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Abstract. This article addresses some foundational issues that arise in the study of
linear codes defined over finite rings. Linear coding theory is particularly well-behaved
over finite Frobenius rings. This follows from the fact that the character module of a
finite ring is free if and only if the ring is Frobenius.
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1. Introduction

At the center of coding theory lies a very practical problem: how to ensure the integrity
of a message being transmitted over a noisy channel? Even children are aware of this
problem: the game of “telephone” has one child whisper a sentence to a second child,
who in turn whispers it to a third child, and the whispering continues. The last child says
the sentence out loud. Usually the children burst out laughing, because the final sentence
bears little resemblance to the original.

Using electronic devices, messages are transmitted over many different noisy channels:
copper wires, fiber optic cables, saving to storage devices, and radio, cell phone, and
deep-space communications. In all cases, it is desirable that the message being received
is the same as the message being sent. The standard approach to error-correction is to
incorporate redundancy in a cleverly designed way (encoding), so that transmission errors
can be efficiently detected and corrected (decoding).

Mathematics has played an essential role in coding theory, with the seminal work of
Claude Shannon [27] leading the way. Many constructions of encoding and decoding
schemes make strong use of algebra and combinatorics, with linear algebra over finite
fields often playing a prominent part. The rich interplay of ideas from multiple areas has
led to discoveries that are of independent mathematical interest.

This article addresses some of the topics that lie at the mathematical foundations of
algebraic coding theory, specifically topics related to linear codes defined over finite rings.
This article is not an encyclopedic survey; the mathematical questions addressed are ones
in which the author has been actively involved and are ones that apply to broad classes
of finite rings, not just to specific examples.
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The topics covered are ring-theoretic analogs of results that go back to one of the early
leaders of the field, Florence Jessie MacWilliams (1917–1990). MacWilliams worked for
many years at Bell Labs, and she received her doctorate from Harvard University in 1962,
under the direction of Andrew Gleason [22]. She is the co-author, with Neil Sloane, of
the most famous textbook on coding theory [23].

Two of the topics discussed in this article are found in the doctoral dissertation of
MacWilliams [22]. One topic is the famous MacWilliams identities, which relate the
Hamming weight enumerator of a linear code to that of its dual code. The MacWilliams
identities have wide application, especially in the study of self-dual codes (linear codes that
equal their dual code). The MacWilliams identities are discussed in Section 4, and some
interesting aspects of self-dual codes due originally to Gleason are discussed in Section 6.

The other topic to be discussed, also found in MacWilliams’s dissertation, is the
MacWilliams extension theorem. This theorem is not as well known as the MacWilliams
identities, but it underlies the notion of equivalence of linear codes. It is easy to show that
a monomial transformation defines an isomorphism between linear codes that preserves
the Hamming weight. What is not so obvious is the converse: whether every isomorphism
between linear codes that preserves the Hamming weight must extend to a monomial
transformation. MacWilliams proves that this is indeed the case over finite fields. The
MacWilliams extension theorem is a coding-theoretic analog of the extension theorems
for isometries of bilinear forms and quadratic forms due to Witt [30] and Arf [1].

This article describes, in large part, how these two results, the MacWilliams identities
and the MacWilliams extension theorem, generalize to linear codes defined over finite
rings. The punch line is that both theorems are valid for linear codes defined over finite
Frobenius rings. Moreover, Frobenius rings are the largest class of finite rings over which
the extension theorem is valid.

Why finite Frobenius rings? Over finite fields, both the MacWilliams identities and
the MacWilliams extension theorem have proofs that make use of character theory. In
particular, finite fields F have the simple, but crucial, properties that their characters

F̂ form a vector space over F and F̂ ∼= F as vector spaces. The same proofs will work

over a finite ring R, provided R has the same crucial property that R̂ ∼= R as one-
sided modules. It turns out that finite Frobenius rings are exactly characterized by this
property ([14, Theorem 1] and, independently, [31, Theorem 3.10]). The character theory
of finite Frobenius rings is discussed in Section 2, and the extension theorem is discussed
in Section 5. Some standard terminology from algebraic coding theory is discussed in
Section 3.

While much of this article is drawn from earlier works, especially [31] and [33], some of
the treatment of generating characters for Frobenius rings in Section 2 has not appeared
before. The new results are marked with a dagger (†).
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2. Finite Frobenius Rings

In an effort to make this article somewhat self-contained, both for ring-theorists and
coding-theorists, I include some background material on finite Frobenius rings. The goal
of this section is to show that finite Frobenius rings are characterized by having free
character modules. Useful references for this material are Lam’s books [19] and [20].

All rings will be associative with 1, and all modules will be unitary. While left modules
will appear most often, there are comparable results for right modules. Almost all of the
rings used in this article will be finite, so that some definitions that are more broadly
applicable may be simplified in the finite context.

2.1. Definitions. Given a finite ring R, its (Jacobson) radical rad(R) is the intersection
of all the maximal left ideals of R; rad(R) is itself a two-sided ideal of R. A left R-module
is simple if it has no nonzero proper submodules. Given a left R-module M , its socle
soc(M) is the sum of all the simple submodules of M . A ring R has a left socle soc(RR)
and a right socle soc(RR) (from viewing R as a left R-module or as a right R-module);
both socles are two-sided ideals, but they may not be equal. (They are equal if R is
semiprime, which, for finite rings, is equivalent to being semisimple.)

LetR be a finite ring. Then the quotient ringR/ rad(R) is semi-simple and is isomorphic
to a direct sum of matrix rings over finite fields (Wedderburn-Artin):

(2.1) R/ rad(R) ∼=
k⊕

i=1

Mmi
(Fqi),

where each qi is a prime power; Fq denotes a finite field of order q, q a prime power, and
Mm(Fq) denotes the ring of m×m matrices over Fq.

Definition 1 ([19, Theorem 16.14]). A finite ring R is Frobenius if R(R/ rad(R)) ∼=
soc(RR) and (R/ rad(R))R ∼= soc(RR).

This definition applies more generally to Artinian rings. It is a theorem of Honold [15,
Theorem 2] that, for finite rings, only one of the isomorphisms (left or right) is needed.

Each of the matrix rings Mmi
(Fqi) in (2.1) has a simple left module Ti := Mmi×1(Fqi),

consisting of all mi × 1 matrices over Fqi , under left matrix multiplication. From (2.1) it
follows that, as left R-modules, we have an isomorphism

(2.2) R(R/ rad(R)) ∼=
k⊕

i=1

miTi.

It is known that the Ti, i = 1, . . . , k, form a complete list of simple left R-modules, up to
isomorphism.

Because the left socle of an R-module is a sum of simple left R-modules, it can be
expressed as a sum of the Ti. In particular, the left socle of R itself admits such an
expression:
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(2.3) soc(RR) ∼=
k⊕

i=1

siTi,

for some nonnegative integers s1, . . . , sk. Thus a finite ring is Frobenius if and only if
mi = si for all i = 1, . . . , k.

2.2. Characters. Let G be a finite abelian group. In this article, a character is a group
homomorphism $ : G → Q/Z. The set of all characters of G forms a group called the

character group Ĝ := HomZ(G,Q/Z). It is well-known that |Ĝ| = |G|. (Characters
with values in the multiplicative group of nonzero complex numbers can be obtained
by composing with the complex exponential function a 7→ exp(2πia), a ∈ Q/Z; this
multiplicative form of characters will be needed in later sections.)

