ON A GENERALIZATION OF COSTABLE TORSION THEORY

YASUHIKO TAKEHANA

ABSTRACT. E. P. Armendariz characterized a stable torsion theory in [1]. R. L. Bernhardt dualised a part of characterizations of stable torsion theory in Theorem1.1 of [3], as follows. Let $(\mathcal{T},\mathcal{F})$ be a hereditary torsion theory for Mod-R such that every torsionfree module has a projective cover. Then the following are equivalent. (1) \mathcal{F} is closed under taking projective covers. (2) every projective module splits. In this paper we generalize and characterize this by using torsion theory. In the remainder of this paper we study a dualization of Eckman and Shopf's Theorem and a generalization of Wu and Jans's Theorem.

1. INTRODUCTION

Throughout this paper R is a right perfect ring with identity. Let Mod-R be the categories of right R-modules. For $M \in \text{Mod-}R$ we denote by $[0 \to K(M) \to P(M) \xrightarrow{\pi_M} M$ $M \to 0$] the projective cover of M, where P(M) is projective and ker π_M is small in P(M). A subfunctor of the identity functor of Mod-R is called a preradical. For a preradical $\sigma, \mathcal{T}_{\sigma} := \{M \in \text{Mod-}R ; \sigma(M) = M\}$ is the class of σ -torsion right R-modules, and $\mathcal{F}_{\sigma} := \{M \in \text{Mod-}R ; \sigma(M) = 0\}$ is the class of σ -torsionfree right R-modules. A right *R*-module *M* is called σ -projective if the functor $\operatorname{Hom}_R(M, \cdot)$ preserves the exactness for any exact sequence $0 \to A \to B \to C \to 0$ with $A \in \mathcal{F}_{\sigma}$. A precadical σ is idempotent [radical] if $\sigma(\sigma(M)) = \sigma(M)[\sigma(M/\sigma(M)) = 0]$ for a module M, respectively. A preradical σ is called epi-preserving if $\sigma(M/N) = (\sigma(M) + N)/N$ holds for any module M and any submodule N of M. For a preradical σ , a short exact sequence $[0 \to K_{\sigma}(M) \to M_{\sigma}(M)]$ $P_{\sigma}(M) \stackrel{\pi_{M}^{\sigma}}{\to} M \to 0$] is called σ -projective cover of a module M if $P_{\sigma}(M)$ is σ -projective, $K_{\sigma}(M)$ is σ -torsion free and $K_{\sigma}(M)$ is small in $P_{\sigma}(M)$. If σ is an idempotent radical and a module M has a projective cover, then M has a σ -projective cover and it is given $K_{\sigma}(M) = K(M)/\sigma(K(M)), P_{\sigma}(M) = P(M)/\sigma(K(M)).$ For $X, Y \in Mod-R$ we call an epimorphism $g \in \operatorname{Hom}_R(X,Y)$ a minimal epimorphism if $g(H) \subsetneq Y$ holds for any proper submodule H of X. It is well known that a minimal epimorphism is an epimorphism having a small kernel. For a preradical σ we say that M is a σ -coessential extension of X if there exists a minimal epimorphism $h: M \to X$ with ker $h \in \mathcal{F}_{\sigma}$.

For a module M, $P_{\sigma}(M)$ is a σ -coessential extension of M. We say that a subclass \mathcal{C} of Mod-R is closed under taking σ -coessential extensions if : for any minimal epimorphism $f: M \twoheadrightarrow X$ with ker $f \in \mathcal{F}_{\sigma}$ if $X \in \mathcal{C}$ then $M \in \mathcal{C}$. For the sake of simplicity we say that M is a σ -coessential extension of M/N if N is a σ -torsionfree small submodule of M. We say that a subclass \mathcal{C} of Mod-R is closed under taking σ -coessential extensions if : if $M/N \in \mathcal{C}$ then $M \in \mathcal{C}$ for any σ -torsion free small submodule N of any module M.

The final version of this paper will be submitted for publication elsewhere.

