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ON A GENERALIZATION OF COSTABLE TORSION THEORY

YASUHIKO TAKEHANA

ABSTRACT. E. P. Armendariz characterized a stable torsion theory in [1]. R. L. Bern-
hardt dualised a part of characterizations of stable torsion theory in Theorem1.1 of [3], as
follows. Let (7,F) be a hereditary torsion theory for Mod-R such that every torsionfree
module has a projective cover. Then the following are equivalent. (1) F is closed under
taking projective covers. (2) every projective module splits. In this paper we generalize
and characterize this by using torsion theory. In the remainder of this paper we study
a dualization of Eckman and Shopf’s Theorem and a generalization of Wu and Jans’s
Theorem.

1. INTRODUCTION

Throughout this paper R is a right perfect ring with identity. Let Mod-R be the
categories of right R-modules. For M € Mod-R we denote by [0 — K (M) — P(M) ™
M — 0 ] the projective cover of M, where P(M) is projective and kermy, is small in
P(M). A subfunctor of the identity functor of Mod-R is called a preradical. For a
preradical o, 7, := {M € Mod-R ; o(M) = M} is the class of o-torsion right R-modules,
and F, := {M € Mod-R ; o(M) = 0} is the class of o-torsionfree right R-modules.
A right R-module M is called o-projective if the functor Hompg(M, ) preserves the
exactness for any exact sequence 0 - A - B — C' — 0 with A € F,. A preradical o is
idempotent[radical] if o(c(M)) = o(M)[o (M /o(M)) = 0] for a module M, respectively.
A preradical o is called epi-preserving if o (M/N) = (6(M)+ N)/N holds for any module
M and any submodule N of M. For a preradical o, a short exact sequence [0 — K, (M) —

P, (M) ™M - 0] is called o-projective cover of a module M if P,(M) is o-projective,
K,(M) is o-torsion free and K, (M) is small in P,(M). If o is an idempotent radical
and a module M has a projective cover, then M has a o-projective cover and it is given
K,(M)=K(M)/o(K(M)),P,(M) = P(M)/o(K(M)). For X, Y € Mod-R we call an
epimorphism g € Hompg(X,Y) a minimal epimorphism if g(H) ; Y holds for any proper
submodule H of X. It is well known that a minimal epimorphism is an epimorphism
having a small kernel. For a preradical ¢ we say that M is a og-coessential extension of X
if there exists a minimal epimorphism h : M — X with kerh € F,.

For a module M, P,(M) is a o-coessential extension of M. We say that a subclass C of
Mod-R is closed under taking o-coessential extensions if : for any minimal epimorphism
f: M — X with kerf € F, it X € C then M € C. For the sake of simplicity we say
that M is a o-coessential extension of M/N if N is a o-torsionfree small submodule of
M. We say that a subclass C of Mod-R is closed under taking o-coessential extensions if
:if M/N € C then M € C for any o-torsion free small submodule N of any module M.

The final version of this paper will be submitted for publication elsewhere.
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We say that a subclass C of Mod-R is closed under taking F,-factor modules if : if M € C
and N is a o-torsionfree submodule of M then M/N € C.

2. COSTABLE TORSION THEORY

Lemma 1. Let o be an idempotent radical. For a module M and its submodule N,
consider the following diagram with exact rows.

0= K,(M) — P,(M) & M =0

i
0— K,(M/N)— P,(M/N) :? M/N — 0,

where f and g are epimorphisms associated with the o-projective covers and j is the
canonical epimorphism. Since g is a minimal epimorphism, there exists an epimorphism
h:P,(M)— P,(M/N) induced by the o-projectivity of P,(M) such that jf = gh. Then
the following conditions hold.

(1) If M is a o-coessential extension of M/N, then h : P,(M) — P,(M/N) is an
1somorphism.

(2) Moreover if o is epi-preserving and h : P,(M) — P,(M/N) is an isomorphism,
then M is a o-coessential extension of M/N.

