INTRODUCTION TO REPRESENTATION THEORY OF
COHEN-MACAULAY MODULES AND THEIR DEGENERATIONS

YUJI YOSHINO

ABSTRACT. This is a quick introduction to the theory of representation theory of Cohen-
Macaulay modules and their degenerations.

1. REPRESENTATION THEORY OF COHEN-MACAULAY MODULES.

Let k be a field and let R be commutative noetherian complete local k-algebra with
unique maximal ideal m. We assume k£ = R/m naturally. Then it is known that there is
a regular local k-subalgebra T' of R such that R is a module-finite T-algebra. (Cohen’s
structure theorem for complete local rings.) Note that 7" is isomorphic to a formal power
series ring over k.

Definition 1. (1) R is called a Cohen-Macaulay ring (a CM ring for short) if R
is free as a T-module.
(2) A finitely generated R-module M is called a Cohen-Macaulay module over R,
or a maximal Cohen-Macaulay module (a CM module or an MCM module for
short) if M is free as a T-module.

Given a CM module M, since M = T™ for some n > 0, we have a k-algebra homomor-
phism R — Endp(M) = T™*" which is a matrix-representation of R over T

In the following we always assume that R is a CM complete local k-algebra. We
denote by mod(R) (res. CM(R) ) the category of finitely generated R-modules (resp. CM
modules over R ) and R-homomorphisms.

CM(R) := { CM modules over R} C mod(R) := {finitely generated R-modules }

Since R is complete, mod(R) and CM(R) are Krull-Schmidt categories. Note that CM(R)
is a resolving subcategory of mod(R) in the following sense: Suppose there is an exact
sequence 0 — L — M — N — 0 in mod(R).

(i) If L, N € CM(R) then M € CM(R).

(ii) If M, N € CM(R) then L € CM(R).

Let d be the Krull-dimension of the ring R (so that we can take T = kl[[t1,...,t4]] on
which R is finite). If d = 1 and if R is reduced, then CM modules are just torsion-free
modules. If d = 2 and if R is normal, then CM modules are nothing but reflexive modules.
In general, if d > 3 and if R is normal, then CM(R) C {reflexive modules} but this is not
necessarily an equality. If R is regular (i.e. gl-dimR < oo) then all CM modules over R
are free.

Let Kg := Homp(R,T) and call it the canonical module of R. Since R is a CM ring,
Kgr € CM(R). For any X € mod(R), we have a natural isomorphism Hompg (X, Kg) =
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Homy (X, T). It follows that Hompg(—, Kg) gives duality CM(R) — CM(R)°. Grothendieck’s
local duality theorem claims the existence of natural isomorphisms

Exty(M, Kr) = Homp(Hy (M), Er(k)) (Vi € N)
whenever R is a CM complete ring and M € mod(R). Thus it is easy to see the following

Lemma 2. The following are equivalent for M € mod(R):
(1) M € CM(R),
(2) Exth(M,Kgr) =0 (Vi>0),
(3) H{(M) =0 (Vj<d),
(4) Extlhy(k, M) =0 (Vi <d).

Now recall that R is called an isolated singularity if R, is a regular local ring for
each prime p # m. It is not hard to prove the following

Lemma 3. Let R be a CM local ring as above. The R is an isolated singularity if and
only if Exty (M, N) is of finite length for each M, N € CM(R).

Definition 4. A CM local ring R is said to be of finite CM representation type if
CM(R) has only a finite number of isomorphism classes of indecomposable modules.

The first celebrated result about finiteness of CM representation type was due to
M. Auslander.

Theorem 5. [Auslander, 1986] Let R be a CM complete local ring. If R is of finite CM
representation type, then R is an isolated singularity.

We prove this theorem by using an idea of Huneke and Leuschke [6]. By virtue of
Lemma 3 it is enough to prove the following:

(*) Let ay, as,as, ... be any countable sequence of elements in m and let M, N € CM(R)
be any indecomposable CM modules. Then there is an integer n such that
ayay - apExtp (M, N) = 0.

