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1. INTRODUCTION

Let S := k[zy,...,z,] be a polynomial ring over a field k. For a monomial ideal
I C S, G(I) denotes the set of minimal (monomial) generators of I. We say a monomial
ideal I C S is Borel fived (or strongly stable), if m € G(I), z;jm and j < ¢ imply
(xj/x;) - m € I. Borel fixed ideals are important, since they appear as the generic initial
ideals of homogeneous ideals (if char(k) = 0).

A squarefree monomial ideal [ is said to be squarefree strongly stable, if m € G(I),
x;lm, z; fm and j < ¢ imply (z;/z;) - m € I. Any monomial m € S with deg(m) = e has
a unique expression

e
(1.1) m:II@“\mm 1<ap<as<- - <a,<n.
=1

Now we can consider the squarefree monomial

e
sq _
m™ = H-rai—i-i—l
i=1

in the “larger” polynomial ring 7' = k|[xy,...,zy]| with N > 0. If [ C S is Borel fixed,
then 9 := (m* | m € G(I)) C T is squarefree strongly stable. Moreover, for a Borel
fixed ideal I and all 7, j, we have ij(l ) = lTJ(I s4). This operation plays a role in the
shifting theory for simplicial complexes (see [1]).

A minimal free resolution of a Borel fixed ideal I has been constructed by Eliahou
and Kervaire [7]. While the minimal free resolution is unique up to isomorphism, its
“description” depends on the choice of a free basis, and further analysis of the minimal
free resolution is still an interesting problem. See, for example, [2, 9, 10, 11, 13]. In this
paper, we will give a new approach which is applicable to both I and 7*9. Our main tool
is the “alternative” polarization b-pol(I) of I.

Let

Si=k[z;;|1<i<n, 1<j<d]
be the polynomial ring, and set
@:{mz,l—wm|1§2§n,2§j§d}C§
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Then there is an isomorphism S/(0) 2 S induced by S 3 z;; — x; € S. Throughout

this paper, S and © are used in this meaning.
Assume that m € G(I) has the expression (1.1). If deg(m) (= e) < d, we set

(1.2) b-pol(m H:ca” €s.

Note that b-pol(m) is a squarefree monomial. If there is no danger of confusion, b-pol(m)
is denoted by m. If m =[], z{", then we have

1127

m (= b-pol(m)) = H T € S, where b; = Zal.
=1

1<i<n
bi—1+1<5<b;

If deg(m) < d for all m € G(I), we set
b-pol(I) := (b-pol(m) | m € G(I)) C S.

The second author ([16]) showed that if I is Borel fixed, then I := b-pol(I) is a “polar-
ization” of I, that is, © forms an S/[-regular sequence with the natural isomorphism

S/(I+(©)) = S/1.

Note that b-pol(—) does not give a polarization for a general monomial ideal, and is
essentially different from the standard polarization. Moreover,

@’:{xm—xiﬂﬁ-_l|1§i<n,1<j§d}C§

forms an S/I-regular sequence too, and we have S/(I + (©')) = T/I*% through S >
Tij — Tivj—1 € T (if we adjust the value of N = dimT'). The equation 32,(I) = ], (1*9)
mentioned above easily follows from this observation. L

In this paper, we will construct a minimal S-free resolution P, of S/I, which is analogous
to the Eliahou-Kervaire resolution of S/I. However, their description can not be lifted to
I, and we need modification. Clearly, P, ®5S/(©) and P, ®5 S/(©’) give the minimal
free resolutions of S/I and T'/I*% respectively.

Under the assumption that a Borel fixed ideal I is generated in one degree (i.e., all
elements of G(I) have the same degree), Nagel and Reiner [13] constructed I =hb- pol([ ),
and described a minimal S-free resolution of I explicitly. Their resolution is equivalent
to our description. In this sense, our results are generalizations of those in [13].

In [2], Batzies and Welker tried to construct a minimal free resolutions of monomial
ideals J using Forman’s discrete Morse theory ([8]). If J is shellable (i.e., has linear
quotients, in the sense of [9]), their method works, and we have a Batzies- Welker type
minimal free resolution. However, it is very hard to compute their resolution explicitly.

