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ABSTRACT. We consider subcategories consisting of the extensions of modules in two
given Serre subcategories to find a method of constructing Serre subcategories of the
module category. We shall give a criterion for this subcategory to be a Serre subcategory.

1. INTRODUCTION

Let R be a commutative Noetherian ring. We denote by R-Mod the category of R-
modules and by R-mod the full subcategory consisting of finitely generated R-modules.

In [2], P. Gabriel showed that one has lattice isomorphisms between the set of Serre
subcategories of R-mod, the set of Serre subcategories of R-Mod which are closed under
arbitrary direct sums and the set of specialization closed subsets of Spec (R). By this
result, Serre subcategories of R-mod are classified. However, it has not yet classified
Serre subcategories of R-Mod. In this paper, we shall give a way of constructing Serre
subcategories of R-Mod by considering subcategories of extension modules related to Serre
subcategories.

2. THE DEFINITION OF A SUBCATECORY OF EXTENSION MODULES
BY SERRE SUBCATEGORIES

We assume that all full subcategories of R-Mod are closed under isomorphisms. We
recall that a subcategory & of R-Mod is said to be Serre subcategory if the following
condition is satisfied: For any short exact sequence

O—L—M-—=N-=0

of R-modules, it holds that M is in § if and only if L and N are in §. In other words,
S is called a Serre subcategory if it is closed under submodules, quotient modules and
extensions.

We give the definition of a subcategory of extension modules by Serre subcategories.

Definition 1. Let S; and S, be Serre subcategories of R-Mod. We denote by (S1,S) a
subcategory consisting of R-modules M with a short exact sequence

0-X—-M-—=Y —0
of R-modules where X is in & and Y is in S,, that is

there are X € §; and Y € S; such that
(81,82) = < M € R-Mod 0=-X—->M-=>Y—>0
is a short exact sequence.

The detailed version of this paper has been submitted for publication elsewhere.
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Remark 2. Let §; and Sy be Serre subcategories of R-Mod.

(1) Since the zero module belongs to any Serre subcategory, one has S; C (S, S2) and
S C (81, S2).

(2) It holds Sl 2 82 if and OIlly if (31, 82) = 81.
(3) Tt holds S; C s if and only if (S1,Ss) = S.
(4) A subcategory (S1,Ss) is closed under finite direct sums.

Example 3. We denote by Sy, the subcategory consisting of finitely generated R-
modules and by Sa,4, the subcategory consisting of Artinian R-modules. If R is a com-
plete local ring, then a subcategory (Sy.q., Sarin) is known as the subcategory consisting
of Matlis reflexive R-modules. Therefore, (Sy,., Sarin) is a Serre subcategory of R-Mod.

The following example shows that a subcategory (S;,S2) needs not be a Serre subcat-
egory for Serre subcategories §; and Ss.

Example 4. We shall see that the subcategory (Sartin, Sy,.) needs not be closed under
extensions.

Let R be a one dimensional Gorenstein local ring with a maximal ideal m. Then one
has a minimal injective resolution

0—-R— & Er(R/p)— Er(R/m)—0

p € Spec(R)
htp =0

of R. (Er(M) denotes the injective hull of an R-module M.) We note that R and
Er(R/m) are in (Sartin, St.q.)-

Now, we assume that a subcategory (Sartin,Srgy.) is closed under extensions. Then
Er(R) = @np=oLr(R/p) is in (Sartin, Sr.g.). 1t follows from the definition of (Sariin, Sr.g.)
that there exists an Artinian R-submodule X of Eg(R) such that Er(R)/X is a finitely
generated R-module.

If X =0, then Eg(R) is a finitely generated injective R-module. It follows from the
Bass formula that one has dim R = depth R = inj dim Er(R) = 0. However, this equality
contradicts dim R = 1. On the other hand, if X # 0, then X is a non-zero Artinian
R-module. Therefore, one has Assg(X) = {m}. Since X is an R-submodule of Er(R),
one has

Assr(X) C Assg(Er(R)) = {p € Spec(R) | htp = 0}.
This is contradiction as well.

3. THE MAIN RESULT

In this section, we shall give a criterion for a subcategory (Sy,S2) to be a Serre subcat-
egory for Serre subcategories S; and Ss.

First of all, it is easy to see that the following assertion holds.

Proposition 5. Let S; and Sy be Serre subcategories of R-Mod. Then a subcategory
(81, 82) is closed under submodules and quotient modules.
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Lemma 6. Let S; and Sy be Serre subcategories of R-Mod. We suppose that a sequence
0—=L—=M— N —0 of R-modules is exact. Then the following assertions hold.

(1) ]fL €S8 and N € (81,82), then M € (81,82).
(2) [fL € (81,82) and N € 82, then M € (81,82).

Proof. (1) We assume that L is in S; and N is in (81, Ss). Since N belongs to (S1,Sz),
there exists a short exact sequence

0—-X—>N—-=Y—0

of R-modules where X is in &7 and Y is in S;. Then we consider the following pull buck
diagram

0 0
0 y L —— X' » X > 0
I
0 y L —— M » N > 0
Y:Y
0 0

of R-modules with exact rows and columns. Since &) is a Serre subcategory, it follows
from the first row in the diagram that X’ belongs to S;. Consequently, we see that M is
in (S1,Ss) by the middle column in the diagram.

(2) We can show that the assertion holds by the similar argument in the proof of (1). O

Now, we can show the main purpose of this paper.

Theorem 7. Let S, and Sy be Serre subcategories of R-Mod. Then the following condi-
tions are equivalent:

(1) A subcategory (S1,S2) is a Serre subcategory;
(2) One has (82781) g (81,82).