Actually this will imply that a power of m annihilates Ext}(M, N), hence the length of
Exty(M, N) is finite. To prove (x), take a o € Extp(M, N) that corresponds to a short
exact sequence 0 : 0 - N — Fy — M — 0. Now assume the corresponding sequence
to a1ay - -+ a0 € Extp(M,N)is 0 = N — E, — M — 0 for any integer n. Note that
each F, is a direct sum of indecomposable CM modules and the multiplicity (or the rank
if it is defined) e(E),) is constantly equal to e(M) + e(N). Therefore the possibilities of
such FE, are finite, and hence there are integers n and r > 0 such that F,, = E, .. By
definition, there is a commutative diagram with exact rows:

ar-ano: 0 sy N - E, — M —— 0
b::an+1---an+7,l l \I/:
ai - Apip0 0 > N > En+r _— M — O,

where the first square is a push-out. Hence,

j
0 N W)

» B, & N —— E,., — 0
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is exact. Since E, = E, ., Miyata’s theorem forces that ({)) is a split monomorphism.
Then one can see that j is also a split monomorphism. (pj 4+ gb = 1y in the local ring
Endg(N).) Hence a; - --a,o = 0 as an element of Exty(M, N). O

By a similar idea to the proof above, Huneke and Leuschke [7] was able to prove the
following theorem which had been conjectured by F.-O.Schreyer in 1987.

Theorem 6. [Huneke-Leuschke 2003] Let R be a CM complete local ring and assume
that R is of countable CM representation type (i.e. CM(R) has only a countable number
of isomorphism classes of indecomposable modules). Then the singular locus of R has at
most one-dimension, i.e. Ry is reqular for each prime p with dim R/p > 1.

(PrROOF) Let {M; | i =1,2,...} be a complete list of isomorphism classes of indecom-
posable CM modules, and set

A = {p € Spec(R) | p = Anng Exty(M;, M;) for some 4,7 and dim R/p = 1},

which is a countable set of prime ideals. Let J be an ideal defining the singular locus of
Spec(R) and we want to show dim R/J < 1. Assume contrarily dim R/J > 2. If p € A
then, since (M;), is not free, we have J C p. Thus J C () ., p. By countable prime
avoidance, there is an f € m\ [J,c, p, and we can find a prime q so that g 2 J + fR and
dimR/q = 1. Set X; = Q%(R/q) the ith syzygy for i > 0. Then X; € CM(R) if i > d
and one can show that Anng Exth(Xy, Xar1) = q. The CM modules Xy and X4, is a
direct sum of indecomposables as X; = @221 M;, and X449 = @f}zl M;, . Thus since
q=,,Anng Extp(M;,, M;,), we have ¢ = Anng Extp(M,,, M;,) for some u,v. Thus
q € A, but this is a contradiction for f € q. O

)

Auslander’s original proof of Theorem 5 uses AR-sequences.

Definition 7. A non-split short exact sequence 0 - N — E 5 M — 0 in CM(R) is
called an AR-sequence (ending in M) if

(1) M and N are indecomposable,
(2) if f: X — M is any morphism in CM(R) that is not a splitting epimorphism,
then f factors through p.

We say that the category CM(R) admits AR-sequences if, for any indecomposable M €
CM(R), there is an AR-sequence ending in M.

M.Auslander proved the following theorems.

Theorem 8. Let R be a CM complete local ring and assume that R is of finite CM
representation type. Then CM(R) admits AR-sequences.

Theorem 9. Let R be a CM complete local ring. Then CM(R) admits AR-sequences if
and only if R is an isolated singularity.

The most difficult part of the proofs of Theorems 8 and 9 is to show the implication
"being isolated singularity = admitting AR-sequences”. This implication follows from
the following isomorphism which is called the Auslander-Reiten duality :
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Theorem 10. Assume that a CM complete local ring R is an isolated singularity of
dimension d. Then, for any M, N € CM(R), there is a natural isomorphism

Exth(Homp(N, M), Kg) = Exth(M, Hompg(Qgtr(N), Kg)).

Now we discuss some generalities about stable categories. For this let R be a CM
complete local ring of dimension d. We denote by CM(R) the stable category of CM(R).
By definition, CM(R) is the factor category CM(R)/[R]. Recall that the objects of CM(R)
is CM modules over R, and the morphisms of CM(R) are elements of Homp(M, N) =
Hompg(M,N)/P(M,N) for M, N € CM(R), where P(M, N) denotes the set of morphisms
from M to N factoring through projective R-modules. For a CM module M we denote
it by M to indicate that it is an object of CM(R).