A Borel fixed ideal I and its polarization I = b-pol([) is shellable. We will show that
our resolution P, of § / I and the induced resolutions of S /I and T'/I*9 are Batzies-Welker
type. In particular, these resolutions are cellular. As far as the authors know, an ezplicit
description of a Batzies-Welker type resolution of a general Borel fixed ideal has never
been obtained before. Finally, we show that the CW complex supporting P, is regular.
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2. THE ELIAHOU-KERVAIRE TYPE RESOLUTION OF S/ b-pol([)

Throughout the rest of the paper, I is a Borel fixed monomial ideal with degm < d
for all m € G(I). For the definitions of the alternative polarization b-pol(I) of I and

n

related concepts, consult the previous section. For a monomial m = [[I_, zi* € S, set

u(m) :== min{i | a; > 0} and v(m) := max{i | a; > 0}. In [7], it is shown that any
monomial m € [ has a unique expression m = my-my with v(m;) < p(my) and my € G(I).
Following [7], we set g(m) := my. For ¢ with i < v(m), let

bi(m) = (z;/xx) - m, where k:=min{j | a; >0, 7 > i}.
Since [ is Borel fixed, m € [ implies b;(m) € I.

Definition 1 ([14, Definition 2.1]). For a finite subset F' = { (i1, j1), (2, j2), . - ., (i, Jq)
of N x N and a monomial m = [[7_, o, = [[_, 27" € G(I) with 1 < a; < ay < --- <
ae < m, we say the pair (F, ) is admissible (for b-pol(I)), if the following are satisfied:
(a) 1 <y <ig < -+ <iy<v(m),
(b) 7, = max{l | oy <, } + 1 (equivalently, 7, = 1+ Z;T:l a;) for all r.

For m € G(I), the pair (), m) is also admissible.
The following are fundamental properties of admissible pairs.
Lemma 2. Let (F,m) be an admissible pair with F = { (i1, j1), ..., (iq,jq) } and m =
[[z{" € G(I). Then we have the following.
(i) 1 <ja < < g
(i) =, - b-pol(b;.(m)) = z;,_,, - b-pol(m), where k = min{l|{>i,,a; > 0}.

For m € G(I) and an integer ¢ with 1 < < v(m), set m¢; := g(b;(m)) and my; =
b-pol(my;). If i > v(m), we set m;, := m for the convenience. In the situation of Lemma 2,
m;,y divides z; ; -mforall 1 <r <gq.

For F = { (i1, 1) ., (ig,Jq) } and r with 1 < r < g, set E, := F\ {(ir,j,) }, and for
an admissible pair (£, m) for b-pol(]),

B(F,m):={r|(F, M(;,y) is admissible }.

P

Lemma 3. Let (F,m) be as in Lemma 2.
(i) For all r with 1 <r < g, (ﬁr, m) is admissible.
(i) We always have q € B(F, ).
(i) Assume that (ﬁr,ﬁ<iT>) satisfies the condition (a) of Definition 1. Then r €
B(ﬁ, m) if and only if either j,. < j..1 orr =q.
(iv) Forr,s with 1 <r < s < q and j,. < js, we have b; (b;.(m)) = b; (b;.(m)) and
hence (ﬁ]<ir>)<i5> = (ﬁ]<i5>)<ir>.
(v) Forr,s with 1 <r < s <q and j, = js, we have b; (m) = b; (b;,(m)) and hence
M) = (M) ) i)
Example 4. Let I C S = k[x1, 29, 23, 4] be the smallest Borel fixed ideal containing
m = (z1)%z374. In this case, miy = g(bi(m’)) for all m" € G(I). Hence, we have m(;) =

(z1)324, mgy = (21)*2224 and mgy = (z1)?(z3)% The following 3 pairs are all admissible.
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o (F,m) = ({(1,3),(2,3),(3,4) b 1,1 12753 74,4)
(F2a ) = {(1,3),(3,4) }, z1,1 12 023 T4,4)
(F3, ) ({( ) ( ) )}>$1,1£U1,2$3,3$3,4)
(For this F, i, = r holds and the reader should be careful). However, (ﬁl,ﬁ<1>) =
({(2,3),(3,4) },x11 x12 71,3 T4,4) does not satisfy the condition (b) of Definition 1. Hence
B(F,m) = {2,3}.

