ALTERNATIVE POLARIZATIONS OF BOREL FIXED IDEALS AND ELIAHOU-KERVAIRE TYPE RESOLUTION

RYOTA OKAZAKI AND KOHJI YANAGAWA

1. INTRODUCTION

Let $S := \mathbb{k}[x_1, \ldots, x_n]$ be a polynomial ring over a field \mathbb{k} . For a monomial ideal $I \subset S$, G(I) denotes the set of minimal (monomial) generators of I. We say a monomial ideal $I \subset S$ is *Borel fixed* (or *strongly stable*), if $\mathbf{m} \in G(I)$, $x_i | \mathbf{m}$ and j < i imply $(x_j/x_i) \cdot \mathbf{m} \in I$. Borel fixed ideals are important, since they appear as the *generic initial ideals* of homogeneous ideals (if char(\mathbb{k}) = 0).

A squarefree monomial ideal I is said to be squarefree strongly stable, if $\mathbf{m} \in G(I)$, $x_i | \mathbf{m}, x_j \not| \mathbf{m}$ and j < i imply $(x_j/x_i) \cdot \mathbf{m} \in I$. Any monomial $\mathbf{m} \in S$ with deg $(\mathbf{m}) = e$ has a unique expression

(1.1)
$$\mathbf{m} = \prod_{i=1}^{e} x_{\alpha_i} \quad \text{with} \quad 1 \le \alpha_1 \le \alpha_2 \le \dots \le \alpha_e \le n.$$

Now we can consider the squarefree monomial

$$\mathsf{m}^{\mathsf{sq}} = \prod_{i=1}^{e} x_{\alpha_i + i - 1}$$

in the "larger" polynomial ring $T = \mathbb{k}[x_1, \ldots, x_N]$ with $N \gg 0$. If $I \subset S$ is Borel fixed, then $I^{sq} := (\mathfrak{m}^{sq} | \mathfrak{m} \in G(I)) \subset T$ is squarefree strongly stable. Moreover, for a Borel fixed ideal I and all i, j, we have $\beta_{i,j}^S(I) = \beta_{i,j}^T(I^{sq})$. This operation plays a role in the shifting theory for simplicial complexes (see [1]).

A minimal free resolution of a Borel fixed ideal I has been constructed by Eliahou and Kervaire [7]. While the minimal free resolution is unique up to isomorphism, its "description" depends on the choice of a free basis, and further analysis of the minimal free resolution is still an interesting problem. See, for example, [2, 9, 10, 11, 13]. In this paper, we will give a new approach which is applicable to both I and I^{sq} . Our main tool is the "alternative" polarization b-pol(I) of I.

Let

$$\widetilde{S} := \mathbb{k}[x_{i,j} \mid 1 \le i \le n, \ 1 \le j \le d]$$

be the polynomial ring, and set

$$\Theta := \{ x_{i,1} - x_{i,j} \mid 1 \le i \le n, \ 2 \le j \le d \} \subset S.$$

The first author is partially supported by JST, CREST.

The second author is partially supported by Grant-in-Aid for Scientific Research (c) (no.22540057).

The detailed versions of this paper will be submitted for publication elsewhere.

Then there is an isomorphism $\widetilde{S}/(\Theta) \cong S$ induced by $\widetilde{S} \ni x_{i,j} \mapsto x_i \in S$. Throughout this paper, \widetilde{S} and Θ are used in this meaning.

Assume that $\mathbf{m} \in G(I)$ has the expression (1.1). If $\deg(\mathbf{m}) (= e) \leq d$, we set

(1.2)
$$\mathsf{b}\text{-}\mathsf{pol}(\mathsf{m}) = \prod_{i=1}^{e} x_{\alpha_{i},i} \in \widetilde{S}.$$

Note that b-pol(m) is a squarefree monomial. If there is no danger of confusion, b-pol(m) is denoted by \widetilde{m} . If $m = \prod_{i=1}^{n} x_i^{a_i}$, then we have

$$\widetilde{\mathsf{m}} (=\mathsf{b}\text{-}\mathsf{pol}(\mathsf{m})) = \prod_{\substack{1 \le i \le n \\ b_{i-1}+1 \le j \le b_i}} x_{i,j} \in \widetilde{S}, \quad \text{where} \quad b_i := \sum_{l=1}^{\iota} a_l.$$

If $\deg(\mathbf{m}) \leq d$ for all $\mathbf{m} \in G(I)$, we set

$$\mathsf{b}\text{-}\mathsf{pol}(I) := (\mathsf{b}\text{-}\mathsf{pol}(\mathsf{m}) \mid \mathsf{m} \in G(I)) \subset \widetilde{S}.$$

The second author ([16]) showed that if I is Borel fixed, then $\tilde{I} := \mathsf{b-pol}(I)$ is a "polarization" of I, that is, Θ forms an \tilde{S}/\tilde{I} -regular sequence with the natural isomorphism

$$\widetilde{S}/(\widetilde{I}+(\Theta)) \cong S/I.$$

Note that b-pol(-) does not give a polarization for a general monomial ideal, and is essentially different from the standard polarization. Moreover,

$$\Theta' = \{ x_{i,j} - x_{i+1,j-1} \mid 1 \le i < n, 1 < j \le d \} \subset S$$

forms an $\widetilde{S}/\widetilde{I}$ -regular sequence too, and we have $\widetilde{S}/(\widetilde{I} + (\Theta')) \cong T/I^{sq}$ through $\widetilde{S} \ni x_{i,j} \mapsto x_{i+j-1} \in T$ (if we adjust the value of $N = \dim T$). The equation $\beta_{i,j}^S(I) = \beta_{i,j}^T(I^{sq})$ mentioned above easily follows from this observation.

In this paper, we will construct a minimal \widetilde{S} -free resolution \widetilde{P}_{\bullet} of $\widetilde{S}/\widetilde{I}$, which is analogous to the Eliahou-Kervaire resolution of S/I. However, their description can *not* be lifted to \widetilde{I} , and we need modification. Clearly, $\widetilde{P}_{\bullet} \otimes_{\widetilde{S}} \widetilde{S}/(\Theta)$ and $\widetilde{P}_{\bullet} \otimes_{\widetilde{S}} \widetilde{S}/(\Theta')$ give the minimal free resolutions of S/I and T/I^{sq} respectively.

