SUBCATEGORIES OF EXTENSION MODULES RELATED TO SERRE SUBCATEGORIES

TAKESHI YOSHIZAWA

ABSTRACT. We consider subcategories consisting of the extensions of modules in two given Serre subcategories to find a method of constructing Serre subcategories of the module category. We shall give a criterion for this subcategory to be a Serre subcategory.

1. INTRODUCTION

Let R be a commutative Noetherian ring. We denote by R-Mod the category of R-modules and by R-mod the full subcategory consisting of finitely generated R-modules.

In [2], P. Gabriel showed that one has lattice isomorphisms between the set of Serre subcategories of R-mod, the set of Serre subcategories of R-Mod which are closed under arbitrary direct sums and the set of specialization closed subsets of Spec (R). By this result, Serre subcategories of R-mod are classified. However, it has not yet classified Serre subcategories of R-Mod. In this paper, we shall give a way of constructing Serre subcategories of R-Mod by considering subcategories of extension modules related to Serre subcategories.

2. The definition of a subcategory of extension modules by Serre subcategories

We assume that all full subcategories of R-Mod are closed under isomorphisms. We recall that a subcategory S of R-Mod is said to be Serre subcategory if the following condition is satisfied: For any short exact sequence

$$0 \to L \to M \to N \to 0$$

of *R*-modules, it holds that *M* is in S if and only if *L* and *N* are in S. In other words, S is called a Serre subcategory if it is closed under submodules, quotient modules and extensions.

We give the definition of a subcategory of extension modules by Serre subcategories.

Definition 1. Let S_1 and S_2 be Serre subcategories of *R*-Mod. We denote by (S_1, S_2) a subcategory consisting of *R*-modules *M* with a short exact sequence

$$0 \to X \to M \to Y \to 0$$

of *R*-modules where X is in S_1 and Y is in S_2 , that is

$$(\mathcal{S}_1, \mathcal{S}_2) = \left\{ M \in R\text{-Mod} \middle| \begin{array}{c} \text{there are } X \in \mathcal{S}_1 \text{ and } Y \in \mathcal{S}_2 \text{ such that} \\ 0 \to X \to M \to Y \to 0 \\ \text{is a short exact sequence.} \end{array} \right\}.$$

The detailed version of this paper has been submitted for publication elsewhere.

Remark 2. Let S_1 and S_2 be Serre subcategories of *R*-Mod.

- (1) Since the zero module belongs to any Serre subcategory, one has $S_1 \subseteq (S_1, S_2)$ and $S_2 \subseteq (S_1, S_2)$.
- (2) It holds $S_1 \supseteq S_2$ if and only if $(S_1, S_2) = S_1$.
- (3) It holds $S_1 \subseteq S_2$ if and only if $(S_1, S_2) = S_2$.
- (4) A subcategory $(\mathcal{S}_1, \mathcal{S}_2)$ is closed under finite direct sums.

Example 3. We denote by $S_{f.g.}$ the subcategory consisting of finitely generated R-modules and by S_{Artin} the subcategory consisting of Artinian R-modules. If R is a complete local ring, then a subcategory $(S_{f.g.}, S_{Artin})$ is known as the subcategory consisting of Matlis reflexive R-modules. Therefore, $(S_{f.g.}, S_{Artin})$ is a Serre subcategory of R-Mod.

The following example shows that a subcategory (S_1, S_2) needs not be a Serre subcategory for Serre subcategories S_1 and S_2 .

Example 4. We shall see that the subcategory $(S_{Artin}, S_{f.g.})$ needs not be closed under extensions.

Let R be a one dimensional Gorenstein local ring with a maximal ideal \mathfrak{m} . Then one has a minimal injective resolution

$$0 \to R \to \bigoplus_{\substack{\mathfrak{p} \in \operatorname{Spec}(R) \\ \operatorname{ht}\mathfrak{p} = 0}} E_R(R/\mathfrak{p}) \to E_R(R/\mathfrak{m}) \to 0$$

of R. $(E_R(M)$ denotes the injective hull of an R-module M.) We note that R and $E_R(R/\mathfrak{m})$ are in $(\mathcal{S}_{Artin}, \mathcal{S}_{f.g.})$.

