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1. Introduction

Let S := k[x1, . . . , xn] be a polynomial ring over a field k. For a monomial ideal
I ⊂ S, G(I) denotes the set of minimal (monomial) generators of I. We say a monomial
ideal I ⊂ S is Borel fixed (or strongly stable), if m ∈ G(I), xi|m and j < i imply
(xj/xi) ·m ∈ I. Borel fixed ideals are important, since they appear as the generic initial
ideals of homogeneous ideals (if char(k) = 0).

A squarefree monomial ideal I is said to be squarefree strongly stable, if m ∈ G(I),
xi|m, xj ̸ |m and j < i imply (xj/xi) ·m ∈ I. Any monomial m ∈ S with deg(m) = e has
a unique expression

(1.1) m =
e∏

i=1

xαi
with 1 ≤ α1 ≤ α2 ≤ · · · ≤ αe ≤ n.

Now we can consider the squarefree monomial

msq =
e∏

i=1

xαi+i−1

in the “larger” polynomial ring T = k[x1, . . . , xN ] with N ≫ 0. If I ⊂ S is Borel fixed,
then Isq := (msq | m ∈ G(I) ) ⊂ T is squarefree strongly stable. Moreover, for a Borel
fixed ideal I and all i, j, we have βS

i,j(I) = βT
i,j(I

sq). This operation plays a role in the
shifting theory for simplicial complexes (see [1]).

A minimal free resolution of a Borel fixed ideal I has been constructed by Eliahou
and Kervaire [7]. While the minimal free resolution is unique up to isomorphism, its
“description” depends on the choice of a free basis, and further analysis of the minimal
free resolution is still an interesting problem. See, for example, [2, 9, 10, 11, 13]. In this
paper, we will give a new approach which is applicable to both I and Isq. Our main tool
is the “alternative” polarization b-pol(I) of I.

Let

S̃ := k[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ d ]

be the polynomial ring, and set

Θ := {xi,1 − xi,j | 1 ≤ i ≤ n, 2 ≤ j ≤ d } ⊂ S̃.

The first author is partially supported by JST, CREST.
The second author is partially supported by Grant-in-Aid for Scientific Research (c) (no.22540057).
The detailed versions of this paper will be submitted for publication elsewhere.

–143–



Then there is an isomorphism S̃/(Θ) ∼= S induced by S̃ ∋ xi,j 7−→ xi ∈ S. Throughout

this paper, S̃ and Θ are used in this meaning.
Assume that m ∈ G(I) has the expression (1.1). If deg(m) (= e) ≤ d, we set

(1.2) b-pol(m) =
e∏

i=1

xαi,i ∈ S̃.

Note that b-pol(m) is a squarefree monomial. If there is no danger of confusion, b-pol(m)
is denoted by m̃. If m =

∏n
i=1 x

ai
i , then we have

m̃ (= b-pol(m)) =
∏

1≤i≤n
bi−1+1≤j≤bi

xi,j ∈ S̃, where bi :=
i∑

l=1

al.

If deg(m) ≤ d for all m ∈ G(I), we set

b-pol(I) := (b-pol(m) | m ∈ G(I)) ⊂ S̃.

The second author ([16]) showed that if I is Borel fixed, then Ĩ := b-pol(I) is a “polar-

ization” of I, that is, Θ forms an S̃/Ĩ-regular sequence with the natural isomorphism

S̃/(Ĩ + (Θ)) ∼= S/I.

Note that b-pol(−) does not give a polarization for a general monomial ideal, and is
essentially different from the standard polarization. Moreover,

Θ′ = {xi,j − xi+1,j−1 | 1 ≤ i < n, 1 < j ≤ d } ⊂ S̃

forms an S̃/Ĩ-regular sequence too, and we have S̃/(Ĩ + (Θ′)) ∼= T/Isq through S̃ ∋
xi,j 7−→ xi+j−1 ∈ T (if we adjust the value of N = dimT ). The equation βS

i,j(I) = βT
i,j(I

sq)
mentioned above easily follows from this observation.

In this paper, we will construct a minimal S̃-free resolution P̃• of S̃/Ĩ, which is analogous
to the Eliahou-Kervaire resolution of S/I. However, their description can not be lifted to

Ĩ, and we need modification. Clearly, P̃• ⊗S̃ S̃/(Θ) and P̃• ⊗S̃ S̃/(Θ′) give the minimal
free resolutions of S/I and T/Isq respectively.