Under the assumption that a Borel fixed ideal I is generated in one degree (i.e., all elements of G(I) have the same degree), Nagel and Reiner [13] constructed $\tilde{I} = b\text{-pol}(I)$, and described a minimal \tilde{S} -free resolution of \tilde{I} explicitly. Their resolution is equivalent to our description. In this sense, our results are generalizations of those in [13].

In [2], Batzies and Welker tried to construct a minimal free resolutions of monomial ideals J using Forman's discrete Morse theory ([8]). If J is shellable (i.e., has linear quotients, in the sense of [9]), their method works, and we have a Batzies-Welker type minimal free resolution. However, it is very hard to compute their resolution explicitly.

A Borel fixed ideal I and its polarization I = b-pol(I) is shellable. We will show that our resolution \tilde{P}_{\bullet} of \tilde{S}/\tilde{I} and the induced resolutions of S/I and T/I^{sq} are Batzies-Welker type. In particular, these resolutions are cellular. As far as the authors know, an *explicit* description of a Batzies-Welker type resolution of a general Borel fixed ideal has never been obtained before. Finally, we show that the CW complex supporting \tilde{P}_{\bullet} is *regular*.

2. The Eliahou-Kervaire type resolution of $\widetilde{S}/\operatorname{\mathsf{b-pol}}(I)$

Throughout the rest of the paper, I is a Borel fixed monomial ideal with deg $\mathbf{m} \leq d$ for all $\mathbf{m} \in G(I)$. For the definitions of the alternative polarization b-pol(I) of I and related concepts, consult the previous section. For a monomial $\mathbf{m} = \prod_{i=1}^{n} x_i^{a_i} \in S$, set $\mu(\mathbf{m}) := \min\{i \mid a_i > 0\}$ and $\nu(\mathbf{m}) := \max\{i \mid a_i > 0\}$. In [7], it is shown that any monomial $\mathbf{m} \in I$ has a unique expression $\mathbf{m} = \mathbf{m}_1 \cdot \mathbf{m}_2$ with $\nu(\mathbf{m}_1) \leq \mu(\mathbf{m}_2)$ and $\mathbf{m}_1 \in G(I)$. Following [7], we set $g(\mathbf{m}) := \mathbf{m}_1$. For i with $i < \nu(\mathbf{m})$, let

$$\mathfrak{b}_i(\mathsf{m}) = (x_i/x_k) \cdot \mathsf{m}, \text{ where } k := \min\{j \mid a_j > 0, j > i\}.$$

Since I is Borel fixed, $\mathbf{m} \in I$ implies $\mathfrak{b}_i(\mathbf{m}) \in I$.

Definition 1 ([14, Definition 2.1]). For a finite subset $\widetilde{F} = \{(i_1, j_1), (i_2, j_2), \dots, (i_q, j_q)\}$ of $\mathbb{N} \times \mathbb{N}$ and a monomial $\mathbf{m} = \prod_{i=1}^{e} x_{\alpha_i} = \prod_{i=1}^{n} x_i^{\alpha_i} \in G(I)$ with $1 \leq \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_e \leq n$, we say the pair $(\widetilde{F}, \widetilde{\mathbf{m}})$ is *admissible* (for **b-pol**(I)), if the following are satisfied:

(a) $1 \le i_1 < i_2 < \dots < i_q < \nu(\mathbf{m}),$

(b) $j_r = \max\{l \mid \alpha_l \leq i_r\} + 1$ (equivalently, $j_r = 1 + \sum_{l=1}^{i_r} a_l$) for all r. For $\mathbf{m} \in G(I)$, the pair $(\emptyset, \widetilde{\mathbf{m}})$ is also admissible.

The following are fundamental properties of admissible pairs.

Lemma 2. Let $(\widetilde{F}, \widetilde{m})$ be an admissible pair with $\widetilde{F} = \{(i_1, j_1), \ldots, (i_q, j_q)\}$ and $\mathbf{m} = \prod x_i^{a_i} \in G(I)$. Then we have the following.

(i) $j_1 \leq j_2 \leq \cdots \leq j_q$. (ii) $x_{k,j_r} \cdot b\text{-pol}(\mathfrak{b}_{i_r}(\mathsf{m})) = x_{i_r,j_r} \cdot b\text{-pol}(\mathsf{m}), \text{ where } k = \min\{l \mid l > i_r, a_l > 0\}.$

For $\mathbf{m} \in G(I)$ and an integer i with $1 \leq i < \nu(\mathbf{m})$, set $\mathbf{m}_{\langle i \rangle} := g(\mathfrak{b}_i(\mathbf{m}))$ and $\widetilde{\mathbf{m}}_{\langle i \rangle} := \mathbf{b}$ -pol $(\mathbf{m}_{\langle i \rangle})$. If $i \geq \nu(\mathbf{m})$, we set $\mathbf{m}_{\langle i \rangle} := \mathbf{m}$ for the convenience. In the situation of Lemma 2, $\widetilde{\mathbf{m}}_{\langle i_r \rangle}$ divides $x_{i_r, j_r} \cdot \widetilde{\mathbf{m}}$ for all $1 \leq r \leq q$.

For $\widetilde{F} = \{ (i_1, j_1), \dots, (i_q, j_q) \}$ and r with $1 \leq r \leq q$, set $\widetilde{F}_r := \widetilde{F} \setminus \{ (i_r, j_r) \}$, and for an admissible pair $(\widetilde{F}, \widetilde{m})$ for b-pol(I),

 $B(\widetilde{F},\widetilde{\mathsf{m}}) := \{ r \mid (\widetilde{F}_r, \widetilde{\mathsf{m}}_{\langle i_r \rangle}) \text{ is admissible} \}.$

Lemma 3. Let $(\widetilde{F}, \widetilde{m})$ be as in Lemma 2.

- (i) For all r with $1 \le r \le q_{,} (\widetilde{F}_r, \widetilde{\mathsf{m}})$ is admissible.
- (ii) We always have $q \in B(\widetilde{F}, \widetilde{\mathsf{m}})$.
- (iii) Assume that $(\widetilde{F}_r, \widetilde{\mathsf{m}}_{\langle i_r \rangle})$ satisfies the condition (a) of Definition 1. Then $r \in B(\widetilde{F}, \widetilde{\mathsf{m}})$ if and only if either $j_r < j_{r+1}$ or r = q.
- (iv) For r, s with $1 \leq r < s \leq q$ and $j_r < j_s$, we have $\mathfrak{b}_{i_r}(\mathfrak{b}_{i_s}(\mathsf{m})) = \mathfrak{b}_{i_s}(\mathfrak{b}_{i_r}(\mathsf{m}))$ and hence $(\widetilde{\mathsf{m}}_{\langle i_r \rangle})_{\langle i_s \rangle} = (\widetilde{\mathsf{m}}_{\langle i_s \rangle})_{\langle i_r \rangle}$.
- (v) For r, s with $1 \leq r < s \leq q$ and $j_r = j_s$, we have $\mathfrak{b}_{i_r}(\mathsf{m}) = \mathfrak{b}_{i_r}(\mathfrak{b}_{i_s}(\mathsf{m}))$ and hence $\widetilde{\mathsf{m}}_{\langle i_r \rangle} = (\widetilde{\mathsf{m}}_{\langle i_s \rangle})_{\langle i_r \rangle}$.