Now, we assume that a subcategory $(\mathcal{S}_{Artin}, \mathcal{S}_{f.g.})$ is closed under extensions. Then $E_R(R) = \bigoplus_{ht\mathfrak{p}=0} E_R(R/\mathfrak{p})$ is in $(\mathcal{S}_{Artin}, \mathcal{S}_{f.g.})$. It follows from the definition of $(\mathcal{S}_{Artin}, \mathcal{S}_{f.g.})$ that there exists an Artinian *R*-submodule *X* of $E_R(R)$ such that $E_R(R)/X$ is a finitely generated *R*-module.

If X = 0, then $E_R(R)$ is a finitely generated injective *R*-module. It follows from the Bass formula that one has dim R = depth R = inj dim $E_R(R) = 0$. However, this equality contradicts dim R = 1. On the other hand, if $X \neq 0$, then X is a non-zero Artinian *R*-module. Therefore, one has $Ass_R(X) = \{\mathfrak{m}\}$. Since X is an *R*-submodule of $E_R(R)$, one has

$$\operatorname{Ass}_R(X) \subseteq \operatorname{Ass}_R(E_R(R)) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \operatorname{ht} \mathfrak{p} = 0 \}.$$

This is contradiction as well.

3. The main result

In this section, we shall give a criterion for a subcategory (S_1, S_2) to be a Serre subcategory for Serre subcategories S_1 and S_2 .

First of all, it is easy to see that the following assertion holds.

Proposition 5. Let S_1 and S_2 be Serre subcategories of R-Mod. Then a subcategory (S_1, S_2) is closed under submodules and quotient modules.

Lemma 6. Let S_1 and S_2 be Serre subcategories of R-Mod. We suppose that a sequence $0 \to L \to M \to N \to 0$ of R-modules is exact. Then the following assertions hold.

- (1) If $L \in S_1$ and $N \in (S_1, S_2)$, then $M \in (S_1, S_2)$.
- (2) If $L \in (\mathcal{S}_1, \mathcal{S}_2)$ and $N \in \mathcal{S}_2$, then $M \in (\mathcal{S}_1, \mathcal{S}_2)$.

Proof. (1) We assume that L is in S_1 and N is in (S_1, S_2) . Since N belongs to (S_1, S_2) , there exists a short exact sequence

$$0 \to X \to N \to Y \to 0$$

of *R*-modules where X is in S_1 and Y is in S_2 . Then we consider the following pull buck diagram

of *R*-modules with exact rows and columns. Since S_1 is a Serre subcategory, it follows from the first row in the diagram that X' belongs to S_1 . Consequently, we see that M is in (S_1, S_2) by the middle column in the diagram.

(2) We can show that the assertion holds by the similar argument in the proof of (1). \Box

Now, we can show the main purpose of this paper.

Theorem 7. Let S_1 and S_2 be Serre subcategories of R-Mod. Then the following conditions are equivalent:

- (1) A subcategory (S_1, S_2) is a Serre subcategory;
- (2) One has $(\mathcal{S}_2, \mathcal{S}_1) \subseteq (\mathcal{S}_1, \mathcal{S}_2).$

Proof. (1) \Rightarrow (2) We assume that M is in $(\mathcal{S}_2, \mathcal{S}_1)$. By the definition of a subcategory $(\mathcal{S}_2, \mathcal{S}_1)$, there exists a short exact sequence

$$0 \to Y \to M \to X \to 0$$

of *R*-modules where X is in S_1 and Y is in S_2 . We note that X and Y are also in (S_1, S_2) . Since a subcategory (S_1, S_2) is closed under extensions by the assumption (1), we see that M is in (S_1, S_2) .