Under the assumption that a Borel fixed ideal I is generated in one degree (i.e., all

elements of G(I) have the same degree), Nagel and Reiner [13] constructed Ĩ = b-pol(I),

and described a minimal S̃-free resolution of Ĩ explicitly. Their resolution is equivalent
to our description. In this sense, our results are generalizations of those in [13].

In [2], Batzies and Welker tried to construct a minimal free resolutions of monomial
ideals J using Forman’s discrete Morse theory ([8]). If J is shellable (i.e., has linear
quotients, in the sense of [9]), their method works, and we have a Batzies-Welker type
minimal free resolution. However, it is very hard to compute their resolution explicitly.

A Borel fixed ideal I and its polarization Ĩ = b-pol(I) is shellable. We will show that

our resolution P̃• of S̃/Ĩ and the induced resolutions of S/I and T/Isq are Batzies-Welker
type. In particular, these resolutions are cellular. As far as the authors know, an explicit
description of a Batzies-Welker type resolution of a general Borel fixed ideal has never

been obtained before. Finally, we show that the CW complex supporting P̃• is regular.
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2. The Eliahou-Kervaire type resolution of S̃/ b-pol(I)

Throughout the rest of the paper, I is a Borel fixed monomial ideal with degm ≤ d
for all m ∈ G(I). For the definitions of the alternative polarization b-pol(I) of I and
related concepts, consult the previous section. For a monomial m =

∏n
i=1 x

ai
i ∈ S, set

µ(m) := min{ i | ai > 0 } and ν(m) := max{ i | ai > 0 }. In [7], it is shown that any
monomial m ∈ I has a unique expression m = m1 ·m2 with ν(m1) ≤ µ(m2) and m1 ∈ G(I).
Following [7], we set g(m) := m1. For i with i < ν(m), let

bi(m) = (xi/xk) ·m, where k := min{ j | aj > 0, j > i}.
Since I is Borel fixed, m ∈ I implies bi(m) ∈ I.

Definition 1 ([14, Definition 2.1]). For a finite subset F̃ = { (i1, j1), (i2, j2), . . . , (iq, jq) }
of N × N and a monomial m =

∏e
i=1 xαi

=
∏n

i=1 x
ai
i ∈ G(I) with 1 ≤ α1 ≤ α2 ≤ · · · ≤

αe ≤ n, we say the pair (F̃ , m̃) is admissible (for b-pol(I)), if the following are satisfied:

(a) 1 ≤ i1 < i2 < · · · < iq < ν(m),

(b) jr = max{ l | αl ≤ ir }+ 1 (equivalently, jr = 1 +
∑ir

l=1 al) for all r.

For m ∈ G(I), the pair (∅, m̃) is also admissible.

The following are fundamental properties of admissible pairs.

Lemma 2. Let (F̃ , m̃) be an admissible pair with F̃ = { (i1, j1), . . . , (iq, jq) } and m =∏
xai
i ∈ G(I). Then we have the following.

(i) j1 ≤ j2 ≤ · · · ≤ jq.
(ii) xk,jr · b-pol(bir(m)) = xir,jr · b-pol(m), where k = min{ l | l > ir, al > 0 }.

For m ∈ G(I) and an integer i with 1 ≤ i < ν(m), set m⟨i⟩ := g(bi(m)) and m̃⟨i⟩ :=
b-pol(m⟨i⟩). If i ≥ ν(m), we set m⟨i⟩ := m for the convenience. In the situation of Lemma 2,
m̃⟨ir⟩ divides xir,jr · m̃ for all 1 ≤ r ≤ q.

For F̃ = { (i1, j1), . . . , (iq, jq) } and r with 1 ≤ r ≤ q, set F̃r := F̃ \ { (ir, jr) }, and for

an admissible pair (F̃ , m̃) for b-pol(I),

B(F̃ , m̃) := { r | (F̃r, m̃⟨ir⟩) is admissible }.

Lemma 3. Let (F̃ , m̃) be as in Lemma 2.

(i) For all r with 1 ≤ r ≤ q, (F̃r, m̃) is admissible.

(ii) We always have q ∈ B(F̃ , m̃).

(iii) Assume that (F̃r, m̃⟨ir⟩) satisfies the condition (a) of Definition 1. Then r ∈
B(F̃ , m̃) if and only if either jr < jr+1 or r = q.

