
　

REALIZING STABLE CATEGORIES AS DERIVE CATEGORIES
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Abstract. In this paper, we compare two different kinds of triangulated categories.
First one is the stable category modA of the category of Z-graded modules over a pos-
itively grade self-injective algebra A. Second one is the derived category Db(modΛ) of
the category of modules over an algebra Λ. Our aim is give the complete answer to
the following question. For a positively graded self-injective algebra A, when is modA
triangle-equivalent to Db(modΛ) for some algebra Λ ? The main result of this paper
gives the following very simple answer. modA is triangle-equivalent to Db(modΛ) for
some algebra Λ if and only if the 0-th subring A0 of A has finite global dimension.

1. Main Result

There are two kinds of triangulated categories which are important for representation
theory for algebras. First one is the derived category Db(modΛ) of the category modA of
modules over an algebra Λ. Second one is algebraic triangulated categories, that is the
stable categories of Frobenius categories (cf. [5]). A typical example is the stable category
modA of the category modA of modules over a self-injective algebra A.

In this paper, our aim is to compare derived categories of algebras and the stable
categories of self-injective algebras, and find a ”nice” relationship between them. If we
find it, then those triangulated categories can be investigated from mutual viewpoints.

There several method to compare derived categories of algebras and the stable categories
of self-injective algebras. We focus on the following Happel’s result. For any algebra Λ,
one can associate a self-injective algebra A which is called the trivial extension of Λ.
A admits a natural positively grading such that A0 = Λ where A0 is the 0-th subring.
Therefore A is a positively graded self-injective algebra. So the stable category modZA of
the category modZA of Z-graded A-modules has the structure of triangulated category.
In this setting, D. Happel [6] showed that Λ has finite global dimension if and only if
there exists a triangle-eqiuvalence

modZA ' Db(modΛ).(1.1)

This equivalence gives a ”nice” relationship between derived category Db(modΛ) and the
stable categories modZA. The above result asserts that sometimes representation theory
of Λ and that of A are deeply related.

We consider the drastic generalization of the above Happel’s result. Happel started
from an algebra Λ, and constructed the special positively graded self-injective algebra of
A. In contrast, we start from a positively graded self-injective algebra A =

⊕
i≥0Ai, and

suggest the following question.

The detailed version of this paper will be submitted for publication elsewhere.
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Question. When is modZA triangle-equivalent to the derived category Db(modΛ) for
some algebra Λ ?

The following result is main theorem of this paper which gives the complete answer to
our question.

Theorem 1. Let A be a positively graded self-injective algebra. Then the following are
equivalent.

(1) The global dimension of A0 is finite.
(2) There exists an algebra Λ, and a triangle-equivalence

modZA ' Db(modΛ).(1.2)

The aim of the rest of this paper is to give an explanation of the proof of Theorem 1,
and some examples. Our plan is as follows.

In Section 2, we give two preliminaries. First we recall that modZA for a positively
graded algebra A is a Frobenius category, and so its stable category modZA is an alge-
braic triangulated category. Secondly we give an explanation of Keller’s tilting theorem.
Our approach to the question is using Keller’s titling theorem for algebraic triangulated
categories. B. Keller [7] introduced and investigated differential graded categories and
its derived categories. In his work, it was determine when is an algebraic triangulated
category triangle-equivalent to the derived category of some algebra by the existence of
tilting objects (tilting theorem). In Section 3, we apply Keller’s tilting theorem to our
study.

In Section 3, we give an outline of the proof of Theorem 1. We omit the proof of (2) ⇒
(1). We give proofs (1) ⇒ (2). We start from finding a concrete tilting object in modZA
which has ”good” properties. After finding it, we show two ways to prove (1) ⇒ (2). The
first proof is based on Keller’s tilting theorem, namely we entrust with constructing the
triangle-equivalence (1.2). The second proof is direct more than the first one, namely we
construct the triangle-equivalence (1.2) explicitly.

In Section 4, we give some examples of Theorem 1. In particular as an application of
our main theorem, we show Happel’s result, and its generalization shown by X-W Chen
[2].

Throughout this paper, let K be an algebraically closed field. An algebra means a
finite dimensional associative algebra over K. We always deal with finitely generated
right modules over algebras. For an algebra Λ, we denote by modΛ the category of Λ-
modules, projΛ the category of projective Λ-modules. The same notations is used for
graded case. For an additive category A, we denote by Kb(A) the homotopy category of
bounded complexes of A. For an abelian category A, we denote by Db(A) the bounded
derived category of A.

