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ABSTRACT. P. Holm began to study the ring of differential operators of the coordinate
ring of a hyperplane arrangement. In this paper, we introduce Noetherian properties of
the ring differential operators of the coordinate ring of a central 2-arrangement and its
graded ring associated to the order filtration.
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1. INTRODUCTION

For a commutative algebra R over a field K of characteristic zero, define vector spaces
inductively by

P°(R) := {0 € Endg(R) | a € R,fa — af = 0},
2™(R):= {0 € Endg(R) |a € R,6a—ab € 2" "(R)} (m>1).

We define the ring Z(R) := o Z™(R) of differential operators of R.
Let S := K|xy,...,z,] be the polynomial ring. The ring Z(.5) is the n-th Weyl algebra

Klzy,...,2,){01,...,0,) where 0; := a%i (see for example [3]). We use the multi-index
notetions, for example, 0% := 97" --- 99" and |a| == a; + -+, for a = (aq,...,a,) €

N". Define 2(™(9) := D |aj=n- Then Z(5) = D, PM(S). Tt is well known Z(R)
that Z(R) is Noetherian, if R is a regular domain (see [3]).

Holm [2] showed that Z(R) is finitely generated as a K-algebra when R is a coordinate
ring of a generic hyperplane arrangement. Holm [1] also proved that the ring of differential
operators of a central 2-arrangement is a free S-module, and gave a basis of it. We can
write any ellement in Z(R) as a linearly combination of this basis ellements.

In this paper, we introduce the Noetherian property of Z(R) when R is the coordinate
ring of a central arrangement. In particular, the case n = 2, Z(R) is a Noetherian ring .
We give an example of a finitely generated ideal in the end of this paper.

The details of this note are in [4].

2. HYPERPLANE ARRANGEMENT

In this section, we fix some notation, and we introduce some properties of the ring of
differential operators of a central arrangement. Let &7 = {H; |i=1,... 7} be a central
(hyperplane) arrangement (i.e., every hyperplane in .2/ contains the origin) in K. Fix a

The detailed version of this paper will be submitted for publication elsewhere.
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polynomial p; with ker(p;) = H;, and put @ := p; -+ p,. Thus @ is a product of certain
homogeneous polynomials of degree 1. Let I denote the principal ideal of S generated by
Q. Then S/I is the coordinate ring of the hyperplane arrangement defined by Q.
For any ideal J of S, we define an S-submodule 2(™(.J) of 2(™)(S) and a subring
2(J) of 2(S) by
2'™(J) = {0 € 2"(S) | 0(J) C J},
2(J) :=4{0€ 2(5) |0(J) C J}.

Holm [2] proved the following proposition.

Proposition 1 (Proposition 4.3 in [2]).

(1) =P 2 1).

m>0

There is a ring isomorphism Z(S/J) ~ 2(J)/J2(S) (see [3, Theorem 15.5.13]). Thus
we can express Z(S/.J) as a subquotient of Weyl algebra.

We can prove that 2(J)/J2(9S) is right Noetherian if and only if Z(J)/J2(S) is left
Noetherian when J # 0 is a principal ideal. Therefore we conclude that Z(S/I) is right
Noetherian if and only if 2(S/1) is left Noetherian.

Theorem 2. Let h # 0 be a polynomial, and let J = hS. Then the ring 2(J)/JP(S) is
right Noetherian if and only if 2(J)/J2(S) is left Noetherian.

Corollary 3. Let I be the defining ideal of a central arrangement. Then the ring 2(S/1)
is right Noetherian if and only if 2(S/1) is left Noetherian.

To prove that Z(S/I) is a Noetherian ring, we only need to prove that Z(S/I) is a
right Noetherian ring.
The operator

m!
Em 1= E —r*0”
ol
|o|=m

is called the Euler operator of order m where a! = (ay!) -+ (a,!) for a = (aq,...,a,).
Then &, = ¢1(e; — 1) -+ (61 —m + 1) [2, Lemma 4.9].
3. n=2

In this section, we assume n = 2 and S = K][z,y]. We introduce the Noetherian
property of the ring Z(S/1) ~ 2(1)/12(S). In contrast, the graded ring Gr Z(S/I)
associated to the order filtration is not Noetherian when r > 2.

