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Abstract. We give quiver presentations of the Grothendieck constructions of functors
from a small category to the 2-category of k-categories for a commutative ring k.
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1. Introduction

Throughout this report I is a small category, k is a commutative ring, and k-Cat
denotes the 2-category of all k-categories, k-functors between them and natural transfor-
mations between k-functors.

The Grothendieck construction is a way to form a single category Gr(X) from a diagram
X of small categories indexed by a small category I, which first appeared in [4, §8 of
Exposé VI]. As is exposed by Tamaki [7] this construction has been used as a useful tool
in homotopy theory (e.g., [8]) or topological combinatorics (e.g., [9]). This can be also
regarded as a generalization of orbit category construction from a category with a group
action.

In [2] we defined a notion of derived equivalences of (oplax) functors from I to k-Cat,
and in [3] we have shown that if (oplax) functorsX,X ′ : I → k-Cat are derived equivalent,
then so are their Grothendieck constructions Gr(X) and Gr(X ′). An easy example of a
derived equivalent pair of functors is given by using diagonal functors: For a category
C define the diagonal functor ∆(C) : I → k-Cat to be a functor sending all objects of I
to C and all morphisms in I to the identity functor of C. Then if categories C and C ′

are derived equivalent, then so are their diagonal functors ∆(C) and ∆(C ′). Therefore,
to compute examples of derived equivalent pairs using this result, it will be useful to
present Grothendieck constructions of functors by quivers with relations. We already
have computations in two special cases. First for a k-algebra A, which we regard as a
k-category with a single object, we noted in [3] that if I is a semigroup G, a poset S, or
the free category PQ of a quiver Q, then the Grothendieck construction Gr(∆(A)) of the
diagonal functor ∆(A) is isomorphic to the semigroup algebra AG, the incidence algebra
AS, or the path-algebra AQ, respectively. Second in [1] we gave a quiver presentation
of the orbit category C/G for each k-category C with an action of a semigroup G in the
case that k is a field, which can be seen as a computation of a quiver presentation of the
Grothendieck construction Gr(X) of each functor X : G → k-Cat.

In this report we generalize these two results as follows:

(1) We compute the Grothendieck construction Gr(∆(A)) of the diagonal functor
∆(A) for each k-algebra A and each small category I.

The final version of this paper has been submitted for publication elsewhere.
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(2) We give a quiver presentation of the Grothendieck construction Gr(X) for each
functor X : I → k-Cat and each small category I when k is a field.

2. Preliminaries

Throughout this report Q = (Q0, Q1, t, h) is a quiver, where t(α) ∈ Q0 is the tail and
h(α) ∈ Q0 is the head of each arrow α of Q. For each path µ of Q, the tail and the head
of µ is denoted by t(µ) and h(µ), respectively. For each non-negative integer n the set of
all paths of Q of length at least n is denoted by Q≥n. In particular Q≥0 denotes the set
of all paths of Q.

A category C is called a k-category if for each x, y ∈ C, C(x, y) is a k-module and the
compositions are k-bilinear.

Definition 1. Let Q be a quiver.

(1) The free category PQ of Q is the category whose underlying quiver is (Q0, Q≥0, t, h)
with the usual composition of paths.

(2) The path k-category of Q is the k-linearization of PQ and is denoted by kQ.

Definition 2. Let C be a category. We set

Rel(C) :=
∪

(i,j)∈C0×C0

C(i, j)× C(i, j),

elements of which are called relations of C. Let R ⊆ Rel(C). For each i, j ∈ C0 we set

R(i, j) := R ∩ (C(i, j)× C(i, j)).
(1) The smallest congruence relation

Rc :=
∪

(i,j)∈C0×C0

{(dac, dbc) | c ∈ C(−, i), d ∈ C(j,−), (a, b) ∈ R(i, j)}

containing R is called the congruence relation generated by R.
(2) For each i, j ∈ C0 we set

R−1(i, j) := {(g, f) ∈ C(i, j)× C(i, j) | (f, g) ∈ R(i, j)}
1C(i,j) := {(f, f) | f ∈ C(i, j)}
S(i, j) := R(i, j) ∪R−1(i, j) ∪ 1C(i,j)

S(i, j)1 := S(i, j)

S(i, j)n := {(h, f) | ∃g ∈ C(i, j), (g, f) ∈ S(i, j), (h, g) ∈ S(i, j)n−1} (for all n ≥ 2)

S(i, j)∞ :=
∪
n≥1

S(i, j)n, and set

Re :=
∪

(i,j)∈C0×C0

S(i, j)∞.

Re is called the equivalence relation generated by R.
(3) We set R# := (Rc)e (cf. [5]).