-284-

 $(2) \Rightarrow (1)$ We only have to prove that a subcategory $(\mathcal{S}_1, \mathcal{S}_2)$ is closed under extensions by Proposition 5. Let $0 \to L \to M \to N \to 0$ be a short exact sequence of *R*-modules such that *L* and *N* are in $(\mathcal{S}_1, \mathcal{S}_2)$. We shall show that *M* is also in $(\mathcal{S}_1, \mathcal{S}_2)$.

Since L is in $(\mathcal{S}_1, \mathcal{S}_2)$, there exists a short exact sequence

$$0 \to S \to L \to L/S \to 0$$

of *R*-modules where *S* is in S_1 such that L/S is in S_2 . We consider the following push out diagram

of *R*-modules with exact rows and columns. Next, since *N* is in $(\mathcal{S}_1, \mathcal{S}_2)$, we have a short exact sequence

$$0 \to T \to N \to N/T \to 0$$

of *R*-modules where *T* is in S_1 such that N/T is in S_2 . We consider the following pull back diagram

of R-modules with exact rows and columns.

-285-

In the first row of the second diagram, since L/S is in S_2 and T is in S_1 , P' is in (S_2, S_1) . Now here, it follows from the assumption (2) that P' is in (S_1, S_2) . Next, in the middle column of the second diagram, we have the short exact sequence such that P' is in (S_1, S_2) and N/T is in S_2 . Therefore, it follows from Lemma 6 that P is in (S_1, S_2) . Finally, in the middle column of the first diagram, there exists the short exact sequence such that S is in S_1 and P is in (S_1, S_2) . Consequently, we see that M is in (S_1, S_2) by Lemma 6.

The proof is completed.

Corollary 8. A subcategory $(S_{f.g.}, S)$ is a Serre subcategory for a Serre subcategory S of R-Mod.

Proof. Let S be a Serre subcategory of R-Mod. To prove our assertion, it is enough to show that one has $(S, S_{f.g.}) \subseteq (S_{f.g.}, S)$ by Theorem 7. Let M be in $(S, S_{f.g.})$. Then there exists a short exact sequence $0 \to Y \to M \to M/Y \to 0$ of R-modules where Yis in S such that M/Y is in $S_{f.g.}$. It is easy to see that there exists a finitely generated R-submodule X of M such that M = X + Y. Since $X \oplus Y$ is in $(S_{f.g.}, S)$ and M is a homomorphic image of $X \oplus Y$, M is in $(S_{f.g.}, S)$ by Proposition 5.

We note that a subcategory S_{Artin} consisting of Artinian *R*-modules is a Serre subcategory which is closed under injective hulls. (Also see [1, Example 2.4].) Therefore we can see that a subcategory (S, S_{Artin}) is also Serre subcategory for a Serre subcategory of *R*-Mod by the following assertion.

Corollary 9. Let S_2 be a Serre subcategory of R-Mod which is closed under injective hulls. Then a subcategory (S_1, S_2) is a Serre subcategory for a Serre subcategory S_1 of R-Mod.

Proof. By Theorem 7, it is enough to show that one has $(\mathcal{S}_2, \mathcal{S}_1) \subseteq (\mathcal{S}_1, \mathcal{S}_2)$.

We assume that M is in $(\mathcal{S}_2, \mathcal{S}_1)$ and shall show that M is in $(\mathcal{S}_1, \mathcal{S}_2)$. Then there exists a short exact sequence

$$0 \to Y \to M \to X \to 0$$

of *R*-modules where X is in S_1 and Y is in S_2 . Since S_2 is closed under injective hulls, we note that the injective hull $E_R(Y)$ of Y is also in S_2 . We consider a push out diagram

of *R*-modules with exact rows and injective vertical maps. The second exact sequence splits, and we have an injective homomorphism $M \to X \oplus E_R(Y)$. Since there is a short exact sequence

 $0 \to X \to X \oplus E_R(Y) \to E_R(Y) \to 0$

of *R*-modules, the *R*-module $X \oplus E_R(Y)$ is in $(\mathcal{S}_1, \mathcal{S}_2)$. Consequently, we see that *M* is also in $(\mathcal{S}_1, \mathcal{S}_2)$ by Proposition 5.