Example 4. Let $I \subset S = \mathbb{k}[x_1, x_2, x_3, x_4]$ be the smallest Borel fixed ideal containing $\mathsf{m} = (x_1)^2 x_3 x_4$. In this case, $\mathsf{m}'_{\langle i \rangle} = g(\mathfrak{b}_i(\mathsf{m}'))$ for all $\mathsf{m}' \in G(I)$. Hence, we have $\mathsf{m}_{\langle 1 \rangle} = (x_1)^3 x_4$, $\mathsf{m}_{\langle 2 \rangle} = (x_1)^2 x_2 x_4$ and $\mathsf{m}_{\langle 3 \rangle} = (x_1)^2 (x_3)^2$. The following 3 pairs are all admissible.

- $(\widetilde{F}, \widetilde{\mathsf{m}}) = (\{(1,3), (2,3), (3,4)\}, x_{1,1}, x_{1,2}, x_{3,3}, x_{4,4})$
- $(\widetilde{F}_2, \widetilde{\mathfrak{m}}_{\langle 2 \rangle}) = (\{(1,3), (3,4)\}, x_{1,1}, x_{1,2}, x_{2,3}, x_{4,4})$
- $(\widetilde{F}_3, \widetilde{\mathsf{m}}_{\langle 3 \rangle}) = (\{(1,3), (2,3)\}, x_{1,1} x_{1,2} x_{3,3} x_{3,4})$

(For this \widetilde{F} , $i_r = r$ holds and the reader should be careful). However, $(\widetilde{F}_1, \widetilde{\mathsf{m}}_{\langle 1 \rangle}) = (\{(2,3), (3,4)\}, x_{1,1}, x_{1,2}, x_{1,3}, x_{4,4})$ does not satisfy the condition (b) of Definition 1. Hence $B(\widetilde{F}, \widetilde{\mathsf{m}}) = \{2, 3\}.$

The diagrams of (admissible) pairs are very useful for better understanding. To draw a diagram of (\tilde{F}, \tilde{m}) , we put a white square in the (i, j)-th position if $(i, j) \in \tilde{F}$ and a black square there if $x_{i,j}$ divides \tilde{m} . If \tilde{F} is maximal among \tilde{F}' such that (\tilde{F}', \tilde{m}) is admissible, then the diagram of (\tilde{F}, \tilde{m}) forms a "right side down stairs" (see the leftmost and rightmost diagrams of the table below). If (\tilde{F}, \tilde{m}) is admissible but \tilde{F} is not maximal, then some white squares are removed from the diagram for the maximal case. If the pair is admissible, there is a unique black square in each column and this is the "lowest" of the squares in the column.

If $(\tilde{F}, \tilde{\mathsf{m}})$ is admissible and $r \in B(\tilde{F}, \tilde{\mathsf{m}})$, then we can get the diagram of $(\tilde{F}_r, \tilde{\mathsf{m}}_{\langle i_r \rangle})$ from that of $(\tilde{F}, \tilde{\mathsf{m}})$ by the following procedure.

- (i) Remove the (sole) black square in the j_r -th column.
- (ii) Replace the white square in the (i_r, j_r) -th position by a black one.
- (iii) If $\mathbf{m}_{\langle i_r \rangle} \neq \mathbf{b}_{i_r}(\mathbf{m})$, erase some squares from the lower-right of the diagram. (This step does not occur in the next table.)

Next let I' be the smallest Borel fixed ideal containing $\mathbf{m} = (x_1)^2 x_3 x_4$ and $(x_1)^2 x_2$. For $\widetilde{F} = \{ (1,3), (2,3), (3,4) \}, (\widetilde{F}, \widetilde{\mathbf{m}})$ is admissible again. However $\widetilde{\mathbf{m}}_{\langle 2 \rangle} = (x_1)^2 x_2$ in this time, and $(\widetilde{F}_2, \widetilde{\mathbf{m}}_{\langle 2 \rangle}) = (\{ (1,3), (3,4) \}, x_{1,1} x_{1,2} x_{2,3})$ is no longer admissible. In fact, it does not satisfy (a) of Definition 1. Hence $B(\widetilde{F}, \widetilde{\mathbf{m}}) = \{3\}$ for b-pol(I').

For $F = \{i_1, \ldots, i_q\} \subset \mathbb{N}$ with $i_1 < \cdots < i_q$ and $\mathbf{m} \in G(I)$, Eliahou-Kervaire call the pair (F, \mathbf{m}) admissible for I, if $i_q < \nu(\mathbf{m})$. In this case, there is a unique sequence j_1, \ldots, j_q such that $(\tilde{F}, \tilde{\mathbf{m}})$ is admissible for \tilde{I} , where $\tilde{F} = \{(i_1, j_1), \ldots, (i_q, j_q)\}$. In this way, there is a one-to-one correspondence between the admissible pairs for I and those of \tilde{I} . As the free summands of the Eliahou-Kervaire resolution of I are indexed by the admissible pairs for I, our resolution of \tilde{I} are indexed by the admissible pairs for \tilde{I} .