If R is a finite ring and A is a finite left R-module, then Â consists of the characters

of the additive group of A; Â is naturally a right R-module via the scalar multiplication

($r)(a) := $(ra), for $ ∈ Â, r ∈ R, and a ∈ A. The module Â will be called the

character module of A. Similarly, if B is a right R-module, then B̂ is naturally a left
R-module.

Example 2. Let Fp be a finite field of prime order. Define ϑp : Fp → Q/Z by ϑp(a) = a/p,
where we view Fp as Z/pZ. Then ϑp is a character of Fp, and every other character $ of

Fp has the form $ = aϑp, for some a ∈ Fp (because F̂p is a one-dimensional vector space
over Fp).

Let Fq be a finite field with q = p` for some prime p. Let trq/p : Fq → Fp be the trace.
Define ϑq : Fq → Q/Z by ϑq = ϑp ◦ trq/p. Then ϑq is a character of Fq, and every other
character $ of Fq has the form $ = aϑq, for some a ∈ Fq.

Example 3. Let R = Mm(Fq) be the ring of m ×m matrices over a finite field Fq, and
let A = Mm×k(Fq) be the left R-module consisting of all m × k matrices over Fq. Then

Â ∼= Mk×m(Fq) as right R-modules. Indeed, given a matrix Q ∈ Mk×m(Fq), define a
character $Q of A by $Q(P ) = ϑq(tr(QP )), for P ∈ A, where tr is the matrix trace and

ϑq is the character of Fq defined in Example 2. The map Mk×m(Fq) → Â, Q 7→ $Q is the
desired isomorphism.

Given a short exact sequence of finite left R-modules 0 → A → B → C → 0, there is
an induced short exact sequence of right R-modules

(2.4) 0 → Ĉ → B̂ → Â→ 0.

In particular, if we define the annihilator (B̂ : A) := {$ ∈ B̂ : $(A) = 0}, then

(2.5) (B̂ : A) ∼= Ĉ and |(B̂ : A)| = |C| = |B|/|A|.

2.3. Generating Characters. In the special case that A = R, R is both a left and

a right R-module. A character $ ∈ R̂ induces both a left and a right homomorphism

R → R̂ (r 7→ r$ is a left homomorphism, while r 7→ $r is a right homomorphism). The
character $ is called a left (resp., right) generating character if r 7→ r$ (resp., r 7→ $r) is
a module isomorphism. In this situation, the character $ generates the left (resp., right)

–226–



R-module R̂. Because |R̂| = |R|, one of these homomorphisms is an isomorphism if and
only if it is injective if and only if it is surjective.

Remark 4. The phrase generating character (“erzeugenden Charakter”) is due to Klemm
[17]. Claasen and Goldbach [6] used the adjective admissible to describe the same phe-
nomenon, although their use of left and right is the reverse of ours.

The theorem below relates generating characters and finite Frobenius rings. While the
theorem is over ten years old, we will give a new proof.

Theorem 5 ([14, Theorem 1], [31, Theorem 3.10]). Let R be a finite ring. Then the
following are equivalent:

(1) R is Frobenius;

(2) R admits a left generating character, i.e., R̂ is a free left R-module;

(3) R admits a right generating character, i.e., R̂ is a free right R-module.

Moreover, when these conditions are satisfied, every left generating character is also a
right generating character, and vice versa.

Example 6. Here are several examples of finite Frobenius rings and generating characters
(when easy to describe).

(1) Finite field Fq with generating character ϑq of Example 2. Note that ϑp is injective,
but that for q > p, kerϑq = ker trq/p is a nonzero Fp-linear subspace of Fq. However,
kerϑq is not an Fq-linear subspace. (Compare with Proposition 7 below.)

(2) Integer residue ring Z/nZ with generating character ϑn defined by ϑn(a) = a/n,
for a ∈ Z/nZ.

(3) Finite chain ring R; i.e., a finite ring all of whose left ideals form a chain under
inclusion. See Corollary 15 for information about a generating character.

(4) If R1, . . . , Rn are Frobenius with generating characters %1, . . . , %n, then their direct
sum R = ⊕Ri is Frobenius with generating character % =

∑
%i. Conversely, if

R = ⊕Ri is Frobenius with generating character %, then each Ri is Frobenius, with
generating character %i = % ◦ ιi, where ιi : Ri → R is the inclusion; % =

∑
%i.

(5) If R is Frobenius with generating character %, then the matrix ring Mm(R) is
Frobenius with generating character % ◦ tr, where tr is the matrix trace.

(6) If R is Frobenius with generating character % and G is any finite group, then
the group ring R[G] is Frobenius with generating character % ◦ pre, where pre :
R[G] → R is the projection that associates to every element a =

∑
agg ∈ R[G]

the coefficient ae of the identity element of G.

In preparation for the proof of Theorem 5, we prove several propositions concerning
generating characters.

Proposition 7 ([6, Corollary 3.6]). Let R be a finite ring. A character $ of R is a left
(resp., right) generating character if and only if ker$ contains no nonzero left (resp.,
right) ideal of R.

Proof. By the definition and |R̂| = |R|, $ is a left generating character if and only if

the homomorphism f : R → R̂, r 7→ r$, is injective. Then r ∈ ker f if and only if the
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principal ideal Rr ⊂ ker$. Thus, ker f = 0 if and only if ker$ contains no nonzero left
ideals. The proof for right generating characters is similar. �

Proposition 8 ([31, Theorem 4.3]). A character % of a finite ring R is a left generating
character if and only if it is a right generating character.

Proof. Suppose % is a left generating character, and suppose that I ⊂ ker % is a right
ideal. Then for every r ∈ R, Ir ⊂ ker %, so that I ⊂ ker(r%), for all r ∈ R. But
every character of R is of the form r%, because % is a left generating character. Thus the

annihilator (R̂ : I) = R̂, and it follows from (2.5) that I = 0. By Proposition 7, % is a
right generating character. �

Proposition 9 ([33, Proposition 3.3]). Let A be a finite left R-module. Then soc(Â) ∼=
(A/ rad(R)A)̂.
Proof. There is a short exact sequence of left R-modules

0 → rad(R)A→ A→ A/ rad(R)A→ 0.

Taking character modules, as in (2.4), yields

0 → (A/ rad(R)A)̂ → Â→ (rad(R)A)̂ → 0.

Because A/ rad(R)A is a sum of simple modules, the same is true for (A/ rad(R)A)̂ ∼=
(Â : rad(R)A). Thus (Â : rad(R)A) ⊂ soc(Â).

Conversely, soc(Â) rad(R) = 0, because the radical annihilates simple modules [7, Ex-

ercise 25.4]. Thus soc(Â) ⊂ (Â : rad(R)A), and we have the equality soc(Â) = (Â :

rad(R)A). Now remember that (Â : rad(R)A) ∼= (A/ rad(R)A)̂ . �

Using Proposition 7 as a model, we extend the definition of a generating character to
modules. Let A be a finite left (resp., right) R-module. A character $ of A is a generating
character of A if ker$ contains no nonzero left (resp., right) R-submodules of A.

Lemma 10 (†). Let A be a finite left R-module, and let B ⊂ A be a submodule. If A
admits a left generating character, then B admits a left generating character.

Proof. Simply restrict a generating character of A to B. Any submodule of B inside the
kernel of the restriction will also be a submodule of A inside the kernel of the original
generating character. �

Lemma 11 (†). Let R be any finite ring. Define % : R̂ → Q/Z by %($) = $(1), evaluation

at 1 ∈ R, for $ ∈ R̂. Then % is a left and right generating character of R̂.

