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Abstract. Let A be a Noetherian local ring with d = dimA > 0. This paper shows
that the Hilbert coefficients {eiQ(A)}1≤i≤d of parameter ideals Q have uniform bounds if
and only if A is a generalized Cohen-Macaulay ring. The uniform bounds are huge; the
sharp bound for e2Q(A) in the case where A is a generalized Cohen-Macaulay ring with
dimA ≥ 3 is given.
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1. Introduction

This is based on [5] a joint work with Shiro Goto.
The purpose of this paper is to study the problem of when the Hilbert coefficients of

parameter ideals in a Noetherian local ring have uniform bounds, and when this is the
case, to ask for their sharp bounds.

To state the problem and the results also, let us fix some notation. In what follows,
let A be a commutative Noetherian local ring with maximal ideal m and d = dimA > 0
denotes the Krull dimension of A. For simplicity, we assume that the residue class field
A/m of A is infinite. Let `A(M) denote, for an A-module M , the length of M . Then for
each m-primary ideal I in A, we have integers {eiI(A)}0≤i≤d such that the equality

`A(A/I
n+1) = e0I(A)

(
n+ d

d

)
− e1I(A)

(
n+ d− 1

d− 1

)
+ · · ·+ (−1)dedI(A)

holds true for all n � 0, which we call the Hilbert coefficients of A with respect to I.
With this notation our first purpose is to study the problem of when the sets

Λi(A) = {eiQ(A) | Q is a parameter ideal in A}
are finite for all 1 ≤ i ≤ d.

Then the first main result is stated as follows. We say that our local ring is a generalized
Cohen-Macaulay ring, if the local cohomology modules Hi

m(A) are finitely generated for
all i 6= d.

Theorem 1. Let A be a commutative Noetherian local ring with d = dimA ≥ 2. Then
the following conditions are equivalent.

(1) A is a generalized Cohen-Macaulay ring.
(2) The set Λi(A) is finite for all 1 ≤ i ≤ d.

The detailed version of this paper has been submitted for publication elsewhere.
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Although the finiteness problem of Λi(A) is settled affirmatively, we need to ask for the
sharp bounds for the values of eiQ(A) of parameter ideals Q, which is our second purpose

of the present research. Let hi(A) = `A(H
i
m(A)) for each i ∈ Z.

When A is a generalized Cohen-Macaulay ring with d = dimA ≥ 2, one has the
inequalities

0 ≥ e1Q(A) ≥ −
d−1∑
i=1

(
d− 2

i− 1

)
hi(A)

for every parameter ideal Q in A ([9, Theorem 8], [3, Lemma 2.4]), where the equality

e1Q(A) = −
∑d−1

i=1

(
d−2
i−1

)
hi(A) holds true if and only if Q is a standard parameter ideal in A

([10, Korollar 3.2], [4, Theorem 2.1]), provided depthA > 0. The reader may consult [2]
for the characterization of local rings which contain parameter ideals Q with e1Q(A) = 0.

Thus the behavior of the first Hilbert coefficients e1Q(A) for parameter ideals Q are rather
satisfactorily understood.

The second purpose is to study the natural question of how about e2Q(A). First, we will
show that in the case where dimA = 2 and depthA > 0, even though A is not necessarily
a generalized Cohen-Macaulay ring, the inequality

−h1(A) ≤ e2Q(A) ≤ 0

holds true for every parameter ideal Q in A. We will also show that e2Q(A) = 0 if and
only if the ideal Q is generated by a system a, b of parameters which forms a d-sequence
in A in the sense of C. Huneke [7]. When A is a generalized Cohen-Macaulay ring with
dimA ≥ 3, we shall show that the inequality

−
d−1∑
j=2

(
d− 3

j − 2

)
hj(A) ≤ e2Q(A) ≤

d−2∑
j=1

(
d− 3

j − 1

)
hj(A)

holds true for every parameter ideal Q (Theorem 13). The following theorem which is the

second main result of this paper shows that the upper bound e2Q(A) ≤
∑d−2

j=1

(
d−3
j−1

)
hj(A)

is sharp, clarifying when the equality e2Q(A) =
∑d−2

j=1

(
d−3
j−1

)
hj(A) holds true.

Theorem 2. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥ 3
and depthA > 0. Let Q be a parameter ideal in A. Then the following two conditions are
equivalent.

(1) e2Q(A) =
∑d−2

j=1

(
d−3
j−1

)
hj(A).