We say that a subclass \mathcal{C} of Mod-R is closed under taking \mathcal{F}_{σ} -factor modules if : if $M \in \mathcal{C}$ and N is a σ -torsionfree submodule of M then $M/N \in \mathcal{C}$.

2. COSTABLE TORSION THEORY

Lemma 1. Let σ be an idempotent radical. For a module M and its submodule N, consider the following diagram with exact rows.

where f and g are epimorphisms associated with the σ -projective covers and j is the canonical epimorphism. Since g is a minimal epimorphism, there exists an epimorphism $h: P_{\sigma}(M) \to P_{\sigma}(M/N)$ induced by the σ -projectivity of $P_{\sigma}(M)$ such that jf = gh. Then the following conditions hold.

(1) If M is a σ -coessential extension of M/N, then $h : P_{\sigma}(M) \to P_{\sigma}(M/N)$ is an isomorphism.

(2) Moreover if σ is epi-preserving and $h: P_{\sigma}(M) \to P_{\sigma}(M/N)$ is an isomorphism, then M is a σ -coessential extension of M/N.

Proof. (1): Let $N \in \mathcal{F}_{\sigma}$ be a small submodule of a module M. Since jf is an epimorphism and g is a minimal epimorphism, h is also an epimorphism. Since $j(f(\ker h)) = g(h(\ker h)) = g(0) = 0$, it follows that $f(\ker h) \subseteq \ker j = N \in \mathcal{F}_{\sigma}$, and so $f(\ker h) \in \mathcal{F}_{\sigma}$. Let $f|_{\ker h}$ be the restriction of f to ker h. Then it follows that $\ker(f|_{\ker h}) = \ker h \cap \ker f = \ker h \cap K_{\sigma}(M) \subseteq K_{\sigma}(M) \in \mathcal{F}_{\sigma}$. Consider the exact sequence $0 \to \ker f|_{\ker h} \to \ker h \to f(\ker h) \to 0$. Since \mathcal{F}_{σ} is closed under taking extensions, it follows that $\ker h \in \mathcal{F}_{\sigma}$. As $P_{\sigma}(M/N)$ is σ -projective, the exact sequence $0 \to \ker h \to P_{\sigma}(M) \to P_{\sigma}(M/N) \to 0$ splits, and so there exists a submodule L of $P_{\sigma}(M)$ such that $P_{\sigma}(M) = L \oplus \ker h$. So it follows that $f(P_{\sigma}(M)) = f(L) + f(\ker h)$. As $f(\ker h) \subseteq N$ and $f(P_{\sigma}(M)) = M$, M = f(L) + N. Since N is small in M, it follows that M = f(L). As f is a minimal epimorphism, it follows that $P_{\sigma}(M) = L$ and $\ker h = 0$, and so $h : P_{\sigma}(M) \simeq P_{\sigma}(M/N)$, as desired.

(2): Suppose that $h: P_{\sigma}(M) \simeq P_{\sigma}(M/N)$. By the commutativity of the above diagram with h, it follows that $h(f^{-1}(N)) \subseteq K_{\sigma}(M/N) \in \mathcal{F}_{\sigma}$. Since h is an isomorphism, $f^{-1}(N) \in \mathcal{F}_{\sigma}$. As $f|_{f^{-1}(N)}: f^{-1}(N) \to N \to 0$ and σ is an epi-preserving preradical, it follows that $N \in \mathcal{F}_{\sigma}$. Next we will show that N is small in M. Let K be a submodule of Msuch that M = N + K. If $f^{-1}(K) \subsetneq P_{\sigma}(M)$, then $h(f^{-1}(K)) \subsetneqq P_{\sigma}(M/N)$ as h is an isomorphism. Since $g(h(f^{-1}(K))) = j(f(f^{-1}(K))) = j(K) = (K + N)/N = M/N$ and gis a minimal epimorphism, this is a contradiction. Thus it holds that $f^{-1}(K) = P_{\sigma}(M)$, and so $K = f(f^{-1}(K)) = f(P_{\sigma}(M)) = M$. Thus it follows that N is small in M. \Box

We call a preradical $t \sigma$ -costable if \mathcal{F}_t is closed under taking σ -projective covers. Now we characterize σ -costable preradicals.