Proof. Suppose $0 6= 0 has the property that R$0 ⊂ ker %. This means that for every
r ∈ R, 0 = %(r$0) = (r$0)(1) = $0(r), so that $0 = 0. Thus % is a left generating
character by definition. Similarly for % being a right generating character. �

Proposition 12 (†). Let A be a finite left R-module. Then A admits a left generating

character if and only if A can be embedded in R̂.
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Proof. If A embeds in R̂, then A admits a generating character, by Lemmas 10 and 11.

Conversely, let % be a generating character of A. We use % to define f : A → R̂, as

follows. For a ∈ A, define f(a) ∈ R̂ by f(a)(r) = %(ra), r ∈ R. It is easy to check that

f(a) is indeed in R̂, i.e., that f(a) is a character of R. It is also easy to verify that f is

a left R-module homomorphism from A to R̂. If a ∈ ker f , then %(ra) = 0 for all r ∈ R.
Thus the left R-submodule Ra ⊂ ker %. Because % is a generating character, we conclude
that Ra = 0. Thus a = 0, and f is injective. �

When A = R, Proposition 12 is consistent with the definition of a generating character

of a ring. Indeed, if R embeds into R̂, then R and R̂ are isomorphic as one-sided modules,
because they have the same number of elements.

Theorem 13 (†). Let R =Mm(Fq) be the ring of m×m matrices over a finite field Fq.
Let A =Mm×k(Fq) be the left R-module of all m× k matrices over Fq. Then A admits a
left generating character if and only if m ≥ k.

Proof. If m ≥ k, then, by appending m− k columns of zeros, A can be embedded inside
R as a left ideal. By Example 3 and Lemma 10, A admits a generating character.

Conversely, suppose m < k. We will show that no character of A is a generating
character of A. To that end, let $ be any character of A. By Example 3, $ has the
form $Q for some k ×m matrix Q over Fq. Because k > m, the rows of Q are linearly
dependent over Fq. Let P be any nonzero matrix over Fq of size m×k such that PQ = 0.
Such a P exists because the rows of Q are linearly dependent: use the coefficients of a
nonzero dependency relation as the entries for a row of P . We claim that the nonzero
left submodule of A generated by P is contained in ker$Q. Indeed, for any B ∈ R,
$Q(BP ) = ϑq(tr(Q(BP ))) = ϑq(tr((BP )Q)) = ϑq(tr(B(PQ))) = 0, using PQ = 0 and
the well-known property tr(BC) = tr(CB) of the matrix trace. Thus, no character of A
is a generating character. �
Proposition 14 (†). Suppose A is a finite left R-module. Then A admits a left generating
character if and only if soc(A) admits a left generating character.

Proof. If A admits a generating character, then so does soc(A), by Lemma 10.
Conversely, suppose soc(A) admits a generating character ϑ. Utilizing the short exact

sequence (2.4), let % be any extension of ϑ to a character of A . We claim that % is
a generating character of A. To that end, suppose B is a submodule of A such that
B ⊂ ker %. Then soc(B) ⊂ soc(A) ∩ ker % = soc(A) ∩ kerϑ, because % is an extension of
ϑ. But ϑ is a generating character of soc(A), so soc(B) = 0. Since B is a finite module,
we conclude that B = 0. Thus % is a generating character of A. �
Corollary 15 (†). Let A be a finite left R-module. Suppose soc(A) admits a left generating
character ϑ. Then any extension of ϑ to a character of A is a left generating character
of A.

We now (finally) turn to the proof of Theorem 5.

(†) Proof of Theorem 5. Statements (2) and (3) are equivalent by Proposition 8. We next
show that (3) implies (1).
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By Example 3, the right R-module (R/ rad(R))R equals the character module of the
left R-module R(R/ rad(R)). By Proposition 9 applied to the left R-module A = RR, we

have (R(R/ rad(R)))̂ ∼= soc(R̂R) ∼= soc(RR), because R̂ is assumed to be right free. We
thus have an isomorphism (R/ rad(R))R ∼= soc(RR) of right R-modules. One can either
repeat the argument for a left isomorphism (using (2)) or appeal to the theorem of Honold
[15, Theorem 2] mentioned after Definition 1.

Now assume (1). Referring to (2.1), we see that R being Frobenius implies that soc(R)
is a sum of matrix modules of the form Mmi

(Fqi). By Theorem 13 and summing, soc(R)
admits a left generating character. By Propositions 7 and 14, R itself admits a left
generating character. Thus (2) holds. �
2.4. Frobenius Algebras. In this subsection I want to point out the similarity between
a general (not necessarily finite) Frobenius algebra and a finite Frobenius ring. I thank
Professor Yun Fan for suggesting this short exposition.

Definition 16. A finite-dimensional algebra A over a field F is a Frobenius algebra if
there exists a linear functional λ : A → F such that kerλ contains no nonzero left ideals
of A.

It is apparent that the structure functional λ plays a role for a Frobenius algebra
comparable to that played by a left generating character % of a finite Frobenius ring. As
one might expect, the connection between λ and % is even stronger when one considers
a finite Frobenius algebra. Recall that every finite field Fq admits a generating character
ϑq, by Example 2.

Theorem 17 (†). Let R be a Frobenius algebra over a finite field Fq, with structure
functional λ : R → Fq. Then R is a finite Frobenius ring with left generating character
% = ϑq ◦ λ.

Conversely, suppose R is a finite-dimensional algebra over a finite field Fq and that R
is a Frobenius ring with generating character %. Then R is a Frobenius algebra, and there
exists a structure functional λ : R → Fq such that % = ϑq ◦ λ.

Proof. Both R∗ := HomFq(R,Fq) and R̂ = HomZ(R,Q/Z) are (R,R)-bimodules satisfying

|R∗| = |R̂| = |R|. A generating character ϑq of Fq induces a bimodule homomorphism

f : R∗ → R̂ via λ 7→ ϑq ◦ λ. We claim that f is injective. To that end, suppose λ ∈ ker f .
Then ϑq◦λ = 0, so that λ(R) ⊂ kerϑq. Note that λ(R) is an Fq-vector subspace contained
in kerϑq ⊂ Fq. Because ϑq is a generating character of Fq, λ(R) = 0, by Proposition 7.

Thus λ = 0, and f is injective. Because |R∗| = |R̂|, f is in fact a bimodule isomorphism.
We next claim that the structure functionals in R∗ correspond under f to the generating

characters in R̂. That is, if $ = f(λ), where λ ∈ R∗ and $ ∈ R̂, then λ satisfies the
condition that kerλ contains no nonzero left ideals of R if and only if $ is a generating
character of R (i.e., ker$ contains no nonzero left ideals of R).

Suppose $ is a generating character of R, and suppose that I is a left ideal of R with
I ⊂ kerλ. Since $ = ϑq ◦λ, we also have I ⊂ ker$. Because $ is a generating character,
Proposition 7 implies I = 0, as desired.

Conversely, suppose λ satisfies the condition that kerλ contains no nonzero left ideals
of R, and suppose that I is a left ideal of R with I ⊂ ker$. Then λ(I) is an Fq-linear
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subspace inside kerϑq ⊂ Fq. Because ϑq is a generating character of Fq, we have λ(I) = 0,
i.e., I ⊂ kerλ. By the condition on λ, we conclude that I = 0, as desired. �
Remark 18. The proof of Theorem 17 shows the equivalence of the Morita duality functors

∗ and ̂ when R is a finite-dimensional algebra over a finite field F (cf., [31, Remark 3.12]).

For a finite R-module M , observe that M∗ := HomF(M,F) ∼= HomR(M,R∗) and M̂ =

HomZ(M,Q/Z) ∼= HomR(M, R̂).