(2) There exist elements a1, a2, · · · , ad ∈ A such that
(a) Q = (a1, a2, · · · , ad),
(b) the sequence a1, a2, · · · , ad is a d-sequence in A, and
(c) Q·Hj

m(A/(a1, a2, · · · , ak)) = (0) for all j ≥ 1 and k ≥ 0 with j + k ≤ d− 2.

When this is the case, we furthermore have the following :

(i) (−1)i·eiQ(A) =
∑d−i

j=1

(
d−i−1
j−1

)
hj(A) for 3 ≤ i ≤ d− 1 and

(ii) edQ(A) = 0.

At this moment we do not know the sharp uniform bound for e3Q(A) for parameter
ideals Q in a generalized Cohen-Macaulay ring A with dimA ≥ 3.
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Let us briefly note how this paper is organized. We shall prove Theorem 1 in Section 2.
Theorem 2 will be proven in Section 4. Section 3 is devoted to some preliminary steps for
the proof of Theorem 2. We will closely study in Section 3 the problem of when e2Q(A) = 0
in the case where dimA = 2.

In what follows, unless otherwise specified, for each m-primary ideal I in A, we put

R(I) = A[It], R′(I) = A[It, t−1], and G(I) = R′(I)/t−1R′(I),

where t is an indeterminate over A. Let M = mR + R+ be the unique graded maximal
ideal in R = R(I). We denote by Hi

M(∗) (i ∈ Z) the ith local cohomology functor of R(I)
with respect to M. Let L be a graded R-module. For each n ∈ Z let [Hi

M(L)]n stand
for the homogeneous component of Hi

M(L) with degree n. We denote by L(α), for each
α ∈ Z, the graded R-module whose grading is given by [L(α)]n = Lα+n for all n ∈ Z.

2. Proof of Theorem 1

In this section, we shall prove Theorem 1.
The heart of the proof of the implication (1) ⇒ (2) is, in the case where A is a

generalized Cohen-Macaulay ring, the existence of uniform bounds of the Castelnuovo-
Mumford regularity regG(Q) of the associated graded rings G(Q) of parameter ideals Q.
So, let us briefly recall the definition of the Castelnuovo-Mumford regularity.

Let Q be a parameter ideal in A and let

R(Q) = A[Qt], R′(Q) = A[Qt, t−1], and G(Q) = R′(Q)/t−1R′(Q)

respectively, denote the Rees algebra, the extended Rees algebra, and the associated
graded ring of Q. Let M = mR+R+ be the unique graded maximal ideal in R = R(Q).
For each i ∈ Z let

ai(G(Q)) = max{n ∈ Z | [Hi
M(G(Q))]n 6= (0)}

and put
regG(Q) = max{ai(G(Q)) + i | i ∈ Z},

which we call the Castelnuovo-Mumford regularity of the graded ring G(Q).
Let us now note the following result of Linh and Trung [8], which gives a uniform bound

for regG(Q) for parameter ideals Q in a generalized Cohen-Macaulay ring.

Theorem 3 ([8], Theorem 2.3). Suppose that A is a generalized Cohen-Macaulay ring
and let Q be a parameter ideal in A. Then

(1) regG(Q) ≤ max{I(A)− 1, 0}, if d = 1.
(2) regG(Q) ≤ max{(4I(A))(d−1)! − I(A)− 1, 0}, if d ≥ 2.

Thus, the following result is the key for our proof of the implication (1) ⇒ (2) in

Theorem 1, where hi(A) = `A(H
i
m(A)) and I(A) =

∑d−1
j=0

(
d−1
j

)
hj(A).

Theorem 4. Suppose that A is a generalized Cohen-Macaulay ring. Let Q be a parameter
ideal in A and put r = regG(Q). Then

(1) |e1Q(A)| ≤ I(A).

(2) |eiQ(A)| ≤ 3 · 2i−2(r + 1)i−1I(A) for 2 ≤ i ≤ d.

Proof. See [5, Section 2]. �
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Therefore, thanks to the uniform bounds [8, Theorem 2.3] of regG(Q) for parameter
ideals Q in a generalized Cohen-Macaulay ring A, we readily get the finiteness in the set
Λi(A) for all 1 ≤ i ≤ d.

We are now in a position to finish the proof of Theorem 1.