Theorem 2. Let t be a radical and σ be an idempotent radical. Consider the following conditions.

(1) t is σ -costable.

(2) P/t(P) is σ -projective for any σ -projective module P.

(3) For any module M consider the following commutative diagram, then $t(P_{\sigma}(M))$ is contained in kerf.

$$P_{\sigma}(M) \xrightarrow{h} M \to 0$$

$$\downarrow_{f} \qquad \qquad \downarrow_{j}$$

$$P_{\sigma}(M/t(M)) \xrightarrow{a} M/t(M) \to 0$$

where j is a canonical epimorphism, h and g are epimorphisms associated with their projective covers and f is a morphism induced by σ -projectivity of $P_{\sigma}(M)$.

(4) \mathcal{F}_t is closed under taking σ -coessential extensions.

(5) For any σ -projective module P such that $t(P) \in \mathcal{F}_{\sigma}$, t(P) is a direct sumand of P. Then $(1) \leftarrow (5) \leftarrow (2) \leftrightarrow (1) \leftrightarrow (3), (4) \Longrightarrow (1)$ hold. Moreover if \mathcal{F}_t is closed under taking \mathcal{F}_{σ} -factor modules, then all conditions are equivalent.

Proof. (1) \rightarrow (2) : Let *P* be a σ -projective module. Since $P/t(P) \in \mathcal{F}_t$, it follows that $P_{\sigma}(P/t(P)) \in \mathcal{F}_t$ by the assumption. Consider the following commutative diagram.

$$0 \to K_{\sigma}(P/t(P)) \to P_{\sigma}(P/t(P)) \xrightarrow{P} f \swarrow h$$

$$0 \to K_{\sigma}(P/t(P)) \to P_{\sigma}(P/t(P)) \xrightarrow{g} P/t(P) \to 0,$$

where h is a canonical epimorphism, g is an epimorphism associated with the σ projective cover of P/t(P) and f is a morphism induced by σ -projectivity of $P_{\sigma}(P/t(P))$. Since $f(t(P)) \subseteq t(P_{\sigma}(P/t(P))) = 0$, f induces $f' : P/t(P) \to P_{\sigma}(P/t(P))$ $(x + t(P) \mapsto f(x))$. Thus for $x \in P$, h(x) = gf(x) = gf'h(x). So the above exact sequence splits. Therefore P/t(P) is a direct summand of σ -projective module $P_{\sigma}(P/t(P))$, and so P/t(P) is also a σ -projective module, as desired.

 $(2) \to (5)$: Let P be σ -projective and $t(P) \in \mathcal{F}_{\sigma}$. By the assumption P/t(P) is σ -projective. Thus the sequence $(0 \to t(P) \to P \to P/t(P) \to 0)$ splits, and so t(P) is a direct summand of P.

 $(5) \to (1)$: Let M be in \mathcal{F}_t . Consider the exact sequence $0 \to K_{\sigma}(M) \to P_{\sigma}(M) \to f$ $M \to 0$. Since $f(t(P_{\sigma}(M))) \subseteq t(M) = 0$, $K_{\sigma}(M) = \ker f \supseteq t(P_{\sigma}(M))$. As $K_{\sigma}(M) \in \mathcal{F}_{\sigma}$, $t(P_{\sigma}(M)) \in \mathcal{F}_{\sigma}$. Since $P_{\sigma}(M)$ is σ -projective, $t(P_{\sigma}(M))$ is a direct summand of $P_{\sigma}(M)$ by the assumption. Thus there exists a submodule K of $P_{\sigma}(M)$ such that $P_{\sigma}(M) = t(P_{\sigma}(M)) \oplus K$. Since $K_{\sigma}(M) = \ker f \supseteq t(P_{\sigma}(M))$, $P_{\sigma}(M) = K_{\sigma}(M) + K$. As $K_{\sigma}(M)$ is small in $P_{\sigma}(M)$, $P_{\sigma}(M) = K$. Thus $t(P_{\sigma}(M)) = 0$, as desired.

