TILTING MODULES ARISING FROM TWO-TERM TILTING COMPLEXES

HIROKI ABE

ABSTRACT. We see that every two-term tilting complex over an Artin algebra has a tilting module over a certain factor algebra as a homology group. Also, we determine the endomorphism algebra of such a homology group, which is given as a certain factor algebra of the endomorphism algebra of the two-term tilting complex. Thus, every derived equivalence between Artin algebras given by a two-term tilting complex induces a derived equivalence between the corresponding factor algebras.

Let A be an Artin algebra. We denote by mod-A the category of finitely generated right A-modules and by \mathcal{P}_A the full subcategory of mod-A consisting of projective modules.

Definition 1. A pair $(\mathcal{T}, \mathcal{F})$ of full subcategories \mathcal{T}, \mathcal{F} in mod-A is said to be a torsion theory for mod-A if the following conditions are satisfied:

(1)
$$\mathcal{T} \cap \mathcal{F} = \{0\};$$

- (2) \mathcal{T} is closed under factor modules;
- (3) \mathcal{F} is closed under submodules; and
- (4) for any $X \in \text{mod-}A$, there exists an exact sequence $0 \to X' \to X \to X'' \to 0$ with $X' \in \mathcal{T}$ and $X'' \in \mathcal{F}$.

If \mathcal{T} is stable under the Nakayama functor ν , then $(\mathcal{T}, \mathcal{F})$ is said to be a stable torsion theory for mod-A.

Let $T^{\bullet} \in \mathcal{K}^{\mathrm{b}}(\mathcal{P}_A)$ be a two-term complex:

$$T^{\bullet}: \dots \to 0 \to T^{-1} \stackrel{\alpha}{\to} T^0 \to 0 \to \dots,$$

and set the following subcategories in mod-A:

 $\mathcal{T}(T^{\bullet}) = \operatorname{Ker} \operatorname{Hom}_{\mathcal{K}(A)}(T^{\bullet}[-1], -) \cap \operatorname{mod} A,$ $\mathcal{F}(T^{\bullet}) = \operatorname{Ker} \operatorname{Hom}_{\mathcal{K}(A)}(T^{\bullet}, -) \cap \operatorname{mod} A.$

Proposition 2 ([1, Propositions 5.5 and 5.7]). The following are equivalent.

- (1) T^{\bullet} is a tilting complex.
- (2) $(\mathcal{T}(T^{\bullet}), \mathcal{F}(T^{\bullet}))$ is a stable torsion theory for mod-A.

Furthermore, if these equivalent conditions hold, then the following hold.

- (1) $\mathcal{T}(T^{\bullet}) = \text{gen}(\mathrm{H}^{0}(T^{\bullet}))$, the generated class by $\mathrm{H}^{0}(T^{\bullet})$, and $\mathrm{H}^{0}(T^{\bullet})$ is Ext-projective in $\mathcal{T}(T^{\bullet})$.
- (2) $\mathcal{F}(T^{\bullet}) = \cos(\mathrm{H}^{-1}(\nu T^{\bullet}))$, the cogenerated class by $\mathrm{H}^{-1}(\nu T^{\bullet})$ and $\mathrm{H}^{-1}(\nu T^{\bullet})$ is Extinjective in $\mathcal{F}(T^{\bullet})$.

The detailed version of this note has been submitted for publication elsewhere.

Conversely, let $(\mathcal{T}, \mathcal{F})$ be a stable torsion theory for mod-A.

Proposition 3 ([1, Theorem 5.8]). Assume that there exist $X \in \mathcal{T}$ and $Y \in \mathcal{F}$ satisfying the following conditions:

- (1) $\mathcal{T} = \operatorname{gen}(X)$ and X is Ext-projective in \mathcal{T} ; and
- (2) $\mathcal{F} = \cos(Y)$ and Y is Ext-injective in \mathcal{F} .