3. The Language of Algebraic Coding Theory

3.1. Background on Error-Correcting Codes. Error-correcting codes provide a way
to protect messages from corruption during transmission (or storage). This is accom-
plished by adding redundancies in such a way that, with high probability, the original
message can be recovered from the received message.

Let us be a little more precise. Let I be a finite set (of “information”) which will
be the possible messages that can be transmitted. An example: numbers from 0 to 63
representing gray scales of a photograph. Let A be another finite set (the “alphabet”);
A = {0, 1} is a typical example. An encoding of the information set I is an injection
f : I → An for some n. The image f(I) is a code in An.

For a given message x ∈ I, the string f(x) is transmitted across a channel (which could
be copper wire, fiber optic cable, saving to a storage device, or transmission by radio or
cell phone). During the transmission process, some of the entries in the string f(x) might
be corrupted, so that the string y ∈ An that is received may be different from the string
f(x) that was originally sent.

The challenge is this: for a given channel, to choose an encoding f in such a way that
it is possible, with high probability, to recover the original message x knowing only the
corrupted received message y (and the method of encoding). The process of recovering x
is called decoding.

The seminal theorem that launched the field of coding theory is due to Claude Shannon
[27]. Paraphrasing, it says: up to a limit determined by the channel, it is always possible
to find an encoding which will decode with as high a probability as one desires, provided
one takes the encoding length n sufficiently large. Shannon’s proof is not constructive;
it does not build an encoding, nor does it describe how to decode. Much of the research
in coding theory since Shannon’s theorem has been devoted to finding good codes and
developing decoding algorithms for them. Good references for background on coding
theory are [16] and [23].

3.2. Algebraic Coding Theory. Researchers have more tools at their disposal in con-
structing codes if they assume that the alphabet A and the codes C ⊂ An are equipped
with algebraic structures. The first important case is to assume that A is a finite field
and that C ⊂ An is a linear subspace.

Definition 19. Let F be a finite field. A linear code of length n over F is a linear subspace
C ⊂ Fn. The dimension of the linear code is traditionally denoted by k = dimFC.

Given two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn, their Hamming distance
d(x, y) = |{i : xi 6= yi}| is the number of positions where the vectors differ. The Hamming
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weight wt(x) = d(x, 0) of a vector x ∈ Fn equals the number of positions where the
vector is nonzero. Note that d(x, y) = wt(x− y); d is symmetric and satisfies the triangle
inequality. The minimum distance of a code C ⊂ Fn is the smallest value dC of d(x, y)
for x 6= y, x, y ∈ C. When C is a linear code, dC equals the smallest value of wt(x) for
x 6= 0, x ∈ C.

The minimum distance of a code C is a measure of the code’s error-correcting capability.
Let B(x, r) = {y ∈ Fn : d(x, y) ≤ r} be the ball in Fn centered at x of radius r. Set
r0 = [(dC − 1)/2], the greatest integer less than or equal to (dC − 1)/2. Then all the balls
B(x, r0) for x ∈ C are disjoint. Suppose x ∈ C is transmitted and y ∈ Fn is received.
Decode y to the nearest element in the code C (and flip a coin if there is a tie). If at
most r0 entries of x are corrupted in the transmission, then this method always decodes
correctly. We say that C corrects r0 errors. The larger dC is, the more errors that can be
corrected.

3.3. Weight Enumerators. It is useful to keep track of the weights of all the elements
of a code C. The Hamming weight enumerator WC(X,Y ) is a polynomial (generating
function) defined by

WC(X,Y ) =
∑
x∈C

Xn−wt(x)Y wt(x) =
n∑

i=0

AiX
n−iY i,

where Ai is the number of elements of weight i in C. Only the zero vector has weight 0.
In a linear code, A0 = 1, and Ai = 0 for 0 < i < dC .

Define an F-valued inner product on Fn by

x · y =
n∑

i=1

xiyi, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn.

Associated to every linear code C ⊂ Fn is its dual code C⊥:

C⊥ = {y ∈ Fn : x · y = 0, x ∈ C}.

If k = dimC, then dimC⊥ = n− k.
One of the most famous results in algebraic coding theory relates the Hamming weight

enumerator of a linear code C to that of its dual code C⊥: the MacWilliams identities,
which is the subject of Section 4.

Theorem 20 (MacWilliams Identities). Let C be a linear code in Fn
q . Then

WC(X, Y ) =
1

|C⊥|
WC⊥(X + (q − 1)Y,X − Y ).

Of special interest are self-dual codes. A linear code C is self-orthogonal if C ⊂ C⊥; C
is self-dual if C = C⊥. Note that a self-dual code C of length n and dimension k satisfies
n = 2k, so that n must be even.
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3.4. Linear Codes over Rings. While there had been some early work on linear codes
defined over the rings Z/kZ, a major breakthrough came in 1994 with the paper [13].
(There was similar, independent work in [25].) It had been noticed that there were
two families of nonlinear binary codes that behaved as if they were duals; their weight
enumerators satisfied the MacWilliams identities. This phenomenon was explained in [13].
The authors discovered two families of linear codes over Z/4Z that are duals of each other
and, therefore, their weight enumerators satisfy the MacWilliams identities. In addition,
by using a so-called Gray map g : Z/4Z → F2

2 defined by g(0) = 00, g(1) = 01, g(2) = 11,
and g(3) = 10 (g is not a homomorphism), the authors showed that the two families of
linear codes over Z/4Z are mapped to the original families of nonlinear codes over F2.
The paper [13] launched an interest in linear codes defined over rings that continues to
this day.

Definition 21. Let R be a finite ring. A left (right) linear code C of length n over R is
a left (right) R-submodule C ⊂ Rn.

It will be useful in Section 5 to be even more general and to define linear codes over
modules. These ideas were introduced first by Nechaev and his colloborators [18].

Definition 22. Let R be a finite ring, and let A (for alphabet) be a finite left R-module.
A left linear code C over A of length n is a left R-submodule C ⊂ An.

The Hamming weight is defined in the same way as for fields. For x = (x1, . . . , xn) ∈ Rn

(or An), define wt(x) = |{i : xi 6= 0}|, the number of nonzero entries in the vector x.

4. The MacWilliams Identities

In this section, we present a proof of the MacWilliams identities that is valid over any
finite Frobenius ring. The proof, which dates to [31, Theorem 8.3], is essentially the same
as one due to Gleason found in [3, §1.12]. While the MacWilliams identities hold in even
more general settings (see the later sections in [33], for example), the setting of linear
codes over a finite Frobenius ring will show clearly the role of characters in the proof.

Let R be a finite ring. As we did earlier for fields, we define a dot product on Rn by

x · y =
n∑

i=1

xiyi, x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

For a left linear code C ⊂ Rn, define the right annihilator r(C) by r(C) = {y ∈ Rn :
x ·y = 0, x ∈ C}. The right annihilator will play the role of the dual code C⊥. (Because R
may be non-commutative, one must choose between a left and a right annihilator.) The
Hamming weight enumerator WC(X, Y ) of a left linear code C is defined exactly as for
fields.

Theorem 23 (MacWilliams Identities). Let R be a finite Frobenius ring, and let C ⊂ Rn

be a left linear code. Then

WC(X, Y ) =
1

|r(C)|
Wr(C)(X + (|R| − 1)Y,X − Y ).
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4.1. Fourier Transform. Gleason’s proof of the MacWilliams identities uses the Fourier
transform and the Poisson summation formula, which we describe in this subsection. Let
(G,+) be a finite abelian group.

