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Abstract. We consider subcategories consisting of the extensions of modules in two
given Serre subcategories to find a method of constructing Serre subcategories of the
module category. We shall give a criterion for this subcategory to be a Serre subcategory.

1. Introduction

Let R be a commutative Noetherian ring. We denote by R-Mod the category of R-
modules and by R-mod the full subcategory consisting of finitely generated R-modules.

In [2], P. Gabriel showed that one has lattice isomorphisms between the set of Serre
subcategories of R-mod, the set of Serre subcategories of R-Mod which are closed under
arbitrary direct sums and the set of specialization closed subsets of Spec (R). By this
result, Serre subcategories of R-mod are classified. However, it has not yet classified
Serre subcategories of R-Mod. In this paper, we shall give a way of constructing Serre
subcategories of R-Mod by considering subcategories of extension modules related to Serre
subcategories.

2. The definition of a subcategory of extension modules
by Serre subcategories

We assume that all full subcategories of R-Mod are closed under isomorphisms. We
recall that a subcategory S of R-Mod is said to be Serre subcategory if the following
condition is satisfied: For any short exact sequence

0 → L → M → N → 0

of R-modules, it holds that M is in S if and only if L and N are in S. In other words,
S is called a Serre subcategory if it is closed under submodules, quotient modules and
extensions.

We give the definition of a subcategory of extension modules by Serre subcategories.

Definition 1. Let S1 and S2 be Serre subcategories of R-Mod. We denote by (S1,S2) a
subcategory consisting of R-modules M with a short exact sequence

0 → X → M → Y → 0

of R-modules where X is in S1 and Y is in S2, that is

(S1,S2) =

M ∈ R-Mod

∣∣∣∣∣∣
there are X ∈ S1 and Y ∈ S2 such that

0 → X → M → Y → 0
is a short exact sequence.

 .

The detailed version of this paper has been submitted for publication elsewhere.
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Remark 2. Let S1 and S2 be Serre subcategories of R-Mod.

(1) Since the zero module belongs to any Serre subcategory, one has S1 ⊆ (S1,S2) and
S2 ⊆ (S1,S2).

(2) It holds S1 ⊇ S2 if and only if (S1,S2) = S1.

(3) It holds S1 ⊆ S2 if and only if (S1,S2) = S2.

(4) A subcategory (S1,S2) is closed under finite direct sums.

Example 3. We denote by Sf.g. the subcategory consisting of finitely generated R-
modules and by SArtin the subcategory consisting of Artinian R-modules. If R is a com-
plete local ring, then a subcategory (Sf.g.,SArtin) is known as the subcategory consisting
of Matlis reflexive R-modules. Therefore, (Sf.g.,SArtin) is a Serre subcategory of R-Mod.

The following example shows that a subcategory (S1,S2) needs not be a Serre subcat-
egory for Serre subcategories S1 and S2.

Example 4. We shall see that the subcategory (SArtin,Sf.g.) needs not be closed under
extensions.

Let R be a one dimensional Gorenstein local ring with a maximal ideal m. Then one
has a minimal injective resolution

0 → R →
⊕

p ∈ Spec(R)

htp = 0

ER(R/p) → ER(R/m) → 0

of R. (ER(M) denotes the injective hull of an R-module M .) We note that R and
ER(R/m) are in (SArtin,Sf.g.).

Now, we assume that a subcategory (SArtin,Sf.g.) is closed under extensions. Then
ER(R) = ⊕htp=0ER(R/p) is in (SArtin,Sf.g.). It follows from the definition of (SArtin,Sf.g.)
that there exists an Artinian R-submodule X of ER(R) such that ER(R)/X is a finitely
generated R-module.
If X = 0, then ER(R) is a finitely generated injective R-module. It follows from the

Bass formula that one has dimR = depthR = inj dimER(R) = 0. However, this equality
contradicts dimR = 1. On the other hand, if X 6= 0, then X is a non-zero Artinian
R-module. Therefore, one has AssR(X) = {m}. Since X is an R-submodule of ER(R),
one has

AssR(X) ⊆ AssR(ER(R)) = {p ∈ Spec(R) | ht p = 0}.
This is contradiction as well.