Let P_X^{\bullet} be a minimal projective presentation of X and I_Y^{\bullet} be a minimal injective presentation of Y, and set $T_{X,Y}^{\bullet} = P_X^{\bullet} \oplus \nu^{-1} I_Y^{\bullet}[1]$. Then $T_{X,Y}^{\bullet} \in \mathcal{K}^{\mathsf{b}}(\mathcal{P}_A)$ is a tilting complex such that $\mathcal{T} = \mathcal{T}(T_{X,Y}^{\bullet})$ and $\mathcal{F} = \mathcal{F}(T_{X,Y}^{\bullet})$.

Let T^{\bullet} be a two-term tilting complex. We set $\mathfrak{a} = \operatorname{ann}_A(\operatorname{H}^0(T^{\bullet}))$, the annihilator of $\operatorname{H}^0(T^{\bullet})$. Note that $\operatorname{H}^0(T^{\bullet})$ is faithful in mod- A/\mathfrak{a} and the canonical full embedding mod- $A/\mathfrak{a} \hookrightarrow \operatorname{mod} A$ induces $\operatorname{gen}(\operatorname{H}^0(T^{\bullet})_{A/\mathfrak{a}}) = \operatorname{gen}(\operatorname{H}^0(T^{\bullet})_A)$ which is closed under extensions. Thus, the next lemma follows from Proposition 2.

Lemma 4. The following hold.

- (1) proj dim $\mathrm{H}^0(T^{\bullet})_{A/\mathfrak{a}} \leq 1$.
- (2) $\operatorname{Ext}^{1}_{A/\mathfrak{a}}(\operatorname{H}^{0}(T^{\bullet}), \operatorname{H}^{0}(T^{\bullet})) = 0.$
- (3) There exists an exact sequence $0 \to A/\mathfrak{a} \to X^0 \to X^1 \to 0$ in mod- A/\mathfrak{a} such that $X^0 \in \operatorname{add}(\operatorname{H}^0(T^{\bullet})_{A/\mathfrak{a}})$ and $X^1 \in \operatorname{gen}(\operatorname{H}^0(T^{\bullet})_{A/\mathfrak{a}})$ which is Ext-projective in $\operatorname{gen}(\operatorname{H}^0(T^{\bullet})_{A/\mathfrak{a}})$.

We set $\mathfrak{a}' = \operatorname{ann}_A(\operatorname{H}^{-1}(\nu T^{\bullet}))$, the annihilator of $\operatorname{H}^{-1}(\nu T^{\bullet})$. The next lemma follows by the dual arguments of Lemma 4

Lemma 5. The following hold.

- (1) inj dim H⁻¹(νT^{\bullet})_{A/a'} ≤ 1 .
- (2) $\operatorname{Ext}^{1}_{A/\mathfrak{a}'}(\operatorname{H}^{-1}(\nu T^{\bullet}), \operatorname{H}^{-1}(\nu T^{\bullet})) = 0.$
- (3) There exists an exact sequence $0 \to Y^1 \to Y^0 \to A/\mathfrak{a}' \to 0$ in mod- A/\mathfrak{a}' such that $Y^0 \in \operatorname{add}(\operatorname{H}^{-1}(\nu T^{\bullet})_{A/\mathfrak{a}'})$ and $Y^1 \in \operatorname{cog}(\operatorname{H}^{-1}(\nu T^{\bullet})_{A/\mathfrak{a}'})$ which is Ext-injective in $\operatorname{cog}(\operatorname{H}^{-1}(\nu T^{\bullet})_{A/\mathfrak{a}'})$.

Let X be the direct sum of all indecomposable non-projective Ext-projective modules in gen(H⁰(T[•])) which are not contained in add(H⁰(T[•])). Then add(H⁰(T[•]) $\oplus X$) coincides with the class of all Ext-projective modules in gen(H⁰(T[•])). Also, since gen(H⁰(T[•])) = gen(H⁰(T[•]) $\oplus X$), the pair (gen(H⁰(T[•]) $\oplus X$), cog(H⁻¹($\nu T^{•}$)) is a stable torsion theory in mod-A. Let P[•] be the minimal projective presentation of H⁰(T[•]) $\oplus X$ and I[•] be the minimal injective presentation of H⁻¹($\nu T^{•}$), and set U[•] = P[•] $\oplus \nu^{-1}I^{\bullet}[1]$. Then U[•] is a tilting complex such that $\mathcal{T}(U^{\bullet}) = \text{gen}(H^{0}(T^{\bullet}) \oplus X)$ and $\mathcal{F}(U^{\bullet}) = \text{cog}(H^{-1}(\nu T^{\bullet}))$ by Proposition 3. Note that the stable torsion theory induced by U[•] coincides with that of T[•]. From this fact, we can prove that add(H⁰(U[•])) = add(H⁰(T[•])). Since there exist the inclusions add(H⁰(T[•])) \subset add(H⁰(T[•]) $\oplus X$) \subset add(H⁰(U[•])), we conclude that add(H⁰(T[•])) = add(H⁰(T[•]) $\oplus X$). Thus, we have the next lemma.