-146-

We will define a $\mathbb{Z}^{n \times d}$ -graded chain complex \widetilde{P}_{\bullet} of free \widetilde{S} -modules as follows. First, set $\widetilde{P}_0 := \widetilde{S}$. For each $q \ge 1$, we set

 $A_q :=$ the set of admissible pairs $(\widetilde{F}, \widetilde{\mathsf{m}})$ for $\mathsf{b}\text{-pol}(I)$ with $\#\widetilde{F} = q$,

and

$$\widetilde{P}_q := \bigoplus_{(\widetilde{F},\widetilde{\mathsf{m}}) \in A_{q-1}} \widetilde{S} \, e(\widetilde{F},\widetilde{\mathsf{m}})$$

where $e(\widetilde{F}, \widetilde{\mathsf{m}})$ is a basis element with

$$\deg\left(e(\widetilde{F},\widetilde{\mathsf{m}})\right) = \deg\left(\widetilde{\mathsf{m}} \times \prod_{(i_r,j_r)\in\widetilde{F}} x_{i_r,j_r}\right) \in \mathbb{Z}^{n \times d}.$$

We define the \widetilde{S} -homomorphism $\partial : \widetilde{P}_q \to \widetilde{P}_{q-1}$ for $q \ge 2$ so that $e(\widetilde{F}, \widetilde{\mathsf{m}})$ with $\widetilde{F} = \{(i_1, j_1), \ldots, (i_q, j_q)\}$ is sent to

$$\sum_{1 \le r \le q} (-1)^r \cdot x_{i_r, j_r} \cdot e(\widetilde{F}_r, \widetilde{\mathsf{m}}) - \sum_{r \in B(\widetilde{F}, \widetilde{\mathsf{m}})} (-1)^r \cdot \frac{x_{i_r, j_r} \cdot \widetilde{\mathsf{m}}}{\widetilde{\mathsf{m}}_{\langle i_r \rangle}} \cdot e(\widetilde{F}_r, \widetilde{\mathsf{m}}_{\langle i_r \rangle}),$$

and $\partial: \widetilde{P}_1 \to \widetilde{P}_0$ by $e(\emptyset, \widetilde{\mathsf{m}}) \longmapsto \widetilde{\mathsf{m}} \in \widetilde{S} = \widetilde{P}_0$. Clearly, ∂ is a $\mathbb{Z}^{n \times d}$ -graded homomorphism. Set

$$\widetilde{P}_{\bullet}:\cdots \xrightarrow{\partial} \widetilde{P}_{i} \xrightarrow{\partial} \cdots \xrightarrow{\partial} \widetilde{P}_{1} \xrightarrow{\partial} \widetilde{P}_{0} \longrightarrow 0$$

Theorem 5 ([14, Theorem 2.6]). The complex \widetilde{P}_{\bullet} is a $\mathbb{Z}^{n \times d}$ -graded minimal \widetilde{S} -free resolution for $\widetilde{S}/\mathsf{b}\text{-pol}(I)$.

Sketch of Proof. Calculation using Lemma 3 shows that $\partial \circ \partial(e(\widetilde{F}, \widetilde{\mathsf{m}})) = 0$ for each admissible pair $(\widetilde{F}, \widetilde{\mathsf{m}})$. That is, \widetilde{P}_{\bullet} is a chain complex.

Let $I = (\mathsf{m}_1, \ldots, \mathsf{m}_t)$ with $\mathsf{m}_1 \succ \cdots \succ \mathsf{m}_t$, and set $I_r := (\mathsf{m}_1, \ldots, \mathsf{m}_r)$. Here \succ is the lexicographic order with $x_1 \succ x_2 \succ \cdots \succ x_n$. Then I_r are also Borel fixed. The acyclicity of the complex \widetilde{P} can be shown inductively by means of mapping cones.

Remark 6. Herzog and Takayama [9] explicitly gave a minimal free resolution of a monomial ideal with *linear quotients* admitting a *regular decomposition function*. A Borel fixed ideal I satisfies this property. However, while \tilde{I} has linear quotients, the decomposition function can not be regular. Hence the method of [9] is not applicable to our case.

3. Applications and Remarks

Let $I \subset S$ be a Borel fixed ideal, and $\Theta \subset \widetilde{S}$ the sequence defined in Introduction. As remarked before, there is a one-to-one correspondence between the admissible pairs for \widetilde{I} and those for I, and if $(\widetilde{F}, \widetilde{m})$ corresponds to (F, m) then $\#\widetilde{F} = \#F$. Hence we have

(3.1)
$$\beta_{i,j}^S(\widetilde{I}) = \beta_{i,j}^S(I)$$

for all i, j, where S and \tilde{S} are considered to be \mathbb{Z} -graded. Of course, this equation is clear, if one knows the fact that \tilde{I} is a polarization of I ([16, Theorem 3.4]). Conversely, we can show this fact by the equation (3.1) and [13, Lemma 6.9].

-147-

Corollary 7 ([16, Theorem 3.4]). The ideal \tilde{I} is a polarization of I.

The next result also follows from [13, Lemma 6.9].

Corollary 8. $\widetilde{P}_{\bullet} \otimes_{\widetilde{S}} \widetilde{S}/(\Theta)$ is a minimal S-free resolution of S/I.

Remark 9. (1) The correspondence between the admissible pairs for I and those for I, does not give a chain map between the Eliahou-Kervaire resolution and our $\widetilde{P}_{\bullet} \otimes_{\widetilde{S}} \widetilde{S}/(\Theta)$. In this sense, two resolutions are not the same. See Example 21 below.

(2) The *lcm lattice* of I and that of \tilde{I} are not isomorphic in general. Recall that the lcm-lattice of a monomial ideal J is the set $\text{LCM}(J) := \{ \text{lcm}\{\mathbf{m} \mid \mathbf{m} \in \sigma\} \mid \sigma \subset G(J) \}$ with the order given by divisibility. Clearly, LCM(J) is a lattice. For the Borel fixed ideal $I = (x^2, xy, xz, y^2, yz)$, we have $xy \lor xz = xy \lor yz = xz \lor yz = xyz$ in LCM(I). However, $\widetilde{xy} \lor \widetilde{xz} = x_1y_2z_2, \ \widetilde{xy} \lor \widetilde{yz} = x_1y_1y_2z_2$ and $\ \widetilde{xz} \lor \widetilde{yz} = x_1y_1z_2$ are all distinct in $\text{LCM}(\widetilde{I})$.

(3) Eliahou and Kervaire ([7]) constructed minimal free resolutions of *stable monomial ideals*, which form a wider class than Borel fixed ideals. However, b-pol(J) is not a polarization for a stable monomial ideal J in general, and our construction does not work.