 $(1) \rightarrow (3)$: Consider the following commutative diagram.

$$\begin{array}{cccc} P_{\sigma}(M) & \stackrel{n}{\to} & M \to 0\\ f \downarrow & & \downarrow j\\ P_{\sigma}(M/t(M)) \stackrel{g}{\to} M/t(M) \to 0, \end{array}$$

where j is a canonical epimorphism, h and g are epimorphisms associated with their projective covers and f is a morphism induced by σ -projectivity of $P_{\sigma}(M)$. As g is a minimal epimorphism, f is an epimorphism. By the assumption $P_{\sigma}(M/t(M)) \in \mathcal{F}_t$, and so $f(t(P_{\sigma}(M))) \subseteq t(P_{\sigma}(M/t(M))) = 0$. Hence $t(P_{\sigma}(M)) \subseteq \ker f$.

-210-

 $(3) \rightarrow (1)$: Let M be in \mathcal{F}_t . By the above commutative diagram, f is an identity. Thus by the assumption $t(P_{\sigma}(M)) \subseteq \ker f = 0$, as desired.

 $(1) \to (4)$: Let $N \in \mathcal{F}_{\sigma}$ be a small submodule of a module M such that $M/N \in \mathcal{F}_t$. By the assumption $P_{\sigma}(M/N) \in \mathcal{F}_t$. By Lemma1, $P_{\sigma}(M/N) \simeq P_{\sigma}(M)$, and so $P_{\sigma}(M) \in \mathcal{F}_t$. Consider the sequence $0 \to K_{\sigma}(M) \to P_{\sigma}(M) \to M \to 0$. Since \mathcal{F}_t is closed under taking \mathcal{F}_{σ} -factor modules, it follows that $M \in \mathcal{F}_t$, as desired.

(4) \rightarrow (1) : Since $P_{\sigma}(M)$ is σ -coessential extension of a module M in \mathcal{F}_t , \mathcal{F}_t is closed under taking σ -projective covers. \square

Remark 3. It is well known that t is epi-preserving if and only if t is a radical and \mathcal{F}_t is closed under taking factor modules. Therefore if t is epi-preserving and σ be an idempotent radical, then all conditions in Theorem 2 are equivalent.

Next if σ is identity, then the following corollary holds. The following have the another characterization of Theorem 1.1 of [3].

Corollary 4. For a radical t the following conditions except (4) are equivalent. Moreover if t is an epi-preserving preradical, then all conditions are equivalent.

(1) t is costable, that is, \mathcal{F}_t is closed under taking projective covers.

(2) P/t(P) is projective for any projective module P.

 $P(M) \xrightarrow{h} M \to 0$ (3) $\begin{array}{c} \downarrow_f & \downarrow_j \\ P(M/t(M)) \xrightarrow{}_g M/t(M) \to 0, \end{array}$

where j is a canonical epimorphism, h and g are epimorphisms associated with their projective covers and f is induced by the projectivity of P(M). Then t(P(M)) is contained in kerf.

(4) \mathcal{F}_t is closed under taking coessential extensions.

(5) For any projective module P, t(P) is a direct summand of P.

3. DUALIZATION OF ECKMAN & SHOPF'S THEOREM

In [8] we state a torsion theoretic generalization of Eckman & Shopf's Theorem, as follows. Let σ be a left exact radical and $0 \to M \to E$ be a exact sequence of Mod-R. Then the following conditions from (1) to (4) are equivalent. (1) E is σ -injective and σ essential extension of M. (2) E is minimal in $\{Y \in Mod R | M \hookrightarrow Y \text{ and } Y \text{ is } \sigma\text{-injective}\}$. (3) E is maximal in $\{Y \in \text{Mod} \ R | M \hookrightarrow Y \text{ and } Y \text{ is } \sigma \text{-essential extension of } M\}$. (4) E is isomorphic to $E_{\sigma}(M)$, where $\sigma(E(M)/M) = E_{\sigma}(M)/M$. Here we dualised this.