2. Preliminaries

In this section, we recall basic facts about representation theory of a positively graded
algebras, and tilting theorem for algebraic triangulated categories for the readers conve-
nient.

–247–



2.1. Positively graded self-injective algebras. In this subsection, our aim is to recall
that the stable category of Z-graded modules over positively graded self-injective algebras
are algebraic triangulated categories. Most of results stated here are due to Gordon-Green
[3, 4]. In details, readers should refer to [3, 4].

We start with setting notations. Let A =
⊕

i≥0Ai be a positively graded self-injective
algebra. We say that an A-module is Z-gradable if it can be regarded as a Z-graded
A-module. For a Z-graded A-module X, we write Xi the i-degree part of X. We denote
by modZA the category of Z-graded A-modules. For Z-graded A-modules X and Y , we
write HomA(X, Y )0 the morphism space in modZA from X to Y .

We recall that modZA has two important functors. The first one is the grading shift
functor. For i ∈ Z, we denote by

(i) : modZA → modZA

the grading shift functor, that is defined as follows. For a Z-graded A-module X,

• X(i) := X as an A-module,
• Z-grading on X(i) is defined by X(i)j := Xj+i for any j ∈ Z.

This is an autofunctor on modZA whose inverse is (−i).
The second one is the K-dual. It is already known that there is the standard duality

D := HomK(−, K) : modA → modAop.

This functor induces the following duality. For a Z-graded A-module X, we regard DX as
a Z-graded Aop-module by defining (DX)i := D(X−i) for any i ∈ Z. By this observation,
we have the duality

D : modZA → modZAop.

Next we recall a few important facts about objects and morphism spaces in modZA.
The following results are two of the most basic categorical properties of modZA.

Proposition 2. modZA is a Hom-finite Krull-Schmidt category

Proposition 3. [3, Theorem 3.2. Theorem 3.3.] The following assertions hold.

(1) A Z-graded A-module is indecomposable in modZA if and only if it is an inde-
compsable A-module.

(2) Any direct summand of a Z-gradable A-module is also Z-gradable.
(3) Let X and Y be indecomposable Z-graded A-modules. If X and Y are isomorphic

to each other in modA, then there exists i ∈ Z such that X and Y (i) are isomorphic
to each other in modZA.

Next we recall what are projective objects and injective objects in modZA. A is natu-
rally regarded as a Z-graded A-module. By Proposition 3 (2), any projective A-modules
are Z-gradable. Moreover it is easy to check that all projective object in modZA is given
by projective A-modules. By the standard duality, the same argument hold for injective
objects in modZA.

Proposition 4. A complete list of indecomposable projective objects in modZA is given
by

{P (i) | i ∈ Z, P is an indecomposable projective A-module}.
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Dually a complete list of indecomposable injective objects in modZA is given by

{I(i) | i ∈ Z, I is an indecomposable injective A-module}.
If A is self-injective, then modZA is a Frobenius category by Proposition 3 and Proposi-

tion 4. So in this case, the stable category modZA has a structure of triangulated category
by [5].

Lemma 5. If A is self-injective, the following assertions hold.

(1) modZA is a Frobenius category.
(2) modZA has a structure of triangulated category whose shift functor [1] is given by

the graded cosyzygy functor Ω−1 : modZA → modZA.

2.2. Tilting theorem for algebraic triangulated categories. In this subsection, we
recall tilting theorem for algebraic triangulated categories which is due to Keller [7]. It
is a theorem which provides a method for comparison of given triangulated category and
homotopy category of bounded complexes of projective modules over some algebra.

First let us recall the definition of algebraic triangulated categories again.

Definition 6. A triangulated category T is algebraic if it is triangle-equivalent to the
stable category of some Frobenius category.

A class of algebraic triangulated categories contains the following important examples.

Example 7. (1) Let Z be an abelian group, and A a Z-graded self-injective algebra.
Then modZA is a Frobenius category, and the stable category modZA is an algebraic
triangulated category (Lemma 5).

(2) Let Λ be an algebra. The category Cb(projΛ) of bounded complexes of projective
Λ-modules can be regarded as a Frobenius category whose stable category is the homotopy
category Kb(projΛ) of bounded complexes of projective Λ-modules (cf. [5]).

In tilting theory, tilting objects which is defined as follows play an important role.

Definition 8. Let T be a triangulated category. An object T ∈ T is called a tilting object
in T if it satisfies the following conditions.