Let $a = \{a_0, a_1, a_2, ...\}$ be a non-decreasing sequence of non-negative integers with $a_0 = 0$, and $T = \mathbb{k}[x_1, ..., x_N]$ a polynomial ring with $N \gg 0$. In his paper [12], Murai defined an operator $(-)^{\gamma(a)}$ acting on monomials and monomial ideals of S. For a monomial $\mathbf{m} \in S$ with the expression $\mathbf{m} = \prod_{i=1}^{e} x_{\alpha_i}$ as (1.1), set

$$\mathsf{m}^{\gamma(a)} := \prod_{i=1}^{e} x_{\alpha_i + a_{i-1}} \in T,$$

and for a monomial ideal $I \subset S$,

$$I^{\gamma(a)} := (\mathsf{m}^{\gamma(a)} \mid \mathsf{m} \in G(I)) \subset T.$$

If $a_{i+1} > a_i$ for all i, then $I^{\gamma(a)}$ is a squarefree monomial ideal. Particularly in the case $a_i = i$ for all i, $(-)^{\gamma(a)}$ is just $(-)^{sq}$ mentioned in Introduction. The operator $(-)^{\gamma(a)}$ also can be described by **b-pol**(-) as is shown in [16]. Let L_a be

The operator $(-)^{\gamma(a)}$ also can be described by **b**-pol(-) as is shown in [16]. Let L_a be the k-subspace of \widetilde{S} spanned by $\{x_{i,j} - x_{i',j'} \mid i + a_{j-1} = i' + a_{j'-1}\}$, and Θ_a a basis of L_a . For example, we can take $\{x_{i,j} - x_{i+1,j-1} \mid 1 \leq i < n, 1 < j \leq d\}$ as Θ_a in the case $a_i = i$ for all *i*. With a suitable choice of the number *N*, the ring homomorphism $\widetilde{S} \to T$ with $x_{i,j} \mapsto x_{i+a_{j-1}}$ induces the isomorphism $\widetilde{S}/(\Theta_a) \cong T$.

Proposition 10 ([16, Proposition 4,1]). With the above notation, Θ_a forms an $\widetilde{S}/\widetilde{I}$ regular sequence, and we have $(\widetilde{S}/(\Theta_a)) \otimes_{\widetilde{S}} (\widetilde{S}/\widetilde{I}) \cong T/I^{\gamma(a)}$.

Applying Proposition 10 and [5, Proposition 1.1.5], we have the following.

Corollary 11. The complex $\widetilde{P}_{\bullet} \otimes_{\widetilde{S}} \widetilde{S}/(\Theta_a)$ is a minimal *T*-free resolution of $T/I^{\gamma(a)}$. In particular, a minimal free resolution of T/I^{sq} is given in this way.

For a Borel fixed ideal I generated in one degree, Nagel and Reiner [13] constructed a CW complex, which supports a minimal free resolution of \tilde{I} (or I, I^{sq}).

Proposition 12 ([14, Proposition 4.9]). Let I be a Borel fixed ideal generated in one degree. Then Nagel-Reiner description of a free resolution of \tilde{I} coincides with our \tilde{P}_{\bullet} .

We do not give a proof of the above proposition here, but just remark that if I is generated in one degree then $\mathbf{m}_{\langle i \rangle} = \mathbf{b}_i(\mathbf{m})$ for all $\mathbf{m} \in G(I)$ and \widetilde{P}_{\bullet} becomes simpler.

4. Relation to Batzies-Welker theory

In [2], Batzies and Welker connected the theory of *cellular resolutions* of monomial ideals with Forman's discrete Morse theory ([8]).

Definition 13. A monomial ideal J is called *shellable* if there is a total order \sqsubset on G(J) satisfying the following condition.

(*) For any $\mathbf{m}, \mathbf{m}' \in G(J)$ with $\mathbf{m} \supseteq \mathbf{m}'$, there is an $\mathbf{m}'' \in G(J)$ such that $\mathbf{m} \supseteq \mathbf{m}''$, $\deg\left(\frac{\operatorname{lcm}(\mathbf{m},\mathbf{m}'')}{\mathbf{m}}\right) = 1$ and $\operatorname{lcm}(\mathbf{m},\mathbf{m}'')$ divides $\operatorname{lcm}(\mathbf{m},\mathbf{m}')$.

For a Borel fixed ideal I, let \Box be the total order on $G(\widetilde{I}) = \{ \widetilde{\mathsf{m}} \mid \mathsf{m} \in G(I) \}$ such that $\widetilde{\mathsf{m}}' \sqsubset \widetilde{\mathsf{m}}$ if and only if $\mathsf{m}' \succ \mathsf{m}$ in the lexicographic order on S with $x_1 \succ x_2 \succ \cdots \succ x_n$. In the rest of this section, \Box means this order.

Lemma 14. The order \sqsubset makes \tilde{I} shellable.

The following construction is taken from [2, Theorems 3.2 and 4.3]. For the background of their theory, the reader is recommended to consult the original paper.

For $\emptyset \neq \sigma \subset G(I)$, let $\widetilde{\mathsf{m}}_{\sigma}$ denote the largest element of σ with respect to the order \sqsubset , and set $\operatorname{lcm}(\sigma) := \operatorname{lcm}\{ \widetilde{\mathsf{m}} \mid \widetilde{\mathsf{m}} \in \sigma \}$.

Definition 15. We define a total order \prec_{σ} on $G(\widetilde{I})$ as follows. Set

$$N_{\sigma} := \{ (\widetilde{\mathsf{m}}_{\sigma})_{\langle i \rangle} \mid 1 \leq i < \nu(\mathsf{m}_{\sigma}), \ (\widetilde{\mathsf{m}}_{\sigma})_{\langle i \rangle} \text{ divides } \operatorname{lcm}(\sigma) \}.$$

For all $\widetilde{\mathsf{m}} \in N_{\sigma}$ and $\widetilde{\mathsf{m}}' \in G(\widetilde{I}) \setminus N_{\sigma}$, define $\widetilde{\mathsf{m}} \prec_{\sigma} \widetilde{\mathsf{m}}'$. The restriction of \prec_{σ} to N_{σ} is set to be \sqsubset , and the same is true for the restriction to $G(\widetilde{I}) \setminus N_{\sigma}$.