Throughout this section, we will use the multiplicative form of characters; that is,
characters are group homomorphisms π : (G,+) → (C×, ·) from a finite abelian group to

the multiplicative group of nonzero complex numbers. The set Ĝ of all characters of G
forms an abelian group under pointwise multiplication. The following list of properties of
characters is well-known and presented without proof (see [26] or [28]).

Lemma 24. Characters of a finite abelian group G satisfy the following properties.

(1) |Ĝ| = |G|;
(2) (G1 ×G2)̂ ∼= Ĝ1 × Ĝ2;

(3)
∑

x∈G π(x) =

{
|G|, π = 1,

0, π 6= 1;

(4)
∑

π∈Ĝ π(x) =

{
|G|, x = 0,

0, x 6= 0;

(5) The characters form a linearly independent subset of the vector space of complex-
valued functions on G. (In fact, the characters form a basis.) �

Let V be a vector space over the complex numbers. For any function f : G→ V , define

its Fourier transform f̂ : Ĝ→ V by

f̂(π) =
∑
x∈G

π(x)f(x), π ∈ Ĝ.

Given a subgroup H ⊂ G, define the annihilator (Ĝ : H) = {π ∈ Ĝ : π(H) = 1}. As we

saw in (2.5), |(Ĝ : H)| = |G|/|H|.
The Poisson summation formula relates the sum of a function over a subgroup to the

sum of its Fourier transform over the annihilator of the subgroup. The proof is an exercise.

Proposition 25 (Poisson Summation Formula). Let H ⊂ G be a subgroup, and let
f : G→ V be any function from G to a complex vector space V . Then∑

x∈H

f(x) =
1

|(Ĝ : H)|

∑
π∈(Ĝ:H)

f̂(π).

The next technical result describes the Fourier transform of a function that is the
product of functions of one variable. Again, the proof is an exercise for the reader.

Lemma 26. Suppose V is a commutative algebra over the complex numbers, and suppose
fi : G → V , i = 1, . . . , n, are functions from G to V . Let f : Gn → V be defined by
f(x1, . . . , xn) =

∏n
i=1 fi(xi). Then

f̂(π1, . . . , πn) =
n∏

i=1

f̂i(πi).
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4.2. Gleason’s Proof.

Proof of Theorem 23. Given a left linear code C ⊂ Rn, we apply the Poisson summation
formula with G = Rn, H = C, and V = C[X,Y ], the polynomial ring over C in two
indeterminates. Define fi : R → C[X, Y ] by fi(xi) = X1−wt(xi)Y wt(xi), xi ∈ R, where
wt(r) = 0 for r = 0, and wt(r) = 1 for r 6= 0 in R. Let f : Rn → C[X, Y ] be the product
of the fi; i.e.,

f(x1, . . . , xn) =
n∏

i=1

X1−wt(xi)Y wt(xi) = Xn−wt(x)Y wt(x),

where x = (x1, . . . , xn) ∈ Rn. We recognize that
∑

x∈H f(x), the left side of the Poisson
summation formula, is simply the Hamming weight enumerator WC(X, Y ).

To begin to simplify the right side of the Poisson summation formula, we must calculate
f̂ . By Lemma 26, we first calculate f̂i.

f̂i(πi) =
∑
a∈R

πi(a)fi(a) =
∑
a∈R

πi(a)X
1−wt(a)Y wt(a) = X +

∑
a 6=0

πi(a)Y

=

{
X + (|R| − 1)Y, πi = 1,

X − Y, πi 6= 1.

At the end of the first line, one evaluates the case a = 0 versus the cases where a 6= 0. In
going to the second line, one uses Lemma 24. Using Lemma 26, we see that

f̂(π) = (X + (|R| − 1)Y )n−wt(π)(X − Y )wt(π),

where π = (π1, . . . , πn) ∈ R̂n and wt(π) counts the number of πi such that πi 6= 1.

The last task is to identify the character-theoretic annihilator (Ĝ : H) = (R̂n : C) with
r(C), which is where R being Frobenius enters the picture. Let ρ be a generating character

of R. We use ρ to define a homomorphism β : R → R̂. For r ∈ R, the character β(r) ∈ R̂

has the form β(r)(s) = (rρ)(s) = ρ(sr) for s ∈ R. One can verify that β : R → R̂ is an
isomorphism of left R-modules. In particular, wt(r) = wt(β(r)).

Extend β to an isomorphism β : Rn → R̂n of left R-modules, via β(x)(y) = ρ(y ·x), for
x, y ∈ Rn. Again, wt(x) = wt(β(x)). For x ∈ Rn, when is β(x) ∈ (R̂n : C)? This occurs
when β(x)(C) = 1; that is, when ρ(C · x) = 1. This means that the left ideal C · x of
R is contained in ker ρ. Because ρ is a generating character, Proposition 7 implies that

C · x = 0. Thus x ∈ r(C). The converse is obvious. Thus r(C) corresponds to (R̂n : C)
under the isomorphism β.

The right side of the Poisson summation formula now simplifies as follows:

1

|(Ĝ : H)|

∑
π∈(Ĝ:H)

f̂(π) =
1

|r(C)|
∑

x∈r(C)

(X + (|R| − 1)Y )n−wt(x)(X − Y )wt(x)

=
1

|r(C)|
Wr(C)(X + (|R| − 1)Y,X − Y ),

as desired. �
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5. The Extension Problem

In this section, we will discuss the extension problem, which originated from under-
standing equivalence of codes. The main result is that a finite ring has the extension
property for linear codes with respect to the Hamming weight if and only if the ring is
Frobenius.

5.1. Equivalence of Codes. When should two linear codes be considered to be the
same? That is, what should it mean for two linear codes to be equivalent? There are
two (related) approaches to this question: via monomial transformations and via weight-
preserving isomorphisms.

Definition 27. Let R be a finite ring. A (left) monomial transformation T : Rn → Rn

is a left R-linear homomorphism of the form

T (x1, . . . , xn) = (xσ(1)u1, . . . , xσ(n)un), (x1, . . . , xn) ∈ Rn,

for some permutation σ of {1, 2, . . . , n} and units u1, . . . , un of R.
Two left linear codes C1, C2 ⊂ Rn are equivalent if there exists a monomial transfor-

mation T : Rn → Rn such that T (C1) = C2.

Another possible definition of equivalence of linear codes C1, C2 ⊂ Rn is this: there
exists an R-linear isomorphism f : C1 → C2 that preserves the Hamming weight, i.e.,
wt(f(x)) = wt(x), for all x ∈ C1. The next lemma shows that equivalence using monomial
transformations implies equivalence using a Hamming weight-preserving isomorphism.

Lemma 28. If T : Rn → Rn is a monomial transformation, then T preserves the Ham-
ming weight: wt(T (x)) = wt(x), for all x ∈ Rn. If linear codes C1, C2 ⊂ Rn are equivalent
via a monomial transformation T , then the restriction f of T to C1 is an R-linear iso-
morphism C1 → C2 that preserves the Hamming weight.

Proof. For any r ∈ R and any unit u ∈ R, r = 0 if and only if ru = 0. The result follows
easily from this. �

Does the converse hold? This is an extension problem: given C1, C2 ⊂ Rn and an
R-linear isomorphism f : C1 → C2 that preserves the Hamming weight, does f extend to
a monomial transformation T : Rn → Rn? We will phrase this in terms of a property.

Definition 29. Let R be a finite ring. The ring R has the extension property (EP) with
respect to the Hamming weight if, whenever two left linear codes C1, C2 ⊂ Rn admit an
R-linear isomorphism f : C1 → C2 that preserves the Hamming weight, it follows that f
extends to a monomial transformation T : Rn → Rn.