Lemma 6. For any $M, N \in \text{mod-}A$, the following hold.

- (1) $M \in \operatorname{add}(\operatorname{H}^0(T^{\bullet}))$ if and only if M is Ext-projective in gen($\operatorname{H}^0(T^{\bullet})$).
- (2) $N \in \operatorname{add}(\operatorname{H}^{-1}(\nu T^{\bullet}))$ if and only if N is $\operatorname{Ext-injective}$ in $\operatorname{cog}(\operatorname{H}^{-1}(\nu T^{\bullet}))$.

The next theorem is a direct consequence of the previous three lemmas.

Theorem 7. The following hold.

- (1) $\mathrm{H}^{0}(T^{\bullet})$ is a tilting module in mod- A/\mathfrak{a} .
- (2) $\mathrm{H}^{-1}(\nu T^{\bullet})$ is a cotilting module in $\mathrm{mod}\text{-}A/\mathfrak{a}'$, i.e., $D(\mathrm{H}^{-1}(\nu T^{\bullet}))$ is a tilting module in $\mathrm{mod}\text{-}(A/\mathfrak{a}')^{\mathrm{op}}$.

We determine the endomorphism algebras of $\mathrm{H}^{0}(T^{\bullet})$. Set $B = \mathrm{End}_{\mathcal{K}(A)}(T^{\bullet})$. Since there exists a surjective algebra homomorphism

$$\theta: B \to \operatorname{End}_{A/\mathfrak{a}}(\operatorname{H}^0(T^{\bullet})),$$

which is induced by the functor $H^{0}(-)$, we have an algebra isomorphism

$$\operatorname{End}_{A/\mathfrak{a}}(\operatorname{H}^0(T^{\bullet})) \cong B/\operatorname{Ker} \theta.$$

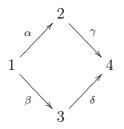
Also, we can prove that Ker $\theta = \operatorname{ann}_B(\operatorname{Hom}_{\mathcal{K}(A)}(A, T^{\bullet})) = \operatorname{ann}_B(\operatorname{H}^0(T^{\bullet}))$. Thus, we have the next theorem.

Theorem 8. We have the following algebra isomorphisms.

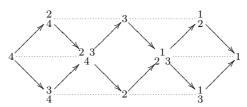
- (1) $\operatorname{End}_{A/\mathfrak{a}}(\operatorname{H}^0(T^{\bullet})) \cong B/\mathfrak{b}$, where $\mathfrak{b} = \operatorname{ann}_B(\operatorname{H}^0(T^{\bullet}))$.
- (2) End_{A/a}($\mathrm{H}^{-1}(\nu T^{\bullet})$) $\cong B/\mathfrak{b}', \text{ where } \mathfrak{b}' = \mathrm{ann}_{B}(\mathrm{H}^{-1}(\nu T^{\bullet})).$

As the final of this note, we demonstrate our results through an example.