Let X be the $(\#G(\widetilde{I}) - 1)$ -simplex associated with $2^{G(\widetilde{I})}$ (more precisely, $2^{G(\widetilde{I})} \setminus \{\emptyset\}$). Hence we freely identify $\sigma \subset G(\widetilde{I})$ with the corresponding cell of the simplex X. Let G_X be the directed graph defined as follows. The vertex set of G_X is $2^{G(\widetilde{I})} \setminus \{\emptyset\}$. For $\emptyset \neq \sigma, \sigma' \subset G(\widetilde{I})$, there is an arrow $\sigma \to \sigma'$ if and only if $\sigma \supset \sigma'$ and $\#\sigma = \#\sigma' + 1$. For $\sigma = \{\widetilde{m}_1, \widetilde{m}_2, \ldots, \widetilde{m}_k\}$ with $\widetilde{m}_1 \prec_{\sigma} \widetilde{m}_2 \prec_{\sigma} \cdots \prec_{\sigma} \widetilde{m}_k (= \widetilde{m}_{\sigma})$ and $l \in \mathbb{N}$ with $1 \leq l < k$, set $\sigma_l := \{\widetilde{m}_{k-l}, \widetilde{m}_{k-l+1}, \ldots, \widetilde{m}_k\}$ and

$$u(\sigma) := \sup\{ l \mid \exists \widetilde{\mathsf{m}} \in G(I) \text{ s.t. } \widetilde{\mathsf{m}} \prec_{\sigma} \widetilde{\mathsf{m}}_{k-l} \text{ and } \widetilde{\mathsf{m}} | \operatorname{lcm}(\sigma_l) \}.$$

If $u := u(\sigma) \neq -\infty$, we can define $\widetilde{\mathsf{n}}_{\sigma} := \min_{\prec_{\sigma}} \{ \widetilde{\mathsf{m}} \mid \widetilde{\mathsf{m}} \text{ divides } \operatorname{lcm}(\sigma_u) \}$. Let E_X be the set of edges of G_X . We define a subset A of E_X by

$$A := \{ \sigma \cup \{ \widetilde{\mathsf{n}}_{\sigma} \} \to \sigma \mid u(\sigma) \neq -\infty, \widetilde{\mathsf{n}}_{\sigma} \notin \sigma \}.$$

It is easy to see that A is a *matching*, that is, every σ occurs in at most one edges of A. We say $\emptyset \neq \sigma \subset G(\widetilde{I})$ is *critical*, if it does not occurs in any edge of A. We have the directed graph G_X^A with the vertex set $2^{G(\tilde{I})} \setminus \{\emptyset\}$ (i.e., same as G_X) and the set of edges $(E_X \setminus A) \cup \{\sigma \to \tau \mid (\tau \to \sigma) \in A\}$. By the proof of [2, Theorem 3.2], we see that the matching A is *acyclic*, that is, G_X^A has no directed cycle. A directed path in G_X^A is called a *gradient path*.

Forman's discrete Morse theory [8] guarantees the existence of a CW complex X_A with the following conditions.

- There is a one-to-one correspondence between the *i*-cells of X_A and the *critical i*-cells of X (equivalently, the critical subsets of $G(\tilde{I})$ consisting of i + 1 elements).
- X_A is contractible, that is, homotopy equivalent to X.

The cell of X_A corresponding to a critical cell σ of X is denoted by σ_A . By [2, Proposition 7.3], the closure of σ_A contains τ_A if and only if there is a gradient path from σ to τ . See also Proposition 18 below and the argument before it.

Assume that $\emptyset \neq \sigma \subset G(I)$ is critical. Recall that $\widetilde{\mathsf{m}}_{\sigma}$ denotes the largest element of σ with respect to \Box . Take $\mathsf{m}_{\sigma} = \prod_{l=1}^{n} x_{l}^{a_{l}} \in G(I)$ with $\widetilde{\mathsf{m}}_{\sigma} = \mathsf{b-pol}(\mathsf{m}_{\sigma})$, and set $q := \#\sigma - 1$. Then there are integers i_{1}, \ldots, i_{q} with $1 \leq i_{1} < \ldots < i_{q} < \nu(\mathsf{m}_{\sigma})$ and

(4.1)
$$\sigma = \{ (\widetilde{\mathsf{m}}_{\sigma})_{\langle i_r \rangle} \mid 1 \le r \le q \} \cup \{ \widetilde{\mathsf{m}}_{\sigma} \}$$

(see the proof of [2, Proposition 4.3]). Equivalently, we have $\sigma = N_{\sigma} \cup \{\widetilde{\mathsf{m}}_{\sigma}\}$. Set $j_r := 1 + \sum_{l=1}^{i_r} a_l$ for each $1 \leq r \leq q$, and $\widetilde{F}_{\sigma} := \{(i_1, j_1), \ldots, (i_q, j_q)\}$. Then $(\widetilde{F}_{\sigma}, \widetilde{\mathsf{m}}_{\sigma})$ is an admissible pair for \widetilde{I} . Conversely, any admissible pair comes from a critical cell $\sigma \subset G(\widetilde{I})$ in this way. Hence there is a one-to-one correspondence between critical cells and admissible pairs.

Let X_A^i denote the set of all the critical subset $\sigma \subset G(\widetilde{I})$ with $\#\sigma = i + 1$, and for (not necessarily critical) subsets σ, τ of $G(\widetilde{I})$, let $\mathcal{P}_{\sigma,\tau}$ denote the set of all the gradient paths from σ to τ . For $\sigma \in X_A^q$ of the form (4.1), $e(\sigma)$ denotes a basis element with degree $\deg(\operatorname{lcm}(\sigma)) \in \mathbb{Z}^{n \times d}$. Set

$$\widetilde{Q}_q = \bigoplus_{\sigma \in X_A^q} \widetilde{S} e(\sigma) \qquad (q \ge 0).$$

The differential map $\widetilde{Q}_q \to \widetilde{Q}_{q-1}$ sends $e(\sigma)$ to

(4.2)
$$\sum_{r=1}^{q} (-1)^r x_{i_r, j_r} \cdot e(\sigma \setminus \{(\widetilde{\mathsf{m}}_{\sigma})_{\langle i_r \rangle}\}) - (-1)^q \sum_{\substack{\tau \in X_A^{q-1} \\ \mathcal{P} \in \mathcal{P}_{\sigma \setminus \{\widetilde{\mathsf{m}}_{\sigma}\}, \tau}}} m(\mathcal{P}) \cdot \frac{\operatorname{lcm}(\sigma)}{\operatorname{lcm}(\tau)} \cdot e(\tau),$$

where $m(\mathcal{P}) = \pm 1$ is the one defined in [2, p.166].

The following is a direct consequence of [2, Theorem 4.3] (and [2, Remark 4.4]).

Proposition 16 (Batzies-Welker, [2]). \widetilde{Q}_{\bullet} is a minimal free resolution of \widetilde{I} , and has a cellular structure supported by X_A .

Theorem 17 ([14, Theorem 5.11]). Our description of \widetilde{P}_{\bullet} (more precisely, the truncation $\widetilde{P}_{\geq 1}$) coincides with the Batzies-Welker resolution \widetilde{Q}_{\bullet} . That is, \widetilde{P}_{\bullet} is a cellular resolution supported by a CW complex X_A , which is obtained by discrete Morse theory.