(iv) For r, s with 1 ≤ r < s ≤ q and jr < js, we have bir(bis(m)) = bis(bir(m)) and
hence (m̃⟨ir⟩)⟨is⟩ = (m̃⟨is⟩)⟨ir⟩.

(v) For r, s with 1 ≤ r < s ≤ q and jr = js, we have bir(m) = bir(bis(m)) and hence
m̃⟨ir⟩ = (m̃⟨is⟩)⟨ir⟩.

Example 4. Let I ⊂ S = k[x1, x2, x3, x4] be the smallest Borel fixed ideal containing
m = (x1)

2x3x4. In this case, m′
⟨i⟩ = g(bi(m

′)) for all m′ ∈ G(I). Hence, we have m⟨1⟩ =

(x1)
3x4, m⟨2⟩ = (x1)

2x2x4 and m⟨3⟩ = (x1)
2(x3)

2. The following 3 pairs are all admissible.
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• (F̃ , m̃) = ({ (1, 3), (2, 3), (3, 4) }, x1,1 x1,2 x3,3 x4,4)

• (F̃2, m̃⟨2⟩) = ({ (1, 3), (3, 4) }, x1,1 x1,2 x2,3 x4,4)

• (F̃3, m̃⟨3⟩) = ({ (1, 3), (2, 3) }, x1,1 x1,2 x3,3 x3,4)

(For this F̃ , ir = r holds and the reader should be careful). However, (F̃1, m̃⟨1⟩) =
({ (2, 3), (3, 4) }, x1,1 x1,2 x1,3 x4,4) does not satisfy the condition (b) of Definition 1. Hence

B(F̃ , m̃) = {2, 3}.
The diagrams of (admissible) pairs are very useful for better understanding. To draw

a diagram of (F̃ , m̃), we put a white square in the (i, j)-th position if (i, j) ∈ F̃ and

a black square there if xi,j divides m̃. If F̃ is maximal among F̃ ′ such that (F̃ ′, m̃) is

admissible, then the diagram of (F̃ , m̃) forms a “right side down stairs” (see the leftmost

and rightmost diagrams of the table below). If (F̃ , m̃) is admissible but F̃ is not maximal,
then some white squares are removed from the diagram for the maximal case. If the pair
is admissible, there is a unique black square in each column and this is the “lowest” of
the squares in the column.

If (F̃ , m̃) is admissible and r ∈ B(F̃ , m̃), then we can get the diagram of (F̃r, m̃⟨ir⟩) from

that of (F̃ , m̃) by the following procedure.

(i) Remove the (sole) black square in the jr-th column.
(ii) Replace the white square in the (ir, jr)-th position by a black one.
(iii) If m⟨ir⟩ ̸= bir(m), erase some squares from the lower-right of the diagram. (This

step does not occur in the next table.)

i

j

4
3
2
1

1 2 3 4

i

j

4
3
2
1

1 2 3 4

i

j

4
3
2
1

1 2 3 4

i

j

4
3
2
1

1 2 3 4

(F̃ , m̃) (F̃1, m̃⟨1⟩) (F̃2, m̃⟨2⟩) (F̃3, m̃⟨3⟩)

admissible not admissible admissible admissible

Next let I ′ be the smallest Borel fixed ideal containing m = (x1)
2x3x4 and (x1)

2x2. For

F̃ = { (1, 3), (2, 3), (3, 4) }, (F̃ , m̃) is admissible again. However m̃⟨2⟩ = (x1)
2x2 in this

time, and (F̃2, m̃⟨2⟩) = ({ (1, 3), (3, 4) }, x1,1 x1,2 x2,3) is no longer admissible. In fact, it

does not satisfy (a) of Definition 1. Hence B(F̃ , m̃) = {3} for b-pol(I ′).