The diagrams of (admissible) pairs are very useful for better understanding. To draw
a diagram of (F,m), we put a white square in the (i,)-th position if (i,5) € F and
a black square there if x;; divides m. If F is maximal among F’ such that (F’,m) is
admissible, then the diagram of (F, m) forms a “right side down stairs” (see the leftmost

and rightmost diagrams of the table below). If (F, M) is admissible but F is not maximal,
then some white squares are removed from the diagram for the maximal case. If the pair
is admissible, there is a unique black square in each column and this is the “lowest” of
the squares in the column. N
If (F,m) is admissible and r € B(F, m), then we can get the diagram of (F,, m m;,y) from
that of (F',m) by the following procedure.
(i) Remove the (sole) black square in the j.-th column.
(ii) Replace the white square in the (i, j,.)-th position by a black one.
(iii) If my,y # by, (m), erase some squares from the lower-right of the diagram. (This
step does not occur in the next table.)

J J J J
123 4 1234 123 4 1 2 3 4
1 1 1 1
.2 .2 .2 .2
L3 L3 3 3
4 4 4 4
(F,m) (Fy, fgy) (Fy, M) (F3, M)
admissible not admissible admissible admissible

Next let I’ be the smallest Borel fixed ideal containing m = (z1)%z3x4 and (z;)?z,. For
F =1{(1,3),(2,3),(3,4)}, (F,) is admissible again. However fy = (z;)%r, in this
time, and (Fy, m mey) = ({(1,3),(3,4) }, 21,1 21,2 723) is no longer admissible. In fact, it
does not satisfy (a) of Definition 1. Hence B(F,m) = {3} for b-pol(I’).

For F' = {iy,...,i,} C N with i; < --- < i, and m € G(I), Eliahou-Kervaire call the
pair (F, m) adm1581ble for I,ifi, < 1/( ). In this case, there is a unique sequence ji, . .., j,
such that (F, ) is admissible for I, where F' = { (i1, 1), ..., (ig, j;) }. In this way, there
is a one-to-one correspondence between the admissible pairs for I and those of I. As the
free summands of the Eliahou-Kervaire resolution of I are indexed by the admissible pairs
for I, our resolution of I are indexed by the admissible pairs for I
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We will define a 7Z"*?_graded chain complex P, of free S-modules as follows. First, set
PO — 5. For each q > 1, we set

A, = the set of admissible pairs (F,m) for b-pol(I) with #F = q,

and

P, = Se(F,m),
(F,m)eAq_1

where e(F, m) is a basis element with

We define the S-homomorphism 0 : P, — P,_; for ¢ > 2 so that e(F,m) with F =
{(i1, 1), ., (ig, Jg)} 1s sent to

T -~ T xir; jr -m o~
Z (_1) ' ’I.iryjr : e(F"'7 m) - Z (_1) : r"ﬁ]— : 6<Fr7 m<ir>)7
1sr=q reB(F.,f) (ir)
and §: P, — By by e(d,m) — m € S =R, Clearly, 9 is a Z"*?-graded homomorphism.
Set

Theorem 5 ([14, Theorem 2.6]). The complex P, is a Zm*d- graded minimal S -free reso-
lution for S/ b-pol(I).

Sketch of Proof. Calculation using Lemma 3 shows that 0 o d(e (F,m)) = 0 for each ad-
missible pair (F m). That is, P, is a chain complex.

Let [ = (my,...,m;) with m; > --- > m,, and set I, :== (my,...,m,). Here > is the
lexicographic order with @y > @ > - -+ > x,. Then I, are also Borel fixed. The acyclicity
of the complex P can be shown inductively by means of mapping cones. 0

Remark 6. Herzog and Takayama [9] explicitly gave a minimal free resolution of a mono-
mial ideal with linear quotients admitting a regular decomposition function. A Borel fixed
ideal I satisfies this property. However, while I has linear quotients, the decomposition
function can not be regular. Hence the method of [9] is not applicable to our case.

3. APPLICATIONS AND REMARKS

Let I C S be a Borel fixed ideal, and © C S the sequence defined in Introduction. As
remarked before, there is a one-to-one correspondence between the admissible pairs for 1
and those for 7, and if (F', m) corresponds to (F, m) then #F = #F. Hence we have

(3.1) B85.(1) = B2.(I)

for all 7, 7, where .S and S are considered to be Z-graded. Of course, this equation is clear,
if one knows the fact that I is a polarization of I ([16, Theorem 3.4]). Conversely, we can
show this fact by the equation (3.1) and [13, Lemma 6.9].
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Corollary 7 ([16, Theorem 3.4]). The ideal I is a polarization of I.