First, note that the following hold.

-150-

- (1) If σ is critical, so is $\sigma \setminus \{ (\widetilde{\mathsf{m}}_{\sigma})_{\langle i_r \rangle} \}$ for $1 \leq r \leq q$.
- (2) Let σ and τ be (not necessarily critical) cells with $\mathcal{P}_{\sigma,\tau} \neq \emptyset$. Then $\operatorname{lcm}(\tau)$ divides $\operatorname{lcm}(\sigma)$.
- (3) Let $\sigma \in X_A^q$, $\tau \in X_A^{q-1}$ and assume that there is a gradient path $\sigma \to \sigma \setminus \{\widetilde{\mathsf{m}}\} = \sigma_0 \to \sigma_1 \to \cdots \to \sigma_l = \tau$. Then $\#\sigma_{l-1} = \#\tau + 1 = q + 1$, $\#\sigma_i = q$ or q + 1 for each *i*, and σ_i is not critical for all $0 \le i < l$. Hence, if l > 1, then $\widetilde{\mathsf{m}}$ must be $\widetilde{\mathsf{m}}_{\sigma}$.

Next, we will show the following.

Proposition 18. Let σ, τ be critical cells with $\#\sigma = \#\tau + 1$, and $(\tilde{F}_{\sigma}, \tilde{m}_{\sigma})$ and $(\tilde{F}_{\tau}, \tilde{m}_{\tau})$ the admissible pairs corresponding to σ and τ respectively. Set $\tilde{F}_{\sigma} = \{(i_1, j_1), \ldots, (i_q, j_q)\}$ with $i_1 < \cdots < i_q$. Then $\mathcal{P}_{\sigma \setminus \{\tilde{m}_\sigma\}, \tau} \neq \emptyset$ if and only if there is some $r \in B(\tilde{F}_{\sigma}, \tilde{m}_{\sigma})$ with $(\tilde{F}_{\tau}, \tilde{m}_{\tau}) = ((\tilde{F}_{\sigma})_r, (\tilde{m}_{\sigma})_{\langle i_r \rangle})$. If this is the case, we have $\#\mathcal{P}_{\sigma \setminus \{\tilde{m}_{\sigma}\}, \tau} = 1$.

Sketch of Proof. Only if part follows from the above remark. Note that the second index j of each $x_{i,j} \in \widetilde{S}$ restricts the choice of paths and it makes the proof easier.

Next, assuming $\widetilde{F}_{\tau} = (\widetilde{F}_{\sigma})_r$ and $\widetilde{\mathfrak{m}}_{\tau} = (\widetilde{\mathfrak{m}}_{\sigma})_{\langle i_r \rangle}$ for some $r \in B(\widetilde{F}_{\sigma}, \widetilde{\mathfrak{m}}_{\sigma})$, we will construct a gradient path from $\sigma \setminus \{\widetilde{\mathfrak{m}}_{\sigma}\}$ to τ . For short notation, set $\widetilde{\mathfrak{m}}_{[s]} := (\widetilde{\mathfrak{m}}_{\sigma})_{\langle i_s \rangle}$ and $\widetilde{\mathfrak{m}}_{[s,t]} := ((\widetilde{\mathfrak{m}}_{\sigma})_{\langle i_s \rangle})_{\langle i_t \rangle}$. By (4.1), we have $\sigma_0 := (\sigma \setminus \{\widetilde{\mathfrak{m}}_{\sigma}\}) = \{\widetilde{\mathfrak{m}}_{[s]} \mid 1 \leq s \leq q\}$ and $\tau = \{\widetilde{\mathfrak{m}}_{[r,s]} \mid 1 \leq s \leq q, s \neq r\} \cup \{\widetilde{\mathfrak{m}}_{[r]}\}$. We can inductively construct a gradient path $\sigma_0 \to \sigma_1 \to \cdots \to \sigma_t \to \cdots \to \sigma_{2(q-r+1)r-2}$ as follows. Write $t = 2pr + \lambda$ with $t \neq 0$, $0 \leq p \leq q-r$, and $0 \leq \lambda < 2r$. For $0 < t \leq 2(q-r)$, we set

$$\sigma_t = \begin{cases} \sigma_{t-1} \cup \{ \widetilde{\mathsf{m}}_{[q-p,s]} \} & \text{if } \lambda = 2s - 1 \text{ for some } 1 \le s \le r; \\ \sigma_{t-1} \setminus \{ \widetilde{\mathsf{m}}_{[q-p+1,s]} \} & \text{if } \lambda = 2s \text{ for some } 0 < s < r; \\ \sigma_t \setminus \{ \widetilde{\mathsf{m}}_{[q-p+1]} \} & \text{if } \lambda = 0, \end{cases}$$

where we set $\widetilde{\mathsf{m}}_{[q+1,s]} = \widetilde{\mathsf{m}}_{[s]}$ for all s. In the case $\widetilde{\mathsf{m}}_{[s,t]} = \widetilde{\mathsf{m}}_{[s+1,t]}$, it seems to cause a problem, but skipping the corresponding part of path, we can avoid the problem. Since $r \in B(\widetilde{F}_{\sigma}, \widetilde{\mathsf{m}}_{\sigma})$, we have $\widetilde{\mathsf{m}}_{[s,r]} = \widetilde{\mathsf{m}}_{[r,s]}$ for all s > r by Lemma 3 (iv). Hence

$$\sigma_{2(q-r)} = \{ \widetilde{\mathsf{m}}_{[r+1,s]} \mid 1 \le s < r \} \cup \{ \widetilde{\mathsf{m}}_{[r]} \} \cup \{ \widetilde{\mathsf{m}}_{[r,s]} \mid r < s \le q \}.$$

Now for s with $0 < s \leq r-1$, set σ_t with $2(q-r)r < t \leq 2(q-r+1)r-2$ to be $\sigma_{t-1} \cup \{ \widetilde{\mathsf{m}}_{[r,s]} \}$ if s is odd and otherwise $\sigma_{t-1} \setminus \{ \widetilde{\mathsf{m}}_{[r+1,s]} \}$. Then we have $\sigma_{2(q-r+1)r-2} = \tau$, and the gradient path $\sigma \rightsquigarrow \tau$.