For F = {i1, . . . , iq} ⊂ N with i1 < · · · < iq and m ∈ G(I), Eliahou-Kervaire call the
pair (F,m) admissible for I, if iq < ν(m). In this case, there is a unique sequence j1, . . . , jq
such that (F̃ , m̃) is admissible for Ĩ, where F̃ = { (i1, j1), . . . , (iq, jq) }. In this way, there

is a one-to-one correspondence between the admissible pairs for I and those of Ĩ. As the
free summands of the Eliahou-Kervaire resolution of I are indexed by the admissible pairs

for I, our resolution of Ĩ are indexed by the admissible pairs for Ĩ.
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We will define a Zn×d-graded chain complex P̃• of free S̃-modules as follows. First, set

P̃0 := S̃. For each q ≥ 1, we set

Aq := the set of admissible pairs (F̃ , m̃) for b-pol(I) with #F̃ = q,

and
P̃q :=

⊕
(F̃ ,m̃)∈Aq−1

S̃ e(F̃ , m̃),

where e(F̃ , m̃) is a basis element with

deg
(
e(F̃ , m̃)

)
= deg

m̃×
∏

(ir,jr)∈F̃

xir,jr

 ∈ Zn×d.

We define the S̃-homomorphism ∂ : P̃q → P̃q−1 for q ≥ 2 so that e(F̃ , m̃) with F̃ =
{(i1, j1), . . . , (iq, jq)} is sent to∑

1≤r≤q

(−1)r · xir,jr · e(F̃r, m̃)−
∑

r∈B(F̃ ,m̃)

(−1)r · xir,jr · m̃
m̃⟨ir⟩

· e(F̃r, m̃⟨ir⟩),

and ∂ : P̃1 → P̃0 by e(∅, m̃) 7−→ m̃ ∈ S̃ = P̃0. Clearly, ∂ is a Zn×d-graded homomorphism.
Set

P̃• : · · ·
∂−→ P̃i

∂−→ · · · ∂−→ P̃1
∂−→ P̃0 −→ 0.

Theorem 5 ([14, Theorem 2.6]). The complex P̃• is a Zn×d-graded minimal S̃-free reso-

lution for S̃/ b-pol(I).

Sketch of Proof. Calculation using Lemma 3 shows that ∂ ◦ ∂(e(F̃ , m̃)) = 0 for each ad-

missible pair (F̃ , m̃). That is, P̃• is a chain complex.
Let I = (m1, . . . ,mt) with m1 ≻ · · · ≻ mt, and set Ir := (m1, . . . ,mr). Here ≻ is the

lexicographic order with x1 ≻ x2 ≻ · · · ≻ xn. Then Ir are also Borel fixed. The acyclicity

of the complex P̃ can be shown inductively by means of mapping cones. □
Remark 6. Herzog and Takayama [9] explicitly gave a minimal free resolution of a mono-
mial ideal with linear quotients admitting a regular decomposition function. A Borel fixed

ideal I satisfies this property. However, while Ĩ has linear quotients, the decomposition
function can not be regular. Hence the method of [9] is not applicable to our case.

3. Applications and Remarks

Let I ⊂ S be a Borel fixed ideal, and Θ ⊂ S̃ the sequence defined in Introduction. As

remarked before, there is a one-to-one correspondence between the admissible pairs for Ĩ

and those for I, and if (F̃ , m̃) corresponds to (F,m) then #F̃ = #F . Hence we have

(3.1) βS̃
i,j(Ĩ) = βS

i,j(I)

for all i, j, where S and S̃ are considered to be Z-graded. Of course, this equation is clear,

if one knows the fact that Ĩ is a polarization of I ([16, Theorem 3.4]). Conversely, we can
show this fact by the equation (3.1) and [13, Lemma 6.9].
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Corollary 7 ([16, Theorem 3.4]). The ideal Ĩ is a polarization of I.

The next result also follows from [13, Lemma 6.9].

Corollary 8. P̃• ⊗S̃ S̃/(Θ) is a minimal S-free resolution of S/I.

Remark 9. (1) The correspondence between the admissible pairs for I and those for Ĩ,

does not give a chain map between the Eliahou-Kervaire resolution and our P̃•⊗S̃ S̃/(Θ).
In this sense, two resolutions are not the same. See Example 21 below.

(2) The lcm lattice of I and that of Ĩ are not isomorphic in general. Recall that the
lcm-lattice of a monomial ideal J is the set LCM(J) := { lcm{m | m ∈ σ } | σ ⊂ G(J) }
with the order given by divisibility. Clearly, LCM(J) is a lattice. For the Borel fixed ideal
I = (x2, xy, xz, y2, yz), we have xy ∨ xz = xy ∨ yz = xz ∨ yz = xyz in LCM(I). However,

x̃y ∨ x̃z = x1y2z2, x̃y ∨ ỹz = x1y1y2z2 and x̃z ∨ ỹz = x1y1z2 are all distinct in LCM(Ĩ) .
(3) Eliahou and Kervaire ([7]) constructed minimal free resolutions of stable monomial

ideals, which form a wider class than Borel fixed ideals. However, b-pol(J) is not a
polarization for a stable monomial ideal J in general, and our construction does not
work.