(1) HomT (T, T [i]) = 0 for i 6= 0.
(2) T = thickT .

Here thickT is the smallest triangulated full subcategory of T which contains T , and is
closed under direct summands.

The following is a typical example of tilting objects.

Example 9. Let Λ be a ring. Λ can be regarded as a complex which concentrates in
degree 0. So Λ is contained in a triangulated category Kb(projΛ). It is a tilting object in
Kb(projΛ).

The following result is Keller’s tilting theorem which determine when is an algebraic
triangulated category triangle-equivalent to Kb(projΛ) for some algebra Λ,

Theorem 10. [7, Theorem 4.3.] Let T be an algebraic triangulated category. If T has a
tilting object T , then there exists a triangle-equivalence up to direct summands

T ' Kb(projEndT (T )).
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By the above result, finding tilting objects is a basic problem for the study of a given
algebraic triangulated category. We will consider this problem for Example 7 (1) in the
next section (Theorem 11).

3. Triangle-equivalences between stable categories and derived
categories

Throughout this section, let A be a positively graded self-injective algebra. In this
section, we discuss triangle-equivalences between the stable category modZA and derived
categories of algebras.

First we prove Theorem 1 in the half of this section. We omit the proof of (2) ⇒ (1).
We prove (1) ⇒ (2). We begin the proof from giving the necessary and sufficient condition
for existence of tilting objects in the stable category modZA. The necessary and sufficient
condition is described by important homological property of the subring A0 of A which is
stated as follows.

Theorem 11. modZA has a tilting object if and only if A0 has finite global dimension.

We omit the proof of only if part of Theorem 11. In the following, we show the proof
of if part of Theorem 11 which is given by constructing a tilting object in modZA. To
construct it, we consider truncation functors

(−)≥i : modA → modA

and

(−)≤i : modA → modA

which are defined as follows. For a Z-graded A-moduleX, X≥i is a Z-graded sub A-module
of X defined by

(X≥i)j :=

{
0 (j < i)

Xj (j ≥ i),

and X≤i is a Z-graded factor A-module X/X≥i+1 of X.
Now we define

T :=
⊕
i≥0

A(i)≤0.(3.1)

which is an object in ModZA but not an object in modZA. However since A(i)≤0 = A(i)
for enough large i, T can be regarded as an object in modZA.

Then we have the following result.

Theorem 12. Under the above setting, the following assertions hold.

(1) T is a tilting object in thickT .
(2) If A0 has finite global dimension, then T is a tilting object in modZA.

It is proved that T satisfies the first condition in Definition 8 with no assumptions for
A, and T satisfies the second condition in Definition 8 if A0 has finite global dimension.
Then we finish the proof of if part of Theorem 11. �
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Now we keep the notation as above and put

Γ := EndA(T )0.

the endomorphism algebra of T in modZA. This endomorphism algebra Γ has a nice
homological property if so does A0.

Theorem 13. If A0 has finite global dimension, then so does Γ.

Now we ready to prove Theorem 1 (1) ⇒ (2).

Theorem 14. Under the above setting, the following assertions hold.

(1) There exists a triangle-equivalence

thickT −→ Kb(projΓ).

(2) If A0 has finite global dimension, then there exists a triangle-equivalence

modZA −→ Db(modΓ).

Proof. (1) By Theorem 10 and Theorem 12 (1), we have the triangle-equivalence thickT −→
Kb(projΓ).

(2) We assume that A0 has finite global dimension. First by Theorem 10 and Theorem
12 (2), we have the triangle-equivalence modZA −→ Kb(projΓ). Next by Theorem 13, the
natural triangle-functor Kb(projΛ) −→ Db(modΓ) is an equivalence. Finally by composing
these equivalences, we have a triangle-equivalence

modZA −→ Db(modΓ).

�
In the above proof, the triangle-equivalence modZA → Db(modΓ) was given by the

existence of tilting object T in modZA and Keller’s Theorem 10 automatically. In the
rest of this section, we construct a triangle-equivalence Db(modΓ) → modZA by derived
tensor functor directly.

To construct the triangle-equivalence, first we want to consider the derived tensor func-

tor −
L
⊗Γ T : Db(modΓ) → Db(modZA). However Γ does not act on T naturally since Γ

is defined by the morphism space in the stable category modZA. To solve this problem,
we give the description of T in modZA below. The description allow us to realize Γ as the
morphism space in the category modZA.