The next result also follows from [13, Lemma 6.9].
Corollary 8. P, ®z S/(©) is a minimal S-free resolution of S/I.

Remark 9. (1) The correspondence between the admissible pairs for I and those for f,
does not give a chain map between the Eliahou-Kervaire resolution and our P, @ g 5/(0).
In this sense, two resolutions are not the same. See Example 21 below.

(2) The lem lattice of I and that of I are not isomorphic in general. Recall that the
lem-lattice of a monomial ideal J is the set LCM(J) := {lem{m |m € o} | o C G(J)}
with the order given by divisibility. Clearly, LCM(J) is a lattice. For the Borel fixed ideal
I = (2% 2y, 22,9, yz2), we have 1y V 2z = zy Vyz = 12V yz = xyz in LCM(I). However,
TYV Tz = T1Ys22, TY V Yz = T1y1Y222 and Tz V Yz = 11y 29 are all distinct in LCM(IN) )

(3) Eliahou and Kervaire ([7]) constructed minimal free resolutions of stable monomial
ideals, which form a wider class than Borel fixed ideals. However, b-pol(.J) is not a
polarization for a stable monomial ideal J in general, and our construction does not
work.

Let a = {ag,a1,as,...} be a non-decreasing sequence of non-negative integers with
ap = 0, and T" = k[zy,...,2n]| a polynomial ring with N > 0. In his paper [12],
Murai defined an operator (—)”®) acting on monomials and monomial ideals of S. For a
monomial m € S with the expression m = [[;_; zo, as (1.1), set

€
m7(@ .= H Tojta;, €T,

i=1
and for a monomial ideal I C S,
M@= (m@ | meGI)cT.

If a;y1 > a; for all i, then 1"(® is a squarefree monomial ideal. Particularly in the case
a; = i for all i, (=)@ is just (—)% mentioned in Introduction.

The operator (—)7(® also can be described by b-pol(—) as is shown in [16]. Let L, be
the k-subspace of S spanned by {x;; — g s | i +a;.1 =i +a;_1}, and O, a basis of L.
For example, we can take {z;; — ;411 | 1 <i<n, 1 <j <d} as O, in the case a; =i
for all 7. With a suitable choice of the number N, the ring homomorphism S — T with
Tij &> Tiyq, , induces the isomorphism S /(©,) =T.

Proposition 10 ([16, Proposition 4,1]). With the above notation, ©, forms an S/I-
reqular sequence, and we have (S/(0,)) ®g (S/I) = T/1"@.

Applying Proposition 10 and [5, Proposition 1.1.5], we have the following.

Corollary 11. The complez P, Rz S/(8,) is a minimal T-free resolution of T/I7®. In
particular, a minimal free resolution of T'/1%9 is given in this way.

For a Borel fixed ideal I generated in one degree, Nagel and Reiner [13] constructed a
CW complex, which supports a minimal free resolution of I (or I, I°9).
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Proposition 12 ([14, Proposition 4.9]). Let I be a Borel fixed ideal generated in one
degree. Then Nagel-Reiner description of a free resolution of I coincides with our P,.

We do not give a proof of the above proposition here, but just remark that if [ is
generated in one degree then m, = b;(m) for all m € G(I) and P, becomes simpler.

4. RELATION TO BATZIES-WELKER THEORY

In [2], Batzies and Welker connected the theory of cellular resolutions of monomial
ideals with Forman’s discrete Morse theory ([8]).

Definition 13. A monomial ideal J is called shellable if there is a total order C on G(J)
satisfying the following condition.

(x) For any m;m’ € G(J) with m O m’, there is an m” € G(J) such that m J m”|

deg (M) =1 and lem(m, m”) divides lem(m, m’).
For a Borel fixed ideal I, let C be the total order on G(I) = {m | m € G(I)} such that
m’ = m if and only if m" >= m in the lexicographic order on S with x; = x9 = -+ = x,.
In the rest of this section, C means this order.

Lemma 14. The order C makes I shellable.

The following construction is taken from [2, Theorems 3.2 and 4.3]. For the background
of their theory, the reader is recommended to consult the original paper.