Let a = {a0, a1, a2, . . . } be a non-decreasing sequence of non-negative integers with
a0 = 0, and T = k[x1, . . . , xN ] a polynomial ring with N ≫ 0. In his paper [12],
Murai defined an operator (−)γ(a) acting on monomials and monomial ideals of S. For a
monomial m ∈ S with the expression m =

∏e
i=1 xαi

as (1.1), set

mγ(a) :=
e∏

i=1

xαi+ai−1
∈ T,

and for a monomial ideal I ⊂ S,

Iγ(a) := (mγ(a) | m ∈ G(I)) ⊂ T.

If ai+1 > ai for all i, then Iγ(a) is a squarefree monomial ideal. Particularly in the case
ai = i for all i, (−)γ(a) is just (−)sq mentioned in Introduction.

The operator (−)γ(a) also can be described by b-pol(−) as is shown in [16]. Let La be

the k-subspace of S̃ spanned by {xi,j − xi′,j′ | i+ aj−1 = i′ + aj′−1}, and Θa a basis of La.
For example, we can take {xi,j − xi+1,j−1 | 1 ≤ i < n, 1 < j ≤ d} as Θa in the case ai = i

for all i. With a suitable choice of the number N , the ring homomorphism S̃ → T with

xi,j 7→ xi+aj−1
induces the isomorphism S̃/(Θa) ∼= T .

Proposition 10 ([16, Proposition 4,1]). With the above notation, Θa forms an S̃/Ĩ-

regular sequence, and we have (S̃/(Θa))⊗S̃ (S̃/Ĩ) ∼= T/Iγ(a).

Applying Proposition 10 and [5, Proposition 1.1.5], we have the following.

Corollary 11. The complex P̃• ⊗S̃ S̃/(Θa) is a minimal T -free resolution of T/Iγ(a). In
particular, a minimal free resolution of T/Isq is given in this way.

For a Borel fixed ideal I generated in one degree, Nagel and Reiner [13] constructed a

CW complex, which supports a minimal free resolution of Ĩ (or I, Isq).
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Proposition 12 ([14, Proposition 4.9]). Let I be a Borel fixed ideal generated in one

degree. Then Nagel-Reiner description of a free resolution of Ĩ coincides with our P̃•.

We do not give a proof of the above proposition here, but just remark that if I is

generated in one degree then m⟨i⟩ = bi(m) for all m ∈ G(I) and P̃• becomes simpler.

4. Relation to Batzies-Welker theory

In [2], Batzies and Welker connected the theory of cellular resolutions of monomial
ideals with Forman’s discrete Morse theory ([8]).

Definition 13. A monomial ideal J is called shellable if there is a total order < on G(J)
satisfying the following condition.

(∗) For any m,m′ ∈ G(J) with m = m′, there is an m′′ ∈ G(J) such that m ⊒ m′′,

deg
(

lcm(m,m′′)
m

)
= 1 and lcm(m,m′′) divides lcm(m,m′).

For a Borel fixed ideal I, let < be the total order on G(Ĩ) = { m̃ | m ∈ G(I) } such that
m̃′ < m̃ if and only if m′ ≻ m in the lexicographic order on S with x1 ≻ x2 ≻ · · · ≻ xn.
In the rest of this section, < means this order.

Lemma 14. The order < makes Ĩ shellable.

The following construction is taken from [2, Theorems 3.2 and 4.3]. For the background
of their theory, the reader is recommended to consult the original paper.

For ∅ ̸= σ ⊂ G(Ĩ), let m̃σ denote the largest element of σ with respect to the order <,
and set lcm(σ) := lcm{ m̃ | m̃ ∈ σ }.

Definition 15. We define a total order ≺σ on G(Ĩ) as follows. Set

Nσ := { (m̃σ)⟨i⟩ | 1 ≤ i < ν(mσ), (m̃σ)⟨i⟩ divides lcm(σ) }.

For all m̃ ∈ Nσ and m̃′ ∈ G(Ĩ) \Nσ, define m̃ ≺σ m̃′. The restriction of ≺σ to Nσ is set to

be <, and the same is true for the restriction to G(Ĩ) \Nσ.