Proposition 15. T is decomposed as T = T ⊕P where T is a direct sum of all indecom-
posable non-projective direct summand of T . Then the following assertions hold.

(1) T is in modZA.
(2) T and T are isomorphic to each other in modZA.
(3) There exists an algebra isomorphism Γ ' EndA(T )0.

Let T = T⊕P be the decomposition which was given in Proposition 15. By Proposition
15 (3), T is regarded as a Z-graded Γop⊗KA-module naturally. So we have the left derived
tensor functor

−
L
⊗Γ T : Db(modΓ) → Db(modZA).
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Next we consider the quotient category Db(modZA)/Kb(projZA) of Db(modZA), and
the quotient functor

Db(modZA) −→ Db(modZA)/Kb(projZA).

The following triangle-equivalence is the realization of modZA as the quotient category
Db(modZA)/Kb(projZA). The ungraded version of this realization was studied by several
authors [1], [8] and [9].

Theorem 16. [9, Theorem 2.1.] The natural embedding modZA → Db(modZA) induces
a triangle-equivalence

modZA −→ Db(modZA)/Kb(projZA)

Now we consider the following composition of the above three functors

G : Db(modΓ)
−

L
⊗ΓT−−−−−→ Db(modZA) −→ Db(modZA)/Kb(projZA) −→ modZA.

where the second one is the quotient functor, and the third one is a quasi-inverse of
Theorem 16. This is the triangle-functor which we want.

Theorem 17. Under the above setting, the following assertions hold.

(1) G is fully faithful on Kb(projΓ).
(2) A0 has finite global dimension if and only if G is a triangle-equivalence.

Proof. (1) It is easy to check that G(Γ) is isomorphic to T , so is isomorphic to T . Moreover
by Theorem 12 (1), G induces an isomorphism

HomDb(modΓ)(Γ,Γ[i]) ' HomA(G(Γ), G(Γ)[i])0

for any i ∈ Z. By this and thickΓ = Kb(projΓ), G is fully faithful on Kb(projΓ). Thus G
induces a triangle-equivalence Kb(projΓ) → thickT .

(2) We assume that A0 has finite global dimension. Then Γ has finite global dimension
by Theorem 13. Thus we have thickΓ = Db(modΓ), and so G is fully faithful. Again since
A0 has finite global dimension, we have thickT = modZA by Theorem 12 (2). Thus G is
dense.

We omit the proof of converse. �

4. Examples

In this section, we show some examples and applications of results which was shown in
previous section.

First example is famous Happel’s result [6], which gives a relationship between represen-
tation theory of algebras and that of the trivial extensions. We show it as an application
of Theorem 1.

Example 18. If an algebra is given, then we can always construct a positively graded self-
injective algebra called trivial extension, which contains original algebra as a subalgebra.
Let us recall the definition of trivial extensions. Let Λ be an algebra. The trivial extension
A of Λ is defined as follows.

• A := Λ⊕DΛ as an abelian group.
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• The multiplication on A is defined by

(x, f) · (y, g) := (xy, xg + fy).

for any x, y ∈ Λ and f, g ∈ DΛ. Here xg and fy is defined by (Λ,Λ)-bimodule
structure on DΛ.

This A becomes an algebra with respect to the above operations. Moreover it is known
that A is self-injective.

Now we introduce a positively grading on A by

Ai :=


Λ (i = 0),

DΛ (i = 1),

0 (i ≥ 2).

Then obviously A =
⊕

i≥0Ai becomes a positively graded self-injective algebra.
Under the above setting, we apply Theorem 17 to the trivial extension A of an algebra

Λ. Then we have the following Happel’s triangle-equivalence.

Theorem 19. [6, Theorem 2. 3.] Under the above setting, the following are equivalent.

(1) Λ has finite global dimension.
(2) There exists an triangle-equivalence

modZA ' Db(modΛ).

Proof. We calculate T constructed in (3.1) for our setting. Then one can check that
T = Λ, and EndA(T )0 = EndA(T )0 ' Λ. Thus the assertion follows from this and
Theorem 17. �

Next example is X-W Chen’s result [2] which gives a generalization of Happel’s result.

Example 20. Chen [2] studied relationship between the stable category modZA of a
positively graded self-injective algebra A which has Gorenstein parameter and the derived
category Db(modΓ) of the Beilinson algebra Γ of A. The notion of Gorenstein parameter
is defined as follows.

Definition 21. Let A be a positively graded self-injective algebra. We say that A has
Gorenstein parameter ` if SocA is contained in A`.