Thus, the two notions of equivalence coincide precisely when the ring R satisfies the
extension property. Another important theorem of MacWilliams is that finite fields have
the extension property [21], [22].

Theorem 30 (MacWilliams). Finite fields have the extension property with respect to the
Hamming weight.
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Other proofs that finite fields have the extension property with respect to the Hamming
weight have been given by Bogart, Goldberg, and Gordon [5] and by Ward and Wood
[29]. We will not prove the finite field case separately, because it is a special case of the
main theorem of this section:

Theorem 31. Let R be a finite ring. Then R has the extension property with respect to
the Hamming weight if and only if R is Frobenius.

One direction, that finite Frobenius rings have the extension property, first appeared in
[31, Theorem 6.3]. The proof (which will be given in subsection 5.2) is based on the linear
independence of characters and is modeled on the proof in [29] of the finite field case. A
combinatorial proof appears in work of Greferath and Schmidt [12]. More generally yet,
Greferath, Nechaev, and Wisbauer have shown that the character module of any finite
ring has the extension property for the homogeneous and the Hamming weights [11]. Ideas
from this latter paper greatly influenced the work presented in subsection 5.4.

The other direction, that only finite Frobenius rings have the extension property, first
appeared in [32]. That paper carried out a strategy due to Dinh and López-Permouth [8].
Additional relevant material appeared in [33].

The rest of this section will be devoted to the proof of Theorem 31.

5.2. Frobenius is Sufficient. In this subsection we prove half of Theorem 31, that a
finite Frobenius ring has the extension property, following the treatment in [31, Theo-
rem 6.3].

Assume C1, C2 ⊂ Rn are two left linear codes, and assume f : C1 → C2 is an R-linear
isomorphism that preserves the Hamming weight. We want to show that f extends to
a monomial transformation of Rn. The core idea is to express the weight-preservation
property of f as an equation of characters of C1 and to use the linear independence of
characters to match up terms.

Let pr1, . . . , prn : Rn → R be the coordinate projections, so that pri(x1, . . . , xn) = xi,
(x1, . . . , xn) ∈ Rn. Let λ1, . . . , λn denote the restrictions of pr1, . . . , prn to C1 ⊂ Rn.
Similarly, let µ1, . . . , µn : C1 → R be given by µi = pri ◦f . Then λ1, . . . , λn, µ1, . . . , µn ∈
HomR(C1, R) are left R-linear functionals on C1. It will suffice to prove the existence
of a permutation σ of {1, . . . , n} and units u1, . . . , un of R such that µi = λσ(i)ui, for
i = 1, . . . , n.

For any x ∈ C1, the Hamming weight of x is given by wt(x) =
∑n

i=1wt(λi(x)), while
the Hamming weight of f(x) is given by wt(f(x)) =

∑n
i=1wt(µi(x)). Because f preserves

the Hamming weight, we have

(5.1)
n∑

i=1

wt(λi(x)) =
n∑

i=1

wt(µi(x)).

Using Lemma 24, observe that 1−wt(r) = (1/|R|)
∑

π∈R̂ π(r), for any r ∈ R. Apply this
observation to (5.1) and simplify:

(5.2)
n∑

i=1

∑
π∈R̂

π(λi(x)) =
n∑

i=1

∑
π∈R̂

π(µi(x)), x ∈ C1.
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Because R is assumed to be Frobenius, R admits a (left) generating character ρ. Every

character π ∈ R̂ thus has the form π = aρ, for some a ∈ R. Recall that the scalar
multiplication means that π(r) = (aρ)(r) = ρ(ra), for r ∈ R. Use this to simplify (5.2)
(and use different indices on each side of the resulting equation):

(5.3)
n∑

i=1

∑
a∈R

ρ ◦ (λia) =
n∑

j=1

∑
b∈R

ρ ◦ (µjb).

This is an equation of characters of C1. Because characters are linearly independent, we
can match up terms from the left and right sides of (5.3). In order to get unit multiples,
some care must be taken.

Because C1 is a left R-module, HomR(C1, R) is a right R-module. Define a preorder �
on HomR(C1, R) by λ � µ if λ = µr for some r ∈ R. By a result of Bass [4, Lemma 6.4],
λ � µ and µ � λ imply µ = λu for some unit u of R.

Among the linear functionals λ1, . . . , λn, µ1, . . . , µn (a finite list), choose one that is
maximal in the preorder �. Without loss of generality, assume µ1 is maximal in �. (This
means: if µ1 � λ for some λ, then µ1 = λu for some unit u of R.) In (5.3), consider the
term on the right side with j = 1 and b = 1. By linear independence of characters, there
exists i1, 1 ≤ i1 ≤ n, and a ∈ R such that ρ ◦ (λi1a) = ρ ◦ µ1. This equation implies
that im(µ1 − λi1a) ⊂ ker ρ. But im(µ1 − λi1a) is a left ideal of R, and ρ is a generating
character of R. By Proposition 7, im(µ1 − λi1a) = 0, so that µ1 = λi1a. This means that
µ1 � λi1 . Because µ1 was chosen to be maximal, we have µ1 = λi1u1, for some unit u1 of
R. Begin to define a permutation σ by σ(1) = i1.

By a reindexing argument, all the terms on the left side of (5.3) with i = i1 match the
terms on the right side of (5.3) with j = 1. That is,

∑
a∈R ρ ◦ (λi1a) =

∑
b∈R ρ ◦ (µ1b).

Subtract these sums from (5.3), thereby reducing the size of the outer summations by
one. Proceed by induction, building a permutation σ and finding units u1, . . . , un of R,
as desired.

5.3. Reformulating the Problem. The proof that being a finite Frobenius ring is suf-
ficient for having the extension property with respect to the Hamming weight was based
on the proof of the extension theorem over finite fields that used the linear independence
of characters [29]. In contrast, the proof that Frobenius is necessary will make use of
the approach for proving the extension theorem due to Bogart, et al. [5]. This requires a
reformulation of the extension problem.

Every left linear code C ⊂ Rn can be viewed as the image of the inclusion map C →
Rn. More generally, every left linear code is the image of an R-linear homomorphism
Λ : M → Rn, for some finite left R-module M . By composing with the coordinate
projections pri, the homomorphism Λ can be expressed as an n-tuple Λ = (λ1, . . . , λn),
where each λi ∈ HomR(M,R). The λi will be called the coordinate functionals of the
linear code.

Remark 32. It is typical in coding theory to present a linear code C ⊂ Rn by means of
a generator matrix G. The matrix G has entries from R, the number of columns of G
equals the length n of the code C, and (most importantly) the rows of G generate C as
a left submodule of Rn.
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The description of a linear code via coordinate functionals is essentially equivalent to
that using generator matrices. If one has coordinate functionals λ1, . . . , λn, then one can
produce a generator matrix G by choosing a set v1, . . . , vk of generators for C as a left
module over R and taking as the (i, j)-entry of G the value λj(vi). Conversely, given
a generator matrix, its columns define coordinate functionals. Thus, using coordinate
functionals is a “basis-free” approach to generator matrices. This idea goes back to [2].

We are interested in linear codes up to equivalence. For a linear code given by Λ =
(λ1, . . . , λn) :M → Rn, the order of the coordinate functionals λ1, . . . , λn is irrelevant, as
is replacing any λi with λiui, for some unit ui of R. We want to encode this information
systematically. Let U be the group of units of the ring R. The group U acts on the module
HomR(M,R) by right scalar multiplication; let O] denote the set of orbits of this action:
O] = HomR(M,R)/U . Then a linear code M → Rn, up to equivalence, is specified by
choosing n elements of O] (counting with multiplicities). This choice can be encoded
by specifying a function (a multiplicity function) η : O] → N, the nonnegative integers,
where η(λ) is the number of times λ (or a unit multiple of λ) appears as a coordinate
functional. The length n of the linear code is given by

∑
λ∈O] η(λ).