The following is well known (cf. [6]).
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Proposition 3. Let C be a category, and R ⊆ Rel(C). Then the category C/R# and the
functor F : C → C/R# defined above satisfy the following conditions.

(i) For each i, j ∈ C0 and each (f, f ′) ∈ R(i, j) we have Ff = Ff ′.
(ii) If a functor G : C → D satisfies Gf = Gf ′ for all f, f ′ ∈ C(i, j) and all i, j ∈ C0

with (f, f ′) ∈ R(i, j), then there exists a unique functor G′ : C/R# → D such that
G′ ◦ F = G.

Definition 4. Let Q be a quiver and R ⊆ Rel(PQ). We set

〈Q | R〉 := PQ/R#.

The following is straightforward.

Proposition 5. Let C be a category, Q the underlying quiver of C, and set

R := {(ei, 1li), (µ, [µ]) | i ∈ Q0, µ ∈ Q≥2} ⊆ Rel(PQ),

where ei is the path of length 0 at each vertex i ∈ Q0, and [µ] := αn◦· · ·◦α1 (the composite
in C) for all paths µ = αn . . . α1 ∈ Q≥2 with α1, . . . , αn ∈ Q1. Then

C ∼= 〈Q | R〉.
By this statement, an arbitrary category is presented by a quiver and relations. Through-

out the rest of this report I is a small category with a presentation I = 〈Q | R〉.

3. Grothendieck constructions of Diagonal functors

Definition 6. Let X : I → k-Cat be a functor. Then a category Gr(X), called the
Grothendiek construction of X, is defined as follows:

(i) (Gr(X))0 :=
∪
i∈I0

{(i, x) | x ∈ X(i)0}

(ii) For (i, x), (j, y) ∈ (Gr(X))0

Gr(X)((i, x), (j, y)) :=
⊕

a∈I(i,j)

X(j)(X(a)x, y)

(iii) For f = (fa)a∈I(i,j) ∈ Gr(X)((i, x), (j, y)) and g = (gb)b∈I(j,k) ∈ Gr(X)((j, y), (k, z))

g ◦ f := (
∑
c=ba

a∈I(i,j)
b∈I(j,k)

gbX(b)fa)c∈I(i,k)

Definition 7. Let C ∈ k-Cat0. Then the diagonal functor ∆(C) of C is a functor from I
to k-Cat sending each arrow a : i → j in I to 1lC : C → C in k-Cat.

In this section, we fix a k-algebra A which we regard as a k-category with a single
object ∗ and with A(∗, ∗) = A. The quiver algebra AQ of Q over A is the A-linearization
of PQ, namely AQ := A⊗k kQ.

Theorem 8. We have an isomorphism Gr(∆(A)) ∼= AQ/〈R〉A, where 〈R〉A is the ideal
of AQ generated by the elements g − h with (g, h) ∈ R.

Remark 9. Theorem 8 can be written in the form

Gr(∆(A)) ∼= A⊗k (kQ/〈R〉k).
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4. The quiver presentation of Grothendieck constructions

In this section we give a quiver presentation of the Grothendieck construction of an
arbitrary functor I → k-Cat. Throughout this section we assume that k is a field.

Theorem 10. Let X : I → k-Cat be a functor, and for each i ∈ I set X(i) = kQ(i)/
〈R(i)〉 with Φ(i) : kQ(i) → X(i) the canonical morphism, where R(i) ⊆ kQ(i), 〈R(i)〉 ∩ {ex |
x ∈ Q(i)0} = ∅. Then Grothendieck construction is presented by the quiver with relations
(Q,R′) defined as follows.

Quiver: Q′ = (Q′
0, Q

′
1, t

′, h′), where

(i) Q′
0 :=

∪
i∈I

{ix | x ∈ Q
(i)
0 }.

(ii) Q′
1 :=

∪
i∈I

{{iα | α ∈ Q
(i)
1 } ∪ {(a, ix) : ix → j(ax) | a : i → j ∈ Q1, x ∈ Q

(i)
0 , ax 6=

0}},
where we set ax := X(a)(x).

(iii) For α ∈ Q
(i)
1 , t′(iα) = t(i)(α) and h′(iα) = h(i)(α).

(iv) For a : i → j ∈ Q1, x ∈ Q
(i)
0 , t′(a, ix) = ix and h′(a, ix) = j(ax).

Relations: R′ := R′
1 ∪R′

2 ∪R′
3, where

(i) R′
1 := {σ(i)(µ) | i ∈ Q0, µ ∈ R(i)},

where we set σ(i) : kQ(i) ↪→ kQ′.