Lemma 5. If P is σ -projective, then $P_{\sigma}(P)$ is isomorphic to P.

Theorem 6. Let $P \xrightarrow{f} M \to 0$ be a exact sequence of Mod-R. Let σ is an idempotent radical. Consider the following conditions, then the implications (1) \iff (3) and (1) \implies (2) hold. Moreover if σ is an epi-preserving preradical, then all conditions are equivalent.

(1) P is σ -projective and $P \xrightarrow{f} M$ is a σ -coessential extension of M. (2) P is a minimal σ -projective extension of M (i.e. P is σ -projective and if I is σ projective and $P \xrightarrow{h} I, I \twoheadrightarrow M$, then h is an isomorphism.).

(3) P is a maximal σ -coessential extension of M (i.e. $P \xrightarrow{f} M$ is σ -coessential extension of M and if there exists an epimorphism $I \xrightarrow{h} P$ and $I \xrightarrow{h} P \xrightarrow{} M$ is σ -coessential of M, then h is an isomorphism.).

(4) P is isomorphic to $P_{\sigma}(M)$.

Proof. (1) \rightarrow (2): Let *P* be σ -projective and $P \xrightarrow{f} M$ be a σ -coessential extension of *M*. Consider the following diagram.

$$0 \to \ker h \to P \stackrel{h}{\to} I \to 0$$
$$\searrow_f \downarrow_g M,$$

where I is σ -projective, g and h are epimorphisms such that gh = f.

Since $\mathcal{F}_{\sigma} \ni f^{-1}(0) = h^{-1}(g^{-1}(0)) \supseteq h^{-1}(0)$, it follows that $\mathcal{F}_{\sigma} \ni h^{-1}(0) = \ker h$. As f is a minimal epimorphism and g is an epimorphism, h is also a minimal epimorphism. Since I is σ -projective, there exists a submodule L of P such that $P = \ker h \oplus L$ and $L \cong I$. As ker h is small in P, P = L, and so $P \cong I$.

 $(2) \rightarrow (1)$: Let σ be an epi-preserving idempotent radical and P be a minimal σ -projective extension of M. Consider the following commutative diagram.

$$P_{\sigma}(P) \xrightarrow{j} P \to 0$$

$$g \downarrow \qquad \downarrow f$$

$$P_{\sigma}(M) \xrightarrow{h} M \to 0,$$

where h and j are epimorphisms associated with the projective covers of M and P respectively and g is an induced epimorphism by the σ -projectivity of $P_{\sigma}(P)$. Since P is σ -projective, j is an isomorphism by Lemma 4. As $P_{\sigma}(P)$ and $P_{\sigma}(M)$ are σ -projective, g is an isomorphism by the assumption. By Lemma 1, it follows that $P \xrightarrow{f} M \to 0$ is a σ -coessential extension of M.

(1) \rightarrow (3): Let $I \xrightarrow{g} P$ be an epimorphism. Let $P \xrightarrow{f} M$ and $I \xrightarrow{h} M$ be σ -coessential extensions of M such that fg = h. Consider the following exact diagram.

$$\begin{array}{c} I \\ g \swarrow \downarrow h \\ P \xrightarrow{}_{f} M \to 0 \end{array}$$

Since f is a minimal epimorphism, g is an epimorphim. As h and f are minimal epimorphisms, g is a minimal epimorphim. Since $\mathcal{F}_{\sigma} \ni h^{-1}(0) = g^{-1}(f^{-1}(0)) \supseteq g^{-1}(0)$, it follows that $\mathcal{F}_{\sigma} \ni g^{-1}(0)$. Since P is σ -projective, $0 \to \ker g \to I \xrightarrow{g} P \to 0$ splits, and so there exists a submodule H of I such that $H \cong P$ and $I = \ker g \oplus H$. As $\ker g$ is small in $I, I = H \cong P$, as desired.

