
　
ON A GENERALIZATION OF COSTABLE TORSION THEORY

YASUHIKO TAKEHANA

Abstract. E. P. Armendariz characterized a stable torsion theory in [1]. R. L. Bern-
hardt dualised a part of characterizations of stable torsion theory in Theorem1.1 of [3], as
follows. Let (T ,F) be a hereditary torsion theory for Mod-R such that every torsionfree
module has a projective cover. Then the following are equivalent. (1) F is closed under
taking projective covers. (2) every projective module splits. In this paper we generalize
and characterize this by using torsion theory. In the remainder of this paper we study
a dualization of Eckman and Shopf’s Theorem and a generalization of Wu and Jans’s
Theorem.

1. INTRODUCTION

Throughout this paper R is a right perfect ring with identity. Let Mod-R be the

categories of right R-modules. For M ∈ Mod-R we denote by [0 → K(M) → P (M)
πM→

M → 0 ] the projective cover of M , where P (M) is projective and kerπM is small in
P (M). A subfunctor of the identity functor of Mod-R is called a preradical. For a
preradical σ, Tσ := {M ∈ Mod-R ; σ(M) = M} is the class of σ-torsion right R-modules,
and Fσ := {M ∈ Mod-R ; σ(M) = 0} is the class of σ-torsionfree right R-modules.
A right R-module M is called σ-projective if the functor HomR(M, ) preserves the
exactness for any exact sequence 0 → A → B → C → 0 with A ∈ Fσ. A preradical σ is
idempotent[radical] if σ(σ(M)) = σ(M)[σ (M/σ(M)) = 0] for a module M , respectively.
A preradical σ is called epi-preserving if σ (M/N) = (σ(M)+N)/N holds for any module
M and any submodule N ofM . For a preradical σ, a short exact sequence [0→ Kσ(M)→
Pσ(M)

πσ
M→ M → 0] is called σ-projective cover of a module M if Pσ(M) is σ-projective,

Kσ(M) is σ-torsion free and Kσ(M) is small in Pσ(M). If σ is an idempotent radical
and a module M has a projective cover, then M has a σ-projective cover and it is given
Kσ(M) = K(M)/σ(K(M)), Pσ(M) = P (M)/σ(K(M)). For X,Y ∈ Mod-R we call an
epimorphism g ∈ HomR(X, Y ) a minimal epimorphism if g(H) $ Y holds for any proper
submodule H of X. It is well known that a minimal epimorphism is an epimorphism
having a small kernel. For a preradical σ we say that M is a σ-coessential extension of X
if there exists a minimal epimorphism h : M � X with kerh ∈ Fσ.

For a module M , Pσ(M) is a σ-coessential extension of M . We say that a subclass C of
Mod-R is closed under taking σ-coessential extensions if : for any minimal epimorphism
f : M � X with kerf ∈ Fσ if X ∈ C then M ∈ C. For the sake of simplicity we say
that M is a σ-coessential extension of M/N if N is a σ-torsionfree small submodule of
M . We say that a subclass C of Mod-R is closed under taking σ-coessential extensions if
: if M/N ∈ C then M ∈ C for any σ-torsion free small submodule N of any module M .

The final version of this paper will be submitted for publication elsewhere.
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We say that a subclass C of Mod-R is closed under taking Fσ-factor modules if : if M ∈ C
and N is a σ-torsionfree submodule of M then M/N ∈ C.

2. COSTABLE TORSION THEORY

Lemma 1. Let σ be an idempotent radical. For a module M and its submodule N ,
consider the following diagram with exact rows.

0→ Kσ(M) → Pσ(M)
f→ M → 0

↓j
0→ Kσ(M/N)→ Pσ(M/N) →

g
M/N → 0,

where f and g are epimorphisms associated with the σ-projective covers and j is the
canonical epimorphism. Since g is a minimal epimorphism, there exists an epimorphism
h : Pσ(M)→ Pσ(M/N) induced by the σ-projectivity of Pσ(M) such that jf = gh. Then
the following conditions hold.

(1) If M is a σ-coessential extension of M/N , then h : Pσ(M) → Pσ(M/N) is an
isomorphism.

(2) Moreover if σ is epi-preserving and h : Pσ(M) → Pσ(M/N) is an isomorphism,
then M is a σ-coessential extension of M/N .