Proof of Theorem 1. We may assume that A is complete. Also we may assume A is not
unmixed, because Λ1(A) is a finite set (cf. [2, Proposition 4.2]). Let U denote the unmixed
component of the ideal (0) in A. We put B = A/U and t = dimA U (≤ d− 1). We must
show that B is a generalized Cohen-Macaulay ring and t = 0.

Let Q be a parameter ideal in A. We then have

`A(A/Q
n+1) = `A(B/Qn+1B) + `A(U/Q

n+1 ∩ U)

for all integers n ≥ 0. Therefore, the function `A(U/Q
n+1 ∩ U) is a polynomial in n � 0

with degree t and there exist integers {siQ(U)}0≤i≤t with s0Q(U) = e0Q(U) such that

`A(U/Q
n+1 ∩ U) =

t∑
i=0

(−1)isiQ(U)

(
n+ t− i

t− i

)
for all n � 0, whence

`A(A/Q
n+1) =

d∑
i=0

(−1)ieiQ(B)

(
n+ d− i

d− i

)
+

t∑
i=0

(−1)isiQ(U)

(
n+ t− i

t− i

)
.

Consequently

(−1)d−ied−i
Q (A) =

{
(−1)d−ied−i

Q (B) + (−1)t−ist−i
Q (U) if 0 ≤ i ≤ t,

(−1)d−ied−i
Q (B) if t+ 1 ≤ i ≤ d.

Therefore, if t < d − 1, we have e1Q(A) = e1Q(B), so that Λ1(B) = Λ1(A) is a finite

set. If t = d − 1, we get −e1Q(A) = −e1Q(B) + s0Q(U). Since e1Q(A), e
1
Q(B) ≤ 0 and

s0Q(U) = e0Q(U) ≥ 1, Λ1(B) is a finite set also in this case. Thus the set Λ1(B) is finite in
any case, so that the ring B a generalized Cohen-Macaulay ring.

We now assume that t ≥ 1 and choose a system a1, a2, · · · , ad of parameters in A so
that (at+1, at+2, · · · , ad)U = (0). Let ` ≥ 1 be an integer such that m` is standard for the
ring B and choose integers n ≥ `. We look at parameter ideals Q = (an1 , a

n
2 , · · · , and) of A.

Then

(−1)d−ted−t
Q (B) =

t∑
j=1

(
t− 1

j − 1

)
hj(B)

by [10, Korollar 3.2], which is independent of the integers n ≥ `. Therefore, since

s0Q(U) = e0(an1 ,an2 ,··· ,ant )(U) = nt·e0(a1,a2,··· ,at)(U) ≥ nt,

we see

(−1)d−ted−t
Q (A) = (−1)d−ted−t

Q (B) + s0Q(U)

=
t∑

j=1

(
t− 1

j − 1

)
hj(B) + nt·e0(a1,a2,··· ,at)(U) ≥ nt,
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whence the set Λd−t(A) cannot be finite. Thus t = 0 and A a generalized Cohen-Macaulay
ring. �

3. The second Hilbert coefficients e2Q(A) of parameters

In this section we study the second Hilbert coefficients e2Q(A) of parameter ideals Q.

The purpose is to find the sharp bound for e2Q(A). The bound |e2Q(A)| ≤ 3(r + 1)I(A)
given by Theorem 1 is too huge in general and far from the sharp bound.

Let us begin with the following.

Lemma 5. Suppose that d = 2 and depthA > 0. Let Q = (x, y) be a parameter ideal in
A and assume that x is superficial with respect to Q. Then

e2Q(A) = −`A

(
[(x`) : y`] ∩Q`

(x`)

)
≤ 0

for all ` � 0.

Proof. Let ` � 0 be an integer which is sufficiently large and put I = Q`. Let G = G(I)
and R = R(I) be the associated graded ring and the Rees algebra of I, respectively. We
put M = mR + R+. Then [Hi

M(G)]n = (0) for all integers i ∈ Z and n > 0, thanks to
[6, Lemma 2.4]. We put a = x` and b = y`. Then the element a remains superficial with
respect to I and the equality I2 = (a, b)I holds true, whence a2(G) < 0.

We furthermore have the following.

Claim 6. [Hi
M(R)]0 ∼= [Hi

M(G)]0 as A-modules for all i ∈ Z. Hence H0
M(G) = (0), so

that f = at ∈ R is G-regular.