Since R is a complete local ring, note that M is isomorphic to N in CM(R) if and only
if M@®P=Na&(Q in CM(R) for some projective (hence free) R-modules P and Q.

For any R-module M, we denote the first syzygy module of M by Q2zrM. We should
note that {2z M is uniquely determined up to isomorphism as an object in the stable
category. The nth syzygy module Q3 M is defined inductively by Qj3M = €2 R(Q?{IM ),
for any nonnegative integer n.

We say that R is a Gorenstein ring if Kz = R. If R is Gorenstein, then it is easy
to see that the syzygy functor Q4 : CM(R) — CM(R) is an autoequivalence. Hence, in
particular, one can define the cosyzygy functor QI_%I on CM(R) which is the inverse of
Qr. We note from [3, 2.6] that CM(R) is a triangulated category with shifting functor
[1] = Q%' In fact, if there is an exact sequence 0 — L — M — N — 0 in CM(R), then
we have the following commutative diagram by taking the pushout:

0 > L > M » N —— 0
0 > L P Q'L —— 0,
where P is projective (hence free). We define the triangles in CM(R) are the sequences

L—— M N — L[1]

obtained in such a way.
Now we remark one of the fundamental dualities called the Awuslander-Reiten-Serre
duality, which essentially follows from Theorem 10.

Theorem 11. Let R be a Gorenstein complete local ring of dimension d. Suppose that R is
an isolated singularity. Then, for any X, Y € CM(R), we have a functorial isomorphism

Ext®(Homp(X,Y), R) = Hompg(Y, X[d — 1)).
Therefore the triangulated category CM(R) is a (d — 1)-Calabi- Yau category.

2. DEGENERATIONS OF MODULES

Let us recall the definition of degeneration of finitely generated modules over a noe-
therian algebra, which is given in [12].

Let R be an associative k-algebra where k is any field. We take a discrete valuation
ring (V,tV, k) which is a k-algebra and t is a prime element. We denote by K the quotient
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field of V. We denote by mod(R) the category of all finitely generated left R-modules
and R-homomorphisms as before. Then we have the natural functors

mod(R) +—— mod(R ®; V) SN mod(R ®j K),
where r = — ®y V/tV and £ = — @y K. ("r” for residue, and ”¢” for localization.)
Definition 12. For modules M, N € mod(R), we say that M degenerates to N if

there exist a discrete valuation ring (V, ¢V, k) which is a k-algebra and a module @) €
mod(R ®; V') that is V-flat such that ((Q) = M ®; K and r(Q) = N.

The module @), regarded as a bimodule rQy, is a flat family of R-modules with pa-
rameter in V. At the closed point in the parameter space SpecV, the fiber of @) is IV,
which is a meaning of the isomorphism 7(Q)) = N. On the other hand, the isomorphism
0(Q) = M ®; K means that the generic fiber of () is essentially given by M.

Example 13. Let R = k[[z, y]]/(z?), where k is a field. In this case, a pair of matrices

wo=((7).6 7))

over k[[x,y]] is a matrix factorization of z?, giving a CM R-module N that is isomorphic
to an ideal I = (z,y?)R. Thus there is a periodic free resolution of N;

s R2 Y, R2 ¢, g2 Y, g ¥ po s N s 0.

Now we deform the matices to

A (r+ty  y? r—ty —y?
(cD,\I/)_<< —t? :E—ty)’( 2 x+ty

over R ®; V. Since this is a matrix factorization of 2% again, we have a free resolution

2 (Rep V)2 L (Rep V)2 —25 (Re V)? Q 0.
It is obvious to see that 7(Q)) = Q/tQ = N, since ® ®y V/tV = . On the other hand,
0

since t? is a unit in R ®;, K, we have ® @y K = 10

of matrices. Hence, £(Q) = Q: = R ®; K. As a conclusion, we see that R degenerates to
I=(z,y°)R!

Theorem 14 ([12]). The following conditions are equivalent for finitely generated left
R-modules M and N.