Let X be the (#G(Ĩ) − 1)-simplex associated with 2G(Ĩ) (more precisely, 2G(Ĩ) \ {∅}).
Hence we freely identify σ ⊂ G(Ĩ) with the corresponding cell of the simplex X. Let

GX be the directed graph defined as follows. The vertex set of GX is 2G(Ĩ) \ {∅}. For

∅ ̸= σ, σ′ ⊂ G(Ĩ), there is an arrow σ → σ′ if and only if σ ⊃ σ′ and #σ = #σ′ + 1. For
σ = { m̃1, m̃2, . . . , m̃k } with m̃1 ≺σ m̃2 ≺σ · · · ≺σ m̃k (= m̃σ) and l ∈ N with 1 ≤ l < k, set
σl := { m̃k−l, m̃k−l+1, . . . , m̃k } and

u(σ) := sup{ l | ∃m̃ ∈ G(Ĩ) s.t. m̃ ≺σ m̃k−l and m̃| lcm(σl) }.
If u := u(σ) ̸= −∞, we can define ñσ := min≺σ{ m̃ | m̃ divides lcm(σu) }. Let EX be the
set of edges of GX . We define a subset A of EX by

A := {σ ∪ {ñσ} → σ | u(σ) ̸= −∞, ñσ ̸∈ σ }.
It is easy to see that A is a matching, that is, every σ occurs in at most one edges of A.

We say ∅ ̸= σ ⊂ G(Ĩ) is critical, if it does not occurs in any edge of A.
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We have the directed graph GA
X with the vertex set 2G(Ĩ) \ {∅} (i.e., same as GX) and

the set of edges (EX \A)∪ { σ → τ | (τ → σ) ∈ A }. By the proof of [2, Theorem 3.2], we
see that the matching A is acyclic, that is, GA

X has no directed cycle. A directed path in
GA

X is called a gradient path.
Forman’s discrete Morse theory [8] guarantees the existence of a CW complex XA with

the following conditions.

• There is a one-to-one correspondence between the i-cells of XA and the critical

i-cells of X (equivalently, the critical subsets of G(Ĩ) consisting of i+1 elements).
• XA is contractible, that is, homotopy equivalent to X.

The cell of XA corresponding to a critical cell σ of X is denoted by σA. By [2, Proposi-
tion 7.3], the closure of σA contains τA if and only if there is a gradient path from σ to τ .
See also Proposition 18 below and the argument before it.

Assume that ∅ ̸= σ ⊂ G(Ĩ) is critical. Recall that m̃σ denotes the largest element of σ
with respect to <. Take mσ =

∏n
l=1 x

al
l ∈ G(I) with m̃σ = b-pol(mσ), and set q := #σ−1.

Then there are integers i1, . . . , iq with 1 ≤ i1 < . . . < iq < ν(mσ) and

(4.1) σ = { (m̃σ)⟨ir⟩ | 1 ≤ r ≤ q } ∪ {m̃σ}
(see the proof of [2, Proposition 4.3]). Equivalently, we have σ = Nσ ∪ {m̃σ}. Set

jr := 1 +
∑ir

l=1 al for each 1 ≤ r ≤ q, and F̃σ := { (i1, j1), . . . , (iq, jq) }. Then (F̃σ, m̃σ)

is an admissible pair for Ĩ. Conversely, any admissible pair comes from a critical cell

σ ⊂ G(Ĩ) in this way. Hence there is a one-to-one correspondence between critical cells
and admissible pairs.

Let X i
A denote the set of all the critical subset σ ⊂ G(Ĩ) with #σ = i+1, and for (not

necessarily critical) subsets σ, τ of G(Ĩ), let Pσ,τ denote the set of all the gradient paths
from σ to τ . For σ ∈ Xq

A of the form (4.1), e(σ) denotes a basis element with degree
deg(lcm(σ)) ∈ Zn×d. Set

Q̃q =
⊕
σ∈Xq

A

S̃ e(σ) (q ≥ 0).

The differential map Q̃q → Q̃q−1 sends e(σ) to
q∑

r=1

(−1)rxir,jr · e(σ \ {(m̃σ)⟨ir⟩})− (−1)q
∑

τ∈Xq−1
A

P∈Pσ\{m̃σ},τ

m(P) · lcm(σ)

lcm(τ)
· e(τ),

(4.2)

where m(P) = ±1 is the one defined in [2, p.166].
The following is a direct consequence of [2, Theorem 4.3] (and [2, Remark 4.4]).