Proof. (1): Let N ∈ Fσ be a small submodule of a module M . Since jf is an epimor-
phism and g is a minimal epimorphism, h is also an epimorphism. Since j(f(kerh)) =
g(h(kerh)) = g(0) = 0, it follows that f(kerh) ⊆ ker j = N ∈ Fσ, and so f(kerh) ∈ Fσ.
Let f |kerh be the restriction of f to kerh. Then it follows that ker(f |kerh) = kerh∩ker f =
kerh ∩Kσ(M) ⊆ Kσ(M) ∈ Fσ. Consider the exact sequence 0 → ker f |kerh → kerh →
f(kerh) → 0. Since Fσ is closed under taking extensions, it follows that kerh ∈ Fσ. As
Pσ(M/N) is σ-projective, the exact sequence 0 → kerh → Pσ(M) → Pσ(M/N) → 0
splits, and so there exists a submodule L of Pσ(M) such that Pσ(M) = L ⊕ kerh. So
it follows that f(Pσ(M)) = f(L) + f(kerh). As f(kerh) ⊆ N and f(Pσ(M)) = M ,
M = f(L) + N . Since N is small in M , it follows that M = f(L). As f is a minimal
epimorphism, it follows that Pσ(M) = L and kerh = 0, and so h : Pσ(M) ' Pσ(M/N),
as desired.

(2): Suppose that h : Pσ(M) ' Pσ(M/N). By the commutativity of the above diagram
with h, it follows that h(f−1(N)) ⊆ Kσ(M/N) ∈ Fσ. Since h is an isomorphism, f−1(N) ∈
Fσ. As f |f−1(N) : f

−1(N)→ N → 0 and σ is an epi-preserving preradical, it follows that
N ∈ Fσ. Next we will show that N is small in M . Let K be a submodule of M
such that M = N + K. If f−1(K) $ Pσ(M), then h(f−1(K)) $ Pσ(M/N) as h is an
isomorphism. Since g(h(f−1(K))) = j(f(f−1(K))) = j(K) = (K +N)/N = M/N and g
is a minimal epimorphism, this is a contradiction. Thus it holds that f−1(K) = Pσ(M),
and so K = f(f−1(K)) = f(Pσ(M)) = M . Thus it follows that N is small in M . �

We call a preradical t σ-costable if Ft is closed under taking σ-projective covers. Now
we characterize σ-costable preradicals.

Theorem 2. Let t be a radical and σ be an idempotent radical. Consider the following
conditions.

(1) t is σ-costable.

–209–



(2) P/t(P ) is σ-projective for any σ-projective module P .
(3) For any module M consider the following commutative diagram, then t(Pσ(M)) is

contained in kerf .

Pσ(M)
h→ M → 0

↓f ↓j
Pσ(M/t(M))→

g
M/t(M)→ 0,

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is a morphism induced by σ-projectivity of Pσ(M).

(4) Ft is closed under taking σ-coessential extensions.
(5) For any σ-projective module P such that t(P ) ∈ Fσ, t(P ) is a direct sumand of P .
Then (1) ⇐ (5) ⇐= (2) ⇐⇒ (1) ⇐⇒ (3), (4) =⇒ (1) hold. Moreover if Ft is closed

under taking Fσ-factor modules, then all conditions are equivalent.

Proof. (1) → (2) : Let P be a σ-projective module. Since P/t(P ) ∈ Ft, it follows that
Pσ(P/t(P )) ∈ Ft by the assumption. Consider the following commutative diagram.

P
f ↙ ↓ h

0→ Kσ(P/t(P ))→ Pσ(P/t(P ))→
g
P/t(P )→ 0,

where h is a canonical epimorphism, g is an epimorphism associated with the σ-
projective cover of P/t(P ) and f is a morphism induced by σ-projectivity of Pσ(P/t(P )).
Since f(t(P )) ⊆ t(Pσ(P/t(P ))) = 0, f induces f ′ : P/t(P )→ Pσ(P/t(P )) (x+ t(P ) 7−→
f(x)). Thus for x ∈ P , h(x) = gf(x) = gf ′h(x). So the above exact sequence splits.
Therefore P/t(P ) is a direct summand of σ-projective module Pσ(P/t(P )), and so P/t(P )
is also a σ-projective module, as desired.

(2) → (5) : Let P be σ-projective and t(P ) ∈ Fσ. By the assumption P/t(P ) is σ-
projective. Thus the sequence (0 → t(P ) → P → P/t(P ) → 0) splits, and so t(P ) is a
direct summand of P .