(1) M degenerates to N.
(2) There is a short exact sequence of finitely generated left R-modules
¢
0—>ZﬂM@Z—>N—>O,
such that the endomorphism ¥ of Z is nilpotent, i.e. Y™ =0 for n > 1.

O) after elementary transformations

Example 15. In Example 13, we have an exact sequence

(_1’£) -
0 m > Rdm )

such that % : m — m is nilpotent, where m = (z,y)R.

> 1

~
=
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By virtue of this theorem together with a theorem of Zwara [17, Theorem 1], we see that
if R is a finite-dimensional algebra over k, then our definition of degeneration agrees with
the classical (geometric) definition of degenerations using module varieties of R-module
structures.

We prove here the implication (2) = (1).
Suppose that there is an exact sequence of finitely generated left R-modules
(%)

f
0—=+2 — M®dZ— N —Q0,

such that v is nilpotent. Considering a trivial exact sequence

._ (0
O%ZJLQM@Z%M%O,

we shall combine these two exact sequences along a [0, 1]-interval. More precisely, let V'
be the discrete valuation ring k[t] ), where ¢ in an indeterminate over k, and consider a
left R ®; V-homomorphism

g=j@t+fe(l-t) = (1@?—?121@_(?—15)) L@y Vo (MaZ)® V.

We can easily show that g is a monomorphism.
Setting the cokernel of the monomorphism ¢ as ), we have an exact sequence in
modR ®; V:

0= 20 V35 (Z V) (MeRV)—=Q—0.
Since g ®; V/tV = f is an injection and since one can easily show Tor} (Q,V/tV) = 0,

we conclude that ) is flat over V and Q/tQ = N.
Finally note that the morphism g ®j V[%] is essentially the same as the morphism

s
(1 + sw>
—— My Vi & Zer V(3]

where s = 1=t € V[1]. Note that s¢ : Z ®; V[}] = Z ®; V[7] is nilpotent as well as
1, hence 1 + s is an automorphism on Z ®y, V[%] Therefore we have an isomorphism
Q[}] = M @, V[3]. This completes the proof of the theorem. O

Z @y, V3]

We remark from this proof that we can always take k[t];) as V' in Definition 12.

We give an outline of the proof of (1) = (2). (See [12] for the detail.)
We can take @) in Definition 12 so that M ®; V' C (). Then we have an exact sequence

0= Q/(M&p V) - Q/(M @ tV) — Q/tQ — 0

Setting Z = Q/(M ®;. V'), we can see that the middle term will be M @ Z and the right
term is N. O

Lemma 16. If there is an exact sequence 0 — L SMB NS0 mod(R), then M
degenerates to L & N.
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(PROOF)

© (6 1)

0 —— L MoL % NoL — 0
is exact where 0 : L — L is of course nilpotent. O

Such a degeneration given as in the lemma will be called a degeneration by an extension.
There is a degeneration which is not a degeneration by an extension. See the degeneration
of Example 13.

In the rest we mainly treat the case when R is a commutative ring.

Remark 17. Let R be a commutative noetherian algebra over k, and suppose that a finitely
generated R-module M degenerates to a finitely generated R-module N. Then:

(1) The modules M and N give the same class in the Grothendieck group, i.e. [M] = [N]
as elements of Ky(mod(R)). This is actually a direct consequence of 0 — Z — M @
Z — N — 0. In particular, rank M = rank N if the ranks are defined for R-modules.
Furthermore, if (R, m) is a local ring, then e(I, M) = e(I, N) for any m-primary ideal I,
where e(I, M) denotes the multiplicity of M along I.

(2) If L is an R-module of finite length, then we have the following inequalities of
lengths for any integer i:

length (Ext’ (L, M)) < lengthp(Ext% (L, N)),
length (Ext’ (M, L)) < length g (Exth (N, L)).
In particular, when R is a local ring, then
v(M) S v(N), Bi(M) < B(N) and p'(M) < p'(N) (i 20),

where v, 3; and p' denote the minimal number of generators, the ith Betti number and
the 7th Bass number respectively.

(3) We also have pdzM < pdiyN, depth M > depth N and similar inequalities like
G-dimpM < G-dimgN. Roughly speaking, when there is a degeneration from M to N,
then M is a better module than N.

Recall that a finitely generated R-module is called rigid if it satisfies Ext}, (N, N) = 0.