The proof is completed.

-286-

Example 10. Let R be a domain but not a field and let Q be a field of fractions of R. We denote by \mathcal{S}_{Tor} a subcategory consisting of torsion R-modules, that is

$$\mathcal{S}_{Tor} = \{ M \in R \text{-} \text{Mod} \mid M \otimes_R Q = 0 \}.$$

Then we shall see that one has

$$(\mathcal{S}_{Tor}, \mathcal{S}_{f.g.}) \subsetneqq (\mathcal{S}_{f.g.}, \mathcal{S}_{Tor}) = \{ M \in R \text{-} \mathrm{Mod} \mid \dim_Q M \otimes_R Q < \infty \}.$$

Therefore, a subcategory $(S_{f.g.}, S_{Tor})$ is a Serre subcategory by Corollary 8, but a subcategory $(S_{Tor}, S_{f.g.})$ is not closed under extensions by Theorem 7.

First of all, we shall show that the above equality holds. We suppose that M is in $(\mathcal{S}_{f.q.}, \mathcal{S}_{Tor})$. Then there exists a short exact sequence

$$0 \to X \to M \to Y \to 0$$

of *R*-modules where X is in $S_{f.g.}$ and Y is in S_{Tor} . We apply an exact functor $-\otimes_R Q$ to this sequence. Then we see that one has $M \otimes_R Q \cong X \otimes_R Q$ and this module is a finite dimensional Q-vector space.

Conversely, let M be an R-module with $\dim_Q M \otimes_R Q < \infty$. Then we can denote $M \otimes_R Q = \sum_{i=1}^n Q(m_i \otimes 1_Q)$ with $m_i \in M$ and the unit element 1_Q of Q. We consider a short exact sequence

$$0 \to \sum_{i=1}^{n} Rm_i \to M \to M / \sum_{i=1}^{n} Rm_i \to 0$$

of *R*-modules. It is clear that $\sum_{i=1}^{n} Rm_i$ is in $\mathcal{S}_{f.g.}$ and $M / \sum_{i=1}^{n} Rm_i$ is in \mathcal{S}_{Tor} . So *M* is in $(\mathcal{S}_{f.g.}, \mathcal{S}_{Tor})$. Consequently, the above equality holds.

Next, it is clear that $M \otimes_R Q$ has finite dimension as Q-vector space for an R-module M of $(\mathcal{S}_{Tor}, \mathcal{S}_{f.g.})$. Thus, one has $(\mathcal{S}_{Tor}, \mathcal{S}_{f.g.}) \subseteq (\mathcal{S}_{f.g.}, \mathcal{S}_{Tor})$.

Finally, we shall see that a field of fractions Q of R is in $(\mathcal{S}_{f.g.}, \mathcal{S}_{Tor})$ but not in $(\mathcal{S}_{Tor}, \mathcal{S}_{f.g.})$, so one has $(\mathcal{S}_{Tor}, \mathcal{S}_{f.g.}) \subsetneqq (\mathcal{S}_{f.g.}, \mathcal{S}_{Tor})$. Indeed, it follows from $\dim_Q Q \otimes_R Q = 1$ that Q is in $(\mathcal{S}_{f.g.}, \mathcal{S}_{Tor})$. On the other hand, we assume that Q is in $(\mathcal{S}_{Tor}, \mathcal{S}_{f.g.})$. Since R is a domain, a torsion R-submodule of Q is only the zero module. It means that Q must be a finitely generated R-module. But, this is a contradiction.

References

- M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra 320 (2008), 1275–1287.
- [2] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- [3] T. Yoshizawa, Subcategories of extension modules by Serre subcategories, To appear in Proc. Amer. Math. Soc.

GRADUATE SCHOOL OF NATURAL SCIENCE AND TECHNOLOGY OKAYAMA UNIVERSITY 3-1-1 TSUSHIMA-NAKA, KITA-KU, OKAYAMA 700-8530 JAPAN *E-mail address*: tyoshiza@math.okayama-u.ac.jp