Proof. (1): Let N € F, be a small submodule of a module M. Since jf is an epimor-
phism and g is a minimal epimorphism, h is also an epimorphism. Since j(f(kerh)) =
g(h(ker h)) = g(0) = 0, it follows that f(kerh) C kerj = N € F,, and so f(kerh) € F,.
Let flern be the restriction of f to ker h. Then it follows that ker(f|xern) = ker hNker f =
kerh N K,(M) C K,(M) € F,. Consider the exact sequence 0 — ker f|ierp — kerh —
f(ker h) — 0. Since F, is closed under taking extensions, it follows that kerh € F,. As
P,(M/N) is o-projective, the exact sequence 0 — kerh — FP,(M) — B,(M/N) — 0
splits, and so there exists a submodule L of P,(M) such that P,(M) = L @ kerh. So
it follows that f(P,(M)) = f(L) + f(kerh). As f(kerh) C N and f(P,(M)) = M,
M = f(L)+ N. Since N is small in M, it follows that M = f(L). As f is a minimal
epimorphism, it follows that P,(M) = L and kerh = 0, and so h : P,(M) ~ P,(M/N),
as desired.

(2): Suppose that h : P,(M) ~ P,(M/N). By the commutativity of the above diagram
with h, it follows that h(f~*(N)) C K,(M/N) € F,. Since h is an isomorphism, f~!(N) €
Foo As flp=1vy 1 f7HN) = N — 0 and o is an epi-preserving preradical, it follows that
N € F,. Next we will show that N is small in M. Let K be a submodule of M
such that M = N+ K. If f7Y(K) & P,(M), then h(f~"(K)) & P,(M/N) as h is an
isomorphism. Since g(h(f~H(K))) =j(f(fYK))) =j(K)= (K + N)/N = M/N and g
is a minimal epimorphism, this is a contradiction. Thus it holds that f~'(K) = B,(M),
and so K = f(f~Y(K)) = f(P,(M)) = M. Thus it follows that N is small in M. O

We call a preradical ¢t o-costable if F; is closed under taking o-projective covers. Now
we characterize o-costable preradicals.

Theorem 2. Let t be a radical and o be an idempotent radical. Consider the following
conditions.
(1) t is o-costable.
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(2) P/t(P) is o-projective for any o-projective module P.
(3) For any module M consider the following commutative diagram, then t(P,(M)) is

contained in kerf.

r(M) b M =0

by \y
Py (M/t(M)) zj«ﬁf/t(ﬂ4) — 0,

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is a morphism induced by o-projectivity of P,(M).

(4) Fi is closed under taking o-coessential extensions.

(5) For any o-projective module P such that t(P) € F,, t(P) is a direct sumand of P.

Then (1) <= (5) <= (2) <= (1) < (3),(4) = (1) hold. Moreover if F; is closed
under taking F,-factor modules, then all conditions are equivalent.

Proof. (1) — (2) : Let P be a o-projective module. Since P/t(P) € F;, it follows that
P,(P/t(P)) € F; by the assumption. Consider the following commutative diagram.

P

fw dh
0= Ko(P/H(P)) = Py (P/(P)) = P/t(P) =0,

where h is a canonical epimorphism, g is an epimorphism associated with the o-
projective cover of P/t(P) and f is a morphism induced by o-projectivity of B,(P/t(P)).
Since f(t(P)) C t(P,(P/t(P))) =0, f induces f' : P/t(P) — P,(P/t(P)) (x + t(P) —>
f(z)). Thus for z € P, h(z) = gf(x) = gf'h(z). So the above exact sequence splits.
Therefore P/t(P) is a direct summand of o-projective module P,(P/t(P)), and so P/t(P)
is also a o-projective module, as desired.

(2) — (5) : Let P be o-projective and ¢(P) € F,. By the assumption P/t(P) is o-
projective. Thus the sequence (0 — ¢(P) — P — P/t(P) — 0) splits, and so t(P) is a
direct summand of P.