Put P, := 1% fori=1,...,r, and define

5 Oy if p;=ar (a€ K*)
’ Oy +a;0, if p;=0aly—ax) (aec K*).

Then 6;(p;) = 0 if and only if ¢ = j.
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Proposition 4 (Paper III, Proposition 6.7 in [1], Proposition 4.14 in [6]). For any m > 1,
P(I) is a free left S-module with a basis

{em, P67, ..., P} if m<r—1,
{Po7",...,Po"}if m=r—1,
(P B, QniT) QT Y i m > — 1,
where the set {87, ..., 0" 777r+17 . ,77m+1} forms a K-basis for 3, _,, KO% if m >r—1.

By Proposition 1, we have

r—2
P()=8S® (@ (Sem ® SPOT ® -+ ® SPman”;))
m=1
® ( P (spoyre- @SSP eSO @ o SQnﬁgﬁl)).
m>r—1
Fori=1,...,r, we define an additive group

Li:=2()N(p1---p:)2(S).
Proposition 5. Fori=1,...,r, the additive group L; is a two-sided ideal of P(I).
We consider a sequence
(3.1) I2=L,CL.1C---CLiCLy=2()
of two-sided ideals of Z(I). If L;_1/L; is a right Noetherian Z(I)-module for any 4, then

2(1)/12(S) is a right Noetherian ring. By proving that L; 1/L; is right Noetherian for
all 7, we obtain the following main theorem.

Theorem 6. The ring 2(S/1) ~ 2(1)/12(S) of differential operators of the coordinate
ring of a central 2-arrangement is Noetherian (i.e., 2(S/I) is right Noetherian and left
Noetherian).

In contrast, Gr Z(S/1I) is not Noetherian when r > 2.

Remark 7. The graded ring Gr Z(S/I) associated to the order filtration is a commutative
ring. We consider the ideal M := (P;§* | m > 1) of Gr 2(S/I).

Assume that M is finitely generated with generators 7,...,7,. Then there exists a
positive integer m such that

M:<7717...,77[> <P1(51,...,P1571n71>.
Since P07" € M, we can write
(3.2) PP =Py -0y + -+ P60

for some 64,...,0,_1 € 2(I).

If 0 € (1) with ord(d) < 1, then the polynomial degree of # is greater than or equal
to 1 by Proposition 4. Since the order of the LHS of (3.2) is m, there exists at least one
¢; such that the order of §; is greater than or equal to 1. Thus the polynomial degree of
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the RHS of (3.2) is greater than r — 1. However, the polynomial degree of the LHS of
(3.2) is exactly 7 — 1. This is a contradiction.

Hence M is not finitely generated, and thus we have proved that Gr Z(S/I) is not
Noetherian.

4. EXAPLE

Let n =2 and S = K[z,y|. Let Q@ = xy(x —y) and I = QS. Put p; = x,py = y,p3 =
r —y. Then P, = y(z —y) and 0, = J,. We consider the right ideal (y(z —y)9;"* | m > 1)
of 2(I).

For ¢ > 4, we have

y(@ — )9y - y(z — )0 =y (x — y)*0 " + y(x — 2y)0, ",
y(x — )02 - y(x — y)0, = y*(x — y)?0 "> + 2y(x — 2y)0, ™" — 2y(x — ),
y(x —y)0 - ylx —y)0, " =y (x — y)*0," + 3y(z — 2y)0 " — 6y(x — y) ..

Y
Thus we obtain

y(z—y)0y-y(e—y)d, " = 2y(x—y)0y-y(x —y)d,+y(z —y)d; - y(r—)9, ™" = —2y(z—y)J,,.
This leads to
y(x —y)d, € (y(z —y)9y" | m =1,2,3)
since y(r — y)9;" € Z(I) for any m > 1. We have the identity
(Y@ =)oy [m =1) = {ylx —y)9" | m=1,2,3)
as right ideals. Hence the right ideal (y(z —y)d;" | m > 1) is finitely generated.

In contrast, the right ideal (y(z — )9 | m > 1) of Gr Z(S/I) is not finitely generated
by Remark 7.
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