In summary, linear codes M → Rn (for fixed M , but any n), up to equivalence, are
given by multiplicity functions η : O] → N. Denote the set of all such functions by
F (O],N) = {η : O] → N}, and define F0(O],N) = {η ∈ F (O],N) : η(0) = 0}.

We are also interested in the Hamming weight of codewords and in how to describe
the Hamming weight in terms of the multiplicity function η. Fix a multiplicity function
η : O] → N. Define Wη :M → N by

(5.4) Wη(x) =
∑
λ∈O]

wt(λ(x)) η(λ), x ∈M.

Then Wη(x) equals the Hamming weight of the codeword given by x ∈ M . Notice that
Wη(0) = 0.

Lemma 33. For x ∈M and unit u ∈ U , Wη(ux) = Wη(x).

Proof. This follows immediately from the fact that wt(ur) = wt(r) for r ∈ R and unit
u ∈ U ; that is, ur = 0 if and only if r = 0. �

BecauseM is a left R-module, the group of units U acts onM on the left. Let O denote
the set of orbits of this action. Observe that Lemma 33 implies that Wη is a well-defined
function from O to N. Let F (O,N) denote the set of all functions from O to N, and
define F0(O,N) = {w ∈ F (O,N) : w(0) = 0}. Now define W : F (O],N) → F0(O,N) by
η ∈ F (O],N) 7→ Wη ∈ F0(O,N). (Remember that Wη(0) = 0.) Thus W associates to
every linear code, up to equivalence, a listing of the Hamming weights of all the codewords.
The discussion to this point (plus a technical argument on the role of the zero functional,
which is relegated to subsection 5.5) proves the following reformulation of the extension
property.

Theorem 34. A finite ring R has the extension property with respect to the Hamming
weight if and only if the function

W : F0(O],N) → F0(O,N), η 7→ Wη,
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is injective for every finite left R-module M .

Observe that the function spaces F0(O],N), F0(O,N) are additive monoids and that
W : F0(O],N) → F0(O,N) is additive, i.e., a monoid homomorphism. If we tensor
with the rational numbers Q (which means we formally allow coordinate functionals to
have multiplicities equal to any rational number), it is straight-forward to generalize
Theorem 34 to:

Theorem 35. A finite ring R has the extension property with respect to the Hamming
weight if and only if the Q-linear homomorphism

W : F0(O],Q) → F0(O,Q), η 7→ Wη,

is injective for every finite left R-module M .

Theorem 35 is very convenient because the function spaces F0(O],Q), F0(O,Q) are Q-
vector spaces, and we can use the tools of linear algebra over fields to analyze the linear
homomorphism W . In fact, in [5], Bogart et al. prove the extension theorem over finite
fields by showing that the matrix representing W is invertible. The form of that matrix
is apparent from (5.4). Greferath generalized that approach in [10].

For use in the next subsection, we will need a version of Theorem 35 for linear codes
defined over an alphabet A. Let A be a finite left R-module, with automorphism group
Aut(A). A left R-linear code in An is given by the image of an R-linear homomorphism
M → An, for some finite left R-module M . In this case, the coordinate functionals will
belong to HomR(M,A). The group Aut(A) acts on HomR(M,A) on the right; let O]

denote the set of orbits of this action. A linear code over A, up to equivalence, is again
specified by a multiplicity function η ∈ F (O],N).

Just as before, the group of units U of R acts on the module M on the left, with set O
of orbits. In the same way as above, we formulate the extension property for the alphabet
A as:

Theorem 36. Let A be a finite left R-module. Then A has the extension property with
respect to the Hamming weight if and only if the linear homomorphism

W : F0(O],Q) → F0(O,Q), η 7→ Wη,

is injective for every finite left R-module M .

5.4. Frobenius is Necessary. In this subsection we follow a strategy of Dinh and López-
Permouth [8] and use Theorem 35 to prove the other direction of Theorem 31; viz., if a
finite ring has the extension property with respect to the Hamming weight, then the ring
must be Frobenius.

The strategy of Dinh and López-Permouth [8] can be summarized as follows.

(1) If a finite ring R is not Frobenius, then its left socle contains a left R-module of
the form Mm×k(Fq) with m < k, for some q (cf., (2.1) and (2.3)).

(2) Use the matrix module Mm×k(Fq) as the alphabet A. If m < k, show that A does
not have the extension property.

(3) Take the counter-examples over A to the extension property, consider them as R-
modules, and show that they are also counter-examples to the extension property
over R.
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The first and last points were already proved in [8]. Here’s one way to see the first point.
We know from (2.3) that soc(RR) is a sum of matrix modules Mmi×si(Fqi). If mi ≥ si for
all i, then each of theMmi×si(Fqi) would admit a generating character, by Theorem 13. By
adding these generating characters, one would obtain a generating character for soc(RR)
itself. Then, by Proposition 14, R would admit a generating character, and hence would
be Frobenius by Theorem 5.

For the third point, consider counter-examples C1, C2 ⊂ An to the extension property
for the alphabet A with respect to the Hamming weight. Because An ⊂ soc(RR)

n ⊂ RR
n,

C1, C2 can also be viewed as R-modules via (2.1). The Hamming weight of an element
x of An equals the Hamming weight of x considered as an element of Rn, because the
Hamming weight just depends upon the entries of x being zero or not. In this way, C1, C2

will also be counter-examples to the extension property for the alphabet R with respect
to the Hamming weight.

Thus, the key step remaining is the second point in the strategy. An explicit con-
struction of counter-examples to the extension property for the alphabet A =Mm×k(Fq),
m < k, was given in [32]. Here, we give a short existence proof; more details are available
in [32] and [33].

Let R = Mm(Fq) be the ring of m × m matrices over Fq. Let A = Mm×k(Fq), with
m < k; A is a left R-module. It is clear from Theorem 36 that A will fail to have the
extension property with respect to the Hamming weight if we can find a finite left R-
module M with dimQ F0(O],Q) > dimQ F0(O,Q). It turns out that this inequality will
hold for any nonzero M .

Because R is simple, any finite left R-moduleM has the formM =Mm×`(Fq), for some
`. First, let us determine O, which is the set of left U -orbits on M . The group U is the
group of units of R, which is precisely the general linear group GLm(Fq). The left orbits
of GLm(Fq) onM =Mm×`(Fq) are represented by the row reduced echelon matrices1 over
Fq of size m× `.

Now, let us determine O], which is the set of right Aut(A)-orbits on HomR(M,A). The
automorphism group Aut(A) equals GLk(Fq), acting on A = Mm×k(Fq) by right matrix
multiplication. On the other hand, HomR(M,A) = M`×k(Fq), again using right matrix
multiplication. Thus O] consists of the right orbits of GLk(Fq) acting onM`×k(Fq). These
orbits are represented by the column reduced echelon matrices over Fq of size `× k.
Because the matrix transpose interchanges row reduced echelon matrices and column

reduced echelon matrices, we see that |O]| > |O| if and only if k > m (for any positive `).
Finally, notice that dimQ F0(O],Q) = |O]|−1 and dimQ F0(O,Q) = |O|−1. Thus, for any
nonzero moduleM , dimQ F0(O],Q) > dimQ F0(O,Q) if and only if m < k. Consequently,
if m < k, then W fails to be injective and A fails to have the extension property with
respect to Hamming weight.