(5) → (1) : Let M be in Ft. Consider the exact sequence 0 → Kσ(M) → Pσ(M) →
f

M → 0. Since f(t(Pσ(M))) ⊆ t(M) = 0, Kσ(M) = ker f ⊇ t(Pσ(M)). As Kσ(M) ∈ Fσ,
t(Pσ(M)) ∈ Fσ. Since Pσ(M) is σ-projective, t(Pσ(M)) is a direct summand of Pσ(M)
by the assumption. Thus there exists a submodule K of Pσ(M) such that Pσ(M) =
t(Pσ(M))⊕K. Since Kσ(M) = ker f ⊇ t(Pσ(M)), Pσ(M) = Kσ(M) +K. As Kσ(M) is
small in Pσ(M), Pσ(M) = K. Thus t(Pσ(M)) = 0, as desired.

(1)→ (3) : Consider the following commutative diagram.

Pσ(M)
h→ M → 0

f ↓ ↓ j
Pσ(M/t(M))

g→M/t(M)→ 0,

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is a morphism induced by σ-projectivity of Pσ(M). As g is a
minimal epimorphism, f is an epimorphism. By the assumption Pσ(M/t(M)) ∈ Ft, and
so f(t(Pσ(M))) ⊆ t(Pσ(M/t(M))) = 0. Hence t(Pσ(M)) ⊆ ker f.
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(3)→ (1) : Let M be in Ft. By the above commutative diagram, f is an identity. Thus
by the assumption t(Pσ(M)) ⊆ ker f = 0, as desired.

(1)→ (4) : Let N ∈ Fσ be a small submodule of a module M such that M/N ∈ Ft. By
the assumption Pσ(M/N) ∈ Ft. By Lemma1, Pσ(M/N) ' Pσ(M), and so Pσ(M) ∈ Ft.
Consider the sequence 0→ Kσ(M)→ Pσ(M)→M → 0. Since Ft is closed under taking
Fσ-factor modules, it follows that M ∈ Ft, as desired.

(4) → (1) : Since Pσ(M) is σ-coessential extension of a module M in Ft, Ft is closed
under taking σ-projective covers. �
Remark 3. It is well known that t is epi-preserving if and only if t is a radical and Ft is
closed under taking factor modules. Therefore if t is epi-preserving and σ be an idempotent
radical, then all conditions in Theorem 2 are equivalent.

Next if σ is identity, then the following corollary holds. The following have the another
characterization of Theorem1.1 of [3].

Corollary 4. For a radical t the following conditions except (4) are equivalent. Moreover
if t is an epi-preserving preradical, then all conditions are equivalent.

(1) t is costable, that is, Ft is closed under taking projective covers.
(2) P/t(P ) is projective for any projective module P .

(3) P (M)
h→ M → 0

↓f ↓j
P (M/t(M))→

g
M/t(M)→ 0,

where j is a canonical epimorphism, h and g are epimorphisms associated with their
projective covers and f is induced by the projectivity of P (M). Then t(P (M)) is contained
in kerf .

(4) Ft is closed under taking coessential extensions.
(5) For any projective module P , t(P ) is a direct summand of P .

3. DUALIZATION OF ECKMAN & SHOPF’S THEOREM

In [8] we state a torsion theoretic generalization of Eckman & Shopf’s Theorem, as
follows. Let σ be a left exact radical and 0 → M → E be a exact sequence of Mod-R.
Then the following conditions from (1) to (4) are equivalent. (1) E is σ-injective and σ-
essential extension of M . (2) E is minimal in {Y ∈ Mod-R|M ↪→ Y and Y is σ-injective}.
(3) E is maximal in {Y ∈ Mod-R|M ↪→ Y and Y is σ-essential extension of M}. (4) E
is isomorphic to Eσ(M), where σ(E(M)/M) = Eσ(M)/M . Here we dualised this.

Lemma 5. If P is σ-projective, then Pσ(P ) is isomorphic to P .

Theorem 6. Let P
f→ M → 0 be a exact sequence of Mod-R. Let σ is an idempotent

radical. Consider the following conditions, then the implications (1) ⇐⇒ (3) and (1) =⇒
(2) hold. Moreover if σ is an epi-preserving preradical, then all conditions are equivalent.

(1) P is σ-projective and P
f
� M is a σ-coessential extension of M .

(2) P is a minimal σ-projective extension of M(i.e. P is σ-projective and if I is σ-

projective and P
h� I, I � M, then h is an isomorphism.).
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(3) P is a maximal σ-coessential extension of M(i.e. P
f
� M is σ-coessential extension

of M and if there exists an epimorphism I
h� P and I

h� P � M is σ-coessential of M ,
then h is an isomorphism.).