(3) \rightarrow (1): We show that P is σ -projective. Since $P \xrightarrow{f} M$ is a σ -coessential extension of M by the assumption, an induced morphism $P_{\sigma}(P) \rightarrow P_{\sigma}(M)$ is an isomorphism by Lemma 1. Consider the following commutative diagram.

$$P_{\sigma}(P) \to P \to 0$$

$$\downarrow \qquad \downarrow$$

$$P_{\sigma}(M) \to M \to 0.$$

-212-

Since $P_{\sigma}(P) \simeq P_{\sigma}(M) \twoheadrightarrow M$ is a σ -coessential extension of M and $P \xrightarrow{f} M$ is a σ coessential extension of M, it follows that $P_{\sigma}(P) \cong P$ by the assumption, and so P is σ -projective.

(1) \rightarrow (4): By Lemma 1, $P_{\sigma}(P) \simeq P_{\sigma}(M)$. By Lemma 4, $P_{\sigma}(P) \simeq P$, and so $P \simeq P_{\sigma}(M)$ as desired.

 $(4) \rightarrow (1)$: It is clear.

In Theorem 5, if $\sigma = 1$, then the following corollary is obtained.

Corollary 7. Let $P \xrightarrow{f} M \to 0$ be a exact sequence of Mod-R. Then the following conditions are equivalent.

(1) P is projective and $P \xrightarrow{f} M$ is a coessential extension of M (that is, kerf is small in M).

(2) P is a minimal projective extension of $M(i.e. P \text{ is projective and if } I \text{ is projective and } P \xrightarrow{h} I, I \rightarrow M$, then h is an isomorphism).

(3) P is a maximal coessential extension of $M(i.e. P \xrightarrow{f} M$ is coessential extension of M and if there exists an epimorphism $I \xrightarrow{h} P$ and $I \xrightarrow{h} P \xrightarrow{} M$ is coessential of M, then h is an isomorphism.).

(4) P is isomorphic to P(M).

4. A GENERALIZATION OF WU, JANS AND MIYASHITA'S THEOREM AND AZUMAYA'S THEOREM

In [8] we state a torsion theoretic generalization of Johnson and Wong's Theorem. Here we study a dualization of this. For a module M and N, we call $M \sigma$ -N-projective if $\operatorname{Hom}_R(M, \)$ preserves the exactness of the short exact sequence $0 \to K \to N \to N/K \to 0$ with $K \in \mathcal{F}_{\sigma}$.

Theorem 8. Let M and N be modules. Consider the following conditions for an idempotent radical σ .

(1) $\gamma(K_{\sigma}(M)) \subseteq K_{\sigma}(N)$ holds for any $\gamma \in Hom_R(P_{\sigma}(M), P_{\sigma}(N))$.

(2) M is σ -N-projective.

Then the implication $(1) \rightarrow (2)$ holds. If σ is epi-preserving, then the implication $(2) \rightarrow (1)$ holds.

Proof. $(1) \to (2)$: Let f be in $\operatorname{Hom}_R(M, N/K)$ with $K \in \mathcal{F}_{\sigma}$. Then there exists $h \in \operatorname{Hom}_R(P_{\sigma}(M), N)$ such that $f\pi_M^{\sigma} = nh$, where n is a canonical epimorphism from N to N/K. And there exists $\gamma \in \operatorname{Hom}_R(P_{\sigma}(M), P_{\sigma}(N))$ such that $h = \pi_N^{\sigma} \gamma$. So we have the following commutative diagramm.

$$\begin{array}{ccc} P_{\sigma}(M) \xrightarrow{\pi_{M}} M \\ \gamma \swarrow & \downarrow_{h} & \downarrow_{f} \\ P_{\sigma}(N) \xrightarrow{\pi_{N}} N \xrightarrow{}_{n} N/K \end{array}$$

By the assumption, γ induces $\gamma' : P_{\sigma}(M)/K_{\sigma}(M) \to P_{\sigma}(N)/K_{\sigma}(N)$, and so γ' induces $\gamma'' : M \to N$ such that $f = \gamma'' n$, as desired.