For ) # o C G(I), let m, denote the largest element of o with respect to the order L,
and set lem(o) :=lem{m | m e o }.

Definition 15. We define a total order <, on G(I) as follows. Set
Na = { (Fﬁa')<i) | 1 S 1< V(mg), (ﬁ]‘,)<i> divides ICHI(U) }

For all m € N, and m" € G(I) \ N,, define m <, m’. The restriction of <, to NN, is set to

be , and the same is true for the restriction to G(I) \ N,.

Let X be the (#G(I) — 1)-simplex associated with 26(0) (more precisely, 2G(0) \ {0}).
Hence we freely identify ¢ C G(I) with the corresponding cell of the simplex X. Let

Gx be the directed graph defined as follows. The vertex set of Gy is 2¢() \ {}. For

) # 0,0 C G(I), there is an arrow o — ¢’ if and only if o D ¢’ and #0 = #0’ + 1. For
o={my,mg,...,mg} with m; <, my <, -+ <, mg (=m,) and [ € Nwith 1 <[ <k, set
oy :={ Mgy, Mp_i41,..., My } and

u(o) == sup{l| Im € G(I) s.t. m <, My, and M| lem(a;) }.
If u:=wu(o) # —o0, we can define n, := min_{ m | m divides lem(o,) }. Let Ex be the
set of edges of Gx. We define a subset A of Ex by

A:={oU{n,} = o |u(o)# —oo,n, €o}.

It is easy to see that A is a matching, that is, every o occurs in at most one edges of A.

We say ) # o C G(I) is critical, if it does not occurs in any edge of A.
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We have the directed graph G4 with the vertex set 240\ {()} (i.e., same as G'x) and
the set of edges (Ex \ A)U{o — 7| (1 = o) € A}. By the proof of [2, Theorem 3.2], we
see that the matching A is acyclic, that is, G§ has no directed cycle. A directed path in
G% is called a gradient path.

Forman’s discrete Morse theory [8] guarantees the existence of a CW complex X4 with
the following conditions.

e There is a one-to-one correspondence between the i-cells of X4 and the critical

i-cells of X (equivalently, the critical subsets of G(I) consisting of i + 1 elements).
e X, is contractible, that is, homotopy equivalent to X.

The cell of X4 corresponding to a critical cell o of X is denoted by o4. By [2, Proposi-
tion 7.3], the closure of o4 contains 74 if and only if there is a gradient path from o to 7.
See also Proposition 18 below and the argument before it.

Assume that ) £ 0 C G (f ) is critical. Recall that m, denotes the largest element of o

with respect to . Take m, = [],_, ;" € G(I) with m, = b-pol(m,), and set ¢ := #o — 1.
Then there are integers iy,...,4, with 1 <4; < ... < i, <v(m,) and
(4.1) o={(Ms)i) [1<r<q}uU{ms}
(see the proof of [2, Proposition 4.3]). Equivalently, we have ¢ = N, U {m,}. Set
Jei= 1430 a for each 1 < r < ¢, and F, := { (i1, 71), ..., (ig, jq) }. Then (F,,m,)
is an admissible pair for I Conversely, any admissible pair comes from a critical cell
o C G(:f ) in this way. Hence there is a one-to-one correspondence between critical cells
and admissible pairs.

Let X? denote the set of all the critical subset o € G(I) with #0 =i+ 1, and for (not

necessarily critical) subsets o, 7 of G(I), let P, , denote the set of all the gradient paths
from o to 7. For o € X of the form (4.1), e(o) denotes a basis element with degree
deg(lem(c)) € Z™4. Set

Q=D Se0) (420,
The differential map @q — @q_l sends e(o) to
D S A AR (C AT G D DI lem(o)

r=1 TEXf;l
PEPo\(fg},r

where m(P) = £1 is the one defined in |2, p.166].
The following is a direct consequence of [2, Theorem 4.3] (and [2, Remark 4.4]).

Proposition 16 (Batzies-Welker, [2]). Q. is a minimal free resolution of I, and has a
cellular structure supported by X 4.

Theorem 17 ([14, Theorem 5.11]). Our description of Ps (more precisely, the truncation

Ps1) coincides with the Batzies- Welker resolution Qe. That is, Ps is a cellular resolution
supported by a CW complex X 4, which is obtained by discrete Morse theory.