Lemma 18. Let R be a complete local k-algebra and let M, N € mod(R). Assume that
N s rigid. If M degenerates to N, then M = N

(%)

(PROOF) From the sequence 0 — Z —5 M & Z — N — 0, we have an exact sequence

¢
Exty(N, Z) @ Exty(N, M) @ Exth(N, Z) — Extp(N, N),

where 9 is nilpotent and Extp(N, N) = 0. Thus we have Exty(N, Z) = 0. It follows the
first sequence splits, and thus M & Z =2 N @& Z. Since R is complete, it forces M = N. O

We recall the definition of the Fitting ideal of a finitely presented module. Suppose
that a module M over a commutative ring R is given by a finitely free presentation

rm % Rr s M s 0,
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where C' is an n X m-matrix with entries in R. Then recall that the ith Fitting ideal
FR(M) of M is defined to be the ideal I, ;(C) of R generated by all the (n — 4)-minors
of the matrix C. (We use the convention that I.(C) = R for r £ 0 and [,.(C) = 0 for
r > min{m,n}.) It is known that FZ(M) depends only on M and 4, and independent
of the choice of free presentation, and FE(M) C FE(M) C --- C FR(M) = R. The
following lemma will be used to prove the theorem.

Lemma 19. Let f : A — B be a ring homomorphism and let M be an A-module which
possesses a finitely free presentation. Then FP(M ®4 B) = f(F(M))B for all i 2 0.

(PROOF) If M has a presentation A™ SAn 5 M 0, then M ® 4 B has a presentation

B 'Y B 5 M@y B = 0. Thus FE(M @4 B) = Li(f(O)) = f(I,i(C)B =

F(FAQD)B. O

Theorem 20. [Y, 2011 Let R be a noetherian commutative algebra over k, and M and
N finitely generated R-modules. Suppose M degenerates to N. Then we have FE(M) 2
FE(N) for all i = 0.

(PROOF) By the assumption there is a finitely generated R ®; V-module @ such that
Q: = M ®, K and Q/tQ = N, where V = k[t]y) and K = k(t). Note that R ®; V =
STIR[t] where S = k[t]\(t). Since Q is finitely generated, we can find a finitely generated
R[t]-module Q' such that Q' ®pp (R ®, V) =2 Q. For a fixed integer i we now consider
the Fitting ideal J := ]-_iR[t](Q’) € RJt]. Apply Lemma 19 to the ring homomorphism
R[t] = R = R[t]/tR][t], and noting that Q' @z R = N, we have

(2.1) FI(N) = J +tR[t]/tR[t]

as an ideal of R = RJ[t]/tR[t]. On the other hand, applying Lemma 19 to R[t] - R®, K =
T~R[t] where T = k[t]\{0}, we have F/*(M)T'R[t] = JT~'R[t]. Therefore there is an
element f(t) € T such that f(t)J C FE(M)R[t].

Now to prove the inclusion F#(N) € FE(M), take an arbitrary element a € F(N). Tt
follows from (2.1) that there is a polynomial of the form a + byt + bot>+ - - - +b,t" (b; € R)
that belongs to J. Then, we have f(t)(a + bit + bot* + -+ + bt") € Ff(M)R[t]. Since
f(t) is a non-zero polynomial whose coefficients are all in k, looking at the coefficient of
the non-zero term of the least degree in the polynomial f(t)(a+ byt + -- -+ b,t"), we have
that a € FR(M). O

Example 21. Let R = k[[x,y]]/(z? 3*). Note that R is an artinian Gorenstein local ring.
Now consider the modules M) = R/(z — Ay)R for all A € k. We denote by k the unique
simple module R/(z,y)R over R.

(1) R degenerates to M@ M_, for Y\ € k, since there is an exact sequence 0 — M_, —
R — M, — 0.

(2) There is a sequence of degenerations from R @® k? to M, & M,, & k?* for any choice
of A\, € k. (]9, Example 3.1])

(PROOF) There are exact sequences; 0 - m — Rédm/(zy) — R/(xy) — 0,0 — M, —

m—k— 0and 0 — k"=’ R/(vy) = M, — 0 for any A\, € k. Noting m/(zy) = k?,
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we have a sequence of degenerations R ® k* = m @ R/(zy) = (M, ® k)& (My @ k) =
My® M, ®k* O
(3) There is no sequence of degenerations from R to M, & M, if A+ u # 0.