-213-

 $(2) \to (1)$: Let σ be epi-preserving and $\gamma \in \operatorname{Hom}_R(P_{\sigma}(M), P_{\sigma}(N))$. We will show that $\gamma(K_{\sigma}(M)) \subseteq K_{\sigma}(N)$. We put $T = \gamma(K_{\sigma}(M)) + K_{\sigma}(N)$. Since $T \supseteq \gamma(K_{\sigma}(M))$, γ induces $\gamma' : M \simeq P_{\sigma}(M)/K_{\sigma}(M) \to P_{\sigma}(N)/\gamma(K_{\sigma}(M)) \to P_{\sigma}(N)/T \to N/\pi_N^{\sigma}(T)$ ($\pi_M^{\sigma}(x) \longleftrightarrow x + K_{\sigma}(M) \to \gamma(x) + \gamma(K_{\sigma}(M)) \to \gamma(x) + T \to \pi_N^{\sigma}(\gamma(x)) + \pi_N^{\sigma}(T)$). Let n_N be a canonical epimorphism from N to $N/\pi_N^{\sigma}(T)$. Since $\pi_N^{\sigma}(\gamma(X)) = \pi_N^{\sigma}(\gamma(K_{\sigma}(M))) + K_{\sigma}(N)) = \pi_N^{\sigma}(\gamma(K_{\sigma}(M)))$, $K_{\sigma}(M) \in \mathcal{F}_{\sigma}$ and \mathcal{F}_{σ} is closed under taking factor modules, it follows that $\pi_N^{\sigma}(T) \in \mathcal{F}_{\sigma}$. Since M is σ -N-projective, there exists $\beta : M \to N$ such that $\gamma' = n_N \beta$. Therefore we have the following commutative diagramm.

$$0 \to \pi_N^{\sigma}(T) \to N \xrightarrow[n_N]{\beta} N/\pi_N^{\sigma}(T) \to 0$$

·By the σ -projectivity of $P_{\sigma}(M)$, there exists $\alpha : P_{\sigma}(M) \to P_{\sigma}(N)$ such that $\pi_N^{\sigma} \alpha = \beta \pi_M^{\sigma}$. Thus we have the following commutative diagramm.

$$0 \to K_{\sigma}(M) \to P_{\sigma}(M) \xrightarrow{\pi_{M}^{*}} M \to 0$$
$$\downarrow_{\alpha} \qquad \qquad \downarrow_{\beta}$$
$$0 \to K_{\sigma}(N) \to P_{\sigma}(N) \xrightarrow{\pi_{N}^{*}} N \to 0$$

Thus by the commutativity of the above diagram, we have $\alpha(K_{\sigma}(M)) \subseteq K_{\sigma}(N)$.