Proof. (1) = (2) We assume that M is in (S2,S1). By the definition of a subcategory
(S2,81), there exists a short exact sequence

0O—-Y—->M-—-X—>0

of R-modules where X isin &; and Y is in S;. We note that X and Y are also in (Si, Ss).
Since a subcategory (S, Sz) is closed under extensions by the assumption (1), we see that
M is in (81, Ss).
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(2) = (1) We only have to prove that a subcategory (Si,Ss) is closed under extensions
by Proposition 5. Let 0 - L — M — N — 0 be a short exact sequence of R-modules
such that L and N are in (S;,S2). We shall show that M is also in (S, Ss).

Since L is in (81, 8s), there exists a short exact sequence
0-S—>L—->L/S—0

of R-modules where S is in Sy such that L/S is in S;. We consider the following push
out diagram

0 0
S _ —— S
0 L y M N 0
I
0 L/S y P N 0
0 0

of R-modules with exact rows and columns. Next, since N is in (S;,S,), we have a short
exact sequence

0—-T—N-—=>N/T—0

of R-modules where T is in Sy such that N/T is in So. We consider the following pull
back diagram

;
T
!
!

of R-modules with exact rows and columns.
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In the first row of the second diagram, since L/S is in S and T is in &;, P’ is in
(S2,S81). Now here, it follows from the assumption (2) that P’ is in (S1,Ss). Next, in the
middle column of the second diagram, we have the short exact sequence such that P’ is
in (81,82) and N/T is in S;. Therefore, it follows from Lemma 6 that P is in (51, Ss).
Finally, in the middle column of the first diagram, there exists the short exact sequence
such that S is in & and P is in (81, S2). Consequently, we see that M is in (S;,S,) by
Lemma 6.

The proof is completed. O

Corollary 8. A subcategory (Syy.,S) is a Serre subcategory for a Serre subcategory S of
R-Mod.

Proof. Let § be a Serre subcategory of R-Mod. To prove our assertion, it is enough to
show that one has (S,Sr,) C (Sy,.,S) by Theorem 7. Let M be in (S,Sy,.). Then
there exists a short exact sequence 0 - Y — M — M/Y — 0 of R-modules where Y
is in S such that M/Y is in Sy,. It is easy to see that there exists a finitely generated
R-submodule X of M such that M = X +Y. Since X @Y is in (Sy,,S) and M is a
homomorphic image of X @Y, M is in (Sy,.,S) by Proposition 5. O

We note that a subcategory S a4, consisting of Artinian R-modules is a Serre subcat-
egory which is closed under injective hulls. (Also see [1, Example 2.4].) Therefore we
can see that a subcategory (S, Sain) is also Serre subcategory for a Serre subcategory of
R-Mod by the following assertion.

Corollary 9. Let Sy be a Serre subcategory of R-Mod which is closed under injective
hulls. Then a subcategory (S1,S2) is a Serre subcategory for a Serre subcategory S; of
R-Mod.

Proof. By Theorem 7, it is enough to show that one has (S, S1) C (S1,Ss).
We assume that M is in (S, S1) and shall show that M is in (81, S2). Then there exists
a short exact sequence
0—=Y—->M-—->X—=0

of R-modules where X isin &7 and Y is in S, Since Ss is closed under injective hulls, we
note that the injective hull Fr(Y') of Y is also in S;. We consider a push out diagram

0 —— Y s M s> X > 0
| | H
0 —— Er(Y) > T > X > 0

of R-modules with exact rows and injective vertical maps. The second exact sequence
splits, and we have an injective homomorphism M — X & Eg(Y). Since there is a short
exact sequence
0—-X—=>X®ER(Y)—Er(Y)—0
of R-modules, the R-module X & Er(Y) is in (S1,S2). Consequently, we see that M is
also in (81, S2) by Proposition 5.
The proof is completed. O
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Example 10. Let R be a domain but not a field and let ) be a field of fractions of R.
We denote by St a subcategory consisting of torsion R-modules, that is

Sror ={M € R-Mod | M ®r Q = 0}.
Then we shall see that one has
(STome.g.) ; (Sf.g.>STor) = {M € R-Mod | dlmQM QR Q < OO}

Therefore, a subcategory (Sy,., Sror) s a Serre subcategory by Corollary 8, but a subcat-
egory (Stor, Sty.) is not closed under extensions by Theorem 7.

First of all, we shall show that the above equality holds. We suppose that M is in
(Stg.,Stor). Then there exists a short exact sequence

00— X—-M-—-Y—0

of R-modules where X is in Sy, and Y is in Szo.. We apply an exact functor — ®z @) to
this sequence. Then we see that one has M ®r Q) = X ®g @ and this module is a finite
dimensional Q)-vector space.

Conversely, let M be an R-module with dimg M ®r @ < oo. Then we can denote
M®@rQ=>1,Q(m;®1lg) with m; € M and the unit element 1, of Q. We consider a
short exact sequence

0—>§:lﬁni—+A4—+A4/§:1%ni—>0
i=1 i=1
of R-modules. It is clear that > | Rm; is in Sp, and M/ )" | Rm; is in Sror. So M is
in (S, Sror). Consequently, the above equality holds.

Next, it is clear that M ®pz () has finite dimension as ()-vector space for an R-module
M of (Sror, Sty.). Thus, one has (Sror, Sr.g.) C (Stg., Stor)-

Finally, we shall see that a field of fractions @ of R is in (Sy4,Sre) but not in
(Stors Str.g.), so one has (Sror, Sr.q.) ; (Sf.g.,S1or). Indeed, it follows from dimg Q ®p Q) =

1 that @ is in (Sy,., Sror). On the other hand, we assume that @) is in (S, Syy.). Since
R is a domain, a torsion R-submodule of @) is only the zero module. It means that )
must be a finitely generated R-module. But, this is a contradiction.
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