(5) = (1) : Let M be in F;. Consider the exact sequence 0 — K, (M) — P,(M) 7)

M — 0. Since f(t(P,(M))) Ct(M) =0, K,(M) =ker f D t(P,(M)). As K,(M) € F,,
t(P,(M)) € F,. Since P,(M) is o-projective, t(P,(M)) is a direct summand of P, (M)
by the assumption. Thus there exists a submodule K of P,(M) such that P,(M) =
t(P,(M)) ® K. Since K,(M) =ker f D t(P,(M)), P,(M) = K,(M) + K. As K,(M) is
small in P,(M), P,(M) = K. Thus t(P,(M)) = 0, as desired.

(1) — (3) : Consider the following commutative diagram.

P(M) & M=o
fi 17
Py (M/t(M)) 2 M/t(M) — 0,

where j is a canonical epimorphism, A and g are epimorphisms associated with their
projective covers and f is a morphism induced by o-projectivity of P,(M). As g is a
minimal epimorphism, f is an epimorphism. By the assumption P,(M/t(M)) € F;, and
so f(t(P,(M))) C t(P,(M/t(M))) = 0. Hence t(P,(M)) C ker f.
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(3) = (1) : Let M be in F;. By the above commutative diagram, f is an identity. Thus
by the assumption ¢(P,(M)) C ker f = 0, as desired.

(1) = (4) : Let N € F, be a small submodule of a module M such that M/N € F;. By
the assumption P,(M/N) € F;. By Lemmal, P,(M/N) ~ P,(M), and so P,(M) € F;.
Consider the sequence 0 — K,(M) — P,(M) — M — 0. Since F; is closed under taking
F,-factor modules, it follows that M € F;, as desired.

(4) — (1) : Since P,(M) is o-coessential extension of a module M in F;, F; is closed
under taking o-projective covers. 0

Remark 3. Tt is well known that ¢ is epi-preserving if and only if ¢ is a radical and F; is
closed under taking factor modules. Therefore if ¢ is epi-preserving and ¢ be an idempotent
radical, then all conditions in Theorem 2 are equivalent.

Next if ¢ is identity, then the following corollary holds. The following have the another
characterization of Theoreml.1 of [3].

Corollary 4. For a radical t the following conditions except (4) are equivalent. Moreover
if t is an epi-preserving preradical, then all conditions are equivalent.

(1) t is costable, that is, F; is closed under taking projective covers.

(2) P/t(P) is projective for any projective module P.

(3) P(M) & M=o

L1 1
P(M/t(M)) — M/t(M) — 0,
9

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is induced by the projectivity of P(M). Then t(P(M)) is contained
wn kerf.

(4) Fi is closed under taking coessential extensions.

(5) For any projective module P, t(P) is a direct summand of P.

3. DUALIZATION OF ECKMAN & SHOPF'S THEOREM

In [8] we state a torsion theoretic generalization of Eckman & Shopf’s Theorem, as
follows. Let o be a left exact radical and 0 — M — FE be a exact sequence of Mod-R.
Then the following conditions from (1) to (4) are equivalent. (1) E is o-injective and o-
essential extension of M. (2) E is minimal in {Y € Mod-R|M < Y and Y is o-injective}.
(3) F is maximal in {Y € Mod-R|M — Y and Y is o-essential extension of M}. (4) E
is isomorphic to E,(M), where o(E(M)/M) = E,(M)/M. Here we dualised this.

Lemma 5. If P is o-projective, then P,(P) is isomorphic to P.

Theorem 6. Let P 5 M — 0 be a exact sequence of Mod-R. Let o is an idempotent
radical. Consider the following conditions, then the implications (1) <= (3) and (1) =
(2) hold. Moreover if o is an epi-preserving preradical, then all conditions are equivalent.