3. The main result

In this section, we shall give a criterion for a subcategory (S1,S2) to be a Serre subcat-
egory for Serre subcategories S1 and S2.

First of all, it is easy to see that the following assertion holds.

Proposition 5. Let S1 and S2 be Serre subcategories of R-Mod. Then a subcategory
(S1,S2) is closed under submodules and quotient modules.
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Lemma 6. Let S1 and S2 be Serre subcategories of R-Mod. We suppose that a sequence
0 → L → M → N → 0 of R-modules is exact. Then the following assertions hold.

(1) If L ∈ S1 and N ∈ (S1,S2), then M ∈ (S1,S2).

(2) If L ∈ (S1,S2) and N ∈ S2, then M ∈ (S1,S2).

Proof. (1) We assume that L is in S1 and N is in (S1,S2). Since N belongs to (S1,S2),
there exists a short exact sequence

0 → X → N → Y → 0

of R-modules where X is in S1 and Y is in S2. Then we consider the following pull buck
diagram

0 0y y
0 −−−→ L −−−→ X ′ −−−→ X −−−→ 0

‖
y y

0 −−−→ L −−−→ M −−−→ N −−−→ 0y y
Y Yy y
0 0

of R-modules with exact rows and columns. Since S1 is a Serre subcategory, it follows
from the first row in the diagram that X ′ belongs to S1. Consequently, we see that M is
in (S1,S2) by the middle column in the diagram.

(2) We can show that the assertion holds by the similar argument in the proof of (1). �

Now, we can show the main purpose of this paper.

Theorem 7. Let S1 and S2 be Serre subcategories of R-Mod. Then the following condi-
tions are equivalent:

(1) A subcategory (S1,S2) is a Serre subcategory;

(2) One has (S2,S1) ⊆ (S1,S2).

Proof. (1) ⇒ (2) We assume that M is in (S2,S1). By the definition of a subcategory
(S2,S1), there exists a short exact sequence

0 → Y → M → X → 0

of R-modules where X is in S1 and Y is in S2. We note that X and Y are also in (S1,S2).
Since a subcategory (S1,S2) is closed under extensions by the assumption (1), we see that
M is in (S1,S2).
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(2) ⇒ (1) We only have to prove that a subcategory (S1,S2) is closed under extensions
by Proposition 5. Let 0 → L → M → N → 0 be a short exact sequence of R-modules
such that L and N are in (S1,S2). We shall show that M is also in (S1,S2).

Since L is in (S1,S2), there exists a short exact sequence

0 → S → L → L/S → 0

of R-modules where S is in S1 such that L/S is in S2. We consider the following push
out diagram

0 0y y
S Sy y

0 −−−→ L −−−→ M −−−→ N −−−→ 0y y ‖

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0y y
0 0

of R-modules with exact rows and columns. Next, since N is in (S1,S2), we have a short
exact sequence

0 → T → N → N/T → 0

of R-modules where T is in S1 such that N/T is in S2. We consider the following pull
back diagram

0 0y y
0 −−−→ L/S −−−→ P ′ −−−→ T −−−→ 0

‖
y y

0 −−−→ L/S −−−→ P −−−→ N −−−→ 0y y
N/T N/Ty y
0 0

of R-modules with exact rows and columns.
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In the first row of the second diagram, since L/S is in S2 and T is in S1, P
′ is in

(S2,S1). Now here, it follows from the assumption (2) that P ′ is in (S1,S2). Next, in the
middle column of the second diagram, we have the short exact sequence such that P ′ is
in (S1,S2) and N/T is in S2. Therefore, it follows from Lemma 6 that P is in (S1,S2).
Finally, in the middle column of the first diagram, there exists the short exact sequence
such that S is in S1 and P is in (S1,S2). Consequently, we see that M is in (S1,S2) by
Lemma 6.

The proof is completed. �

Corollary 8. A subcategory (Sf.g.,S) is a Serre subcategory for a Serre subcategory S of
R-Mod.