(4) P is isomorphic to Pσ(M).

Proof. (1)→(2): Let P be σ-projective and P
f
� M be a σ-coessential extension of M .

Consider the following diagram.

0→ kerh→ P
h→ I → 0
↘f ↓g

M,
where I is σ-projective, g and h are epimorphisms such that gh = f.
Since Fσ 3 f−1(0) = h−1(g−1(0)) ⊇ h−1(0), it follows that Fσ 3 h−1(0) = kerh. As f is

a minimal epimorphism and g is an epimorphism, h is also a minimal epimorphism. Since
I is σ-projective, there exists a submodule L of P such that P = kerh ⊕ L and L ∼= I.
As kerh is small in P , P = L, and so P ∼= I.

(2)→(1): Let σ be an epi-preserving idempotent radical and P be a minimal σ-
projective extension of M . Consider the following commutative diagram.

Pσ(P )
j→ P → 0

g ↓ ↓ f
Pσ(M)

h→M → 0,
where h and j are epimorphisms associated with the projective covers of M and P

respectively and g is an induced epimorphism by the σ-projectivity of Pσ(P ). Since P is
σ-projective, j is an isomorphism by Lemma 4. As Pσ(P ) and Pσ(M) are σ-projective,

g is an isomorphism by the assumption. By Lemma 1, it follows that P
f→ M → 0 is a

σ-coessential extension of M .

(1)→(3): Let I
g→ P be an epimorphism. Let P

f
� M and I

h� M be σ-coessential
extensions of M such that fg = h. Consider the following exact diagram.

I
g ↙ ↓ h

P →
f
M → 0

Since f is a minimal epimorphism, g is an epimorphim. As h and f are minimal
epimorphisms, g is a minimal epimorphim. Since Fσ 3 h−1(0) = g−1(f−1(0)) ⊇ g−1(0), it

follows that Fσ 3 g−1(0). Since P is σ-projective, 0→ ker g → I
g→ P → 0 splits, and so

there exists a submodule H of I such that H ∼= P and I = ker g ⊕H. As ker g is small
in I, I = H ∼= P , as desired.

(3)→(1): We show that P is σ-projective. Since P
f
� M is a σ-coessential extension

of M by the assumption, an induced morphism Pσ(P ) → Pσ(M) is an isomorphism by
Lemma 1. Consider the following commutative diagram.

Pσ(P )→ P → 0
↓ ↓

Pσ(M)→M → 0.
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Since Pσ(P ) ' Pσ(M) � M is a σ-coessential extension of M and P
f
� M is a σ-

coessential extension of M , it follows that Pσ(P ) ∼= P by the assumption, and so P is
σ-projective.

(1)→(4): By Lemma 1, Pσ(P ) ' Pσ(M). By Lemma 4, Pσ(P ) ' P, and so P ' Pσ(M)
as desired.

(4)→(1): It is clear. �
In Theorem 5, if σ = 1, then the following corollary is obtained.

Corollary 7. Let P
f→ M → 0 be a exact sequence of Mod-R. Then the following

conditions are equivalent.

(1) P is projective and P
f
� M is a coessential extension of M(that is, kerf is small

in M).
(2) P is a minimal projective extension of M(i.e. P is projective and if I is projective

and P
h� I, I � M, then h is an isomorphism).

(3) P is a maximal coessential extension of M(i.e. P
f
� M is coessential extension of

M and if there exists an epimorphism I
h� P and I

h� P � M is coessential of M , then
h is an isomorphism.).

(4) P is isomorphic to P (M).

4. A GENERALIZATION OF WU, JANS AND MIYASHITA’S THEOREM
AND AZUMAYA’S THEOREM

In [8] we state a torsion theoretic generalization of Johnson and Wong’s Theorem.
Here we study a dualization of this. For a module M and N , we call M σ-N -projective
if HomR(M, ) preserves the exactness of the short exact sequence 0 → K → N →
N/K → 0 with K ∈ Fσ.

Theorem 8. Let M and N be modules. Consider the following conditions for an idem-
potent radical σ.

(1) γ(Kσ(M)) ⊆ Kσ(N) holds for any γ ∈ HomR(Pσ(M), Pσ(N)).
(2) M is σ-N-projective.
Then the implication (1)→(2) holds. If σ is epi-preserving, then the implication (2)→(1)

holds.