, . f : . .
1) P 1is o-projective and P — M is a o-coessential extension of M.
]
2) P is a minimal o-projective extension of M (i.e. P is o-projective and if I is o-
proj proj

h
projective and P — I, I — M, then h is an isomorphism.).
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(8) P is a mazximal o-coessential extension of M (i.e. P — M is o-coessential extension

h h
of M and if there exists an epimorphism [ — P and I — P — M is o-coessential of M,

then h is an isomorphism.).
(4) P is isomorphic to P,(M).

Proof. (1)—(2): Let P be o-projective and P 2, M be a o-coessential extension of M.
Consider the following diagram.
0O—kerh— P25 10
N by
M,
where [ is o-projective, g and h are epimorphisms such that gh = f.
Since F, > f71(0) = h=(g71(0)) D h=1(0), it follows that F, > h=1(0) = ker h. As f is
a minimal epimorphism and g is an epimorphism, A is also a minimal epimorphism. Since
I is o-projective, there exists a submodule L of P such that P = kerh & L and L = 1.
As ker b is small in P, P= L, and so P = I.
(2)—(1): Let o be an epi-preserving idempotent radical and P be a minimal o-
projective extension of M. Consider the following commutative diagram.
P,(P) 5L P =0
g1 Lf
Py(M) 2 M — 0,
where h and j are epimorphisms associated with the projective covers of M and P
respectively and ¢ is an induced epimorphism by the o-projectivity of P,(P). Since P is
o-projective, j is an isomorphism by Lemma 4. As P,(P) and P,(M) are o-projective,

g is an isomorphism by the assumption. By Lemma 1, it follows that P LM S 0isa
o-coessential extension of M.

(1)=(3): Let I % P be an epimorphism. Let P L M and I 5 M be o-coessential
extensions of M such that fg = h. Consider the following exact diagram.
I

g 1 h
P— M0

Since f is a minimal epimorphism, ¢ is an epimorphim. As h and f are minimal
epimorphisms, ¢ is a minimal epimorphim. Since F, > h~*(0) = g~ }(f'(0)) 2 g~ *(0), it
follows that F, 3 ¢~1(0). Since P is o-projective, 0 — ker g — I % P — 0 splits, and so
there exists a submodule H of I such that H = P and [ = kerg ® H. As ker g is small
in I, ] =H = P, as desired.

(3)—(1): We show that P is o-projective. Since P N M is a o-coessential extension
of M by the assumption, an induced morphism P,(P) — P,(M) is an isomorphism by
Lemma 1. Consider the following commutative diagram.

P,(P) = P =0

1 \
Py(M) = M — 0.
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Since P,(P) ~ P,(M) — M is a o-coessential extension of M and P L Misao-
coessential extension of M, it follows that P,(P) = P by the assumption, and so P is
o-projective.

(1)—(4): By Lemma 1, P,(P) ~ P,(M). By Lemma 4, P,(P) ~ P, and so P ~ P,(M)
as desired.

(4)—(1): Tt is clear. O

In Theorem 5, if 0 = 1, then the following corollary is obtained.

Corollary 7. Let P LM = 0 be a eract sequence of Mod-R. Then the following
conditions are equivalent.

f
(1) P is projective and P — M is a coessential extension of M (that is, kerf is small

(2) P is a minimal projective extension of M (i.e. P is projective and if I is projective
h
and P — I, I — M, then h is an isomorphism).
(3) P is a mazimal coessential extension of M (i.e. P = M is coessential extension of

h h
M and if there exists an epimorphism [ — P and I — P — M 1is coessential of M, then

h is an isomorphism.).
(4) P is isomorphic to P(M).

4. A GENERALIZATION OF WU, JANS AND MIYASHITA’S THEOREM
AND AZUMAYA’S THEOREM

In [8] we state a torsion theoretic generalization of Johnson and Wong’s Theorem.
Here we study a dualization of this. For a module M and N, we call M o-N-projective
if Homp(M, ) preserves the exactness of the short exact sequence 0 - K — N —
N/K — 0 with K € F,.