(PrROOF) If there are such degenerations, then we have an inclusion of Fitting ideals;
FE(My @ M,) C FE(R) for all n. Note that FJ*(R) = 0, and

Fo'(My @ M,) = Fo' (M) Fy (M) = (z = Ay)(z — py) R = (A + p)ayR.
Hence we must have A +py = 0. O
This example shows the cancellation law does not hold for degeneration.

Example 22. Let R = k[[t]] be a formal power series ring over a field k£ with one variable
t and let M be an R-module of length n. It is easy to see that there is an isomorphism

(2.2) M=ZR/{t")®--- & R/({™),
where
(2.3) pZpp>->py>0 and Y pi=n.

=1

In this case the ¢th Fitting ideal of M is given as
JT_'ZR(M) — (tpi+1+"‘+p'n) (Z > 0)

We denote by pys the sequence (p1,ps,- -+, pn) of non-negative integers. Recall that such
a sequence satisfying (2.3) is called a partition of n.

Conversely, given a partition p = (p1, pa, - -+ , pn) of n, we can associate an R-module of
length n by (2.2), which we denote by M (p). In such a way there is a one-one correspon-
dence between the set of partitions of n and the set of isomorphism classes of R-modules
of length n.

Let p = (p1,p2, -+ ,pn) and ¢ = (q1,G2, -+ ,qn) be partitions of n. Then we denote
p = q if it satisfies 5:1 Di > Zle q; for all 1 < 7 < n. This > is known to be a partial
order on the set of partitions of n and called the dominance order.

Then we can show that there is a degeneration from M to N if and only if py; > pn.

3. STABLE DEGENERATIONS OF CM MODULES

In this section we are interested in the stable analogue of degenerations of Cohen-
Macaulay modules over a commutative Gorenstein local ring. For this purpose, (R, m, k)
always denotes a Gorenstein local ring which is a k-algebra, and V' = k[t],) and K = k(t)
where t is a variable. We note that R ®;, V and R ®; K are Gorenstein as well as R and
we have the equality of Krull dimension;

dmR®,V =dimR+1, dimR®, K =dimR.

If dim R = 0 (i.e. R is artinian), then the rings R ®; V and R®; K are local. However
we should note that R ®;, V and R ®; K will never be local rings if dim R > 0. Since
R ®;, K is non-local, there may be a lot of projective modules which are not free.
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Example 23. Let R = k[[z, y]]/(z* —y?). It is known that the maximal ideal m = (z,y) is
a unique non-free indecomposable Cohen-Macaulay module over R. See [10, Proposition
5.11]. In fact it is given by a matrix factorization of the polynomial z3 — 3?;

eo=((a3) (5 7))

Therefore there is an exact sequence

y R2 25 gt Y, g2 £, R m 0,
Now we deform these matrices and consider the pair of matrices over R ®; K;

- y—at x—t? y+at —x+t?
(@7\1/)_(( x? y—i—azt)’ (—x2 y — at '

Define the R ®; K-module P by the following exact sequence;
5 (Rep K)? —2 (Rey K)? —25 (Rey K)? s P > 0.

In this case we can prove that P is a projective module of rank one over R ®, K but non-free.
(Hence the Picard group of R ®;, K is non-trivial.)

Let A be a commutative Gorenstein ring which is not necessarily local. We say that a
finitely generated A-module M is CM if Ext’ (M, A) = 0 for all i > 0. We consider the
category of all CM modules over A with all A-module homomorphisms:

CM(A) :={M € mod(A) | M is a Cohen-Macaulay module over A}.

We can then consider the stable category of CM(A), which we denote by CM(A). This
is similarly defined as in local cases, but the morphisms of CM(A) are elements of
Hom,(M,N) := Homa(M,N)/P(M,N) for M,N € CM(A), where P(M,N) denotes
the set of morphisms from M to N factoring through projective A-modules (not neces-
sarily free).

Note that M = N in CM(A) if and only if there are projective A-modules P; and P,
such that M & P, = N & P, in CM(A).

Under such circumstances it is known that CM(A) has a structure of triangulated
category as well as in local cases.

