been
made towards understanding the behaviour of the tensor product of the kD4q-modules. In
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particular, the decomposition of a tensor product of two indecomposable kD4q-modules is
not known, other than in some very special cases. One example is the work of Bessenrodt
[3], classifying the endotrivial kD4q-modules, thus determining the kD4q-modules M for
which the tensor product of M with its dual M∗ is the direct sum of a trivial and a
projective module.

In recent work [5], we have continued the study of tensor products of kD4q-modules, de-
termining completely the Loewy length of the tensor product of any two indecomposable
kD4q-modules. This provides an additional piece of information towards the understand-
ing of the Green rings of the dihedral 2-groups, and gives certain bounds on which modules
can occur as direct summands of a tensor product. In particular, it determines precisely
when a tensor product of two modules has a projective direct summand.

The Loewy length `(M) of a module M is, by definition, the common length of the
radical series and the socle series of M , that is, `(M) = min{t ∈ N | radt(kD4q)M = 0}.

In the next section, we recall Ringel’s classification of the indecomposable kD4q-modules.
Section 3 gives a summary of the results in [5], and in Section 4, we give examples il-
luminating our results and showing how they can be used to determine the direct sum
decomposition of a tensor product in certain cases.

2. The indecomposable modules of dihedral 2-groups

Let q be a 2-power, and write D4q = 〈x, y | x2 = y2 = 1, (xy)q = (yx)q〉 for the dihedral
group of order 4q. There is an isomorphism of algebras

kD4q →̃ Λq :=
k〈X, Y 〉

(X2, Y 2, (XY )q − (Y X)q)
,

given by x 7→ 1 + X and y 7→ 1 + Y . Setting ∆(X) = 1 ⊗ X + X ⊗ 1 + X ⊗ X and
∆(Y ) = 1 ⊗ Y + Y ⊗ 1 + Y ⊗ Y defines a coproduct on Λq corresponding under this
isomorphism to the Hopf algebra structure of kD4q. Owing to the fact that Λq is a special
biserial algebra, its non-projective modules split into two classes, known as string modules
and band modules. We describe both classes of modules below.

Let W̄ be the set of words in letters a, b and inverse letters a−1, b−1 such that a or a−1

are always followed by b or b−1 and b or b−1 are always followed by a or a−1. A directed
subword of a word w ∈ W̄ is a word w′ in either the letters {a, b} or {a−1, b−1} such that
w = w1w

′w2 for some words w1, w2 ∈ W̄ . Let W be the subset of W̄ consisting of words
in which all directed subwords are of length strictly less than 2q. Define an equivalence
relation ∼1 on W by w ∼1 w

′ if, and only if, w′ = w or w′ = w−1. Given w = l1 . . . ln ∈ W ,
the string module determined by w, denoted by M(w), is the n + 1-dimensional module
with basis e0, . . . , en and Λq-action given by the following schema:

ke0 ke1
l1oo ke2

l2oo . . .oo ken−1

ln−1oo ken
lnoo .

If li ∈ {a−1, b−1}, the corresponding arrow should be interpreted as going in the opposite
direction, from kei−1 to kei, and having the label l−1

i . Now X maps ei to ej (j ∈ {i −
1, i + 1}) if there is an arrow kei

a→ kej, and as zero if no arrow labelled with a starting
in kei exists. Similarly, the action of Y is given by arrows labelled with b. Two modules
M(w) and M(w′), w,w′ ∈ W , are isomorphic if, and only if, w ∼1 w

′.
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Next, let W ′ be the subset of W consisting of words w of even positive length containing
letters from both {a, b} and {a−1, b−1}, and such that w is not a power of a word of smaller
length. Given w = l1 . . . lm ∈ W ′, and ϕ an indecomposable linear automorphism of kn,
the band module determined by w and ϕ, M(w,ϕ), is the Λq-module with underlying

vector space
⊕m−1

i=0 Vi where Vi = kn, and Λq-action specified by the following schema:

V0

lm

33V1
l1=ϕoo V2

l2oo · · ·oo Vm−2

lm−2oo Vm−1

lm−1oo .