Proof of Claim 6. Let L = R+ and apply the functors Hi
M(∗) to the following canonical

exact sequences

0 → L → R
p→ A → 0 and 0 → L(1) → R → G → 0,

where p denotes the projection, and get the exact sequences

(1) · · · → Hi−1
m (A) → Hi

M(L) → Hi
M(R) → Hi

m(A) → · · · and

(2) · · · → Hi−1
M (G) → Hi

M(L)(1) → Hi
M(R) → Hi

M(G) → Hi+1
M (L)(1) → · · ·

of local cohomology modules. Then by exact sequence (2) we get the isomorphism

[Hi
M(L)]n+1

∼= [Hi
M(R)]n

for n ≥ 1, because [Hi−1
M (G)]n = [Hi

M(G)]n = (0) for n ≥ 1, while we have the isomorphism

[Hi
M(L)]n+1

∼= [Hi
M(R)]n+1

for n ≥ 1, thanks to exact sequence (1). Hence [Hi
M(R)]n ∼= [Hi

M(R)]n+1 for n ≥ 1, which
implies [Hi

M(R)]n = (0) for all i ∈ Z and n ≥ 1, because [Hi
M(R)]n = (0) for n � 0. Thus

by exact sequence (1) we get [Hi
M(L)(1)]n = (0) for all i ∈ Z and n ≥ 0, so that by exact

sequence (2) we see [Hi
M(R)]0 ∼= [Hi

M(G)]0 as A-modules for all i ∈ Z. Considering the
case where i = 1 in exact sequence (2), we have the embedding

0 → H0
M(G) → H1

M(L)(1),

–158–



so that [H0
M(G)]0 = (0), because [H1

M(L)(1)]0 = [H0
M(L)]1 = (0). Hence H0

M(G) = (0),
so that f is G-regular, because (0) :G f is finitely graded. �

Thanks to Serre’s formula (cf. [1, Theorem 4.4.3]), Claim 6 shows that

e2Q(A) =
2∑

i=0

(−1)i`A([H
i
M(G)]0) = −`A([H

1
M(G)]0),

since a2(G) < 0. Therefore to prove

e2Q(A) = −`A

(
[(x`) : y`] ∩Q`

(x`)

)
,

it is suffices to check that

[H1
M(G)]0 ∼=

[(a) : b] ∩ I

(a)

as A-modules.
Let A = A/(a) and I = IA. Then G/fG ∼= G(I), because f = at is G-regular (cf.

Claim 6). We now look at the exact sequence

0 → H0
M(G(I)) → H1

M(G)(−1)
f→ H1

M(G)

of local cohomology modules which is induced from the exact sequence

0 → G(−1)
f→ G → G(I) → 0

of graded G-modules. Then, since [H1
M(G)]n = (0) for all n ≥ 1, we have an isomorphism

[H0
M(G(I))]1 ∼= [H1

M(G)]0

of A-modules and the vanishing [H0
M(G(I)]n = (0) for n ≥ 2.

Look now at the homomorphism

ρ :
[(a) : b] ∩ I

(a)
→ [H0

M(G(I))]1

of A-modules defined by ρ(x) = xt for each x ∈ [(a) : b] ∩ I, where x and xt denote
the images of x in A and xt ∈ [R(I)]1 in G(I), respectively. We will show that the
map ρ is an isomorphism. Take ϕ ∈ [H0

M(G(I))]1 and write ϕ = xt with x ∈ I. Since

[H0
M(G(I))]2 = (0), we have bt · xt = bxt2 = 0 in G(I), whence bx ∈ [(a) + I3] ∩ I2 =

[(a)∩ I2] + I3 = aI + bI2 (recall that I2 = (a, b)I and that a is super-regular with respect
to I). So, we write bx = ai + bj with i ∈ I and j ∈ I2. Then, since b(x − j) = ai ∈ (a),

we have x− j ∈ [(a) : b] ∩ I, whence ϕ = xt = (x− j)t. Thus the map ρ is surjective.
To show that the map ρ is injective, take x ∈ [(a) : b]∩I and suppose that ρ(x) = xt = 0

in G(I). Then

x ∈ [(a) : b] ∩ [(a) + I2] = (a) + [((a) : b) ∩ I2].

To conclude that x ∈ (a), we need the following.