5.5. Technical Remarks. Here is the technical argument regarding the zero functional
needed to justify Theorem 34.

Remark 37. For η ∈ F (O],N), define the length of η to be l(η) =
∑

λ∈O] η(λ) and the
essential length of η to be l0(η) =

∑
λ 6=0 η(λ). The length l(η) equals the length of the

1Prof. Yamagata tells me that the Japanese name for this concept translates literally as “step matrices.”
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linear code defined by η; the reduced length l0(η) equals the length of the linear code
defined by η after any all-zero positions have been removed. (In terms of a generator
matrix, one removes all the zero columns.)

Assume the extension property holds with respect to the Hamming weight. This means
that if η, η′ ∈ F (O],N) satisfy l(η) = l(η′) and Wη = Wη′ , then η = η′. That is, W is
injective along the level sets of the length function l. If l(η′) < l(η) and Wη = Wη′ , then
we can append zeros to η′ until its length is the same as l(η) without changing Wη′ . More
precisely, define η′′ by η′′(λ) = η′(λ) for λ 6= 0 and set η′′(0) = η′(0) + l(η)− l(η′). Then
l(η′′) = l(η) and Wη′′ = Wη. Then η′′ = η, by the extension property. In particular, the
reduced lengths are equal: l0(η) = l0(η

′) = l0(η
′′).

There is a projection pr : F (O],N) → F0(O],N) which sets (pr η)(0) = 0 and leaves
the other values unchanged, (pr η)(λ) = η(λ), λ 6= 0. This projection splits the monoid
as F (O],N) = F0(O],N) ⊕ N. The argument of the previous paragraph shows that if
Wη =Wη′ , then pr η = pr η′ as elements of F0(O],N).

Conversely, supposeW : F0(O],N) → F0(O,N) is injective. Let η, η′ ∈ F (O],N) satisfy
l(η) = l(η′) and Wη = Wη′ . Because the value of η(0) does not affect Wη, we see that
Wpr η = Wpr η′ . By assumption, W is injective on F0(O],N), so that pr η = pr η′. In
particular, l0(η) = l0(η

′). Since l(η) = l(η′), we must also have η(0) = η′(0), and thus
η = η′.

6. Self-Dual Codes

I want to finish this article by touching on a very active research topic: self-dual codes.
As we saw in subsection 3.3, if C ⊂ Fn is a linear code of length n over a finite field F,

then its dual code C⊥ is defined by C⊥ = {y ∈ Fn : x · y = 0, x ∈ C}. A linear code C
is self-orthogonal if C ⊂ C⊥ and is self-dual if C = C⊥. Because dimC⊥ = n − dimC,
a necessary condition for the existence of a self-dual code C over a finite field is that the
length n must be even; then dimC = n/2.

The Hamming weight enumerator of a self-dual code appears on both sides of the
MacWilliams identities:

WC(X, Y ) =
1

|C|
WC(X + (q − 1)Y,X − Y ),

where C is self-dual over Fq. As |C| = qn/2 and the total degree of the polynomial
WC(X,Y ) is n, the MacWilliams identities for a self-dual code can be written in the form

WC(X,Y ) = WC

(
X + (q − 1)Y

√
q

,
X − Y
√
q

)
.

Every element x of a self-dual code satisfies x · x = 0. In the binary case, q = 2, notice
that x · x ≡ wt(x) mod 2. Thus, every element of a binary self-dual code C has even
length. This implies that WC(X,−Y ) = WC(X,Y ).

Restrict to the binary case, q = 2. Define two complex 2× 2 matrices P,Q by

P =

(
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

)
, Q =

(
1 0
0 −1

)
.
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Notice that P 2 = Q2 = I. Let G be the group generated by P and Q (inside GL2(C)).
Define an action of G on the polynomial ring C[X, Y ] by linear substitution: (fS)(X, Y ) =
f((X,Y )S) for S ∈ G. The paragraphs above prove the following

Proposition 38. Let C be a self-dual binary code. Then its Hamming weight enumerator
WC(X,Y ) is invariant under the action of the group G. That is, WC(X, Y ) ∈ C[X, Y ]G,
the ring of G-invariant polynomials.

Much more is true, in fact. Let C2 ⊂ F2
2 be the linear code C2 = {00, 11}. Then C2 is

self-dual, and WC2(X,Y ) = X2 + Y 2. Let E8 ⊂ F8
2 be the linear code generated by the

rows of the following binary matrix
1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0

 .

Then E8 is also self-dual, with WE8(X, Y ) = X8 + 14X4Y 4 + Y 8.

Theorem 39 (Gleason (1970)). The ring of G-invariant polynomials is generated as an
algebra by WC2 and WE8. That is,

C[X, Y ]G = C[X2 + Y 2, X8 + 14X4Y 4 + Y 8].

Gleason proved similar statements in several other contexts (doubly-even self-dual bi-
nary codes, self-dual ternary codes, Hermitian self-dual quaternary codes) [9]. The results
all have this form: for linear codes of a certain type (e.g., binary self-dual), their Ham-
ming weight enumerators are invariant under a certain finite matrix group G, and the ring
of G-invariant polynomials is generated as an algebra by the weight enumerators of two
explicit linear codes of the given type.

Gleason’s Theorem has been generalized greatly by Nebe, Rains, and Sloane [24]. Those
authors have a general definition of the type of a self-dual linear code defined over an
alphabet A, where A is a finite left R-module. Associated to every type is a finite group
G, called the Clifford-Weil group, and the (complete) weight enumerator of every self-
dual linear code of the given type is G-invariant. Finally, the authors show (under certain
hypotheses on the ring R) that the ring of all G-invariant polynomials is spanned by
weight enumerators of self-dual codes of the given type.

In order to define self-dual codes over non-commutative rings, Nebe, Rains, and Sloane
must cope with the difficulty that the dual code of a left linear code C in An is a right linear

code of the form (Ân : C) ⊂ Ân (cf., the proof of Theorem 23 in subsection 4.2). This
difficulty can be addressed first by assuming that the ring R admits an anti-isomorphism ε,
i.e., an isomorphism ε : R → R of the additive group, with ε(rs) = ε(s)ε(r), for r, s ∈ R.
Then every left (resp., right) R-module M defines a right (resp., left) R-module ε(M).
The additive group of ε(M) is the same as that of M , and the right scalar multiplication
on ε(M) is mr := ε(r)m, m ∈ M , r ∈ R, where ε(r)m uses the left scalar multiplication
of M . (And similarly for right modules.)

Secondly, in order to identify the character-theoretic annihilator (Ân : C) ⊂ Ân with
a submodule in An, Nebe, Rains, and Sloane assume the existence of an isomorphism
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ψ : ε(A) → Â. In this way, C⊥ := ε−1ψ−1(Ân : C) can be viewed as the dual code of C;
C⊥ is a left linear code in An if C is. With one additional hypothesis on ψ, C⊥ satisfies all
the properties one would want from a dual code, such as (C⊥)⊥ = C and the MacWilliams
identities. (See [34] for an exposition.)

There are several questions that arise immediately from the work of Nebe, Rains, and
Sloane that may be of interest to ring theorists.

(1) Which finite rings admit anti-isomorphisms? Involutions?
(2) Assume a finite ring R admits an anti-isomorphism ε. Which finite left R-modules

A admit an isomorphism ψ : ε(A) → Â?
(3) Even in the absence of complete answers to the preceding, are there good sources

of examples?

There are a few results in [34], but much more is needed. Progress on these questions may
prove helpful in understanding the limits and the proper setting for the work of Nebe,
Rains, and Sloane.
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