Let A be a positively graded self-injective algebra of Gorenstein parameter `. The
Beilinson algebra Γ of A is defined by

Γ :=


A0 A1 · · · A`−2 A`−1

A0 · · · A`−3 A`−2

. . .
...

...
A0 A1

0 A0

 .

Then Chen showed the following result.

Theorem 22. [2, Corollary 1.2.] Under the above setting, the following are equivalent.

(1) A0 has finite global dimension.
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(2) There exists a triangle-equivalence

modZA ' Db(modΓ).

As an application of Theorem 12, we give a proof of the above result. Let T be the
object defined in (3.1), and T the direct summand of T defined in Proposition 15. We
calculate T and the endomorphism algebra EndA(T )0. Then since A has Gorenstein
parameter `, those can be represented as the following explicit form.

Proposition 23. Under the above setting, the following assertions hold

(1) T =
⊕`−1

i=0 A(i)≤0.
(2) There exists an algebra isomorphism EndA(T )0 ' Γ.

Proof. Since A has Gorenstein parameter `, we have T =
⊕`−1

i=0 A(i)≤0 by the definition
of T . Moreover it is easy to calculate that there is an algebra isomorphism EndA(T )0 =

EndA

(⊕`−1
i=0 A(i)≤0

)
0
' Γ. �

Proof of Theorem 22. The assertion follows from Theorem 17 and Proposition 23. �
Remark 24. The trivial extensions of algebras are positively graded self-injective algebras
of Gorenstein parameter 1. Thus Theorem 22 contains Theorem 19.

Next we show a concrete examples.

Example 25. We consider A := K[x]/(xn+1), and define a grading on A by deg x := 1.
Then A is a positively graded self-injective algebra of Gorenstein parameter n.

Since the global dimension of A0 = K is equal to zero, modZA has a tilting object by
Theorem 11. Let T be the object in modZA which was defined in (3.1). Since A has a
unique chain

A ⊃ (x)/(xn+1) ⊃ (x2)/(xn+1) ⊃ · · · ⊃ (xn)/(xn+1)

of Z-graded A-submodules of A, it is easy to calculate that the endomorphism algebra
Γ := EndA(T )0 of T is isomorphic to the n× n upper triangular matrix algebra over K.
By Theorem 12, there exists a triangle-equivalence

modZA ' Db(modΓ).

We observe the above triangle-equivalences by considering the case that n = 2, namely
the case that A = K[x]/(x3). For i = 1, 2, we put X i := (xi)/(x3) the Z-graded A-
submodule of A. Then we have a chain A ⊃ X1 ⊃ X2 of Z-graded A-submodules of A. It
is known that {X i(j) | i = 1, 2, j ∈ Z} is a complete set of indecomposable non-projective
Z-graded A-modules.

The Auslander-Reiten quiver of modZA is as follows.

X1(−2)

X2(−2)

X1(−1)

X2(−1)

X1

X2

X1(1)

X2(1)

X1(2)

X2(2)

· · · · · · · · · · · ·
??������� ��?

??
??

?? ??������� ��?
??

??
?? ??������� ��?

??
??

?? ??������� ��?
??

??
?? ??�������

oo oo oo oo

oo oo oo oo

Here dotted arrows mean the Auslander-Reiten translation in modZA. We can observe
that the Auslander-Reiten translation coincides with the graded shift functor (−1).
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Next we write the Auslander-Reiten quiver of Db(modΓ). In this case, Γ = EndA(T )0
is isomorphic to 2 × 2 upper triangular matrix algebra over K. We put P 1 := (KK),
P 2 := (0K) and I1 := (K0). It is known that the set {P 1, P 2, I1} is a complete set of
indecomposable Γ-modules, and the Auslander-Reiten quiver of Db(modΓ) is as follows.

I1[−1]

P 1[−1]

P 1

P 2

P 2[1]

I1

I1[1]

P 1[1]

P 1[2]

P 2[2]

· · · · · · · · · · · ·
??������� ��?

??
??

?? ??������� ��?
??

??
?? ??������� ��?

??
??

?? ??������� ��?
??

??
?? ??�������

oo oo oo oo

oo oo oo oo

Here dotted arrows mean the Auslander-Reiten translation in Db(modΓ).
From shape of the above Auslander-Reiten quivers, one can see that modZA and

Db(modΓ) should be equivalent to each other. In fact, we gave a triangle-equivalence
between those.
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