Claim 7. Let n ≥ 2 be an integer. Then [(a) : b] ∩ In ⊆ (a) + [((a) : b) ∩ In+1].
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Proof of Claim 7. Take y ∈ [(a) : b]∩In. Then, since by ∈ (a), we see bt ·ytn = bytn+1 = 0
in G(I). Hence ytn ∈ [H0

M(G(I))]n, because bt is a homogeneous parameter for the graded
ring G(I). Recall now that n ≥ 2, whence [H0

M(G(I))]n = (0), so that ytn = 0. Thus
y ∈ (a) + In+1, whence y ∈ (a) + [((a) : b) ∩ In+1], as claimed. �

Since x ∈ (a) + [((a) : b) ∩ I2], thanks to Claim 7, we get x ∈ (a) + In+1 for all n ≥ 1,
whence x ∈ (a), so that the map ρ is injective. Thus

[H1
M(G)]0 ∼=

[(a) : b] ∩ I

(a)

as A-modules. �

Theorem 8. Suppose that d = 2 and depthA > 0. Let Q = (x, y) be a parameter ideal
in A and assume that x is superficial with respect to Q. Then

−h1(A) ≤ e2Q(A) ≤ 0

and the following three conditions are equivalent.

(1) e2Q(A) = 0.
(2) x, y forms a d-sequence in A.
(3) x`, y` forms a d-sequence in A for all integers ` ≥ 1.

Proof. By Lemma 5 we have

e2Q(A) = −`A

(
[(x`) : y`] ∩ (x, y)`

(x`)

)
≤ 0

for all integers ` � 0. To show that −h1(A) ≤ e2Q(A), we may assume that H1
m(A) is

finitely generated. Take the integer ` � 0 so that the system a = x`, b = y` of parameters
of A is standard. Then since

[(a) : b] ∩Q`

(a)
⊆ (a) : b

(a)
∼= H0

m(A/(a))
∼= H1

m(A),

we get −h1(A) ≤ e2Q(A).
Let us consider the second assertion.
(1) ⇒ (3). Take an integer N ≥ 1 so that

e2Q(A) = −`A

(
[(x`) : y`] ∩ (x, y)`

(x`)

)
for all ` ≥ N (cf. Lemma 5); hence

[(x`) : y`] ∩ (x, y)` = (x`).

Claim 9. [(x`) : y`] ∩ (x, y)` = (x`) for all ` ≥ 1.

Proof of Claim 9. We may assume that 1 ≤ ` < N . Take τ ∈ [(x`) : y`] ∩ (x, y)`. Then,
since yN(xN−`τ) = yN−`xN−`(y`τ) ∈ (xN), we have xN−`τ ∈ [(xN) : yN ]∩ (x, y)N = (xN).
Thus τ ∈ (x`), because x is A-regular (recall that depthA > 0 and x is superficial with
respect to Q). �
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Since x` is A-regular and [(x`) : y`] ∩ (x`, y`) = (x`) by Claim 9, we readily see that
x`, y` is a d-sequence in A.

(3) ⇒ (2) This is clear.
(2) ⇒ (1) It is well-known that e2(x,y)(A) = 0, if depthA > 0 and the system x, y of

parameters forms a d-sequence in A; see Proposition 11 below. �
Passing to the ring A/H0

m(A), thanks to Theorem 8, we readily get the following.

Corollary 10. Suppose that d = 2 and let Q be a parameter ideal in A. Then

h0(A)− h1(A) ≤ e2Q(A) ≤ h0(A).

The results in the following proposition are, more or less, known.

Proposition 11. ([5, Proposition 3.4]) Suppose that d > 0 and let Q = (a1, a2, · · · , ad)
be a parameter ideal in A. Let G = G(Q) and R = R(Q). Let fi = ait ∈ R for 1 ≤ i ≤ d.
Assume that the sequence a1, a2, · · · , ad forms a d-sequence in A. Then we have the
following, where Qi = (a1, a2, · · · , ai) for 0 ≤ i ≤ d.

(1) e0Q(A) = `A(A/Q)− `A ([Qd−1 : ad]/Qd−1).

(2) (−1)ieiQ(A) = h0(A/Qd−i) − h0(A/Qd−i−1) for 1 ≤ i ≤ d − 1 and (−1)dedQ(A) =

h0(A).

(3) `A(A/Q
n+1) =

∑d
i=0(−1)ieiQ(A)

(
n+d−i
d−i

)
for all n ≥ 0, whence `A(A/Q) =

∑d
i=0(−1)ieiQ(A).

(4) f1, f2, · · · , fd forms a d-sequence in G.
(5) H0

M(G) = [H0
M(G)]0 ∼= H0

m(A), where M = mR +R+

(6) [Hi
M(G)]n = (0) for all n > −i and i ∈ Z, whence regG = 0.