The uniqueness of the path follows from elementally (but lengthy) argument. \Box

Sketch of Proof of Theorem 17. Recall that there is the one-to-one correspondence between the critical cells $\sigma \subset G(\widetilde{I})$ and the admissible pairs $(\widetilde{F}_{\sigma}, \widetilde{\mathfrak{m}}_{\sigma})$. Hence, for each q, we have the isomorphism $\widetilde{Q}_q \to \widetilde{P}_q$ induced by $e(\sigma) \longmapsto e(\widetilde{F}_{\sigma}, \widetilde{\mathfrak{m}}_{\sigma})$.

By Proposition 18, if we forget "coefficients", the differential map of \widetilde{Q}_{\bullet} and that of \widetilde{P}_{\bullet} are compatible with the maps $e(\sigma) \longmapsto e(\widetilde{F}_{\sigma}, \widetilde{\mathfrak{m}}_{\sigma})$. So it is enough to check the equality of the coefficients. But it follows from direct computation.

Corollary 19 ([14, Corollary 5.12]). The free resolution $\widetilde{P}_{\bullet} \otimes_{\widetilde{S}} \widetilde{S}/(\Theta)$ (resp. $\widetilde{P}_{\bullet} \otimes_{\widetilde{S}} \widetilde{S}/(\Theta_a)$) of S/I (resp. $T/I^{\gamma(a)}$) is also a cellular resolution supported by X_A . In particular, these resolutions are Batzies-Welker type.

We say a CW complex is *regular*, if for all *i* the closure $\overline{\sigma}$ of any *i*-cell σ is homeomorphic to an *i*-dimensional closed ball, and $\overline{\sigma} \setminus \sigma$ is the closure of the union of some (i-1)-cells. This is a natural condition especially in combinatorics.

Mermin [11] (see also Clark [6]) showed that the Eliahou-Kervaire resolution is cellular and supported by a regular CW complex. Hence it is a natural question whether the CW complex X_A supporting our \tilde{P}_{\bullet} is regular. (Since the discrete Morse theory is an "existence theorem" and X_A might not be unique, the *correct* statement is "*can be* regular". This is a non-trivial point, but here we do not show how to avoid it).

Theorem 20 ([15]). The CW complex X_A of Theorem 17 is regular. In particular, our resolution \tilde{P}_{\bullet} is supported by a regular CW complex.

Sketch of Proof. We basically follow Clark [6], which proves the corresponding statement for the Eliahou-Kervaire resolution.

We define a finite poset P_A as follows:

- (i) As the underlying set, $P_A = (\text{the set of the cells of } X_A) \cup \{\hat{0}\}$. Here $\hat{0}$ is the least element.
- (ii) For cells σ and τ of X_A , $\sigma \succeq \tau$ in P_A if and only if the closure of σ contains τ .

It suffices to show that P_A is a *CW poset* in the sense of [4], and we can use [4, Proposition 5.5]. By the behavior of the differential map of \tilde{P}_{\bullet} , we can check that P_A satisfies the following condition.

• For $\sigma, \tau \in P_A$ with $\sigma \succ \tau$ and $\operatorname{rank}(\sigma) = \operatorname{rank}(\tau) + 2$, there are exactly two elements between σ and τ .

Now it remains to show that the interval $[\hat{0}, \sigma]$ is shellable for all σ , but we can imitate the argument of Clark [6]. In fact, $[\hat{0}, \sigma]$ is *EL shellable* in the sense of [3].

Example 21.

Figure 1

FIGURE 2

Consider the Borel fixed ideal $I = (x^2, xy^2, xyz, xyw, xz^2, xzw)$. Then $b\text{-pol}(I) = (x_1x_2, x_1y_2y_3, x_1y_2z_3, x_1y_2w_3, x_1z_2z_3, x_1z_3w_3)$, and easy computation shows that the CW complex X_A , which supports our resolutions \widetilde{P}_{\bullet} of $\widetilde{S}/\widetilde{I}$ and $\widetilde{P}_{\bullet} \otimes_{\widetilde{S}} \widetilde{S}/(\Theta)$ of S/I, is the one illustrated in Figure 1.

-152-

The complex consists of a square pyramid and a tetrahedron glued along trigonal faces of each. For a Borel fixed ideal generated in one degree, any face of the Nagel-Reiner CW complex is a product of several simplices. Hence a square pyramid can not appear in the case of Nagel and Reiner.

We remark that the Eliahou-Kervaire resolution of I is supported by the CW complex illustrated in Figure 2. This complex consists of two tetrahedrons glued along edges of each. These figures show visually that the description of the Eliahou-Kervaire resolution and that of ours are really different.

References

- A. Aramova, J. Herzog and T. Hibi, Shifting operations and graded Betti numbers, J. Alg. Combin. 12 (2000) 207–222.
- [2] E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions, J. Reine Angew. Math. 543 (2002), 147–168.
- [3] A. Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980) 159–183.
- [4] A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), 7–16.
- [5] W. Bruns and J. Herzog, Cohen-Macaulay rings, revised edition, Cambridge, 1996.
- [6] T.B.P. Clark, A minimal poset resolution of stable ideals, preprint (arXiv:0812.0594).
- [7] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990), 1–25.
- [8] R. Forman, Morse theory for cell complexes, Adv. in Math., 134 (1998), 90–145.
- [9] J. Herzog and Y. Takayama, Resolutions by mapping cones, Homology Homotopy Appl. 4 (2002), 277–294.
- [10] M. Jöllenbeck and V. Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Amer. Math. Soc. 197 (2009).
- [11] J. Mermin, The Eliahou-Kervaire resolution is cellular. J. Commut. Algebra 2 (2010), 55–78.
- [12] S. Murai, Generic initial ideals and squeezed spheres, Adv. Math. **214** (2007) 701–729.
- [13] U. Nagel and V. Reiner, Betti numbers of monomial ideals and shifted skew shapes, Electron. J. Combin. 16 (2) (2009).
- [14] R. Okazaki and K. Yanagawa, Alternative polarizations of Borel fixed ideals, Eliahou-kervaire type and discrete Morse theory, preprint (arXiv:1111.6258).
- [15] R. Okazaki and K. Yanagawa, in preparation.
- [16] K. Yanagawa, Alternative polarizations of Borel fixed ideals, to appear in Nagoya. Math. J. (arXiv:1011.4662).

DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: r-okazaki@cr.math.osaka-u.ac.jp

DEPARTMENT OF MATHEMATICS, KANSAI UNIVERSITY, SUITA 564-8680, JAPAN *E-mail address*: yanagawa@ipcku.kansai-u.ac.jp