Let x € A be a non-zero divisor on A. Note that x is a non-zero divisor on every
CM module over A. Thus the functor — ®4 A/xA sends a CM module over A to that
over A/zA. Therefore it yields a functor CM(A) — CM(A/xA). Since this functor maps
projective A-modules to projective A/xA-modules, it induces the functor R : CM(A) —
CM(A/zA). It is easy to verify that R is a triangle functor.

Now let S C A be a multiplicative subset of A. Then, by a similar reason to the above,
we have a triangle functor £ : CM(A) — CM(S~'A) which maps M to S™'M.

As before, let (R, m, k) be a Gorenstein local ring that is a k-algebra and let V' = k[t]
and K = k(t). Since R®,V and R®y K are Gorenstein rings, we can apply the observation
above. Actually, t € R ®; V is a non-zero divisor on R ®; V' and there are isomorphisms
of k-algebras; (R ®; V)/t(R®, V) 2 R and (R®; V); = R ®; K. Thus there are
triangle functors £ : CM(R ®; V) — CM(R ®; K) defined by the localization by ¢, and
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R : CM(R®; V) — CM(R) defined by taking —®@pe,v (RQ%V)/t(RRLV) = —@y V/tV.
Now we define the stable degeneration of CM modules.

Definition 24. Let M, N € CM(R). We say that M stably degenerates to N if there
is a Cohen-Macaulay module @ € CM(R®, V') such that £(Q) = M @ K in CM(R®}; K)
and R(Q) = N in CM(R).

Lemma 25. [15, Lemma 4.2, Proposition 4.3]

(1) Let M, N € CM(R). If M degenerates to N, then M stably degenerates to N.
(2) Suppose that there is a triangle in CM(R);

L -5 M -5 N 25 L1
Then M stably degenerates to L & N.

Lemma 26. [15, Proposition 4.4] Let M, N € CM(R) and suppose that M stably degen-
erates to N. Then the following hold.

(1) M[1] (resp. M[—1]) stably degenerates to N[1] (resp. N[—1]).
(2) M* stably degenerates to N*, where M* denotes the R-dual Hompg(M, R).

Lemma 27. [15, Proposition 4.5] Let M, N, X € CM(R). If M & X stably degenerates
to N, then M stably degenerates to N & X[1].

Remark 28. The zero object in CM(R) can stably degenerate to a non-zero object. In
fact, in Example 13 the free module R degenerates to an ideal N. Hence it follows from
Proposition 25(1) that 0 = R stably degenerates to N.

For another example, note that there is a triangle
X 0 — X[1] — X[1],
for any X € CM(R). Hence 0 stably degenerates to X & X[1] by Proposition 25(2).

Let (R, m, k) be a Gorenstein complete local k-algebra and assume for simplicity that
k is an infinite field. For Cohen-Macaulay R-modules M and N we consider the following
four conditions:
(1) R™ @ M degenerates to R" @ N for some m,n € N.
(%)
(2) There is a triangle Z S MaZ— N Z[1] in CM(R), where ¢ is a nilpotent
element of End,(Z).
(3) M stably degenerates to V.
(4) There exists an X € CM(R) such that M & R™ & X degenerates to N & R" & X
for some m,n € N.

In [15] we proved the following implications and equivalences of these conditions:
Theorem 29. (1) In general, (1) = (2) = (3) = (4) holds.
(17) If dim R = 0, then (1) < (2) < (3) holds.
(7i1) If R is an isolated singularity of any dimension, then (2) < (3) holds.
(tv) There is an example of isolated singularity of dim R = 1 for which (2) = (1) fails.
(v) There is an example of dim R = 0 for which (4) = (3) fails.
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We give here an outline of some of the proofs.