Proof. (1)→(2): Let f be in HomR(M,N/K) with K ∈ Fσ. Then there exists h ∈
HomR(Pσ(M), N) such that fπσ

M = nh, where n is a canonical epimorphism from N to
N/K. And there exists γ ∈ HomR(Pσ(M), Pσ(N)) such that h = πσ

Nγ. So we have the
following commutative diagramm.

Pσ(M)
πσ
M� M

γ ↙ ↓h ↓f
Pσ(N) �

πσ
N

N →
n
N/K

By the assumption, γ induces γ′ : Pσ(M)/Kσ(M)→ Pσ(N)/Kσ(N), and so γ′ induces
γ′′ : M → N such that f = γ′′n, as desired.
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(2)→(1): Let σ be epi-preserving and γ ∈ HomR(Pσ(M), Pσ(N)). We will show that
γ(Kσ(M)) ⊆ Kσ(N). We put T = γ(Kσ(M)) +Kσ(N). Since T ⊇ γ(Kσ(M)), γ induces
γ′ : M ' Pσ(M)/Kσ(M) → Pσ(N)/γ(Kσ(M)) → Pσ(N)/T → N/πσ

N(T ) (πσ
M(x) ←→

x + Kσ(M) → γ(x) + γ(Kσ(M)) → γ(x) + T → πσ
N(γ(x)) + πσ

N(T )). Let nN be a
canonical epimorphism from N to N/πσ

N(T ). Since πσ
N(T ) = πσ

N(γ(Kσ(M)) +Kσ(N)) =
πσ
N(γ(Kσ(M)), Kσ(M) ∈ Fσ and Fσ is closed under taking factor modules, it follows that

πσ
N(T ) ∈ Fσ. Since M is σ-N -projective, there exists β : M → N such that γ′ = nNβ.

Therefore we have the following commutative diagramm.
M

β ↙ ↓ γ′

0→ πσ
N(T )→ N →

nN

N/πσ
N(T )→ 0

·By the σ-projectivity of Pσ(M), there exists α : Pσ(M) → Pσ(N) such that πσ
Nα =

βπσ
M . Thus we have the following commutative diagramm.

0→ Kσ(M)→ Pσ(M)
πσ
M→ M → 0

↓α ↓β
0→ Kσ(N)→ Pσ(N)→

πσ
N

N → 0

Thus by the commutativity of the above diagram, we have α(Kσ(M)) ⊆ Kσ(N).
We put X = {x ∈ Pσ(M)|γ(x) − α(x) ∈ Kσ(N)}. We will show that X + Kσ(M) =

Pσ(M). For any x ∈ Pσ(M) it follows that γ′(πσ
M(x)) = πσ

N(γ(x))+πσ
N(T ), (nNβ)(π

σ
M(x)) =

β(πσ
Mx)+πσ

N(T ) and γ′ = nNβ, it follows that π
σ
N(γ(x))+πσ

N(T ) = β(πσ
Mx)+πσ

N(T ), and
so πσ

N(γ(x))−β(πσ
Mx) ∈ πσ

N(T ). Since π
σ
Nα = βπσ

M , it follows that πσ
N(γ(x))−πσ

N(α(x)) ∈
πσ
N(T ), and so γ(x)− α(x) ∈ T + (πσ

N)
−1(0) = T +Kσ(N) = γ(Kσ(M)) +Kσ(N). Thus

there exists m ∈ Kσ(M) such that γ(x) − α(x) − γ(m) ∈ Kσ(N), and so γ(x − m) −
α(x −m) ∈ α(m) + Kσ(N) ⊆ α(Kσ(M)) + Kσ(N) = Kσ(N). Therefore it follows that
x − m ∈ X, and so x ∈ Kσ(M) + X. Thus we conclude that Pσ(M) = Kσ(M) + X.
Since Kσ(M) is small in Pσ(M), it holds that X = Pσ(M). Thus it follows that
{x ∈ Pσ(M)|γ(x) − α(x) ∈ Kσ(N)} = Pσ(M). Thus if x ∈ Kσ(M)(⊆ Pσ(M)), then
γ(x) − α(X) ∈ Kσ(N), and so γ(x) ∈ α(x) + Kσ(N) ⊆ α(Kσ(M)) + Kσ(N) = Kσ(N),
and so it follows that γ(Kσ(M)) ⊆ Kσ(N). �

In Theorem 7 we put σ = 1, then we have a generalization of Azumaya’s Theorem in
[2]. In Theorem 7 we put M = N and σ = 1, then we have a generalization of Wu, Jans
and Miyashita’s Theorem in [9] and [5].
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