Example 9. Let A be the path algebra defined by the quiver



with relations $\alpha \gamma = \beta \delta = 0$. We denote by e_i the empty path corresponding to the vertex $i = 1, \dots, 4$. The Auslander–Reiten quiver of A is given by the following:



where each indecomposable module is represented by its composition factors. It is not difficult to see that the following pair gives a stable torsion theory for mod-A:

 $\mathcal{T} = \{\begin{smallmatrix} 1 \\ 2 & 3 \end{smallmatrix}, \begin{smallmatrix} 1 \\ 2 & , \begin{smallmatrix} 1 \\ 2 & , \end{smallmatrix}, \begin{smallmatrix} 1 \\ 3 & , \end{smallmatrix}\} \text{ and } \mathcal{F} = \{\begin{smallmatrix} 4 \\ 4 & , \begin{smallmatrix} 2 \\ 4 & , \begin{smallmatrix} 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix} 2 & 3 \\ 4 & , \end{smallmatrix}, \end{smallmatrix}, \begin{smallmatrix} 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix} 2 & 3 \\ 4 & , \end{smallmatrix}, \end{smallmatrix}, \begin{smallmatrix} 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix} 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix} 2 & 3 \\ 4 & , \end{smallmatrix}, \end{smallmatrix}, \begin{smallmatrix} 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix} 2 & 3 \\ 4 & , \end{smallmatrix}, \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}, \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}, \begin{smallmatrix}, 2 & 3 \\ 4 & , \end{smallmatrix}$

where \mathcal{T} is a torsion class and \mathcal{F} is a torsion-free class. We set

 $X = {\scriptstyle 1 \atop 2 3}, \quad Y = {\scriptstyle 2 \atop 4} {\scriptstyle 3 \atop \oplus 3} {\scriptstyle \oplus 2}.$

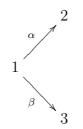
Then $\mathcal{T} = \text{gen}(X)$ and X is Ext-projective in \mathcal{T} , and $\mathcal{F} = \text{cog}(Y)$ and Y is Ext-injective in \mathcal{F} . According to Proposition 3, we have a two-term tilting complex $T^{\bullet} = T_1^{\bullet} \oplus T_2^{\bullet} \oplus T_3^{\bullet} \oplus T_4^{\bullet}$, where

$$T_1^{\bullet} = 0 \to {}_{2\,3}^{1}, \quad T_2^{\bullet} = {}_{4}^{2} \to {}_{2\,3}^{1}, \quad T_3^{\bullet} = {}_{4}^{3} \to {}_{2\,3}^{1}, \quad T_4^{\bullet} = 4 \to 0.$$

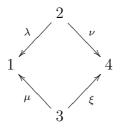
Thus, we have

$$\mathrm{H}^{0}(T^{\bullet}) = {}_{2}{}_{3}^{1} \oplus {}_{3}^{1} \oplus {}_{2}^{1}$$

as a right A-module. Since $\mathfrak{a} = \operatorname{ann}_A(\mathrm{H}^0(T^{\bullet}))$ is a two-sided ideal generated by e_4, γ, δ , the factor algebra A/\mathfrak{a} is defined by the quiver



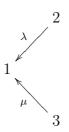
without relations. Next, it is not difficult to see that $B = \operatorname{End}_{\mathcal{K}(A)}(T^{\bullet})$ is defined by the quiver



without relations. Then we have

$$\operatorname{Hom}_{\mathcal{K}(A)}(A, T^{\bullet}) = \bigoplus_{i=1}^{4} \operatorname{Hom}_{\mathcal{K}(A)}(e_{i}A, T^{\bullet})$$
$$= {}_{2}{}_{3}^{1} \oplus {}_{3}^{1} \oplus {}_{2}^{1} \oplus 0$$

as a left *B*-module. Thus, $\mathfrak{b} = \operatorname{ann}_B(\operatorname{Hom}_{\mathcal{K}(A)}(A, T^{\bullet}))$ is a two-sided ideal generated by ν, ξ and the empty path corresponding to the vertex 4. Therefore, the factor algebra B/\mathfrak{b} is defined by the quiver



without relations. It follows by Theorems 7 and 8 that A/\mathfrak{a} and B/\mathfrak{b} are derived equivalent to each other.

References

 M. Hoshino, Y. Kato, J. Miyachi, On t-structure and torsion theories induced by compact objects, J. Pure and App. Algebra 167 (2002), 15–35.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI 305-8571 JAPAN *E-mail address*: abeh@math.tsukuba.ac.jp