Let us note one example of local rings A which are not generalized Cohen-Macaulay
rings but every parameter ideal in A is generated by a system of parameters that forms
a d-sequence in A.

Example 12. Let R be a regular local ring with the maximal ideal n and d = dimR ≥ 2.
LetX1, X2, · · · , Xd be a regular system of parameters ofR. We put p = (X1, X2, · · · , Xd−1)
and D = R/p. Then D is a DVR. Let A = R nD denote the idealization of D over R.
Then A is a Noetherian local ring with the maximal ideal m = n × D, dimA = d, and
depthA = 1. We furthermore have the following.

(1) Λi(A) = {0} for all 1 ≤ i ≤ d such that i 6= d− 1.
(2) Λ0(A) = {n | 0 < n ∈ Z} and Λd−1(A) = {(−1)d−1n | 0 < n ∈ Z}.
(3) After renumbering, every system of parameters in A forms a d-sequence.

The ring A is not a generalized Cohen-Macaulay ring, because H1
m(A) (

∼= H1
n(D)) is not a

finitely generated A-module.

In the rest of Section 3 let us consider the bound for e2Q(Q) in higher dimensional cases.
In the case where dimA ≥ 3 we have the following.

Theorem 13. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥ 3.
Let Q = (a1, a2, · · · , ad) be a parameter ideal in A. Then

−
d−1∑
j=2

(
d− 3

j − 2

)
hj(A) ≤ e2Q(A) ≤

d−2∑
j=1

(
d− 3

j − 1

)
hj(A).
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We have Q·Hj
m(A/(a1, a2, · · · , ak)) = (0) for all k ≥ 0 and j ≥ 1 with j + k ≤ d − 2, if

e2Q(A) =
∑d−2

j=1

(
d−3
j−1

)
hj(A) and if a1, a2, · · · , ad forms a superficial sequence with respect

to Q.

Proof. See [5, Theorem 3.6]. �

The following result guarantees the implication (2) ⇒ (1) and the last assertion in
Theorem 2.

Proposition 14. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥
3 and let Q = (a1, a2, · · · , ad) be a parameter ideal in A. Assume that the sequence
a1, a2, · · · , ad forms a d-sequence in A and Q·Hj

m(A/(a1, a2, · · · , ak)) = (0) for all k ≥ 0
and j ≥ 1 with j + k ≤ d− 2. Then

(−1)ieiQ(A) =
d−i∑
j=1

(
d− i− 1

j − 1

)
hj(A)

for 2 ≤ i ≤ d− 1 and (−1)dedQ(A) = h0(A).

Proof. See [5, Proposition 3.7]. �

4. Proof of Theorem 2

The purpose of this section is to prove Theorem 2. Thanks to Proposition 11 and 14,
we have only to show the following.

Theorem 15. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥ 3
and depthA > 0. Let Q be a parameter ideal in A and assume that e2Q(A) =

∑d−2
j=1

(
d−3
j−1

)
hj(A).

Then Q is generated by a system of parameters which forms a d-sequence in A.

For each ideal a in A (a 6= A) let U(a) denote the unmixed component of a. When
a = (a) with a ∈ A, we write U(a) simply by U(a). We have

U(a) =
∪
n≥0

[(a) :A mn] ,

if A is a generalized Cohen-Macaulay ring with dimA ≥ 2 and a is a part of a system
of parameters in A (cf. [11, Section 2]). The following result is the key in our proof of
Theorem 15.

Proposition 16. Suppose that A is a generalized Cohen-Macaulay ring with d = dimA ≥
2 and depthA > 0. Let Q = (a1, a2, · · · , ad) be a parameter ideal in A. Assume that
adH

1
m(A) = (0) and that the sequence a1, a2, · · · , ad−1 forms a d-sequence in the generalized

Cohen-Macaulay ring A/U(ad). Then

U(a1) ∩ [Q+U(ad)] = (a1).