(ii) R′
2 := {π(g, ix) − π(h, ix) | i, j ∈ Q0, (g, h) ∈ R(i, j), x ∈ Q

(i)
0 }, where for each

path a in Q we set

π(a, ix) := (an, in−1(an−1an−2 . . . a1x)) . . . (a2, i1(a1x))(a1, ix)

if a = an . . . a2a1 for some a1, . . . , an arrows in Q, and

π(a, ix) := e
ix

if a = ei for some i ∈ Q0.

(iii) R′
3 := {(a, iy)iα − j(aα)(a, ix) | a : i → j ∈ Q1, α : x → y ∈ Q

(i)
1 }, where we take

aα : ax → ay so that Φ(j)(aα) ∈ X(a)Φ(i)(α):

α ∈ kQ(i) Φ(i)
// X(i)

X(a)

��
aα ∈ kQ(j) Φ(j)

// X(j).

Note that the ideal 〈R′〉 is independent of the choice of aα because R′
1 ⊆ R′.

5. Examples

In this section, we illustrate Theorems 8 and 10 by some examples.
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Example 11. Let Q be the quiver

2

1 3 5

4

a
@@�������

b

��=
==

==
==

c // d //

e
��=

==
==

==

f

@@�������

and let R = {(ba, dc)}. Then the category I := 〈Q | R〉 is not given as a semigroup, as a
poset or as the free category of a quiver. For any algebra A consider the diagonal functor
∆(A) : I → k-Cat. Then by Theorem 8 the category Gr(∆(A)) is given by

AQ/〈ba− dc〉.

Remark 12. Let Q and Q′ be quivers having neither double arrows nor loops, and let
f : Q0 → Q′

0 be a map (a vertex map between Q and Q′). If Q(x, y) 6= ∅ (x, y ∈ Q0)

implies Q′(f(x), f(y)) 6= ∅ or f(x) = f(y), then f induces a k-functor f̂ : kP → kP ′

defined by the following correspondence: For each x ∈ Q0, f̂(ex) := ef(x), and for each
arrow a : x → y in Q, f(a) is the unique arrow f(x) → f(y) (resp. ef(x)) if f(x) 6= f(y)
(resp. if f(x) = f(y)).

Example 13. Let I = 〈Q | R〉 be as in the previous example. Define a functor X :
I → k-Cat by the k-linearizations of the following quivers in frames and the k-functors
induced by the vertex maps expressed by broken arrows between them:
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\ [ [ Z Y Y X X W W V V U T TX(c)
//_________________
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X(2)

X(1)

X(3)

X(5)

X(4)

–20–



Then by Theorem 10 Gr(X) is presented by the quiver

Q′ =
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��
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with relations

R′ = {π(ba, 11)− π(dc, 11), π(ba, 12)− π(dc, 12)}
∪{(a, iy)iα− j(aα)(a, ix) | a : i → j ∈ Q1, α : x → y ∈ Q

(i)
1 },

where the new arrows are presented by broken arrows.

Example 14. Let Q = ( 1
a // 2 ) and I := 〈Q〉. Define functors X,X ′ : I → k-Cat by

the k-linearizations of the following quivers in frames and the k-functors induced by the
vertex maps expressed by dotted arrows between them:

X :

1 2

3

1

α

��7
77

77
77

77

β

����
��
��
��
�

X(a)

��

X(a)

		

X(a)

��

X(1)

X(2),

X ′ :

1

2 3

1

α

����
��
��
��
�

β

��7
77

77
77

77

X′(a)

��
X′(a)

��
X′(a)

��

X ′(1)

X ′(2).

Then by Theorem 10 Gr(X) is given by the following quiver with no relations

11 12

13

21

1α

��@
@@

@@
@@

1β

��~~
~~
~~
~

(a,11)

��

(a,12)

��
(a,13)

��

, (a, 13)1α− (a, 11), (a, 13)1β − (a, 12)


∼=



11 12

13

21

1α

��@
@@

@@
@@

1β

��~~
~~
~~
~

(a,13)

��


,
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and Gr(X ′) is given by the following quiver with a commutativity relation

11

12 13

21

1α

��~~
~~
~~
~

1β

��@
@@

@@
@@

(a,11)

��(a,12) �� (a,13)��

, (a, 12)1α− (a, 11), (a, 13)1β − (a, 11)


∼=



11

12 � 13

21

1α

��~~
~~
~~
~

1β

��@
@@

@@
@@

(a,12) �� (a,13)��


.

By using the main theorem in [3] derived equivalences between X(1) and X ′(1) and
between X(2) and X ′(2) are glued together to have a derived equivalence between Gr(X)
and Gr(X ′).
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