Proof. Let S be a Serre subcategory of R-Mod. To prove our assertion, it is enough to
show that one has (S,Sf.g.) ⊆ (Sf.g.,S) by Theorem 7. Let M be in (S,Sf.g.). Then
there exists a short exact sequence 0 → Y → M → M/Y → 0 of R-modules where Y
is in S such that M/Y is in Sf.g.. It is easy to see that there exists a finitely generated
R-submodule X of M such that M = X + Y . Since X ⊕ Y is in (Sf.g.,S) and M is a
homomorphic image of X ⊕ Y , M is in (Sf.g.,S) by Proposition 5. �

We note that a subcategory SArtin consisting of Artinian R-modules is a Serre subcat-
egory which is closed under injective hulls. (Also see [1, Example 2.4].) Therefore we
can see that a subcategory (S,SArtin) is also Serre subcategory for a Serre subcategory of
R-Mod by the following assertion.

Corollary 9. Let S2 be a Serre subcategory of R-Mod which is closed under injective
hulls. Then a subcategory (S1,S2) is a Serre subcategory for a Serre subcategory S1 of
R-Mod.

Proof. By Theorem 7, it is enough to show that one has (S2,S1) ⊆ (S1,S2).
We assume that M is in (S2,S1) and shall show that M is in (S1,S2). Then there exists

a short exact sequence
0 → Y → M → X → 0

of R-modules where X is in S1 and Y is in S2. Since S2 is closed under injective hulls, we
note that the injective hull ER(Y ) of Y is also in S2. We consider a push out diagram

0 −−−→ Y −−−→ M −−−→ X −−−→ 0y y ‖

0 −−−→ ER(Y ) −−−→ T −−−→ X −−−→ 0

of R-modules with exact rows and injective vertical maps. The second exact sequence
splits, and we have an injective homomorphism M → X ⊕ ER(Y ). Since there is a short
exact sequence

0 → X → X ⊕ ER(Y ) → ER(Y ) → 0

of R-modules, the R-module X ⊕ ER(Y ) is in (S1,S2). Consequently, we see that M is
also in (S1,S2) by Proposition 5.
The proof is completed. �
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Example 10. Let R be a domain but not a field and let Q be a field of fractions of R.
We denote by STor a subcategory consisting of torsion R-modules, that is

STor = {M ∈ R-Mod | M ⊗R Q = 0}.

Then we shall see that one has

(STor,Sf.g.) $ (Sf.g.,STor) = {M ∈ R-Mod | dimQM ⊗R Q < ∞}.

Therefore, a subcategory (Sf.g.,STor) is a Serre subcategory by Corollary 8, but a subcat-
egory (STor,Sf.g.) is not closed under extensions by Theorem 7.

First of all, we shall show that the above equality holds. We suppose that M is in
(Sf.g.,STor). Then there exists a short exact sequence

0 → X → M → Y → 0

of R-modules where X is in Sf.g. and Y is in STor. We apply an exact functor −⊗R Q to
this sequence. Then we see that one has M ⊗R Q ∼= X ⊗R Q and this module is a finite
dimensional Q-vector space.

Conversely, let M be an R-module with dimQ M ⊗R Q < ∞. Then we can denote
M ⊗R Q =

∑n
i=1Q(mi ⊗ 1Q) with mi ∈ M and the unit element 1Q of Q. We consider a

short exact sequence

0 →
n∑

i=1

Rmi → M → M/

n∑
i=1

Rmi → 0

of R-modules. It is clear that
∑n

i=1Rmi is in Sf.g. and M/
∑n

i=1Rmi is in STor. So M is
in (Sf.g.,STor). Consequently, the above equality holds.

Next, it is clear that M ⊗R Q has finite dimension as Q-vector space for an R-module
M of (STor,Sf.g.). Thus, one has (STor,Sf.g.) ⊆ (Sf.g.,STor).

Finally, we shall see that a field of fractions Q of R is in (Sf.g.,STor) but not in
(STor,Sf.g.), so one has (STor,Sf.g.) $ (Sf.g.,STor). Indeed, it follows from dimQQ⊗RQ =

1 that Q is in (Sf.g.,STor). On the other hand, we assume that Q is in (STor,Sf.g.). Since
R is a domain, a torsion R-submodule of Q is only the zero module. It means that Q
must be a finitely generated R-module. But, this is a contradiction.
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