Proof. See [5, Proposition 4.2]. �

We are now ready to prove Theorem 15.
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Proof of the Theorem 15. We proceed by induction on d. Choose a1, a2, · · · , ad ∈ A so
thatQ = (a1, a2, · · · , ad) and for each 1 ≤ i ≤ d−2, the i+2 elements a1, a2, · · · , ai, ad−1, ad
form a superficial sequence with respect toQ. We will show that there exist b2, b3, · · · , bd ∈
A such that b1 = ad−1, b2, b3, · · · , bd forms a d-sequence in A and Q = (b1, b2, · · · , bd). We
put A = A/(a1), Q = QA, and C = A/H0

m(A) (= A/U(a1)).
Suppose that d = 3. Then

e2QC(C) = e2
Q
(A)− h0(A) = e2Q(A)− h0(A) = h1(A)− h0(A) = 0,

because h1(A) = h0(A) (recall that QH1
m(A) = (0) by Proposition 13). Hence, thanks

to Proposition 8, a2, a3 forms a d-sequence in C, because a2 is superficial for the ideal
QC = (a2, a3)C. Therefore, since a1H

1
m(A) = (0), we have

U(a2) ∩ [Q+U(a1)] = (a2),

by Proposition 16. Let Q = (a2, a3, b3) and B = A/U(a2). Then since e2QB(B) = 0, by
Proposition 8 the sequence b2 = a3, b3 forms a d-sequence in B, because b2 is superficial
for QB. Therefore, since U(a2) ∩ Q ⊆ U(a2) ∩ [Q + U(a1)] = (a2), the sequence b2, b3
forms a d-sequence in A/(a2), so that b1 = a2, b2, b3 forms a d-sequence in A, because b1
is A-regular.

Assume that d ≥ 4 and that our assertion holds true for d−1. Then, thanks to Theorem
13 and its proof, we have

e2Q(A) = e2
Q
(A) = e2QC(C) ≤

d−3∑
j=1

(
d− 4

j − 1

)
hj(C)

=
d−3∑
j=1

(
d− 4

j − 1

)
hj(A)

=
d−2∑
j=1

(
d− 3

j − 1

)
hj(A) = e2Q(A),

because Q·Hj
m(A) = (0) for 1 ≤ j ≤ d− 3. Hence

e2QC(C) =
d−3∑
j=1

(
d− 4

j − 1

)
hj(C).

Therefore, because QC = (a2, a3, · · · , ad)C and the sequence a2, a3, · · · , ai, ad−1, ad is su-
perficial in the ideal QC for all 1 ≤ i ≤ d− 2 where aj denotes the image of aj in C, the
hypothesis of induction on d yields that there exist γ2, γ3, · · · , γd−1 ∈ C such that the se-
quence γ1 = ad−1, γ2, γ3, · · · , γd−1 forms a d-sequence in C and QC = (γ1, γ2, · · · , γd−1)C.
Let us write γj = cj for each 2 ≤ j ≤ d − 1 with cj ∈ Q, where cj denote the image
of cj in C. We put q = (a1, ad−1, c2, c3, · · · , cd−1). Then q is a parameter ideal in A,
a1H

1
m(A) = (0), and ad−1, c2, c3, · · · , cd−1 forms a d-sequence in C. Therefore

U(ad−1) ∩ [Q+U(a1)] = U(ad−1) ∩ [q+U(a1)] = (ad−1)

by Proposition 16, whence U(ad−1) ∩Q = (ad−1).
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Let B = A/U(ad−1). We then have

e2QB(B) =
d−3∑
j=1

(
d− 4

j − 1

)
hj(B)

for the same reason as for the equality e2QC(C) =
∑d−3

j=1

(
d−4
j−1

)
hj(C) (in fact, to show

e2QC(C) =
∑d−3

j=1

(
d−4
j−1

)
hj(C), we only need that a1 is superficial with respect to Q). There-

fore, by the hypothesis of induction on d, we may choose elements β2, β3, · · · , βd ∈ B so
that QB = (β2, β3, · · · , βd)B and the sequence β2, β3, · · · , βd forms a d-sequence in B.
We put b1 = ad−1 and write βj = bj with bj ∈ Q for 2 ≤ j ≤ d, where bj denotes the
image of bj in B. We now put q′ = (b1, b2, · · · , bd). Then q′ is a parameter ideal in A and
because U(b1) ∩Q = (b1), we get

Q ⊆ [q′ +U(b1)] ∩Q = q′ + [U(b1) ∩Q] ⊆ q′ + (b1) = q′;

hence Q = q′. Thus the sequence b2, b3, · · · , bd forms a d-sequence in A/(b1), so that
b1, b2, · · · , bd forms a d-sequence in A, because b1 is A-regular. This complete the proof
of Theorem 15 and that of Theorem 2 as well. �
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