First, note that the following hold.
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(1) If o is critical, so is o\ { (M), } for 1 <7 < gq.

(2) Let o and 7 be (not necessarily critical) cells with P, # &. Then lem(7) divides
lem(o).

(3) Let 0 € X%, 7 € X% " and assume that there is a gradient path o — o\ {m} =
og —~ 0y —> -+ —>0, =71. Then #0, 1 =#7+1=q+ 1, #0, = qor ¢+ 1 for
each i, and o; is not critical for all 0 < ¢ < [. Hence, if [ > 1, then m must be m,.

Next, we will show the following.

Proposition 18. Let 0,7 be critical cells with #0 = #7 + 1, and (ﬁ,, m,) and (ﬁ, m,)
the admissible pairs corresponding to o and T respectively. Set F,, = {(t1,71), -+, (igs Jg) }
with iy < -+ < iq. Then Po\(m,1,r # D if and only if there is some r € B(ﬁ,, m,) with
(F,,m,) = (Fy)r, (Mo)@,y). If this is the case, we have #P (w1, = 1.

Sketch of Proof. Only if part follows from the above remark. Note that the second index
J of each z; ; € S restricts the choice of paths and it makes the proof easier.

Next, assuming F, = (F,), and m. = (m,);,) for some r € B(F,, m,), we will construct
a gradient path from o\ {m,} to 7. For short notation, set mp := (My)(;,) and My, =
((Mo) (i) y- By (4.1), we have op := (0 \ {ms}) = {my [ 1 < s < ¢} and 7 =
{mpg |1 <5 < g5 #rpu{my}t. We can inductively construct a gradient path
g —» 01 — +r+ = 0p —> - Oq—rs1)r—2 as follows. Write ¢ = 2pr + A with ¢ # 0,
0<p<g—r,and 0 <A< 2r. For 0 <t <2(q—r), we set

o1 U{My_pg } if A\=2s—1 for some 1 < s <r;

0y = Q 0¢—1 \ { Mg—ps1,6 } if A =2s for some 0 < s < 7;
o \ { Myg—p+1) } if A=0,
where we set my1q = myg for all s. In the case mj;y = M1, it seems to cause a

problem, but skipping the corresponding part of path, we can avoid the problem. Since
r € B(F,,m,), we have m(,,) = m, 4 for all s > 7 by Lemma 3 (iv). Hence

O2(q—r) = {r’ﬁ[,ﬂ_i_l,s} | 1<s <T}U{ﬁ1[r]}U{ﬁ1[r,5] | r < SS(]}.
Now for s with 0 < s < r —1, set oy with 2(¢ —r)r <t < 2(¢ —r + 1)r — 2 to be
or—1U{mp g }if sis odd and otherwise oy—1 \ { mj41,4 }. Then we have oag—pi1),—2 = T,

and the gradient path o~ 7.
The uniqueness of the path follows from elementally (but lengthy) argument. O

Sketch of Proof of Theorem 17. Recall that there is the one-to-one correspondence be-
tween the critical cells ¢ € G(I) and the admissible pairs (F,, m,). Hence, for each ¢, we
have the isomorphism Q, — P, induced by e(c) — e(F,, m,).

By Proposition 18, if we forget “coefficients”, the differential map of @. and that of P,

are compatible with the maps e(c) —s e(F,, M,). So it is enough to check the equality
of the coefficients. But it follows from direct computation. O

Corollary 19 ([14, Corollary 5.12]). The free resolution ﬁ.@gg/(@) (resp. ﬁ.®§§/(®a))
of S/I (resp. T/I"9) is also a cellular resolution supported by X 4. In particular, these
resolutions are Batzies- Welker type.
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We say a CW complex is reqular, if for all ¢ the closure & of any i-cell ¢ is homeomorphic
to an i-dimensional closed ball, and @ \ o is the closure of the union of some (i — 1)-cells.
This is a natural condition especially in combinatorics.

Mermin [11] (see also Clark [6]) showed that the Eliahou-Kervaire resolution is cellular
and supported by a regular CW complex. Hence it is a natural question whether the CW
complex X 4 supporting our P, is regular. (Since the discrete Morse theory is an “existence
theorem” and X4 might not be unique, the correct statement is “can be regular”. This is
a non-trivial point, but here we do not show how to avoid it).