Theorem 8. Let M and N be modules. Consider the following conditions for an idem-
potent radical o.

(1) 1Ko (M)) C K,(N) holds for any v € Homa(P,(M), P,(N)).

(2) M is o-N -projective.

Then the implication (1)—(2) holds. If o is epi-preserving, then the implication (2)— (1)
holds.

Proof. (1)—(2): Let f be in Homg(M,N/K) with K € F,. Then there exists h €
Hompg(P,(M),N) such that fn§, = nh, where n is a canonical epimorphism from N to
N/K. And there exists v € Hompg(P,(M), P,(N)) such that h = 7$. So we have the
following commutative diagramm.
P (M) 2 M
e bn by
P,(N) - N — N/K
s n
By the assumption, v induces ' : P,(M)/K,(M) — P,(N)/K,(N), and so 7" induces
~" M — N such that f =~"n, as desired.
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1): o be epi-preserving and vy € Hompg(P,(M), P,(N)). We will show that
(K, (M)) Q K (N). We put T'=v(K,(M)) + K,(N). Since T 2 vy(K,(M)), v induces
VM = By (M) /Ky (M) = Py(N)/4(Ky(M)) — Po(N)/T — N/x(T) (x5,(x) <
7+ Ky (M) = A(2) + (K, (M) = 4(2) + T = 18,(1(x)) + 75(T)). Let ny be a
canonical epimorphism from N to N/7$(T'). Since 7(T) = 75 (v(K,(M)) + K,(N)) =
7 (V(Ky(M)), K,(M) € F, and F, is closed under taking factor modules, it follows that
7% (T) € F,. Since M is o-N-projective, there exists § : M — N such that v/ = nyp.
Therefore we have the following commutative diagramm.

M

B 1Y
0—7n%(T) = N — N/7%(T) = 0

By the o-projectivity of P,(M), there exists a : P,(M) — P,(N) such that 7§a =
B7q;. Thus we have the following commutative diagramm.

0 — K, (M) — P, (M) ™ M 0

\Loa i/ﬁ
0— K,(N)— FP,(N) - N—0
T

Thus by the commutativity of the above diagram, we have a(K,(M)) C K,(N).

We put X = {z € P,(M)|y(z) — a(x) € Ky(N)}. We will show that X + K,(M) =
P,(M). For any x € P,(M) it follows that 7/ (7§, (x)) = 7% (v(x))+7%(T), (nnB) (75, (z)) =
B(nx) + 7% (T) and v = nyp, it follows that 7% (v(x)) + 7% (T) = B(7§x) + 7% (T), and
so % (v(x)) = B(r§x) € w§(T). Since 1o = 7, it follows that 7§ (y(x)) — 7§ (a(x)) €
7%(T), and so y(z) — a(z) € T+ (7%)"H0) =T + K,(N) = v(K,(M)) + K,(N). Thus
there exists m € K,(M) such that v(z) — a(x) — y(m) € K,(N), and so v(z —m) —
a(r —m) € a(m) + K,(N) C a(K,(M)) + K,(N) = K;(N). Therefore it follows that
x—m € X, and so x € K,(M)+ X. Thus we conclude that P,(M) = K,(M) + X.
Since K,(M) is small in P,(M), it holds that X = P,(M). Thus it follows that
{r € P,(M)|v(z) — a(zx) € K,(N)} = P,(M). Thus if x € K,(M)(C P,(M)), then
v(z) — a(X) € K,(N), and so y(z) € a(x) + K,(N) C o(K,(M)) + K,(N) = K,(N),
and so it follows that v(K,(M)) C Ky(N). O

In Theorem 7 we put o = 1, then we have a generalization of Azumaya’s Theorem in
[2]. In Theorem 7 we put M = N and o = 1, then we have a generalization of Wu, Jans
and Miyashita’s Theorem in [9] and [5].
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