Proposition 16 (Batzies-Welker, [2]). Q̃• is a minimal free resolution of Ĩ, and has a
cellular structure supported by XA.

Theorem 17 ([14, Theorem 5.11]). Our description of P̃• (more precisely, the truncation

P̃≥1) coincides with the Batzies-Welker resolution Q̃•. That is, P̃• is a cellular resolution
supported by a CW complex XA, which is obtained by discrete Morse theory.

First, note that the following hold.
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(1) If σ is critical, so is σ \ { (m̃σ)⟨ir⟩ } for 1 ≤ r ≤ q.
(2) Let σ and τ be (not necessarily critical) cells with Pσ,τ ̸= ∅. Then lcm(τ) divides

lcm(σ).
(3) Let σ ∈ Xq

A , τ ∈ Xq−1
A and assume that there is a gradient path σ → σ \ {m̃} =

σ0 → σ1 → · · · → σl = τ . Then #σl−1 = #τ + 1 = q + 1, #σi = q or q + 1 for
each i, and σi is not critical for all 0 ≤ i < l. Hence, if l > 1, then m̃ must be m̃σ.

Next, we will show the following.

Proposition 18. Let σ, τ be critical cells with #σ = #τ + 1, and (F̃σ, m̃σ) and (F̃τ , m̃τ )

the admissible pairs corresponding to σ and τ respectively. Set F̃σ = { (i1, j1), . . . , (iq, jq) }
with i1 < · · · < iq. Then Pσ\{m̃σ},τ ̸= ∅ if and only if there is some r ∈ B(F̃σ, m̃σ) with

(F̃τ , m̃τ ) = ((F̃σ)r, (m̃σ)⟨ir⟩). If this is the case, we have #Pσ\{m̃σ},τ = 1.

Sketch of Proof. Only if part follows from the above remark. Note that the second index

j of each xi,j ∈ S̃ restricts the choice of paths and it makes the proof easier.

Next, assuming F̃τ = (F̃σ)r and m̃τ = (m̃σ)⟨ir⟩ for some r ∈ B(F̃σ, m̃σ), we will construct
a gradient path from σ \ {m̃σ} to τ . For short notation, set m̃[s] := (m̃σ)⟨is⟩ and m̃[s,t] :=
((m̃σ)⟨is⟩)⟨it⟩. By (4.1), we have σ0 := (σ \ {m̃σ}) = { m̃[s] | 1 ≤ s ≤ q } and τ =
{ m̃[r,s] | 1 ≤ s ≤ q, s ̸= r } ∪ {m̃[r]}. We can inductively construct a gradient path
σ0 → σ1 → · · · → σt → · · · σ2(q−r+1)r−2 as follows. Write t = 2pr + λ with t ̸= 0,
0 ≤ p ≤ q − r, and 0 ≤ λ < 2r. For 0 < t ≤ 2(q − r), we set

σt =


σt−1 ∪ { m̃[q−p,s] } if λ = 2s− 1 for some 1 ≤ s ≤ r;

σt−1 \ { m̃[q−p+1,s] } if λ = 2s for some 0 < s < r;

σt \ { m̃[q−p+1] } if λ = 0,

where we set m̃[q+1,s] = m̃[s] for all s. In the case m̃[s,t] = m̃[s+1,t], it seems to cause a
problem, but skipping the corresponding part of path, we can avoid the problem. Since

r ∈ B(F̃σ, m̃σ), we have m̃[s,r] = m̃[r,s] for all s > r by Lemma 3 (iv). Hence

σ2(q−r) = { m̃[r+1,s] | 1 ≤ s < r } ∪ { m̃[r] } ∪ { m̃[r,s] | r < s ≤ q }.
Now for s with 0 < s ≤ r − 1, set σt with 2(q − r)r < t ≤ 2(q − r + 1)r − 2 to be
σt−1 ∪{ m̃[r,s] } if s is odd and otherwise σt−1 \ { m̃[r+1,s] }. Then we have σ2(q−r+1)r−2 = τ ,
and the gradient path σ ; τ .