The interpretation of the schema is similar to that for string modules. The elements
l2, . . . , lm act as the identity map on kn, l1 acts as the linear automorphism ϕ (this means
that if l1 ∈ {a−1, b−1} then V0 is mapped onto V1 by ϕ−1 under either X or Y ).

Define ∼2 to be the equivalence relation on W ′ defined by w ∼2 w
′ if, and only if,

w of w−1 is a cyclic permutation of w′. Two band modules M(w,ϕ) and M(w′, ψ) are
isomorphic if, and only if, w ∼2 w

′ and ϕ = φψφ−1 for some linear automorphism φ.
It may be noted that for every w ∈ W ′ there exists a w′ ∈ W with an even number of
maximal directed subwords such that w ∼2 w

′. While there are several different choices
for w′, its maximal directed subwords are uniquely determined, as elements in W/ ∼1, by
w.

Every indecomposable non-projective kD4q-module is isomorphic either to a string
or a band module, but not both. There is a single, indecomposable projective mod-
ule, kD4qkD4q. The Loewy length of any non-projective module is at most 2q, while
`(kD4qkD4q) = 2q + 1.

3. Loewy length of tensor products

Here, we give an overview of the results in [5]. We fix the the following conventions
and notation. The least natural number is 0. For l < 2q, Al ∈ W is the (unique) word of
length l in the letters a, b ending in a, and similarly Bl ∈ W is the word of length l in the
letters a, b ending in b.

IfM is a module and X ⊂M any set of generators, then `(M) = max{`(〈x〉) | x ∈ X},
and if N is another module then, in a similar fashion, `(M ⊗ N) = max{`(〈x〉 ⊗ N) |
x ∈ X}. Any kD4q-module that is generated by a single element is isomorphic to either
M(AlB

−1
m ) or M(AlB

−1
m , ρ) for some l,m < 2q and ρ ∈ k r {0}, hence it is sufficient

to determine Loewy lengths of tensor products of these types of modules, to solve the
problem for arbitrary modules M and N . Refining these ideas a little, one can prove the
following results.

Proposition 1. Let M and N be kD4q-modules. If M is a string module corresponding
to a word w ∈ W with maximal directed subwords wi, i ∈ {1, . . . ,m}, then

`(M ⊗N) = max{`(M(wi)⊗N) | i ∈ {1, . . . ,m}}.
Proposition 2. Let M = M(w,ϕ), where w ∈ W ′ and ϕ is an indecomposable auto-
morphism of kn, n > 1. Let w′ ∈ W ′ be a word with an even number of maximal directed
subwords wi, i ∈ {1, . . . , 2m}, such that w ∼2 w

′. If m and n are not both equal to 1, then

`(M(w,ϕ)⊗N) = max{`(M(wi)⊗N) | i ∈ {1, . . . , 2m}}.
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Proposition 1 and 2 leave us with determining the Loewy lengths of tensor products of
modules of the types M(Al), M(Bm) and M(AlB

−1
m , ρ) for l,m < 2q, ρ ∈ k r {0}. One

can note that these are precisely the non-projective kD4q-modules whose top and socle
are simple modules.

Given x ∈ N, denote by [x]i the ith term of its binary expansion, i.e., [x]i ∈ {0, 1} such
that x =

∑
i∈N[x]i2

i. Let l,m ∈ N, and take a ∈ N to be the smallest number such that
[l]i + [m]i 6 1 for all i > a. Set λ =

∑
i>a[l]i2

i and µ =
∑

j>a[m]j2
j. Now define a binary

operation # on N by setting

l#m = λ+ µ+ 2a − 1 .

If the binary expansions of l and m are disjoint, that is, if [l]i + [m]i 6 1 for all i ∈ N, we
write l ⊥ m. Now observe that if l ⊥ m then a = 0 and l#m = l+m, while l#m < l+m
otherwise.

Example 3. We have 85#38 = 119. Namely, 85 = 20+22+24+26 and 38 = 21+22+25,
hence a = 3 for these two numbers, and therefore 85#38 = (24 + 26) + 25 + 23 − 1 = 119.
Clearly, 85#38 = 119 < 123 = 85 + 38, which was to be expected, since 85 6⊥ 38.