Proof of (1) = (2) : By Theorem 14, there exists an exact sequence

6

0—>Z@> (R"eM)®Z - (R"®N)—0,
where 1 is nilpotent. In such a case Z ia a Cohen-Macaulay module as well. Then
converting this into a triangle in CM(R), and noting that the nilpotency of ¢ € Endg(7)
forces the nilpotency of 1) € Endg(Z), we can see that (2) holds. O

~~
[&le
SN~—

Proof of (2) = (3): Suppose that there exists a triangle Z
where 1) is nilpotent. Then we have a triangle of the form;

Mo Z—

=

— Z|[1],

(:f0)
Z& V"5 Moy VeZeV — Q — Z V[l
for a @ € CM(R ®; V). Note L(t + ¢) is an isomorphism in CM(R ®; K). Thus
L£(Q) = LM ®, V) = M & K. On the other hand, since R(t + ) = ¢, R(Q) = N.
Thus M stably degenerates to N. O

Proof of (3) = (1) when dim R = 0: In this proof we assume dim R = 0. Suppose that
M stably degenerates to N. Then there is a @ € CM(R ®; V') with £(Q) = M ®; K
and R(Q) = N. By definition, we have isomorphisms Q; @ P, = (M @, K) ® P, in
CM(R ®; K) for some projective R ®; K-modules Py, P, and Q/tQ & R* & N & R?
in CM(R) for some a,b € N. Since R ®; K is a local ring, P, and P, are free. Thus
Qi (RO K)° = (M ®, K)® (R®, K)®for some ¢,d € N. Setting Q = Q@ (R®;, V)**,
we have isomorphisms

Q= (Mae R e K, Q[IQ=NaR"
Since Q is V-flat, M & Rt degenerates to N & RV*e. O

The difficult part of the proof is to show the implications (3) = (4) and (3) = (2).
Actually it is technically difficult to show the existence of a Cohen-Macaulay module Z
and X in each case. To get over this difficulty, we use the following lemma called Swan’s
Lemma in Algebraic K-Theory.

Lemma 30. [8, Lemma 5.1] Let R be a noetherian ring and t a variable. Assume that an
R[t]-module L is a submodule of W ®g R[t] with W being a finitely generated R-module.
Then there is an exact sequence of R[t]-modules;

0 —— X ®grR[t] —— Y ®r R[{] > L > 0,
where X and Y are finitely generated R-modules.

By virtue of Swan’s lemma we can prove the following proposition that will play an
essential role in the proof of Theorem 29.

Proposition 31. Let R be a Gorenstein local k-algebra, where k is an infinite field.
Suppose we are given a Cohen-Macaulay R®y V-module P" satisfying that the localization
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P = P} by t is a projective R @y K-module. Then there is a Cohen-Macaulay R-module
X with a triangle in CM(R ®, V') of the following form:

(3.1) X@pV — X@,V > P! > X @ V[1].

As a direct consequence of Theorem 29, we have the following corollary.

Corollary 32. Let (Ry,my,k) and (Rz,mg, k) be Gorenstein complete local k-algebras.
Assume that the both Ry and Ry are isolated singularities, and that k is an infinite field.
Suppose there is a k-linear equivalence F : CM(R;) — CM(Rs) of triangulated categories.
Then, for M, N € CM(R,), M stably degenerates to N if and only if F(M) stably
degenerates to F(N).

Remark 33. Let (Ry,my, k) and (R, my, k) be Gorenstein complete local k-algebras as
above. Then it hardly occurs that there is a k-linear equivalence of categories between
CM(R;) and CM(Ry). In fact, if it occurs, then R; is isomorphic to Rs as a k-algebra.
(See [4, Proposition 5.1].)

On the other hand, an equivalence between CM(R;) and CM(Ry) may happen for non-
isomorphic k-algebras. For example, let Ry = k[[z,y, 2]]/(z"+y*+2?) and Ry = k[[z]]/(z")
with characteristic of k& not being 2 and n € N. Then, by Knoerrer’s periodicity ([10, The-
orem 12.10]), we have an equivalence CM(k[[z,y, 2]]/(z™ + y* + 2%)) = CM(k[[z]]/(z")).
Since k[[z]]/(2") is an artinian Gorenstein ring, the stable degeneration of modules over
k[[z]]/(x™) is equivalent to a degeneration up to free summands by Theorem 29(ii). More-
over the degeneration problem for modules over k[[z]]/(z™) is known to be equivalent to
the degeneration problem for Jordan canonical forms of square matrices of size n. (See Ex-
ample 22.) Thus by virtue of Corollary 32, it is easy to describe the stable degenerations
of Cohen-Macaulay modules over k[[x,y, z]]/(z" + y* + 2?).
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