The uniqueness of the path follows from elementally (but lengthy) argument. □
Sketch of Proof of Theorem 17. Recall that there is the one-to-one correspondence be-

tween the critical cells σ ⊂ G(Ĩ) and the admissible pairs (F̃σ, m̃σ). Hence, for each q, we

have the isomorphism Q̃q → P̃q induced by e(σ) 7−→ e(F̃σ, m̃σ).

By Proposition 18, if we forget “coefficients”, the differential map of Q̃• and that of P̃•
are compatible with the maps e(σ) 7−→ e(F̃σ, m̃σ). So it is enough to check the equality
of the coefficients. But it follows from direct computation. □

Corollary 19 ([14, Corollary 5.12]). The free resolution P̃•⊗S̃ S̃/(Θ) (resp. P̃•⊗S̃ S̃/(Θa))

of S/I (resp. T/Iγ(a)) is also a cellular resolution supported by XA. In particular, these
resolutions are Batzies-Welker type.
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We say a CW complex is regular, if for all i the closure σ of any i-cell σ is homeomorphic
to an i-dimensional closed ball, and σ \ σ is the closure of the union of some (i− 1)-cells.
This is a natural condition especially in combinatorics.

Mermin [11] (see also Clark [6]) showed that the Eliahou-Kervaire resolution is cellular
and supported by a regular CW complex. Hence it is a natural question whether the CW

complexXA supporting our P̃• is regular. (Since the discrete Morse theory is an “existence
theorem” and XA might not be unique, the correct statement is “can be regular”. This is
a non-trivial point, but here we do not show how to avoid it).

Theorem 20 ([15]). The CW complex XA of Theorem 17 is regular. In particular, our

resolution P̃• is supported by a regular CW complex.

Sketch of Proof. We basically follow Clark [6], which proves the corresponding statement
for the Eliahou-Kervaire resolution.

We define a finite poset PA as follows:

(i) As the underlying set, PA = (the set of the cells of XA) ∪ {0̂}. Here 0̂ is the least
element.

(ii) For cells σ and τ of XA, σ ⪰ τ in PA if and only if the closure of σ contains τ .

It suffices to show that PA is a CW poset in the sense of [4], and we can use [4,

Proposition 5.5]. By the behavior of the differential map of P̃•, we can check that PA

satisfies the following condition.

• For σ, τ ∈ PA with σ ≻ τ and rank(σ) = rank(τ) + 2, there are exactly two
elements between σ and τ .

Now it remains to show that the interval [ 0̂, σ ] is shellable for all σ, but we can imitate
the argument of Clark [6]. In fact, [ 0̂, σ ] is EL shellable in the sense of [3]. □
Example 21.
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Consider the Borel fixed ideal I = (x2, xy2, xyz, xyw, xz2, xzw). Then b-pol(I) =
(x1x2, x1y2y3, x1y2z3, x1y2w3, x1z2z3, x1z3w3), and easy computation shows that the CW

complex XA, which supports our resolutions P̃• of S̃/Ĩ and P̃• ⊗S̃ S̃/(Θ) of S/I, is the
one illustrated in Figure 1.
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The complex consists of a square pyramid and a tetrahedron glued along trigonal faces
of each. For a Borel fixed ideal generated in one degree, any face of the Nagel-Reiner CW
complex is a product of several simplices. Hence a square pyramid can not appear in the
case of Nagel and Reiner.

We remark that the Eliahou-Kervaire resolution of I is supported by the CW complex
illustrated in Figure 2. This complex consists of two tetrahedrons glued along edges of
each. These figures show visually that the description of the Eliahou-Kervaire resolution
and that of ours are really different.

References

[1] A. Aramova, J. Herzog and T. Hibi, Shifting operations and graded Betti numbers, J. Alg. Combin.
12 (2000) 207–222.

[2] E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions, J. Reine Angew. Math. 543
(2002), 147–168.

[3] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260
(1980) 159–183.

[4] A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), 7–16.
[5] W. Bruns and J. Herzog, Cohen-Macaulay rings, revised edition, Cambridge, 1996.
[6] T.B.P. Clark, A minimal poset resolution of stable ideals, preprint (arXiv:0812.0594).
[7] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990),

1–25.
[8] R. Forman, Morse theory for cell complexes, Adv. in Math., 134 (1998), 90–145.
[9] J. Herzog and Y. Takayama, Resolutions by mapping cones, Homology Homotopy Appl. 4 (2002),

277–294.
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