The relevance of the operation # is that it neatly describes the Loewy length of a tensor
product of uniserial modules, that is, modules of the type M(Al) and M(Bl). If u is a
generating element in the module M(Al), and v a generating element in M(Am), then
`(〈u ⊗ v〉) = l#m + 1 (observe that u ⊗ v does not generate M(Al) ⊗M(Am), unless l
or m equals zero). Showing this is the most important step in the proof of our principal
theorem, which gives the Loewy lengths of tensor products of kD4q-modules with simple
top and simple socle.

Theorem 4. Let l,m ∈ N, l1, l2,m1,m2 ∈ Nr {0}, ρ, σ ∈ k r {0}.
1. String with string:

`(M(Al)⊗M(Bm)) =

{
1 + l#m = 1 + l +m if l ⊥ m,

2 + l#m if l 6⊥ m,

`(M(Al)⊗M(Am)) =

{
1 + l#m if [l]t = [m]t = 0 for all 0 6 t < a− 1,

2 + l#m otherwise.

where a = min{r ∈ N | [l]t + [m]t 6 1, ∀t > r}.

2. Band with string:

`
(
M(Al1B

−1
l2
, ρ)⊗M(Am)

)
=


2 + (l1 − 1)#m if ρ = 1, l1 = l2 and

l1 ⊥ m, l1 ⊥ (m− 1),

`
(
M

(
Al1B

−1
l2

)
⊗M(Am)

)
otherwise.

3. Band with band: Let M =M
(
Al1B

−1
l2
, ρ
)
, N =M

(
Am1B

−1
m2
, σ

)
.

(a) If l1 6= l2, then

`(M ⊗N) = `(M
(
Al1B

−1
l2

)
⊗N).
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Assume l1 = l2, m1 = m2.

(b) If l1 6⊥ m1, l1 6⊥ (m1 − 1), (l1 − 1) 6⊥ m1 then

`(M ⊗N) = 2 + (l1 − 1)#(m1 − 1).

(c) If l1 ⊥ m1, (l1 − 1) ⊥ m1, then

`(M ⊗N) =

{
2 + (l1 − 1)#(m1 − 1) if σ = 1,

l1 +m1 + 1 otherwise.

(d) If l1 ⊥ m1, l1 ⊥ (m1 − 1), then

`(M ⊗N) =

{
2 + (l1 − 1)#(m1 − 1) if ρ = 1,

l1 +m1 + 1 otherwise.

(e) If (l1 − 1) ⊥ m1, l1 ⊥ (m1 − 1), then

`(M ⊗N) =


2 + (l1 − 1)#(m1 − 1) if ρ = σ = 1,

l1 +m1 if ρ = σ 6= 1,

l1 +m1 + 1 otherwise.

We remark that if any one of the statements l ⊥ m, (l− 1) ⊥ m and l ⊥ (m− 1) holds
true, then so does precisely one of the remaining ones. Hence 3(b)–3(e) in the theorem
give a complete list of cases. As a consequence of Theorem 4:1, it is not difficult to prove
the following sequence of inequalities:

(3.1) `(M(Al)⊗M(Am)) 6 `(M(Al)⊗M(Bm)) 6 `(M(Al)⊗M(Am+1)) .

It is entirely possible that each of these inequalities are identities. This is the case for
example if l = 8, m = 9: `(M(A8) ⊗ M(A9)) = 2 + 8#9 = 2 + 15 = 2 + 8#10 =
`(M(A8)⊗M(A10)).

Corollary 5. Let l,m < 2q, 0 < l1, l2,m1,m2 < 2q, and ρ, σ ∈ k r {0}.
1. M(Al)⊗M(Bm) has a projective direct summand if, and only if, l +m > 2q,
2. M(Al)⊗M(Am) has a projective direct summand if, and only if, l +m > 2q + 1.
3. M(Al1B

−1
l2
, ρ)⊗M(Am) has a projective direct summand precisely when

max{l1 +m− 1, l2 +m} > 2q.