We put $X = \{x \in P_{\sigma}(M) | \gamma(x) - \alpha(x) \in K_{\sigma}(N)\}$. We will show that $X + K_{\sigma}(M) = P_{\sigma}(M)$. For any $x \in P_{\sigma}(M)$ it follows that $\gamma'(\pi_{M}^{\sigma}(x)) = \pi_{N}^{\sigma}(\gamma(x)) + \pi_{N}^{\sigma}(T)$, $(n_{N}\beta)(\pi_{M}^{\sigma}(x)) = \beta(\pi_{M}^{\sigma}x) + \pi_{N}^{\sigma}(T)$ and $\gamma' = n_{N}\beta$, it follows that $\pi_{N}^{\sigma}(\gamma(x)) + \pi_{N}^{\sigma}(T) = \beta(\pi_{M}^{\sigma}x) + \pi_{N}^{\sigma}(T)$, and so $\pi_{N}^{\sigma}(\gamma(x)) - \beta(\pi_{M}^{\sigma}x) \in \pi_{N}^{\sigma}(T)$. Since $\pi_{N}^{\sigma}\alpha = \beta\pi_{M}^{\sigma}$, it follows that $\pi_{N}^{\sigma}(\gamma(x)) - \pi_{N}^{\sigma}(\alpha(x)) \in \pi_{N}^{\sigma}(T)$, and so $\gamma(x) - \alpha(x) \in T + (\pi_{N}^{\sigma})^{-1}(0) = T + K_{\sigma}(N) = \gamma(K_{\sigma}(M)) + K_{\sigma}(N)$. Thus there exists $m \in K_{\sigma}(M)$ such that $\gamma(x) - \alpha(x) - \gamma(m) \in K_{\sigma}(N)$, and so $\gamma(x - m) - \alpha(x - m) \in \alpha(m) + K_{\sigma}(N) \subseteq \alpha(K_{\sigma}(M)) + K_{\sigma}(N) = K_{\sigma}(N)$. Therefore it follows that $x - m \in X$, and so $x \in K_{\sigma}(M) + X$. Thus we conclude that $P_{\sigma}(M) = K_{\sigma}(M) + X$. Since $K_{\sigma}(M)$ is small in $P_{\sigma}(M)$, it holds that $X = P_{\sigma}(M)$. Thus it follows that $\{x \in P_{\sigma}(M) | \gamma(x) - \alpha(x) \in K_{\sigma}(N)\} = P_{\sigma}(M)$. Thus if $x \in K_{\sigma}(M)(\subseteq P_{\sigma}(M))$, then $\gamma(x) - \alpha(X) \in K_{\sigma}(N)$, and so $\gamma(x) \in \alpha(x) + K_{\sigma}(N) \subseteq \alpha(K_{\sigma}(M)) + K_{\sigma}(N) = K_{\sigma}(N)$, and so it follows that $\gamma(K_{\sigma}(M)) \subseteq K_{\sigma}(N)$.

In Theorem 7 we put $\sigma = 1$, then we have a generalization of Azumaya's Theorem in [2]. In Theorem 7 we put M = N and $\sigma = 1$, then we have a generalization of Wu, Jans and Miyashita's Theorem in [9] and [5].

References

- [1] E. P. Armendariz, Quasi-injective modules and stale torsion classes, P. J. M. (1969), 277-280.
- [2] G. Azumaya, M-projective and M-injective modules, unpublished.
- [3] R. L. Bernhardt, On Splitting in Hereditary Torsion Theories, P. J. M. (1971), 31-38.
- [4] L. Bican, P. Jambor, T. Kepka and P. Nemec, Stable and costable preradicals, Acta Universitatis Carolinae-Mathematicaet Physica, 16(2) (1975), 63-69.
- [5] Y. Miyashita, Quasi-projective modules, Perfect modules and a Theorem for modular lattice, J. Fac. Sci. Hokkaido Univ. 19, 86-110.
- [6] Y. Takehana, On generalization of QF-3' modules and hereditary torsion theories, Math. J. Okayama Univ. 54 (2012), 53-63.

- [7] Y. Takehana, On generalization of CQF-3' modules and cohereditary torsion theories, Math. J. Okayama Univ. 54 (2012), 65-76.
- [8] Y. Takehana, On a generalization of stable torsion theory, Proc. of the 43rd Symposium on Ring theory and Representation Theory, 2011, 71-78.
- [9] L. E. T. Wu and J. P. Jans, On Quasi Projectives, Illinois J. Math. Volume 11, Issue 3 (1967), 439-448.

GENERAL EDUCATION HAKODATE NATIONAL COLLEGE OF TECHNOLOGY 14-1 TOKURA-CHO HAKODATE-SI HOKKAIDO, 042-8501 JAPAN *E-mail address*: takehana@hakodate-ct.ac.jp