Theorem 20 ([15]). The CW complex X s of Theorem 17 is reqular. In particular, our
resolution P, is supported by a reqular CW complex.

Sketch of Proof. We basically follow Clark [6], which proves the corresponding statement
for the Eliahou-Kervaire resolution.
We define a finite poset P4 as follows:

(i) As the underlying set, Py = (the set of the cells of X4) U {0}. Here 0 is the least
element.
(ii) For cells o and 7 of X4, 0 = 7 in P, if and only if the closure of ¢ contains 7.
It suffices to show that P4 is a CW poset in the sense of [4], and we can use [4,

Proposition 5.5]. By the behavior of the differential map of ]3., we can check that Py
satisfies the following condition.

e For 0,7 € P4 with ¢ > 7 and rank(c) = rank(7) + 2, there are exactly two
elements between ¢ and 7.

Now it remains to show that the interval [0, o] is shellable for all o, but we can imitate
the argument of Clark [6]. In fact, [0, o] is EL shellable in the sense of [3]. O

Example 21.

Tyw T2W

TYyw o

FiGure 1 FIGURE 2
Consider the Borel fixed ideal I = (22, xy?, ryz, ryw, x2*, xzw). Then b-pol(l) =
(X129, T1Y2Y3, T1Y223, T1Y2Ws3, T12223, T123W3), and easy computation shows that the CW
complex X 4, which supports our resolutions P, of S/I and P, ®gS/(©) of S/I, is the
one illustrated in Figure 1.
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The complex consists of a square pyramid and a tetrahedron glued along trigonal faces
of each. For a Borel fixed ideal generated in one degree, any face of the Nagel-Reiner CW
complex is a product of several simplices. Hence a square pyramid can not appear in the
case of Nagel and Reiner.

We remark that the Eliahou-Kervaire resolution of I is supported by the CW complex
illustrated in Figure 2. This complex consists of two tetrahedrons glued along edges of
each. These figures show visually that the description of the Eliahou-Kervaire resolution
and that of ours are really different.

REFERENCES

[1] A. Aramova, J. Herzog and T. Hibi, Shifting operations and graded Betti numbers, J. Alg. Combin.
12 (2000) 207-222.
[2] E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions, J. Reine Angew. Math. 543
(2002), 147-168.
[3] A. Bjorner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260
(1980) 159-183.
[4] A. Bjorner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), 7-16.
[5] W. Bruns and J. Herzog, Cohen-Macaulay rings, revised edition, Cambridge, 1996.
[6] T.B.P. Clark, A minimal poset resolution of stable ideals, preprint (arXiv:0812.0594).
[7] S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129 (1990),
1-25.
[8] R. Forman, Morse theory for cell complexes, Adv. in Math., 134 (1998), 90-145.
[9] J. Herzog and Y. Takayama, Resolutions by mapping cones, Homology Homotopy Appl. 4 (2002),
277-294.
[10] M. Jollenbeck and V. Welker, Minimal resolutions via algebraic discrete Morse theory, Mem. Amer.
Math. Soc. 197 (2009).
[11] J. Mermin, The Eliahou-Kervaire resolution is cellular. J. Commut. Algebra 2 (2010), 55-78.
[12] S. Murai, Generic initial ideals and squeezed spheres, Adv. Math. 214 (2007) 701-729.
[13] U. Nagel and V. Reiner, Betti numbers of monomial ideals and shifted skew shapes, Electron. J.
Combin. 16 (2) (2009).
[14] R. Okazaki and K. Yanagawa, Alternative polarizations of Borel fixed ideals, Eliahou-kervaire type
and discrete Morse theory, preprint (arXiv:1111.6258).
[15] R. Okazaki and K. Yanagawa, in preparation.
[16] K. Yanagawa, Alternative polarizations of Borel fixed ideals, to appear in Nagoya. Math. J.
(arXiv:1011.4662).

DEPARTMENT OF PURE AND APPLIED MATHEMATICS,

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY,
OSAKA UNIVERSITY,

TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: r-okazaki@cr.math.osaka-u.ac. jp

DEPARTMENT OF MATHEMATICS,
KANSAT UNIVERSITY,
SUITA 564-8680, JAPAN

E-mail address: yanagawa@ipcku.kansai-u.ac.jp

—153—