4. If l1 6= l2 or m1 6= m2, then M
(
Al1B

−1
l2
, ρ
)
⊗M

(
Am1B

−1
m2
, σ

)
has a projective direct

summand if, and only if,

max{l1 +m1 − 1, l1 +m2, l2 +m1, l2 +m2 − 1} > 2q .

5. If l1 = l2, m1 = m2 then M
(
Al1B

−1
l2
, ρ
)
⊗ M

(
Am1B

−1
m2
, σ

)
has projective direct

summands if, and only if,
(a) l1 ⊥ (m1 − 1), ρ 6= σ and l1 +m1 = 2q, or
(b) l1 6⊥ (m1 − 1), and l1 +m1 > 2q.

We remark that, for l,m < 2q, the condition l + m > 2q implies l 6⊥ m. Thus, in
particular, in 5(a) above, the condition l1 ⊥ (m1 − 1) is equivalent to (l1 − 1) ⊥ m1, and
similarly, in 5(b), l1 6⊥ (m1 − 1) could be replaced by (l1 − 1) 6⊥ m1.
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4. Examples

Example 6. Let M =M(A5B
−1
7 B4), N =M(A6B

−1
4 ). By Proposition 1,

`(M ⊗N) = max
{
`(M(w)⊗M(w′)) | w ∈ {A5, B

−1
7 , B4}, w′ ∈ {A6, B

−1
4 }

}
= `(M(B−1

7 )⊗M(A6)) = `(M(B7)⊗M(A6)) .

Since 7 6⊥ 6, by Theorem 4:1 we have, `(M(B7) ⊗M(A6)) = 2 + 7#6 = 9. Hence, the
Loewy length of M ⊗N is 9 and, seen as a kD16-module, M ⊗N has a projective direct
summand.

Example 7. By Proposition 1 and the inequality (3.1), we have

`(M(Al)⊗M(Am+1B
−1
m )) = max{`(M(Al)⊗M(Am+1)), `(M(Al)⊗M(Bm))}

= `(M(Al)⊗M(Am+1)) .

for all l,m ∈ N.

Example 8. While it is clear that `(M(AlB
−1
l , 1)⊗N) 6 `(M(AlB

−1
l )⊗N), the difference

between the lengths of the two tensor products may be zero, or arbitrarily large. For
example, if N = M(Am) and l 6⊥ m, then `(M(AlB

−1
l , 1) ⊗ N) = `(M(AlB

−1
l ) ⊗ N) by

Theorem 4:2. If, on the other hand, l = 2r and m = 2s with r > s then

`(M(AlB
−1
l , 1)⊗M(Am)) = 2 + (l − 1)#m = 2 + 2r − 1 = 1 + 2r,

while

`(M(AlB
−1
l )⊗M(Am)) = `(M(Bl)⊗M(Am)) = 1 + l +m = 1 + 2r + 2s .

Example 9. Let M = M(a) = M(A1) and N = M(b(ab)l) = M(B2l+1) for some l ∈ N.
Now 1 6⊥ (2l+1), and 1#(2l+1) = 2l+1, so by Theorem 4:1, `(M ⊗N) = 2l+3. In this
case, the Loewy length actually provides the missing piece of information to compute the
isomorphism type of M ⊗N .
Namely, since k is the unique simple module, we have

dim soc(M ⊗N) = dimHomkD4q(k,M ⊗N) = dimHomkD4q(N
∗,M)

= dimHomkD4q(N,M) = 1

and similarly,

dim top(M ⊗N) = dimHomkD4q(M ⊗N, k) = 1 .

Hence M ⊗ N is a module with simple top and simple socle, of dimension 4(l + 1), and
Loewy length 2l + 3. A module satisfying these conditions is indecomposable, and must
be isomorphic to M(A2l+2B

−1
2l+2, ρ) for some ρ ∈ kr {0}. Now if k is the prime field, that

is the Galois field with two elements, this means that ρ = 1. From this follows that ρ = 1
also in the general case, since extension of scalars commutes with taking tensor products.
Hence, we have M ⊗N 'M(A2l+2B

−1
2l+2, 1).
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